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ABSTRACT
This paper summarizes our work “IOHanalyzer: Detailed Perfor-
mance Analyses for Iterative Optimization Heuristics”, to appear
in ACM Transactions on Evolutionary Learning and Optimization.

IOHanalyzer is a new user-friendly tool for analyzing, compar-
ing, and visualizing performance data of iterative optimization
heuristics (IOHs). Key advantages of IOHanalyzer over other per-
formance analysis packages are its highly interactive graphical user
interface, which allows users to specify the performance measures,
the ranges, and granularity of the displayed data that are most
useful for their experiments, and the possibility to analyze not only
performance traces, but also the evolution of dynamic parameters
of IOHs.

IOHanalyzer can directly process performance data from the
main benchmarking platforms, including the COCO platform, Nev-
ergrad, the SOS platform, and IOHexperimenter. An R programming
interface is provided for users preferring to have a finer control
over the implemented functionalities.

Implemented in R and C, IOHanalyzer is fully open source and
available on CRAN and GitHub. Our paper has two reproducibility
badges, the one for “Artifacts Available” and the one for “Artifacts
Evaluated – Functional v1.1”.

CCS CONCEPTS
• Theory of computation → Random search heuristics; De-
sign and analysis of algorithms; Bio-inspired optimization.
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1 INTRODUCTION
Optimization problems not admitting exact solution approaches
affect almost all aspects of our daily lives. They appear, for example,
in product design, scheduling, data analysis, and machine learning
(e.g., hyper-parameter tuning). For instance, it is sometimes impor-
tant to analyze the optimization procedure when training a neural
network, which helps us understand the training process.

Iterative optimization heuristics (IOHs) are algorithms designed
to search for high-quality solutions of such problems. IOHs are
characterized by a sequential structure, which aims to evolve good
solutions by iteratively sampling the decision space. The distribu-
tion from which the solution candidates are sampled is adjusted
after each iteration, to reflect the new information obtained from
the last evaluations.

IOHs are often randomized concerning candidate generation
and selecting the information stored from one iteration to the next.
Therefore, the optimization behavior of IOHs is a highly complex
system with many dependencies, which makes it difficult to predict
how well a particular IOH performs on a given problem. To gather
a good understanding of the performance and the search behavior
of realistic IOHs and applications, we are therefore often restricted
to an empirical evaluation of them, from which we may extrapolate
the performance accurately.

Supporting such empirical evaluations through a systematic
experimental design is one of the primary goals of algorithm bench-
marking. Algorithm benchmarking addresses the selection of prob-
lem instances that are most suitable for an accurate performance
extrapolation, the experimental setup of the data generation, the
choice of the performance indicators and their visualizations, the
choice of the statistics used to compare two or more algorithms,
etc. In practice, those various aspects of algorithm benchmarking
make it laborious and demanding for researchers to handle the de-
tails of experimentation, which calls for a standard and easy-to-use
software implementation of algorithm benchmarking that would
drastically reduce the manual work for practitioners.

In ourwork [8], we present IOHanalyzer, a versatile, user-friendly,
and highly interactive platform for the assessment, comparison, and
visualization of IOH’s performance data in an algorithm-agnostic
manner. Our key design principles are 1) an easy-to-use software
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Figure 1: IOHanalyzer is a core module of the IOHprofiler
benchmarking environment, which targets a complete in-
tegration of various elements of the entire benchmarking
pipeline.

interface, 2) interactive performance analysis, and 3) convenient
export of reports and illustrations.

IOHanalyzer is developed as the performance analysis compo-
nent of the overarching IOHprofiler project - a benchmarking plat-
form that aims to integrate various elements of the entire bench-
marking pipeline, ranging from the problem (instance) generators
and modular algorithm frameworks over automated algorithm con-
figuration techniques to the actual experimentation, data analysis,
and visualization [2]. An illustration of the interplay between these
different components is provided in Figure 1. Notably, IOHprofiler
already provides the following components:

• IOHproblems: a collection of benchmark problems. This
component currently comprises (1) the pseudo-Boolean op-
timization (PBO) problems suggested in [3], (2) the integra-
tion of 24 numerical, noise-free BBOB functions from the
COmparing Continuous Optimizers (COCO) platform [5],
and (3) the Wmodel problem generator proposed in [9].

• IOHalgorithms: a collection of IOHs, e.g., randomized local
search, evolutionary algorithm, fast genetic algorithm.

• IOHdata: a data repository for benchmark data. This repos-
itory currently comprises the data from the experiments
performed in [3], a sample data set used in this paper, and
some selected data sets from the COCO repository [4]. IOH-
data also contains a data snapshot of Facebook’s Nevergrad
benchmarking environment [6], which is updated from the
Nevergrad’s data source on a regular basis.

• IOHexperimenter: the experimentation environment that
executes IOHs on IOHproblems or external problems and
automatically takes care of logging the experimental data.
It allows for tracking the internal parameter of IOHs and
supports various customizable logging options to specify
when to register a data record.

• IOHanalyzer: the performance analysis and visualization
tool presented in this work.

IOHanalyzer takes as input benchmarking data sets, generated,
e.g., by IOHexperimenter, through the COCO platform, or through
the Nevergrad environment. Of course, users can also use their own
experimentation platform. IOHanalyzer provides an evaluation plat-
form for these performance traces, which allows users to choose
the performance measures, the ranges, and the granularity of the
displayed data according to their needs. In particular, IOHanalyzer
supports both a fixed-target and a fixed-budget perspective, and
allows various ways of aggregating performances across different
problems (or problem instances) and dimensions. In addition to
these performance-oriented analyses, IOHanalyzer also offers sta-
tistics about the evolution of non-static algorithmic components,
for example, the hyperparameters suggested by a self-adjusting
parameter control scheme.

TheR programming interface of IOHanalyzer offers a fine control
on the data and functionalities implemented therein. IOHanalyzer
is written in R and C and makes use of the two R packages plotly [7]
and shiny [1]. The version of the software described in this paper
is v0.1.6.1. For users less experienced with programming in R we
offer a web-based graphical user interface (GUI), to which users
can load their own data or use data from the IOHdata repository.

Availability: The stable version of the IOHanalyzer package is
distributed through CRAN (https://CRAN.R-project.org/package=
IOHanalyzer). The latest version is accessible on GitHub (https:
//github.com/IOHprofiler/IOHanalyzer, part of IOHprofiler). An
up-to-date documentation is maintained on the wiki page (https://
iohprofiler.github.io/). The web-based GUI of IOHanalyzer is hosted
at http://iohprofiler.liacs.nl.
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