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Abstract
High-throughput sequencing (HTS) of soil environmental DNA provides an
advanced insight into the effects of pesticides on soil microbial systems.
However, the association between the properties of the pesticide and its
ecological impact remains methodically challenging. Risks associated with
pesticide use can be minimized if pesticides with optimal structural traits
were applied. For this purpose, we merged the 20 independent HTS stud-
ies, to reveal that pesticides significantly reduced beneficial bacteria associ-
ated with soil and plant immunity, enhanced the human pathogen and
weaken the soil’s ecological stability. Through the machine-learning
approach, correlating these impacts with the physicochemical properties of
the pesticides yielded a random forest model with good predictive capabili-
ties. The models revealed that physical pesticide properties such as the dis-
sociation constant (pKa), the molecular weight and water solubility,
determined the ecological impact of pesticides to a large extent. Moreover,
this study identified that eco-friendly pesticides should possess a value of
pKa > 5 and a molecular weight in the range of 200–300 g/mol, which were
found to be conducive to bacteria related to plant immunity promotion and
exerted the lowest fluctuation of human opportunistic pathogen and key-
stone species. This guides the design of pesticides for which the impacts on
soil biota are minimized.

INTRODUCTION

Soil is a critical ecosystem at the interface of the atmo-
sphere, lithosphere, hydrosphere and biosphere and is
also the keystone to maintaining the health of plants,
animals and humans by providing food and other eco-
system services (Chaparro et al., 2012; Gentile &
Weir, 2018; Ley et al., 2006). Pesticides are extensively
applied in agriculture to increase crop yields. This has
resulted in serious contamination of soil ecosystems
(Zhang, 2018). Thereupon it is a great challenge to

balance the ever-increasing demands of the growing
world population and acceptable environmental
impacts, as affected by increasingly variable and
increasingly extreme climate conditions (Pimentel &
Burgess, 2013; Singh et al., 2022; Vörösmarty
et al., 2000). It is therefore of paramount imperative for
soil ecosystems to optimize inputs (mineral and organic
fertilizers, pesticides) with minimal impact on humans,
animals and the ecosystem. This requires the estab-
lishment of a well-functioning and well-validated
assessment system of the impacts of pesticides on soil
ecosystems.Mingjing Ke and Nuohan Xu contributed equally to this work.
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As integral components of microbial ecosystems,
bacteria operate at the heart of many critical terrestrial,
aquatic and host-associated processes, providing criti-
cal ecosystem functions, while playing a key role in var-
ious biogeochemical processes and in soil health
(Howe et al., 2014; Li et al., 2022). High-throughput
DNA sequencing methods have allowed for the unprec-
edented promotion of our understanding of the impacts
of pesticide contamination on the soil bacterial biodiver-
sity (Caporaso et al., 2012; Davison et al., 2015). Many
empirical studies reveal the enormous biological diver-
sity and heterogeneity of soil communities after pesti-
cide application (Monard et al., 2011; Xu et al., 2019).
Historically, the studies that evaluated the factors modi-
fying the different effects of pesticides on soil microbial
communities, were mostly focused on soil properties at
varying pesticide concentrations, different exposure
times and so on (Deng et al., 2022; Zheng et al., 2022).
However, little attention is paid to the characteristic
properties of the pesticides (Feng et al., 2019; Liu
et al., 2019; Wang et al., 2020). Furthermore, it is a
great challenge to draw consistent and convincing rules
with regard to the impacts of pesticides on soil micro-
bial communities. The complexity of predicting the
impacts of pesticides could be significantly reduced if it
was possible to attribute the impact of pesticides on
microbial ecological systems to a limited number of
pesticides characteristics on the basis of existing litera-
ture reports. Rumschlag et al. (2020) demonstrated
consistent effects of pesticides on aquatic microbial
communities and ecosystem functions, which could be
attributed to some specific pesticide classes or types of
pesticides, and this considerably simplified the predic-
tion of the complex effects of pesticides on aquatic eco-
systems. Currently, we are far from a clear
understanding of soil communities and ecosystems. In
particular, the specific linkages between pesticide char-
acteristics and soil community biodiversity and ecosys-
tem functions are not well established. Solving these
problems would allow optimizing of environmental
inputs (such as optimizing pesticide design, application
of microbial fertilizer, etc.), to reduce environmental pol-
lution, as well as to enhance environmental and agricul-
tural sustainability.

However, high heterogeneity in technical
(e.g., sequencing platforms, sequencing depth, PCR
bias, different clustering methods, etc.) and soil envi-
ronmental (e.g., soil pH, soil properties, sampling loca-
tion, etc.) factors between sequencing studies, caused
great difficulties in generalized assessment for the
impact of pesticide characteristics on the soil commu-
nity structure (Mcdonald et al., 2012; Pawluczyk
et al., 2015). Machine learning is a collection of data-
analytical techniques, each of which has the potential
to handle biological networks and large heterogeneous
multi-dimensional datasets to construct models that
simulate complex relationships (Camacho et al., 2018;

Zhang, Zhang, Wang, et al., 2022). Furthermore, the
integration of microbial sequence data from indepen-
dent studies has been a favourable option. For exam-
ple, Ramirez et al. (2017) revealed macroecological
patterns in bacterial communities across global soils for
addressing global-scale biogeography questions, and
Yuan et al. (2020) answered ecological questions by
identifying biological indicators and featured commons
of the wilt-diseased soil microbiome. The objectives of
this study focused on: (1) identifying the effect of pesti-
cides on the soil microbial community composition as
well as the variation in beneficial and pathogenic bacte-
ria; (2) determining how pesticides affect microbial sta-
bility and keystones species using modularity and
network cohesion; (3) establishing a predictive model
to correlate pesticide characteristics with soil microbiota
variation. All of these targets can be addressed based
on merging independent taxonomy-based data sets,
using powerful machine learning approaches. The
accurate prediction of the contribution of pesticides
characteristics on soil ecosystem function variation
could guide the design of eco-friendly pesticides.

EXPERIMENTAL PROCEDURES

Data processing (per study)

The microbial sequence data were processed using the
QIIME 22020.8 core distribution, following the standard
operating procedures (Bolyen et al., 2019). Before
using Cutadapt to remove adaptors and primers
(Martin, 2011), an initial visualization of reading quality
using the packages FastQC was performed. Then, the
raw read files of independent studies were imported to
QIIME 2. We used Dada2 to join paired-end reads
(Callahan et al., 2016), denoise sequences as well as
resolve amplicon sequence variants (ASVs). All low-
quality reads were then filtered using default quality
thresholds.

Combined processing

All studies were merged by QIIME2’s merge-seqsc
commands. To normalize the difference of 16S rRNA
variable regions, all feature sequences were annotated
with the full-length 16S rRNA gene SILVA database for
subsequent analysis. Besides, to address PCR biases
and biases associated with rare taxa and some groups
which could be over-amplified, data processing was
limited to the following strategies: (1) deletion of sam-
ples with a total number of sequences less than 2000;
(2) deletion of ASVs for which the absolute abundance
was less than 10; (3) Removed ASVs with mitochondria
and chloroplast; Random filtering is needed in case of
studies containing more than 90 samples as well as
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less than 10 samples (Buda et al., 2018; Thabtah
et al., 2020; Xu et al., 2022; Yuan et al., 2020). We
finally acquired 297 controls and 430 pesticide-treated
samples (Data Set S1) that encompassed 8 herbicides,
2 insecticides and 1 agricultural fungicide.

Co-occurrence network analysis

We constructed two types of co-occurrence networks.
For all networks, the significance of the correlations
(the Spearman’s correlation coefficient >0.5 at
p < 0.05) between taxa abundances were calculated
using the R psych package (version 4.0.3).

To explore the effect of pesticides on the stability of
the soil microbial network, we performed Spearman
rank correlations between all pairs of bacteria at the
genus level within pesticides-treated and pesticides-
free groups separately (as shown in Figure 2A, B). To
illustrate the complexity and stability of the microbial
community network, topological parameters including
modularity, nodes, as well as the number of negative:
positive cohesion were calculated by Gephi (version
0.9.2) (Assenov et al., 2007; Jacomy et al., 2014). We
identified keystone OTUs separately for the pesticides
and the control interaction networks and defined them
as those nodes within the top 1% of node degree
values of each network (Banerjee et al., 2016; Hartman
et al., 2018).

We then constructed a co-occurrence network to
visualize correlations between 184 genera that were
present both in pesticides-treated and pesticides-free
groups (Figure S2). Seven subnetworks (modules)
were extracted from the merged network using the Lou-
vain algorithm (Blondel et al., 2008; Csardi &
Nepusz, 2006). Louvain starts from the community
structure that separates all vertices. Next, it tries to
move each vertex from its community to another, picks
the move that increases the modularity most, and iter-
ates until no change increases the modularity anymore.
It then replaces the vertices with the detected commu-
nities and performs the same operations on the newly
obtained graph, until the modularity cannot be
increased anymore (Csardi & Nepusz, 2006; Didier
et al., 2018).

Biomarker analysis

To acquire the biomarkers with pesticide treatment, we
constructed a classification model that the relative
abundances of bacterial taxa at the class level were
calculated by the RandomForest package in R (version
4.0.3), and all parameters were default. Microbes were
ranked by feature importance based on the parameter
of mean decrease accuracy. The number of biomarkers
was determined using a 10-fold cross-validation

implemented with the function ‘rfcv’ in the RandomFor-
est package with five repeats. The stabilized cross-
validation error was obtained when using 10 microbes,
therefore, the 10 most important microbes as the bio-
markers related to pesticides treatment.

Construction of predictive RF models

We used an RF regression model to construct the rela-
tionship between pesticides characteristics and micro-
bial abundance. We constructed seven separate RF
regression models for seven microbial modules. For
every model, the physical and chemical properties of
the pesticides served as independent variables, and
the total relative abundances of microbes in each mod-
ule served as dependent variables. To avoid overfitting,
the original dataset was partitioned into 10 folds, in
which 90% of the training data were used to train the
classifiers, and the remaining 10% was used for valida-
tion of the trained classifiers. Furthermore, the parame-
ter of R2 (coefficient) was used to ensure the result’s
reliability and applicability, and the parameter of RMSE
(root mean square error) was used to ensure the accu-
racy of the result. We selected the model with an R2

value greater than 0.8 for subsequent functional analy-
sis from seven modules. To estimate the importance of
different properties, the increase of mean-square error
(% IncMSE) of each module was calculated by the R
package ‘RandomForest’. The construction and predic-
tion performance of the RF regression model (n_esti-
mators = 8) and the verification of the 10-fold cross-
validation method was both used by the scikit-learn
(Version 0.24.0) library of the python language
(Python 3.9).

Statistical methods

The α-diversity index of the Shannon and Richness
indices was calculated using the R vegan and picante
package (version 4.0.3). Principal coordinates analysis
(PCoA) plots were generated from Bray–Curtise dis-
tance created using R package ggplot2. Permutational
multivariate analysis of variance (PERMANOVA by
ADONIS, transformed data by Bray–Curtise, permuta-
tion = 999) was used to determine if beta diversity dif-
fered between the pesticides treated and the control
groups. Opportunistic human pathogens were
searched from an online database (https://www.
hartmann-science-center.com/en/hygiene-knowledge/
pathogens-a-z). Beneficial bacteria were collected from
publications that were listed in Data Set S2. To avoid
false-positive results, the p-value of Spearman’s corre-
lation in network analysis was amended using the
Benjamini–Hochberg’s FDR (false discovery rate)
method (Chen et al., 2018). The Spearman correlations
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(positive correlation: R > 0; positive correlation: R < 0;
p < 0.05) of the microbial trait and drivers were calcu-
lated using the R psych package. We considered
‘R2 > 0.8’ to be a model with strong applicability and
more reliable prediction results. The remaining results
are presented as the means � standard deviations
(SDs). Significant differences (p < 0.05) were evaluated
by the Kruskal–Wallis test using the R function kruskal.
test (version 4.0.3).

RESULTS

Data collection and description

Microbial high-throughput sequencing (HTS) data in
pesticide-treated and reference soils were collected by
means of a literature search using the keywords ‘Pesti-
cides and soil microbiome,’ ‘Pesticides and soil
community,’ ‘Herbicides and 16S,’ ‘Insecticide and
16S,’ and ‘Fungicides and 16S’ in Google Scholar and
the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) database.
Unfortunately, the collection of microbial community
HTS data was heavily constrained. Only parts of the
assays in the most eligible publications have accession

numbers of raw sequence data sets that could be
downloaded from public databases (we obtained
30 studies with accession numbers from 600 studies
approximately). Besides, some HTS data with incom-
plete microbial community records and with a sample
name that was not clearly marked, could not be used
for analysis. Given the restrictions indicated, we finally
acquired 20 independent studies from 10 countries
(Figure 1A). Details of the metadata of these 20 inde-
pendent studies are provided in Data Set S3, which
includes sequence information such as the description
of the study, accession number, location, assay,
primers, collection time and so on.

Diversity and taxonomic profile after
pesticides treatment

To assess how microbial community properties change
after pesticides exposure, we compared α-diversity
indices (Richness and Shannon). No significant differ-
ences between the bacterial Shannon index of
pesticide-treated and pesticide-free soils were found,
while a significant increase was observed in Richness
in pesticide-treated groups (Figure 1B, p = 0.0268).
PCoA with Bray–Curtise distance showed that the

F I GURE 1 Overview of sample collection and effects of the pesticides on diversity and structure of microbial communities. (A) Sample
profile. The geographic region includes information about the country. Also, the number of independent studies and samples were displayed. A
node represents a single independent experiment. (B) Diversity index (Shannon and richness). *Represents statistically significant differences at
p < 0.05 from a one-way ANOVA. (C) Principal coordinate analysis (PCoA) score plots of bacteria community profiles in different treatments.
(D) Taxonomic comparison of the 10 most abundant phyla in the pesticide-treated and control groups. (E) The importance of the top
10 biomarker taxa at the class level. Line charts represent the changes of tenfold cross-validation error with the increasing number of classes.
(F) Relative abundance (RA) of top 10 biomarkers in pesticide-treated and control groups.
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bacterial communities changed significantly after pesti-
cide treatment (Figure 1C, R2 = 0.07047, p = 0.001,
ANOSIM). At the phylum level, the soil bacterial com-
munities in all samples after pesticide treatment were
predominantly composed of Proteobacteria, Actino-
bacteriota, Acidobacteriota and Chloroflexi
(Figure 1D). Several bacteria phyla, such as Acidobac-
teriota (p < 0.0001), Gemmatimonadota (p < 0.0001)
and Verrucomicrobiota (p < 0.001) presented higher
abundance (increased significantly by 25–64%) than in
the control, while Actinobacteriota (p < 0.0001) and Fir-
micutes (p < 0.001) were at lower relative abundance
(significant decreases by 33% and 41%, respectively)
(Figure 1D). The Venn diagram revealed a similar
microbial community composition as most of the bacte-
rial taxa were shared in control and pesticide-treated
soils, but there were still more unique bacterial taxa in
the pesticide-treated soils (317) than in the control
(230) (Figure S1). Generally, our results suggested that
pesticide contamination disturbed predominated phyla
bacterial taxa, and also exhibited a significant alteration
in bacterial diversity.

A classification RF model to correlate soil
bacterial taxonomic biomarkers with
pesticides treatment

The random forest classification model which predicts
whether or not pesticides have been treated, was con-
structed based on the microbial community composi-
tion. Biomarkers were chosen based on the feature
importance of the classification model. We performed a
10-fold cross-validation with five repeats to evaluate
the importance of indicator bacterial class. The cross-
validation error was achieved minimum when 10 impor-
tant classes were used, which were regarded as bio-
markers in the model (Figure 1E). Of these, 5 classes
(Actinobacteria, Bdellovibrionia, Clostridia, MB-
A2-108, Thermoleophilia) showed lower relative abun-
dance in pesticide treatment than the control, and only
Gemmatimonadetes increased in pesticide treatment
(Figure 1F). The biomarker for soil microbiota identifica-
tion can be served as a novel approach for evaluating
the effects of pesticides on soil health.

Pesticide treatment destabilizes microbial
networks

Our results showed that pesticides could alter soil
microbial community diversity and structure, but it was
still uncertain whether and how pesticides impact the
network stability of microbial communities, which
decides their function and sustainability. Microbial net-
work complexity was displayed by various network

topological parameters including nodes, centrality, the
ratio of negative: positive cohesion and network mod-
ularity (Figure 2A, B). The resulting size (total nodes)
of the networks without isolated nodes was decreased
by 14% upon pesticide treatment compared with the
control group (Figure 2C). Besides, the ratio of nega-
tive: positive cohesion also decreased shapely from
0.0391 to 0.0118 after pesticide treatment
(Figure 2D). The centrality and modularity of the
microbial community networks decreased slightly after
pesticides-treatment, indicating that microbial commu-
nities after pesticides treatment are less compartmen-
talized than in the control group (Figure 2E, F). We
also identified the keystone species separately for the
unpolluted and pesticides-polluted microbial interac-
tion network (Data Set 4). Ten keystone genera were
found in the control micro-network with high node
degree values, including Ellin6055, SJA-15, Syntro-
phorhabdus, BBMC-4, BSV26 Bacteroidetes_va-
dinHA17 and so on. In the pesticides network, the
9 genera identified as keystones were Crossiella, Mar-
moricola, OLB13, Blastocatella, Stenotrophobacter,
Actinomadura, AT-s3-28, uncultured group, Microco-
leus-Es-Yyy1400. These genera belonged to the phyla
Actinobacteriota, Chloroflex and Cyanobacteria. All of
the keystone species did not overlap between the
unpolluted and pesticide-polluted microbial interaction
networks.

The profile of beneficial and pathogenic
soil bacteria after pesticides treatment

The compositional alteration of beneficial and patho-
genic bacteria was a critical indicator of soil health,
which was closely associated with the ability of plant
defences and crop production (Lehmann et al., 2020).
To disentangle the consistent impacts of pesticides on
beneficial and pathogenic bacteria taxa, we detected
35 plant growth-promoting and soil disease suppres-
sion bacteria, as well as 40 pathogenic bacteria related
to human and soil-borne bacteria pathogens by com-
paring our data with the online website (Data Set S2).
Although several bacteria (Chthoniobacter, Steroido-
bacter, Acidibacter and Latescibacterota) were
increased, 6 out of 43 beneficial bacteria showed a
markable reduction as compared to unpolluted soil
(Figure 3), such as Nocardioides, Streptomyces, Bacil-
lus, JG30-KF-CM45, Agromyces and Terrabacter.
Besides, pesticide treatment induced a significant
increase of 8 out of 40 pathogenic bacteria, including
Blastocatella, Ferruginibacter, Brevundimonas, Legio-
nella, Flavobacterium and so on (Figure 3), while it
decreased the abundances of Roseomonas, Clostri-
dium_sensu_stricto_1, Escherichia-Shigella and Aero-
monas, compared with unpolluted soil.
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Development of a model to connect
pesticide characteristics and microbial
community traits

Given the significant discrepancy in the diversity and
the interactions of microbial communities caused by
pesticide treatments, it is imperative to figure out which
pesticide characteristics played a decisive role in this
interaction. We established a regression model using
an RF to reveal the attributive mode of pesticides char-
acteristics to microbial community traits (Figure 4A). A
total of 24 physicochemical properties of pesticides
were collected to serve as independent variables in the
model (Data Set S5). Seven microbial modules that are
expected to share some homologous function features
among the community and to act collectively in the
microbial community mechanisms (Chun et al., 2019),
were identified based on the Louvain algorithm from an
association network which visualizes co-occurrence
patterns between pesticide treatments and the control
group (Figure S2). The total relative abundance of
microbes in each module served as the model-
dependent variable (Data Set S6). To pledge suitable

fitness, we used 10-fold cross-validation for evaluating
the model performance. The model for 10-fold cross
prediction displayed a good performance with values of
R2 mostly ranging from 65% to 96%. On the basis of
this result, the three modules of the prediction models
(modules 1, 3 and 7), with a good value of R2 (>0.8)
and low RSEM (<0.05) were chosen to analyse the
contribution of pesticide characteristics on microbial
traits (Figure 4B, Figure S3). For module 1, the dissoci-
ation constant (pKa) explained 21.7% of the variation in
microbial communities associated with pesticide treat-
ment, and amido-groups (9.9%) dominated the contri-
butions of the chemical properties of the pesticides
applied. The molecular weight, explaining 25% of the
microbial alteration induced by pesticides was the most
important physical factor for module 3 after pesticides
addition, while chemical properties related to the ester
functionality accounted for 3.9% of the microbial alter-
ation. The microbial traits in Module 7 were mostly
related to the water solubility of the pesticides (21.8%),
while heterocyclic chemical groups (12.3%) were the
next most important contributor to microbial community
diversity in this module (Figure 4C).

F I GURE 2 Effects of pesticides on microbial networks. (A) Visualization of constructed soil ecological networks treated with pesticides.
(B) Visualization of constructed soil ecological networks in the control group. Various network topological parameters: (C) nodes, (D) the ratio of
negative: Positive, (E) modularity and (F) centrality.
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F I GURE 3 Different beneficial and pathogenic soil bacteria at the genera level in pesticide-treated and control groups. The p-values were
amended by Benjamini–Hochberg FDR. The significant differences were evaluated by the two-tailed Welch’s t-test (p < 0.05)

F I GURE 4 Model building by RF for connection between pesticide characteristics and microbial community trait and function. (A) RF model
building (B) the values of R 2 in the validation model evaluated by tenfold cross-validation. (C) The contribution of pesticides characteristic on
microbial traits.
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Linking crucial pesticides physical
properties to soil ecosystem functioning

Our RF model indicated that the physical properties of
pesticides played important roles in the impact of pesti-
cides on microbial ecosystems. The ecological risk of
pesticides can be minimized in targeted ways, as
achieved by only applying pesticides because of their
specific physical properties, which have a minimal
impact on soil biota. Most of the differentiated patho-
genic bacteria belonged to module 1, while most of the
differentiated beneficial bacteria belonged to module
3. Among keystone species in the pesticides network,
there are 2 species belonging to module 1, and 4 spe-
cies belonging to module 3. We, therefore, constructed
a relationship between specific physical properties of
the pesticides in model 1 and in model 3 and the bene-
ficial and pathogenic bacteria as well as the keystone
species (Figure 5, Figure S4). The relative abundance
of pathogenic bacteria and keystone species in module
1 was increased significantly by pesticides for which
the pKa ranged from �5 to 5, while they exerted no
alteration or a markable decrease when the pesticides
were equipped with a value of the pKa in the range of
(< �5) and (≥5) (Figure 5A, Table S1). Pesticides with
a molecular weight in the range of (200–300) and
(≥350) did not alter or increase the beneficial bacteria
significantly in module 3 (Figure 5B, Table S2). Further-
more, the keystone species were sensitive to the appli-
cation of pesticides for which the molecular weight is
greater than 300 (Figure 5B, Table S2).

DISCUSSION

Using amplicon sequencing approaches, researchers
gained important insights into the biodiversity and
potential functions of microbial communities from indi-
vidual pesticides-polluted soils in natural or laboratory
conditions (Bhuiyan et al., 2011; Delmont et al., 2012;
Tringe et al., 2005). Various heterogeneous conditions
in individual mesocosm experiments have made it diffi-
cult to clearly and uniformly understand the impact of
pesticides on soil microorganisms. In this study, we
performed a large-scale analysis of the soil microbial
traits and the functional features by merging microbial
community HTS data. However, although the urgent
need for standardization of data deposition and man-
agement was emphasized in earlier reports (Ramirez
et al., 2017; Santos & Branco, 2012; Tedersoo
et al., 2015), the acquisition process of microbial com-
munity HTS data was still constrained by many chal-
lenges. On the one hand, the poor accessibility of HTS
data and environmental metadata remains unresolved.
On the other hand, data analysis was restricted to pub-
licly available data with low quality as well as incom-
plete information (e.g., barcoded primers, sampling
location, incompatible sample names, etc.). Thus, it

should be strengthened for the standardization and
management of raw data submission in public
databases.

Identifying the general characteristics of microbial
biodiversity in agricultural ecosystems and their
response to environmental disturbances is essential for
protecting ecosystem processes and regulating the
management and common practice of agricultural pro-
duction. Soil biodiversity is known to be associated inti-
mately with soil quality and ecosystem functioning and
services, such as soil decomposition and the global
carbon, nitrogen and other nutrients cycles, especially
in agricultural ecosystems (de Zelicourt et al., 2013;
Naylor et al., 2020; Toju et al., 2018; Xun et al., 2019).
We noticed that pesticides contamination induced a
markable increase of α-diversity as well as a consider-
able alteration of the composition of dominant microbial
communities. It is likely that pesticides may increase
the ecological niche width by increasing the proportion
of source rare taxa, leading to increased α-diversity
(Okie et al., 2015). Besides, Coyte et al. (2015) pre-
dicted that high species diversity destabilized micro-
biome communities via a model that was built on
ecological network theory. The most dominant bacterial
taxa accounted for a high proportion of network hubs
and connectors and were proven to be strongly associ-
ated with network reorganization (Shi et al., 2016;
Williams et al., 2014). The strong response of soil
microbial communities induced by pesticides suggests
a disturbance of the soil ecological network.

In our study, pesticide contamination induced a dra-
matic fluctuation of the different network properties,
with lower centrality and modularity. We also found a
reduced dominance of negative interactions after pesti-
cide treatment. Negative links stabilize an ecological
network after environmental disturbance (Coyte
et al., 2015; Hernandez et al., 2021; Yuan et al., 2021).
Our findings thus indicate that pesticides weakened the
microbial network stability (Rooney et al., 2006). This
can be explained by the increase in bacterial diversity
and markable alteration of dominant taxa. Besides,
considerable amounts of keystone species that play an
ecologically important role by determining community
dynamics and microbiome functioning, were varied dra-
matically after pesticides exposure (Banerjee
et al., 2016; Hartman et al., 2018; Xun et al., 2021).
These keystone species constitute a complex ecologi-
cal network where they are interconnected through
exchanges of materials, energy, and information and
withstand a diverse array of abiotic and biotic factors
(e.g., temperature, climate warming, drought, etc.)
(de Vries et al., 2021; Xun et al., 2019; Yuan
et al., 2021). Therefore, our findings indicated that pes-
ticides destabilized the soil ecology, thus potentially
weakening the soil biotic competition.

Scientists have paid more attention to how pesti-
cides manage pests and diseases and enhance crop
yield. Unfortunately, really little attention was paid to
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the impact of these chemicals on non-target microor-
ganisms, especially the beneficial and pathogenic bac-
teria in the soil (Duke, 2018). This study revealed that
pesticides had a considerable impact on bacteria asso-
ciated with soil health and plant immunity as well as

human health. Several genera of bacteria like Strepto-
myces, Nocardioides and Bacillus, which are well-
known not only to be fungal antagonists of soilborne
fungal pathogens but to also trigger plant-induced sys-
temic resistance (ISR) and promote plant growth, were

F I GURE 5 The scatterplot showed the relative abundance (RA) alteration of soil ecological parameters in different quantitative value
distributions of physical properties of pesticides. (A) The RA alteration of pathogenic bacteria in modules 1 across different values of the
dissociation constant; (B) the RA alteration of beneficial bacteria in modules 3 across different values of molecular weight; (C) the RA alteration
of keystone species in modules 3 across different values of molecular weight. The comparison between the control and the pesticide-treated
group was based on means � standard deviations (SDs) (the midline in the figure). Different letters represent significant differences between
different treatments (p < 0.05).
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decreased significantly in pesticide treatment
(Inderbitzin et al., 2017; Lazcano et al., 2021). Further-
more, the plant pathogenic bacteria Xanthomonas and
Blastocatella were increased significantly in pesticides
treatment (Molder et al., 2021). Therefore, although
pesticides protect plants from diseases or insects, they
could potentially contribute to the increase of soil patho-
gen invasiveness and the weakening of plant immunity
after repeated application of pesticides, making soils
and plants more dependent on pesticides. Besides,
JC30-KF-CM50 which has the capability of degradation
of antibiotic pollutants was reduced by pesticides expo-
sure, while the dominant hosts of antibiotics resistance
genes (ARGs), such as Ferruginibacter and Flavobac-
terium were highly abundant in pesticide-treated soil
(Wang et al., 2020). Notably, human opportunistic path-
ogens such as Brevundimonas, Stenotrophomonas
and Legionella (Berg et al., 2009; Chun et al., 2019),
were promoted after pesticides treatment (Legionella).
Generally, our results reminded us that pesticide con-
tamination might accelerate the spread of pathogens
and ARGs in the soil.

Machine learning has the capability to identify
meaningful and regular patterns in a complex set of
data, consistently predicting various biological
responses (Ahneman et al., 2018; Jiang et al., 2021;
Jordan & Mitchell, 2015). By a machine learning
approach, we identified biomarker taxa that can serve
to discriminate the pesticides impact on soil biodiversity
from a complex chemical soil system, which can be a
novel quality indicator for agricultural soil remediation
effectiveness of pesticides-pollution. Besides, com-
pared with support vector machines, neural networks,
and other machine learning algorithms, the RF model
has been demonstrated to exhibit excellent prediction
accuracy on heterogeneous metagenome data with
quantitative and qualitative factors (Vujkovic-Cvijin
et al., 2020; Zhang, Zhang, Cui, et al., 2022). Ban et al.
(2020) clarified the complex relationships between
nanoparticle properties and corona composition using
RF, and successfully predicted the cellular recognition
mediated by a functional corona protein. Wright et al.
(2021) also revealed that environmental and methodo-
logical factors, and not plastic type were shaping domi-
nantly the plastisphere through the construction of an
RF model. We constructed a good model (with
R2 > 0.8) with high accuracy and reliability, that allows
screening of the most important properties of pesticides
that explain most of the variance in microbial soil com-
position after pesticide application. This provided the
possibility for exploring the most important properties of
pesticides that modify microbial communities. Impor-
tantly, our well-performing predictive models revealed
that the physical pesticide properties determined the
ecological impact of pesticides to a larger extent than
the contribution of the chemical pesticide properties.
The dissociation constant (pKa), the molecular weight,

and water solubility were the most important pesticide
properties that determine the microbial alteration of the
three modules. Notably, pesticides type has always
been recognized as the most important factor affecting
the microbial community in many single studies. How-
ever, this factor was less important than other physical
properties in our models.

The pesticides addition exhibited a strong fluctua-
tion in keystone species, suggesting a disruption of the
soil ecological system. The profile of keystone species
as well as the beneficial and pathogenic bacteria
across different value ranges of pesticides physical
properties provide a baseline for the design of eco-
friendly pesticides. Although pesticides pollution
reduces the stress competitiveness and disease resis-
tance of soil microbial systems, subsequently con-
straining soil ecosystem function, these negative
impacts can be minimized by adjusting and restricting
the properties of the pesticides applied. Pesticides
equipped with a pKa value of more than 5 could
decrease the abundance of the human opportunistic
pathogen. Besides, pesticides with a molecular weight
in the range of 200–300 g/mol and more than 350 g/
mol were conducive to the growth of beneficial bacteria
related to plant immune promotion. Keystone species
exerted the lowest fluctuation with a molecular weight
below 300 g/mol.

CONCLUSION

Our results indicated that pesticides significantly
increased microbial diversity and disturbed dominant
phyla bacteria. The decrease in soil microbiome stabil-
ity and the increase of beneficial bacteria involved in
the ability for disease suppression in soil and the immu-
nity of the plants themselves indicated that a suscepti-
ble soil system was induced by pesticides. Importantly,
we revealed through machine learning methods that
pesticides characteristics, such as pKa, the molecular
weight and water solubility, play a large role in shaping
soil microbial communities as well as functional traits.
This study provided an accurate prediction model to
uncover pesticide characteristics that determine soil
microbial functionality and health, as well as a guide to
design and optimize pesticide molecules for which the
environmental risk is minimized.
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