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ABSTRACT
This paper summarizes our work “Automated Configuration of

Genetic Algorithms by Tuning for Anytime Performance”, to appear

in IEEE Transactions on Evolutionary Computation.
Finding the best configuration of algorithms’ hyperparameters

for a given optimization problem is an important task in evolution-

ary computation. We compare in our work the results of four differ-

ent hyperparameter optimization approaches for a family of genetic

algorithms on 25 diverse pseudo-Boolean optimization problems.

More precisely, we compare previously obtained results from a grid

search with those obtained from three automated configuration

techniques: iterated racing, mixed-integer parallel efficient global

optimization, and mixed-integer evolutionary strategies. Using two

different cost metrics, expected running time and the area under

the empirical cumulative distribution function curve, we find that

in several cases the best configurations with respect to expected

running time are obtained when using the area under the empirical

cumulative distribution function curve as the cost metric during

the configuration process.

Our results suggest that even when interested in expected run-

ning time performance, it might be preferable to use anytime per-

formance measures for the configuration task. We also observe

that tuning for expected running time is much more sensitive with

respect to the budget that is allocated to the target algorithms.
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• Theory of computation → Random search heuristics; De-
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1 SUMMARY OF THE RESULTS
To reduce the bias inherent to manual parameter setting procedures,

a number of automated algorithm configuration techniques have

been developed to assist the user with data-driven suggestions.

The first family of algorithm configuration techniques were stan-

dard search heuristics such as mixed-integer evolution strategies,

but more specific AC tools have been developed in recent years,

among them surrogate-based models (e.g., SPOT [1], SMAC [5],

MIP-EGO [9]), racing-based methods (Irace [8], F-race [2]) and

optimization-based methods (ParamILS [6]).

We study in [10] the effects of automated algorithm configura-

tion on a genetic algorithm (GA) framework, applied to 25 diverse

pseudo-Boolean optimization problems. We compare the results of

four different configuration techniques. Our main interest is in ana-

lyzing the influence of the cost metric that is used to score different

configurations on the quality of the configuration suggested by the

AC methods. We consider two different cost metrics: minimizing
the expected running time (ERT) and maximizing the area under the
empirical cumulative distribution function curve of running times
(AUC). While minimizing ERT favors the average first hitting time

of a single fixed-target, maximizing the AUC metric aims at opti-

mizing anytime performance, which is measured across a whole set

of (budget, target value) pairs. We show that in several cases
tuning for AUC yields configurations that have smaller ERT
values than those that were obtained when directly tuning
for ERT.

Concretely, we build on our previous work [11] in which we

analyzed a configurable framework of (𝜇 + 𝜆) GAs that scales the
relevance of mutation and crossover bymeans of the crossover prob-

ability 𝑝𝑐 ∈ [0, 1]. The framework creates new solution candidates

by applying either mutation (with probability 1 − 𝑝𝑐 ) or crossover

(with probability 𝑝𝑐 ). This way, it can separate the influence of these

operators from each other. While we have studied several operator
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choices in [11] via plain grid search, we consider here only one

type of crossover (uniform crossover) and one type of mutation

(standard bit mutation), to keep the search space manageable and

to better highlight our key findings.

We compare in this work the results from [11] with those ob-

tained from three different types of automated algorithm config-

uration methods, one based on iterated racing (we use Irace [8]),

one surrogate-assisted technique (we use the mixed-integer parallel

efficient global optimization MIP-EGO [9]), and a classic heuris-

tic optimization method (we use the mixed-integer evolutionary

strategies MIES suggested in [7]). Our testbed are the 25 functions

from the pseudo-Boolean optimization (PBO) test suite, suggested

in [4, 11] and available in the IOHprofiler benchmarking environ-

ment [3].

Compared to the (1 + 1) EA and to the configurations obtained

by the grid search in [11], we observe that (1 + 𝜆) mutation-only

GAs perform well on OneMax, LeadingOnes, and most of their

so-called W-model extensions (see Sec. 3.7 in [4]), and on Ising-

Models, whereas the (𝜇 + 𝜆) GA benefits from using crossover

and different mutation rates on the more complex optimization

problems. Thanks to its ability to handle conditional configuration

spaces, Irace is the only method that finds configurations of (1 +
𝜆) mutation-only GAs for problems on which these are efficient. We

also observe that, on some problems, the automatic configurators

cannot obtain hyperparameter settings that are as good as those

provided by a simple grid search. However, our key finding is that

the configuration methods can find better configurations in terms

of the ERT by using AUC as the cost metric, compared to directly

using ERT instead. This advantage is particularly pronounced when

the budget of the GAs is small compared to the ERT obtained by

the best possible configuration. In this case, ERT cannot reflect the

differences among the configurations, and the anytime performance

provides more information to guide the configuration process.

2 INTEREST FOR THE GECCO COMMUNITY
The paper addresses the GAs and their automated configuration.

Both topics are highly relevant to the GECCO community. Also,

the paper presents new observations on the performance of the GA

and the behavior of the AC techniques when tuning for different

objectives.

First, the study presents a practical example of applying AC tech-

niques to understand the GA’s behavior. Such an example illustrates

the potential interaction between benchmarking studies and AC

work. Also, the obtained benchmark data provide a baseline for

analyzing the sensitivity of the performance concerning different

parameters and can be useful for comparisons in future work.

Moreover, the paper also addresses topics that are relevant for

the applications of AC techniques: (1) Better configurations in terms

of ERT are found by using AUC as the cost metric, compared to

directly using ERT as the cost metric, which indicates that a bi-

objective (or even multi-objective) optimization process might be

able to balance the advantage of the different cost metrics. (2) The

performance comparison of three AC techniques suggest potential

for improvement of these configuration methods.

Therefore, we are convinced that our work will stimulate inter-

esting discussions and inspire new research questions with through

a presentation in GECCO.

3 PUBLICATION INFORMATION
The paper has been recently been accepted by IEEE Transactions on
Evolutionary Computation [10]. This work has not been presented

in any of the previous GECCOs.

Concerning reproducibility, all our data is publicly available

at https://zenodo.org/record/4823492#.Yk7goS8RphE and at the pub-

lic repository of IOHanalyzer, accessible via https://iohanalyzer.

liacs.nl/ (‘2021-mlga’ of ‘PBO’ dataset). The source code of our exper-

iments is available at https://github.com/FurongYe/Configuration-

of-Genetic-Algorithms.
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