
IOHanalyzer: detailed performance analyses for iterative optimization
heuristics: hot-off-the-press track @ GECCO 2022
Wang, H.; Vermetten, D.; Ye, F.; Doerr, C.; Bäck, T.H.W; Fieldsend, J.E.

Citation
Wang, H., Vermetten, D., Ye, F., Doerr, C., & Bäck, T. H. W. (2022). IOHanalyzer: detailed
performance analyses for iterative optimization heuristics: hot-off-the-press track @ GECCO
2022. Gecco '22: Proceedings Of The Genetic And Evolutionary Computation Conference
Companion, 49-50. doi:10.1145/3520304.3534071
 
Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3503892
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3503892


IOHanalyzer: Detailed Performance Analyses for Iterative
Optimization Heuristics
Hot-off-the-Press Track @ GECCO 2022

Hao Wang
LIACS, Leiden University
Leiden, The Netherlands

h.wang@liacs.leidenuniv.nl

Diederick Vermetten
LIACS, Leiden University
Leiden, The Netherlands

d.l.vermetten@liacs.leidenuniv.nl

Furong Ye
LIACS, Leiden University
Leiden, The Netherlands
f.ye@liacs.leidenuniv.nl

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France
Carola.Doerr@lip6.fr

Thomas Bäck
LIACS, Leiden University
Leiden, The Netherlands

t.h.w.baeck@liacs.leidenuniv.nl

ABSTRACT
This paper summarizes our work “IOHanalyzer: Detailed Perfor-
mance Analyses for Iterative Optimization Heuristics”, to appear
in ACM Transactions on Evolutionary Learning and Optimization.

IOHanalyzer is a new user-friendly tool for analyzing, compar-
ing, and visualizing performance data of iterative optimization
heuristics (IOHs). Key advantages of IOHanalyzer over other per-
formance analysis packages are its highly interactive graphical user
interface, which allows users to specify the performance measures,
the ranges, and granularity of the displayed data that are most
useful for their experiments, and the possibility to analyze not only
performance traces, but also the evolution of dynamic parameters
of IOHs.

IOHanalyzer can directly process performance data from the
main benchmarking platforms, including the COCO platform, Nev-
ergrad, the SOS platform, and IOHexperimenter. An R programming
interface is provided for users preferring to have a finer control
over the implemented functionalities.

Implemented in R and C, IOHanalyzer is fully open source and
available on CRAN and GitHub. Our paper has two reproducibility
badges, the one for “Artifacts Available” and the one for “Artifacts
Evaluated – Functional v1.1”.

CCS CONCEPTS
• Theory of computation → Random search heuristics; De-
sign and analysis of algorithms; Bio-inspired optimization.
ACM Reference Format:
Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas
Bäck. 2022. IOHanalyzer: Detailed Performance Analyses for Iterative Op-
timization Heuristics: Hot-off-the-Press Track @ GECCO 2022. In Genetic
and Evolutionary Computation Conference Companion (GECCO ’22 Compan-
ion), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3520304.3534071

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534071

1 INTRODUCTION
Optimization problems not admitting exact solution approaches
affect almost all aspects of our daily lives. They appear, for example,
in product design, scheduling, data analysis, and machine learning
(e.g., hyper-parameter tuning). For instance, it is sometimes impor-
tant to analyze the optimization procedure when training a neural
network, which helps us understand the training process.

Iterative optimization heuristics (IOHs) are algorithms designed
to search for high-quality solutions of such problems. IOHs are
characterized by a sequential structure, which aims to evolve good
solutions by iteratively sampling the decision space. The distribu-
tion from which the solution candidates are sampled is adjusted
after each iteration, to reflect the new information obtained from
the last evaluations.

IOHs are often randomized concerning candidate generation
and selecting the information stored from one iteration to the next.
Therefore, the optimization behavior of IOHs is a highly complex
system with many dependencies, which makes it difficult to predict
how well a particular IOH performs on a given problem. To gather
a good understanding of the performance and the search behavior
of realistic IOHs and applications, we are therefore often restricted
to an empirical evaluation of them, from which we may extrapolate
the performance accurately.

Supporting such empirical evaluations through a systematic
experimental design is one of the primary goals of algorithm bench-
marking. Algorithm benchmarking addresses the selection of prob-
lem instances that are most suitable for an accurate performance
extrapolation, the experimental setup of the data generation, the
choice of the performance indicators and their visualizations, the
choice of the statistics used to compare two or more algorithms,
etc. In practice, those various aspects of algorithm benchmarking
make it laborious and demanding for researchers to handle the de-
tails of experimentation, which calls for a standard and easy-to-use
software implementation of algorithm benchmarking that would
drastically reduce the manual work for practitioners.

In ourwork [8], we present IOHanalyzer, a versatile, user-friendly,
and highly interactive platform for the assessment, comparison, and
visualization of IOH’s performance data in an algorithm-agnostic
manner. Our key design principles are 1) an easy-to-use software

https://orcid.org/0000-0002-4933-5181
https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0002-8707-4189
https://orcid.org/0000-0002-4981-3227
https://orcid.org/0000-0001-6768-1478
https://doi.org/10.1145/3520304.3534071
https://doi.org/10.1145/3520304.3534071


GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Wang, Vermetten, et al.

Figure 1: IOHanalyzer is a core module of the IOHprofiler
benchmarking environment, which targets a complete in-
tegration of various elements of the entire benchmarking
pipeline.

interface, 2) interactive performance analysis, and 3) convenient
export of reports and illustrations.

IOHanalyzer is developed as the performance analysis compo-
nent of the overarching IOHprofiler project - a benchmarking plat-
form that aims to integrate various elements of the entire bench-
marking pipeline, ranging from the problem (instance) generators
and modular algorithm frameworks over automated algorithm con-
figuration techniques to the actual experimentation, data analysis,
and visualization [2]. An illustration of the interplay between these
different components is provided in Figure 1. Notably, IOHprofiler
already provides the following components:

• IOHproblems: a collection of benchmark problems. This
component currently comprises (1) the pseudo-Boolean op-
timization (PBO) problems suggested in [3], (2) the integra-
tion of 24 numerical, noise-free BBOB functions from the
COmparing Continuous Optimizers (COCO) platform [5],
and (3) the Wmodel problem generator proposed in [9].

• IOHalgorithms: a collection of IOHs, e.g., randomized local
search, evolutionary algorithm, fast genetic algorithm.

• IOHdata: a data repository for benchmark data. This repos-
itory currently comprises the data from the experiments
performed in [3], a sample data set used in this paper, and
some selected data sets from the COCO repository [4]. IOH-
data also contains a data snapshot of Facebook’s Nevergrad
benchmarking environment [6], which is updated from the
Nevergrad’s data source on a regular basis.

• IOHexperimenter: the experimentation environment that
executes IOHs on IOHproblems or external problems and
automatically takes care of logging the experimental data.
It allows for tracking the internal parameter of IOHs and
supports various customizable logging options to specify
when to register a data record.

• IOHanalyzer: the performance analysis and visualization
tool presented in this work.

IOHanalyzer takes as input benchmarking data sets, generated,
e.g., by IOHexperimenter, through the COCO platform, or through
the Nevergrad environment. Of course, users can also use their own
experimentation platform. IOHanalyzer provides an evaluation plat-
form for these performance traces, which allows users to choose
the performance measures, the ranges, and the granularity of the
displayed data according to their needs. In particular, IOHanalyzer
supports both a fixed-target and a fixed-budget perspective, and
allows various ways of aggregating performances across different
problems (or problem instances) and dimensions. In addition to
these performance-oriented analyses, IOHanalyzer also offers sta-
tistics about the evolution of non-static algorithmic components,
for example, the hyperparameters suggested by a self-adjusting
parameter control scheme.

TheR programming interface of IOHanalyzer offers a fine control
on the data and functionalities implemented therein. IOHanalyzer
is written in R and C and makes use of the two R packages plotly [7]
and shiny [1]. The version of the software described in this paper
is v0.1.6.1. For users less experienced with programming in R we
offer a web-based graphical user interface (GUI), to which users
can load their own data or use data from the IOHdata repository.

Availability: The stable version of the IOHanalyzer package is
distributed through CRAN (https://CRAN.R-project.org/package=
IOHanalyzer). The latest version is accessible on GitHub (https:
//github.com/IOHprofiler/IOHanalyzer, part of IOHprofiler). An
up-to-date documentation is maintained on the wiki page (https://
iohprofiler.github.io/). The web-based GUI of IOHanalyzer is hosted
at http://iohprofiler.liacs.nl.

REFERENCES
[1] Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPherson. 2019.

shiny: Web Application Framework for R. https://CRAN.R-project.org/package=
shiny R package version 1.3.2.

[2] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2018.
IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuris-
tics. arXiv e-prints, Article arXiv:1810.05281 (Oct 2018), arXiv:1810.05281 pages.
arXiv:1810.05281 [cs.NE]

[3] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas
Bäck. 2020. Benchmarking discrete optimization heuristics with IOHprofiler. Appl.
Soft Comput. 88 (2020), 106027. https://doi.org/10.1016/j.asoc.2019.106027

[4] Nikolaus Hansen, Anne Auger, and Dimo Brockhoff. 2020. Data from the BBOB
workshops. https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob.

[5] NikolausHansen, AnneAuger, Raymond Ros, OlafMersmann, Tea Tušar, andDimo
Brockhoff. 2020. COCO: a platform for comparing continuous optimizers in a black-
box setting. Optimization Methods and Software (2020), 1–31. https://doi.org/10.
1080/10556788.2020.1808977 arXiv:https://doi.org/10.1080/10556788.2020.1808977

[6] Jeremy Rapin and Olivier Teytaud. 2018. Nevergrad - A gradient-free optimization
platform. https://GitHub.com/FacebookResearch/Nevergrad.

[7] Carson Sievert. 2018. plotly for R. https://plotly-r.com
[8] HaoWang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck. 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics.
ACM Trans. Evol. Learn. Optim. 2, Article 3 (2022). https://doi.org/10.1145/3510426

[9] Thomas Weise and Zijun Wu. 2018. Difficult Features of Combinatorial Opti-
mization Problems and the Tunable W-model Benchmark Problem for Simulating
Them. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18,
Companion Material) (Kyoto, Japan). ACM, 1769–1776.

https://CRAN.R-project.org/package=IOHanalyzer
https://CRAN.R-project.org/package=IOHanalyzer
https://github.com/IOHprofiler/IOHanalyzer
https://github.com/IOHprofiler/IOHanalyzer
https://iohprofiler.github.io/
https://iohprofiler.github.io/
http://iohprofiler.liacs.nl
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://arxiv.org/abs/1810.05281
https://doi.org/10.1016/j.asoc.2019.106027
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://arxiv.org/abs/https://doi.org/10.1080/10556788.2020.1808977
https://GitHub.com/FacebookResearch/Nevergrad
https://plotly-r.com
https://doi.org/10.1145/3510426

	Abstract
	1 Introduction
	References

