
Lithium-ion batteries and the transition to electric vehicles:
environmental challenges and opportunities from a life
cycle perspective
Xu, C.

Citation
Xu, C. (2022, December 21). Lithium-ion batteries and the transition to
electric vehicles: environmental challenges and opportunities from a life
cycle perspective. Retrieved from https://hdl.handle.net/1887/3503659
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3503659
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3503659


 

125 

 

5 Electric vehicle batteries alone could satisfy short-term 

grid storage demand by as early as 2030d 

Abstract 

The energy transition will require a rapid deployment of renewable energy (RE) and 

electric vehicles (EVs) where mass transit or personal transit options are unavailable. 

EV battery storage could complement variable RE generation by providing short-term 

grid services. However, estimating the market size of this opportunity requires an 

understanding of many socio-technical parameters and constraints. We quantify 

global EV battery capacity available for grid storage using an integrated model which 

incorporates future EV battery deployment, battery degradation, and market 

participation rates. We include both the ‘in-use’ and ‘end-of-life’ potential of EV 

batteries. We find a technical capacity of 32-62 TWh by 2050 and that modest market 

participation rates (12%-43%) are needed to provide most if not all short-term grid 

storage demand globally. This demand could be met as early as 2030 across most 

regions. Our estimates are generally conservative and offer a lower bound of future 

opportunities.  

5.1 Introduction 

Electrification and the rapid deployment of renewable energy (RE) generation are both 

critical to a low-carbon energy transition56,73. They also address many other 

environmental issues, including air pollution. However, the variability of critical RE 

technologies, wind and solar, combined with increasing electrification may present a 

challenge to grid stability and security of supply56,73. To address this, there are several 

supply-side options for meeting demand including, in approximate ascending order of 

today’s estimated cost: energy storage, firm electricity generators (such as nuclear or 

geothermal generators), long-distance electricity transmission to balance variations, 

over-building of RE (resulting in curtailment in periods of lower demand), and power-

to-gas188. In addition to these supply-side options, demand-side management is also 

 

d Under the second revision with Nature Communications, as: Xu, C., Behrens, P., Gasper, P., Smith, K., 

Hu, M., Tukker, A. & Steubing, B. Electric vehicle batteries alone could satisfy short-term grid storage 

demand by as early as 2030.  
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vital in shifting and flattening peak demand189. Given rapid cost declines, batteries are 

one of the major options for energy storage and can be used in various grid-related 

applications to improve grid performance. These declines in cost have also driven a 

cost-decline of EVs. Given that many batteries will be produced for light-duty transport 

these could offer a cost- and materially-efficient approach for the short-term storage 

requirements needed on electricity grids across the world190.  

EV batteries can be used while they are part of the vehicle in vehicle-to-grid 

approaches, or after the end of the life (EoL) of the vehicle (when they are removed 

and used separately to the chassis). Vehicle-to-grid charging can be smart to enable 

dynamic EV charging and load-shifting services to the grid. EVs can also be used to 

store electricity and deliver it to the grid at peak times when power generation is more 

expensive14. These opportunities rely on standards and market arrangements that 

allow for dynamic energy pricing and the ability of owners to benefit from the value to 

the grid (value that can include deferred or avoided capital expenditure on additional 

stationary storage, power electronic infrastructure, transmission build-out etc14).  

There will also be substantial grid-based value for EV batteries at vehicle EoL (hereafter 

called retired batteries). Usually, when the remaining battery capacity drops to between 

70-80% of the original capacity batteries become unsuitable for use in EVs15. However, 

these retired batteries may still have years of useful life in less demanding stationary 

energy storage applications16. These batteries can continue to buffer differences in 

supply and demand and contribute to grid stability.  

The utilization of EV batteries could improve the flexibility of supply while reducing the 

capital costs and material-related emissions associated with additional storage and 

power-electronic infrastructure. However, the total grid storage capacity of EV batteries 

depends on different socio-economic and technical factors such as business models, 

consumer behaviour (in driving and charging), battery degradation, and more53,54. 

Investigating the future grid storage capacity of EV batteries is essential in 

understanding the role EV batteries could play in the energy transition. Previous 

global-level studies, including those on vehicle-to-grid capacity55-57 and retired battery 

capacity57,58, while informative, rarely consider several important factors such as: non-

linear, empirically-based battery degradation (they often neglect the impact of battery 

chemistry59-61); geographical and/or temporal temperature variance (which impacts 

battery degradation); and, driving intensity by vehicle type in different 
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countries/regions (which constrains the total capacity available during the day). These 

factors determine the technical grid storage capacity. Additionally, consumer 

participation in the vehicle-to-grid market and in the second-use market impacts the 

actual grid storage capacity54, which is important but rarely quantified.  

Here we link three models and databases to provide an estimate of the grid storage 

capacity of EV batteries globally by 2050 for both vehicle-to-grid applications and EoL 

opportunities (see Methods and Supplementary Fig. 5.1). We cover the main EV battery 

markets (China, India, EU, and US) explicitly, and combine other markets in a Rest of 

the World region (RoW). The first model is a dynamic battery stock model, which 

estimates the future battery demand in each region as part of transport fleets per 

region (Supplementary Fig. 5.2). The model incorporates two EV fleet development 

scenarios from the IEA (International Energy Agency), the stated policy scenario (STEP) 

and the sustainable development scenario (SD). The scenarios include two battery 

chemistry variants to encompass different technological paths: one which is dominated 

by Lithium nickel cobalt oxides (NCX, representing NMC or NCA with X denoting 

manganese or aluminum) and another dominated by Lithium-ion phosphate or (LFP). 

The second model assesses EV use and provides potential EV driving and charging 

behavior for small, mid, and large size BEV (battery electric vehicles) and PHEV (plug-

in hybrid electric vehicles) based on daily driving distance distributions for different 

regions (Supplementary Fig. 5.3, Supplementary Fig. 5.4, and Supplementary Fig. 5.5). 

The third model combines information from the other models on EV use behavior, 

battery chemistry, and temperature in each region with the latest battery degradation 

data for NCX59,60,191 and LFP61 chemistries to account for region- and chemistry-specific 

battery degradation (Supplementary Fig. 5.6).  

We first analyze the technical capacity for short-term grid storage from vehicle-to-grid 

and second-use. We choose the industry standard, 4-hour storage capacity on a daily 

basis, as EV batteries are unsuitable for longer-term, seasonal storage due to their 

chemistries and use cases. We further analyze the impact of different participation 

rates of EV owners in vehicle-to-grid as well as the impact of different second-use 

participation rates of retired EV batteries in second-use business (see methods for 

further details). Finally, we compare these potentials against several scenarios for 

future storage requirements from the literature.  

Short-term grid storage demand scenarios. Future electricity grids will require a 
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combination of short-term energy storage (discharge duration of several hours 

throughout a day, such as battery energy storage) and long-term storage (discharge 

duration of days, months, and seasons, such as pumped hydro storage technologies). 

We focus here on short-term energy storage since this accounts for the majority of the 

required power storage capacity192. Short-term energy storage demand is defined as a 

typical 4-hour storage system, referring to the ability for the storage system to operate 

at a capacity where the maximum power delivered from that storage over time can be 

maintained for 4 hours. For example, the 4-hour storage capacity of batteries that 

together deliver a maximum of 0.25 GW until depletion will be 1-Gigawatt hour193 

(GWh). The short-term storage capacity and power capacity are defined based on a 

typical 1-time equivalent full charging/discharge cycle per day (amounting to 4 hours 

of cumulative maximum discharge power per day).  

We compare our results with storage requirements reported in the IRENA 

(International Renewable Energy Agency) Planned Energy Scenario (with a warming 

“likely 2.5°C” in the second half of this century) and the Transforming Energy Scenario 

(with a warming of “well below 2°C” in the second half of this century)2. We also 

compare our results with storage capacity requirements summarized by the influential 

Storage Lab for both conservative and optimistic scenarios194. Both Storage Lab 

scenarios result in a warming of “well below 2°C” by 2100, but differ in the role of grid 

storage in the energy system. For further details on these scenarios see Supplementary 

Table 5.1. These scenarios lead to short-term grid storage demands of 3.4, 9, 8.8, 19.2 

TWh respectively, or 10 TWh on average by 2050. With the 4 hours delivery period, 

this implies that a power capacity demand is within a range of 850-4800 GW or 2500 

GW on average by 2050.  

5.2 Methods 

5.2.1 Model overview 

We develop an integrated model to quantify the future EV battery capacity available 

for grid storage, including both vehicle-to-grid and second-use (see Supplementary 

Fig. 5.1 for an overall schematic). The integrated model includes three sub-models:  

1) A dynamic battery stock model7 to estimate total future EV battery stock and 

the retired batteries at vehicle EoL. This model considers EV fleet (i.e., battery 

stock) development and EV lifespan distribution (Supplementary Fig. 5.2), as 
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well as future chemistry development.  

2) An EV use model which includes behavioral factors such as EV driving cycle 

and charging behavior (changing power, time, and frequency), based on daily 

driving distance data for small/mid-size/large BEVs and PHEVs 

(Supplementary Fig. 5.3, Supplementary Fig. 5.4, and Supplementary Fig. 5.5).  

3) A battery degradation model based on the latest battery degradation test 

data, to estimate battery capacity fading over time under different EV use, 

battery chemistry, and temperature conditions (Supplementary Fig. 5.6).  

5.2.2 Dynamic battery stock model 

We build on results and methods from a previous study7 where we built a global 

dynamic battery stock model to quantify the stock and flows of EV batteries. We model 

future EV fleet development (i.e., battery stock) until 2050. We determine the retired 

battery availability based on battery stock development and EV lifespan distribution 

(which is assumed to determine the time when EV batteries are retired). Battery 

degradation does affect the technical performance (such as driving distance capability) 

of EVs, thus influencing consumers’ choice of time when EVs come into EoL. Here, for 

model simplicity, we assume batteries will be retired only when EVs come into EoL. 

While for EV battery capacity, we use an average capacity of 33, 66, and 100 kWh for 

small/mid-size/large BEVs, and 21, 10, and 15 kWh for small/mid-size/large PHEVs.  

EV fleet scenarios. We use two EV fleet scenarios until 2030 from the IEA: the stated 

policies (STEP) scenario and the sustainable development (SD) scenario. We further 

extend these two scenarios to 2050 based on a review of EV projections until 2050. We 

use the EV fleet share across 5 main EV markets (China, India, EU, US, and RoW) from 

the IEA until 2030, and keep the EV fleet share by countries/regions in 2030-2050 the 

same as the year 2030 due to lack of reliable data after 2030 (see Supplementary Data 

for EV fleet scenarios by countries/regions). Further, we include 56 cities in China, 9 

cities in India, 32 cities in EU, 53 cities in US, and 9 cities in RoW. We compile future EV 

sales share among 159 cities globally in STEP scenario and SD scenario based on future 

EV fleet projections by counties/regions from the IEA195 and other data sources196,197 

(see Supplementary Data).  

Battery chemistry scenarios. We consider battery market shares by chemistry based 

on the market share projections until 2030 from Avicenne Energy198 and potential 

trends until 205080,81,83. Two battery chemistry scenarios are developed, including a 
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Lithium Nickel Cobalt Manganese Oxide and Lithium Nickel Cobalt Aluminum Oxide 

battery dominated scenario or NCX scenario (with X representing Manganese or 

Aluminum), and a Lithium Iron Phosphate battery dominated scenario or LFP scenario. 

The detailed battery market shares by chemistry in two scenarios are discussed in7.  

5.2.3 EV use model 

Daily driving distance (DDD). We explore the EV driving behavior based on DDD 

distributions. We build historical EU DDD distributions for small/mid-size/large 

BEVs/PHEVs models based on data from Spritmonitor.de199, which has been widely 

used in literatures200,201. We exclude the DDD less than 5 km from the dataset. By 

comparing various DDDs in multiples of EV range, we classify 5 DDD classes to 

formulate driving intensity and charging behavior. These 5 classes are divided between 

0% of the EV range to 200% of the EV range (i.e., a DDD twice the range of the EV) with 

intervals of 0-25%, 25-33%, 33-50%, 50-100%, 100-200%. We use the mean DDD of 

each class for calculations. Further, we compile future DDD in different 

countries/regions (Supplementary Fig. 5.7, Supplementary Fig. 5.8, Supplementary Fig. 

5.9, and Supplementary Fig. 5.10) by assuming the future DDD is proportional to the 

future energy consumption per vehicle. We calculate future energy consumption per 

vehicle in different countries/regions based on the IEA's projection on future EV fleet 

size and associated energy consumption until 2030195.  

EV driving cycle. We assume two commuting trips between home and working place 

per day on weekdays and two entertaining trips on weekends for all countries/regions. 

Each trip distance is half of DDD. According to the required trip distance, we compile 

the driving cycle of each trip (speed versus time) based on the standard US combined 

driving cycle (i.e., 55% city driving and 45% highway driving, see details in 

Supplementary Fig. 5.4 and Supplementary Fig. 5.5, and Supplementary Note 5.1).  

EV charging. Charging behavior may be affected by charging infrastructure, amongst 

others, on-board EV charger, consumer preferences. We assume an immediate and 

slow home charging at constant charging power to full charge for all EV sizes and types 

because home charging is the major charging way (see Supplementary Data). We 

assume the home charging power as 1.92, 6.6, 22, and 1.92 kW for small, mid-size, 

large BEV, and PHEV, respectively202. We assume that due to high costs and limited 

utility no consumers will install higher power charging infrastructure at home. We 
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further anticipate the charging behaviors in terms of changing frequency by comparing 

the various DDDs in multiples of the EV range. As driving intensity increases, the higher 

charging frequency is assumed for 5 DDD classes (1x every four days, 1x every three 

days, 1x every two days, 1x each day, and 2x every day respectively). For example, if 

the DDD of mid-size BEV (with a 312 km EV range) increases from 75 km to 625 km, 

and the battery needs to be charged more frequently from 1 time per four days to 2 

times per day.  

Battery State-of-Charge (SoC) profile. We calculate the EV battery SoC second by 

second under three EV states: driving, parking and charging, and parking without 

charging. For battery SoC during driving, we use FASTSim model202 developed by NREL 

to calculate EV battery SoC second-by-second based on inputs of the EV driving cycle, 

EV configurations, and battery performance parameters (specific energy and battery 

capacity). We select one representative EV model from the FASTSim model202 for each 

EV size and type as EV configuration (Supplementary Table 5.2), and NCM622 as 

representative chemistry for all EV types; because it was found that EV configurations 

and battery performance parameters (such as specific energy) had small effects on the 

resulting battery SoC simulations. For battery SoC during charging, we assume the 

battery SoC increases linearly under a constant charging power with a 90% charging 

efficiency203. For battery SoC during parking without charging, the battery SoC 

decreases due to self-charging. A typical self-discharging rate of 5% per month is 

assumed for lithium-ion battery204. Note that for the sake of battery safety, a portion 

of battery capacity is unusable (15% for BEVs and 30% for PHEVs based on the BatPac 

model205), therefor we assume the usable battery SoC range as 5%-90% for BEV battery 

and 15%-85% for PHEV battery.  

Battery temperature. The battery temperature depends on the heat generation from 

chemical reactions inside batteries, amongst others, ambient temperature and 

environment (such as solar power radiation), battery management system (air or liquid 

cooling system to control battery temperature). The temperature can also vary from 

cell to cell, module to module, and component to component in the battery pack. The 

modelling of battery temperature is complicated and out of scope of this study. Here 

we use city ambient temperature to represent battery temperature, which is then used 

to battery degradation. Here, we use the monthly average temperature of total 159 

cities to capture the effects of geographic and temporal temperature variance on 



 

132 

 

battery degradation. The temperature data is collected from206-209, which can be found 

in Supplementary Data.  

5.2.4 Battery degradation model 

Degradation model development. Battery degradation is crucially important for 

determining EV battery capacity both in use and for second life applications, but there 

are still many open research questions surrounding the importance of EV driving habits, 

charging behavior, and battery chemistries on capacity development210. Degradation 

model approaches include physics based degradation models211 as well as machine 

learning models75,212 though there is no agreed-upon best practice213. Here, to balance 

the complexity and accuracy of battery degradation model, we develop a semi-

empirical battery degradation model based on method from61. The model considers 

both calendar life and cycle life aging (equation (1)), assuming a square-root 

dependence on time for calendar life (degradation rates depend on temperature and 

SoC, see equation (2)) and a linear dependence on energy throughput for cycle life 

(degradation rates depend on temperature, Depth-of-Discharge (DoD), and Current 

rate (Crate) see equation (3)).  

𝑞 = 1 − 𝑞𝐿𝑜𝑠𝑠,𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 − 𝑞𝐿𝑜𝑠𝑠,𝐶𝑦𝑐𝑙𝑖𝑛𝑔 (1) 

𝑞𝐿𝑜𝑠𝑠,𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑘𝐶𝑎𝑙 ∙ 𝑒𝑥𝑝 (
−𝐸𝑎
𝑅𝑇

(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) ∙ 𝑒𝑥𝑝 (

𝛼𝐹

𝑅
(
𝑈𝑎
𝑇
−
𝑈𝑎,𝑟𝑒𝑓

𝑇𝑟𝑒𝑓
)) ∙ √𝑡 (2) 

𝑞𝐿𝑜𝑠𝑠,𝐶𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑘𝐶𝑦𝑐 ∙ (𝐴 ∙ 𝐷𝑂𝐷 + 𝐵) ∙ (𝐶 ∙ 𝐶𝑟𝑎𝑡𝑒 +𝐷) ∙ (𝐸 ∙ (𝑇 − 𝑇𝑟𝑒𝑓)
2
+ 𝐹) ∙ 𝐸𝐹𝐶 (3) 

where q is the relative battery degradation, qLoss,Calendar is the relative calendar life 

degradation, qLoss,Cycling is the relative cycling life degradation, T is temperature, t is time 

(unit: days), EFC is equivalent full cycles. Note R is the universal gas constant (8.3144598 

J/mol∙K), Tref is the reference temperature (298.15 K), F is Faraday constant (96485 

C/mol), kCal (unit: days0.5), Ea (unit: J/mol∙K), and α (no unit) are fitting parameters for 

calendar life degradation, and kCyc (unit: EFC-1). A, B, C, and D (no units) are fitting 

parameters for cycling life degradation. The value of the anode-to-reference potential, 

Ua (unit: V), is calculated from the storage SoC using equations (4) and (5)214.  

𝑈𝑎(𝑥𝑎) = 0.6379 + 0.5416 ∙ 𝑒𝑥𝑝(−305.5309 ∙ 𝑥𝑎) + 0.044 𝑡𝑎𝑛ℎ (−
𝑥𝑎 − 0.1958

0.1088
)      

−0.1978 𝑡𝑎𝑛ℎ (
𝑥𝑎 − 1.0571

0.0854
) − 0.6875 𝑡𝑎𝑛ℎ (

𝑥𝑎 + 0.0117

0.0529
) − 0.0175 𝑡𝑎𝑛ℎ (

𝑥𝑎 − 0.5692

0.0875
)

(4) 
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where xa, which represents the lithiation fraction of the graphite, is a simple linear 

function of the SoC215:  

𝑥𝑎(𝑆𝑂𝐶) =  𝑥𝑎,0 + 𝑆𝑂𝐶 ∙ (𝑥𝑎,100 − 𝑥𝑎,0), 𝑥𝑎,0 = 0.0085, 𝑥𝑎,100 = 0.78 (5) 

where xa,0 is the lithiation fraction of the graphite at 0% SoC and xa,100 is the lithiation 

fraction of the graphite at 100% SoC.  

To obtain these fitting parameters, we collect publicly available battery degradation 

data, including calendar life aging and cycle life aging, for NCM61 and LFP59,60,191 

chemistry. These data sets represent state-of-the-art lifetime performance for each 

chemistry; the LFP cells shown reach between 5000 and 8000 equivalent full cycles 

before reaching 80% remaining capacity, 4000~5000 equivalent full cycles for NCM 

cells. This experimental data was then fit with the semi-empirical model equations (1), 

(2), and (3) using a non-linear least squares solver in MATLAB. The NCM model has no 

Crate dependence, due to lack of data in the aging data set, so the parameters C and D 

are simply set at 0 and 1. We first fit the calendar fade data with the time-dependent 

portion of the model (qLoss,Calendar, parameters kCal, Ea, and α); the parameter α is 

bounded between -1 and 1, with other parameters unbounded. The parameters for 

the cycling fade (A, B, C, and D) are optimized on the cycling aging data. For both LFP 

and NCM, the raw cycling fade data was processed prior to optimizing a model based 

on expert judgement. For LFP, only cells with linear fade trajectories and data for at 

least 5000 EFCs were used for model optimization. For NCM, only data after 200 EFC 

at T > 5 °C and data at q < 0.85 at T < 5 °C was used for optimization of the NCM 

cycling model parameters. The optimized parameters for the LFP and NCM 

degradation models are shown in Supplementary Table 5.3. Fitting results are shown 

in Supplementary Fig. 5.11 and degradation rates are shown in Supplementary Fig. 

5.12.  

Note that we assume NCA battery has the same degradation patterns as NCM battery 

due to a lack of state-of-the-art open-source data for NCA batteries. Besides cell 

chemistry, capacity degradation characteristics vary with cell design, manufacturing 

process, and proprietary additives210,216, which is out of scope of this study. We use cell 

degradation patterns to represent battery pack degradation without consideration of 

cell-to-cell and module-module differences.  

Battery degradation under different driving and temperature conditions. For 
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simulation of the degradation under the EV driving loads (battery SoC evolution over 

time) and during dynamic temperature changes, the degradation model is 

reformulated to solve for the degradation occurring during consecutive timesteps60. 

We choose a timestep of 1 day for making SoH updates and update the SoC timeseries 

for each day by the current SoH. At each timestep, the temperature is the average 

temperature during the simulation month at cities from different countries/regions. 

Average SoC, DoD, Crate, and the number of EFCs is extracted from the SoC timeseries. 

Average SoC refers to the time-averaged value of SoC. DoD is the difference between 

the maximum and minimum values of SoC. Crate is calculated using the absolute change 

of SoC per second, and then taking the average of all Crates greater than 0 during the 

entire timeseries. The number of EFCs is calculated by summing the changes to SoC 

over the timeseries. Dependence of the expected degradation rate on current SoH is 

incorporated by calculating a ‘virtual time’60. The virtual time is found by inverting the 

calendar degradation equation to solve for time:  

𝑡𝑣𝑖𝑟𝑡𝑢𝑎𝑙 =  

(

 
 𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝑘𝐶𝑎𝑙 ∙ 𝑒𝑥𝑝 (
−𝐸𝑎
𝑅𝑇

(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)) ∙ 𝑒𝑥𝑝(
𝛼𝐹
𝑅
(
𝑈𝑎
𝑇
−
𝑈𝑎,𝑟𝑒𝑓
𝑇𝑟𝑒𝑓

))⁄

)

 
 

2

(6) 

The degradation change ∆q during any given timestep Δt is then calculated by 

the following equation:  

∆𝑞 =  

(

 
 
𝑘𝐶𝑎𝑙 ∙ 𝑒𝑥𝑝(

−𝐸𝑎
𝑅𝑇

(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)) ∙ 𝑒𝑥𝑝 (
𝛼𝐹
𝑅
(
𝑈𝑎
𝑇
−
𝑈𝑎,𝑟𝑒𝑓
𝑇𝑟𝑒𝑓

))

2 ∙ √𝑡𝑣𝑖𝑟𝑡𝑢𝑎𝑙 + ∆𝑡
⁄

)

 
 
∙ ∆𝑡

+ 𝑘𝐶𝑦𝑐 ∙ (𝐴 ∙ 𝐷𝑂𝐷 + 𝐵) ∙ (𝐶 ∙ 𝐶𝑟𝑎𝑡𝑒 + 𝐷) ∙ (𝐸 ∙ (𝑇 − 𝑇𝑟𝑒𝑓)
2
+ 𝐹) ∙ ∆𝐸𝐹𝐶

(7) 

For cycling fade, the virtual EFC does not need to be calculated, as the degradation 

rate is constant with respect to the change of EFC during any given timestep. This 

reformulation of the degradation model captures the path-dependent degradation 

observed in real-world battery use. See Supplementary Note 5.2 for modelled battery 

degradation for NCM and LFP.  

5.2.5 Available capacity from EV batteries 

Battery capacity during use and when retired from EV. Vehicle EoL does not 

necessarily correspond to battery EoL. With technological improvements in battery 
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reliability and durability, many batteries in EoL vehicles may still have years of useful 

life at the end of vehicle end of life. Vehicle battery EoL is usually as defined the time 

at which remaining battery capacity is between 70%-80% of the original capacity15. We 

assume an EV lifespan distribution, as in our previous work7 to account for EoL of EV. 

In our modelling approach, the vehicle lifespan distribution determines when batteries 

are not used in EVs any more (i.e., retired batteries). Retired batteries may have quite 

different capacity under different use conditions. When vehicles reach EoL due to 

consumer choices or other issues before the battery pack reaches 70% relative capacity, 

retired batteries will still have over 70% relative SoH and are assumed to be used in a 

second-life application. When battery pack reaches 70% relative SoH before a vehicle 

reaches its EoL, we assume that batteries may still be used in EVs for low distances-

driving. Retired batteries from such vehicles will have lower than 70% relative SoH and 

are assumed to be recycled rather than for a second-use. We assume any battery with 

a relative SoH lower than 60% is recycled and removed from potential grid storage 

capacity217. However, even batteries with a relative SoH of 60%-70% have a limited 

economic value and can have relatively high safety risks. (methods)218.  

Vehicle-to-grid capacity. We define technical vehicle-to-grid capacity as the 

availability of EV battery stock capacity for vehicle-to-grid application, considering the 

capacity reserved for EV driving, the capacity of PHEVs that will not participate in 

vehicle-to-grid due to low capacity, and capacity fade due to battery degradation. We 

further define the actual vehicle-to-grid capacity as the availability of technical vehicle-

to-grid capacity for the grid under different consumer participation rates in the 

vehicle-to-grid business. Results focus on investigating under which participation rate 

can actual vehicle-to-grid capacity meet grid storage demand.  

Second-use capacity. The technical second-use capacity is defined as the retired 

battery capacity that can be repurposed (i.e., retired batteries with over 70% relative 

SoH). We further investigate actual second-use capacity under different market 

participation rates (i.e., not all retired batteries will participate in second-use). The 

results are intended to determine the required market participation rate for the actual 

second-use capacity to meet grid storage demand.  

5.3 Results 

Total technical capacity. We define technical capacity as the total cumulative available 
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EV battery capacity in use and in second use at a specific time, taking into account 

battery degradation and the capacity needed to meet driving demand. Globally, the 

SD scenario sees total technical capacity twice that of the STEP scenario due to the 

larger fleet size (see Supplementary Fig. 5.13 and Note 1). The LFP scenario sees a 

higher cumulative capacity than NCX due to the lower degradation of LFP across most 

countries/regions (see Supplementary Data for a comparison of LFP and NCM battery 

degradation). As shown in Fig. 5.1, the highest total technical capacity is provided in 

the SD-LFP scenario that is 48% higher by 2030 and 91% higher by 2050 than in the 

STEP-NCX scenario (respectively 3.8 TWh and 2.6 TWh in 2030 and 32 TWh and 62 

TWh in 2050).  

Under all scenarios, the cumulative vehicle-to-grid and second use capacity will grow 

dramatically, by a factor of 13-16 between 2030 and 2050. Putting this cumulative 

technical capacity into perspective against future demand for grid storage we find that 

our estimated growth is expected to increase as fast or even faster than short-term 

grid storage capacity demand in several projections56,194 (Fig. 5.1). Technical vehicle-to-

grid capacity or second-use capacity are each, on their own, sufficient to meet the 

short-term grid storage capacity demand of 3.4-19.2 TWh by 2050. This is also true on 

a regional basis where technical EV capacity meets regional grid storage capacity 

demand (see Supplementary Fig. 5.14).  

 

Fig. 5.1: Total technical capacity for EV batteries and comparison to grid storage demand. a STEP-
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NCX scenario. b SD-NCX scenario. c STEP-LFP scenario. d SD-LFP scenario. The storage requirements 

of grids are 0.37-0.745 TWh in 2030 based on the IRENA56, and that of 2050 from both IRENA and 

Storage Lab194 (see details in Supplementary Table 5.1).  

Factors limiting total technical capacity.  

Vehicle-to-grid.  

Examining the vehicle-to-grid opportunity alone, without considering second use, we 

find that 21%-26% of the global theoretical battery stock capacity (i.e., on-board EV 

battery capacity of the entire EV fleet without considering battery degradation) could 

be available for vehicle-to-grid services by 2050 (Fig. 5.2a). The most important limiting 

factor is the battery capacity required to meet consumer driving demands195,199 which 

can limit the technically available stock capacity by 57%-63%. PHEVs, which make up 

around 11% of the theoretical stock capacity in 2050, are not considered for vehicle-

to-grid as they have a low storage potential due to low capacities. On average, just 5% 

of the theoretical stock capacity is lost due to battery degradation by 2050. These 

losses vary between 7% in India and 4% in RoW due to differences in regional factors 

such as use conditions and temperature (see regional results in Supplementary Fig. 

5.15). Overall, taking these factors into account yields a technical vehicle-to-grid 

capacity of roughly 18-30 TWh by 2050 (see Fig. 5.2).  

However, there are other factors that may limit actual available storage capacity. The 

vehicle-to-grid participation rate is the most important of these. That is, not all EV 

consumers will necessarily participate in the market. The impact of different 

participation rates, defined as the percentage of the technical vehicle to grid capacity 

actually connected to the grid, is shown in Fig. 5.2b. To satisfy the short-term storage 

demand of 10 TWh in 2050, participation rates of 38% and 20% are required for the 

STEP-NCX and SD-NCX scenarios, respectively. In practice, it is likely that EVs with high 

battery capacities and low degradation will be used for providing vehicle-to-grid 

services since these will provide the highest revenue for EV owners219 (the full battery 

capacity distributions by 2050 across countries/regions is available in Supplementary 

Fig. 5.16, Supplementary Fig. 5.17, Supplementary Fig. 5.18, Supplementary Fig. 5.19, 

and Supplementary Fig. 5.20).  
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Fig. 5.2: Global available vehicle-to-grid capacity in 2050. a Technical vehicle-to-grid capacity. 

Hatched bars indicate the capacity limits due to key factors and blue bars the technical vehicle-to-grid 

capacity. b Actual vehicle-to-grid capacity as a function of participation rates. Results are shown for the 

STEP-NCX and the SD-NCX scenarios with a comparison to the range of storage demand computed 

by IRENA and Storage Lab models in 2050 (orange shading). Please see Supplementary Fig. 5.21 for 

global actual vehicle-to-grid capacity under the STEP-LFP and the SD-LFP scenarios, which shows 

similar results as STEP-NCX and SD-NCX scenarios. Supplementary Fig. 5.22, Supplementary Fig. 5.23, 

Supplementary Fig. 5.24, and Supplementary Fig. 5.25 for regional actual vehicle-to-grid capacity.  

Second-use.  

Over time EV batteries degrade so far that they cannot be used to power vehicles7. This 

is typically when the battery relative State of Health (SoH), defined as actual capacity 

as percentage of original capacity, has reached 70%-80%15, although the relative SoH 

could fall even lower if a consumer is willing to accept relatively poor battery health 

and shorter ranges119. Given their high value, size and end of life regulations in many 

countries we assume all retired batteries will be collected17. Once collected, batteries 

are health tested to determine if the retired EV battery can be used in a less critical 

second-use application, or if the battery must be recycled220.  

Given the technical and economic feasibility of retired batteries for a second-use218, we 

consider batteries with an SoH of 70% and higher only for second-use (this threshold 

is often assumed as a technically and economically feasible value for second-use 

businesses218). Using this criterion, we find that for all scenarios between 2030 and 

2050 74% of the retired NCX batteries can be repurposed for second-use globally (i.e., 

repurposing percentage), while 26% goes to recycling by 2050. Regional differences 

can be significant due to the impact of temperature on NCX battery degradation (see 

Supplementary Fig. 5.26 and Supplementary Data). In contrast, virtually all LFP retired 
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batteries can be repurposed.  

Business models are still developing, and repurposing is highly dependent on the 

technical specifications and market requirements of second-use applications221. Since 

battery disassembly is costly218, battery repurposing will likely happen on the pack level 

instead of modules and cell level. Repurposing will consist mainly of rebalancing and 

reconnecting the retired battery packs. There is no strong technical reason to model a 

capacity difference before and after the repurposing processes.  

For these assumptions, 2.1-4.8 TWh of retired batteries are estimated to become 

available as annual technical second-use capacity globally in 2050, as shown in Fig. 

5.3a. The cumulative technical second-use capacity is expected to reach 14.8-31.5 TWh 

by 2050 when using a 10-year second-use life scenario222 (Fig. 5.3b). The actual second 

second-use lifespan is uncertain due to uncertainties surrounding the retired battery 

SoH, use conditions, etc. Another uncertainty is the further battery degradation during 

secondary use, which is difficult to model due to complicated degradation mechanisms 

of retired batteries223. Further research into degradation and second-use life span is 

required to improve estimates of technical second-use capacity.  

Similar to estimates for actual vehicle-to-grid capacity, the second use participation 

rate determines which percentage of the technical second-use capacity is actually 

available and connected to the grid. To meet the requirement of a 10 TWh short-term 

storage capacity in the STEP-NCX scenario (14.8 TWh technical capacity) a participation 

rate 68% is required, while in the SD-LFP scenario (31.5 TWh technical capacity) a 

participation rate of 32% is needed.  
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Fig. 5.3: Global available second-use capacity in 2050. a Annual addition and cumulative technical 

capacity in 2050. Capacity refers to the technically available capacity considering battery degradation, 

or maximum theoretical potential second-use capacity without considering the battery second-use 

participation rate. b Impacts of second-use participation rate on cumulative actual second-use capacity 

and a comparison to storage demand in 2050 (orange shading). See Supplementary Fig. 5.27, 

Supplementary Fig. 5.28, Supplementary Fig. 5.29, and Supplementary Fig. 5.30 for regional actual 

second-use capacity.  

Combining vehicle-to-grid and second-use participation rates.  

As we describe above, the global technical capacity for short-term grid storage of EV 

batteries grows rapidly in all scenarios. However, the actual available capacity depends 

strongly on the vehicle-to-grid and second-use participation rates. We show the actual 

available capacity as a function of these participation rates in Fig. 5.4 for the STEP-NCX 

scenario (please see Supplementary Fig. 5.31, Supplementary Fig. 5.32, and 

Supplementary Fig. 5.33 for other scenarios). If 50% participation rates can be realized 

for both vehicle-to-grid and second-use, the combined actual available capacity is 25-

48 TWh by 2050, far above requirements estimated from the literature. Changes in 

vehicle-to-grid participation rates of 23%-96%224,225 could influence this actual 

available capacity in 2050 by as much as -24% to +21%. When second use participation 

rates vary 10%-100%, the actual available capacity varies between -41% and 12%. 

Taken together, vehicle-to-grid participation rate and second use participation rate 

could alter the actual available capacity in 2050 by -61% to +32%.  
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Fig. 5.4: Total actual available capacity under various conditions in STEP-NCX scenario in 2050. 

Blue, white, and red colors depict minimum, average, and maximum values. See Supplementary Fig. 

5.31, Supplementary Fig. 5.32, and Supplementary Fig. 5.33 for other scenarios.  

5.4 Discussion 

Previous research has suggested that large EV fleets could exert additional stress on 

grid stability (e.g., if the majority of EVs are charged at grid peak time)226. Our findings, 

from a different perspective, show EV batteries could promote electricity grid stability 

via storage solutions from vehicle-to-grid and second-use applications. We estimate a 

total technical capacity of 32-62 TWh by 2050. This is significantly higher as the 3.4-

19.2 TWh (10 TWh on average) as required by 2050 in IRENA and Storage lab scenarios.  

The actual available capacity depends on participation rates for vehicle-to-grid and 

second use. Participation rates may vary regionally depending on future market 
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incentives and infrastructure along with other factors227. However, we show how EV 

batteries in primary and secondary use could provide the 10 TWh short-term grid 

storage capacity required in the IRENA and Storage Lab scenarios by 2050. The STEP-

NCX scenario presented in Fig. 5.4 has the lowest technical capacity (32 TWh compared 

to 62 TWh in the SD-LFP scenario) which already easily meets requirements at 

participation rates of 40%-50% for vehicle-to-grid and second-use. At a regional level, 

even lower participation rates may still contribute significantly to grid stability. Overall, 

EV batteries could meet short-term grid storage demand by as early as 2030 (if we 

assume lower requirements from the literature and higher levels of participation). By 

2040-2050 storage demands are met across almost all scenarios and even low 

participation rates. Harnessing this potential will have critical implications for the 

energy transition and policymakers should be cognizant of the opportunities.  

As we include a broader set of limitations for the total opportunity our results are 

difficult to compare with other literature. Our estimated global EV fleet capacity in 2050 

(68-144 TWh) is considerably higher than the estimate from IRENA (7.5-14 TWh)56. This 

is due to the IRENA’s very conservative scenarios on future EV fleet size and battery 

capacity per vehicle. The IRENA scenario also does not consider the availability of EV 

fleet capacity for grid services. An IEA estimate does not extend beyond 203057 but 

highlights the importance of including battery degradation in analyses, which we 

include here to project until 2050 (Fig. 5.3).  

We note several limitations in our approach that could be improved as data availability 

improves. For example, while we include battery degradation by using state-of-art data, 

future battery degradation is highly uncertain and depends on further technological 

breakthroughs in battery chemistry such as Na-ion, Li-Air, and Li-Sulphur228 along with 

developments in battery management systems. Further, while we derived driving 

behaviour from empirical data, future changes in driving habits are uncertain and 

dependent on various factors such as EV-related infrastructure. Vehicle chargers 

increase in power output over time and 50 kW charging is already common across 

many countries229. Frequent fast charging could lead to faster degradation, especially 

in hot/cold climates230. This challenge may be addressed by future technology 

improvements to battery materials231, electrode architectures, and optimized synergy 

of the cell/module/pack system design169. A further limitation is that we compare 

technical and actual available vehicle-to-grid capacity with an average 4-hour storage 
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requirement as provided in the scenarios by IRENA and Storage Lab. This omits 

potential differences in storage requirements at shorter time scales (seconds/minutes). 

Improved modelling and data can overcome this gap. It is however likely that the 

technical vehicle-to-grid capacity will be sufficient given low vehicle utilization rates of 

just 5% for many regions232. Additionally, development of smart charging infrastructure 

and grid digitization is likely to provide additional flexibility for matching electricity 

demand and supply233.  

A final limitation is that we assume that the rated capacity per vehicle remains the 

same in the future and that a small number of large BEVs might provide large actual 

vehicle-to-grid capacity (Supplementary Fig. 5.22, Supplementary Fig. 5.23, 

Supplementary Fig. 5.24, and Supplementary Fig. 5.25). These capacities may change 

further in the future due to policy incentives, vehicle design, consumer preferences, 

charging infrastructure, among other factors. Further, the transportation system could 

see radical and fundamental changes. A significant and rapid shift away from private 

car use to mass transit, a move to shared electric vehicles, autonomous driving, and 

the success of battery swap systems234 could all alter the available capacity via 

utilization rates and other factors by 2050.  

Glossary 

Dynamic battery stock model:  

EV: electric vehicles.  

BEV: battery electric vehicle.  

PHEV: plug-in hybrid electric vehicle.  

LFP: lithium-iron-phosphate / graphite battery.  

NCM: lithium Nickel Cobalt Manganese Oxide / graphite battery.  

NCA: lithium Nickel Cobalt Aluminum Oxide / graphite battery.  

NCX: NCM and NCA, with X denoting manganese or aluminum.  

EV use model:  

Ambient temperature: the temperature of the air surrounding the EVs under 

consideration.  



 

144 

 

Daily driven distance (DDD): assumed as the mean value of DDD distribution.  

State of Charge (SoC): level of charge of a battery relative to its rated capacity, and 

the units of SoC are percentage points (0% = empty; 100% = full).  

Crate: the charge or discharge current divided by the battery's capacity to store an 

electrical charge. The unit of the Crate is hour-1.  

Depth of discharge (DOD): the fraction or percentage of the battery's capacity which 

is currently removed from the battery with regard to its (fully) charged state.  

Equivalent full cycles (EFCs): the charge throughput of partial cycles relative to a full 

charge/discharge cycle.  

Battery degradation model:  

Rated capacity: the maximum energy of the battery at the start of life.  

Battery degradation: the amount of charge a rechargeable battery can deliver at the 

rated voltage decreases with use, depending on lots of stress factors: Ambient 

temperature SoC, Crate, DoD, and EFCs.  

Battery capacity: a property of that a battery’s maximum capability to store the energy 

at a given moment in time and conditions, as the battery degradation.  

Relative SoH: state of health, is assumed as Battery capacity / Rated capacity.  

Vehicle-to-grid model:  

Theoretical battery stock capacity: on-board EV battery capacity of total EV fleet, 

without considering capacity lost due to battery degradation. Theoretical battery stock 

capacity = Rated capacity per EV * number of total EVs.  

Technical vehicle-to-grid capacity: availability of theoretical battery stock capacity 

for vehicle-to-grid applications, considering driving demand, battery degradation, and 

PHEV. Technical vehicle-to-grid capacity = Theoretical battery stock capacity – Battery 

capacity reserved for BEV driving – Battery capacity of PHEV - Battery capacity lost due 

to battery degradation.  

Vehicle-to-grid participation rate: Number of EVs participating in vehicle-to-grid / 

Number of total EVs.  
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Actual vehicle-to-grid capacity: availability of technical vehicle-to-grid capacity for 

vehicle-to-grid applications. Actual vehicle-to-grid capacity = number of EVs 

participating in vehicle-to-grid * technical vehicle-to-grid capacity per EV.  

Second-use model:  

Retired battery: battery out of service from first life of EV.  

Capacity per retired battery: battery capacity when coming to the end of the first life 

of EV.  

Collection rate per year: number of collected batteries per year / number of retired 

batteries per year. Number of collected batteries per year = number of repurposed 

batteries + number of recycled batteries. 

Repurposing battery: retired battery that is suitable for electricity storage. The model 

assumes collected battery with relative SoH above 70% will be repurposed. 

Recycled battery: retired battery that is collected for material recycling.  

Repurposing rate per year: rate of repurposing batteries in collected batteries. 

Repurposing rate per year = number of collected batteries with relative SoH above 70% 

per year / number of collected batteries per year.  

Recycling rate per year: rate of recycled batteries in collected batteries. Recycling rate 

per year = 1- repurposing rate per year.  

Technical second-use capacity per year: battery capacity of repurposed batteries per 

year. Technical second-use capacity per year = number of retired batteries per year * 

collection rate per year * repurposing rate per year * capacity per retired battery.  

Second-use participation rate per year: number of batteries participating in second-

use / number of repurposing batteries (or collected batteries with relative SoH above 

70%) per year.  

Actual second-use capacity per year: availability of technical second-use capacity 

per year for second-use applications. Actual second-use capacity per year = technical 

second-use capacity per year * second-use participation rate per year * capacity per 

retired battery. 
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5.5 Supplementary information 

5.5.1 Model overview 

 

Supplementary Fig. 5.1: Model framework consisting of a dynamic battery stock model, a EV use model, and a battery degradation model. 
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Dynamic battery stock model 

 

Supplementary Fig. 5.2: Dynamic battery stock model7.  
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EV use model 

 

Supplementary Fig. 5.3: EV use model. NREL National Renewable Energy Laboratory. ANL Argonne National Laboratory. 
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Supplementary Fig. 5.4: EV use model where driving cycle is compiled on trip distance and 

standard UDDS and HWY driving cycle.  
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Supplementary Fig. 5.5: EV use model where a drive cycle example is compiled for a mid-size 

BEV when the daily driving distance is 126.3 km.  
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Battery degradation model 

 

Supplementary Fig. 5.6: Battery degradation model.
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5.5.2 Additional Figures and Tables 

Supplementary Figures 

 

Supplementary Fig. 5.7: Daily driving distance (DDD) distributions for small BEV across 

counties/regions. The historic DDD distribution for EU is collected from Spritmonitor.de199. Combined 

with the IEA’s projection of future EV fleet energy consumption for China, India, EU, US, and RoW195, we 

compile the future DDD distributions for countries/regions.  

 

Supplementary Fig. 5.8: Daily driving distance (DDD) distributions for mid-size BEV across 

counties/regions. The historic DDD distribution for EU is collected from Spritmonitor.de199. Combined 

with the IEA’s projection of future EV fleet energy consumption for China, India, EU, US, and RoW195, we 

compile the future DDD distributions for countries/regions.  

 

Supplementary Fig. 5.9: Daily driving distance (DDD) distributions for large BEV across 
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counties/regions. The historic DDD distribution for EU is collected from Spritmonitor.de199. Combined 

with the IEA’s projection of future EV fleet energy consumption for China, India, EU, US, and RoW195, we 

compile the future DDD distributions for countries/regions.  

 

Supplementary Fig. 5.10: Daily driving distance (DDD) distributions assumed for PHEVs for all 

counties/regions.  

 

Supplementary Fig. 5.11: Battery degradation model fitting results. a calendar life aging of LFP. b 

calendar life aging of NCM. c cycling life aging of LFP. d cycling life aging of NCM. Residual errors are 

plotted to the right of each fit.  
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Supplementary Fig. 5.12: LFP and NCM battery degradation rates. a Calendar life degradation rate 

versus the square-root of time as a function of temperature and SoC (state-of-charge). b Cycle life 

degradation rate versus energy throughput, in units of EFCs (equivalent full cycles), as a function of 

temperature and DOD (depth-of-discharge).  

 

Supplementary Fig. 5.13: Global EV stock development projected until 2050 for STEP and SD 

fleet scenarios. a STEP scenario. b SD scenario. BEV battery electric vehicle, PHEV plug-in hybrid 

electric vehicle, STEP scenario the Stated Policies scenario, SD scenario Sustainable Development 

scenario.  
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Supplementary Fig. 5.14: Total technical capacity from EV batteries and comparison to grid storage demand in countries and regions. The grid storage 

demand in countries/regions is estimated based on future peak power demand in countries/regions, where assuming a proportional relationship between grid 

storage demand and peak power demand for countries/regions is the same as global. Global peak power will increase to 6686 GW in 2030 and 10000 GW in 

2050, derived from Storage Lab194. China's peak power will increase to 1258 GW in 2030 and 1881 GW in 2050. India's peak power will increase to 430 GW in 

2030 and 643 GW in 2050. EU peak power will increase to 616 GW in 2030 and 922 GW in 2050. US peak power will increase to 445 GW in 2030 and 665 GW in 

2050. Regional peak demand is from the IEA57. 
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Supplementary Fig. 5.15: Available vehicle-to-grid capacity in 2050 by countries/regions. 

Hatched bars indicate the capacity limits due to key factors and blue bars the technical vehicle-to-grid 

capacity. It is found higher technical vehicle-to-grid capacity for LFP scenario compared to NCX 

scenario in China, EU, and US, while higher vehicle-to-grid capacity for the NCX scenario in India and 

RoW (Rest of World).  
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Supplementary Fig. 5.16: Battery capacity distribution for China battery stock by 2050.  

 

Supplementary Fig. 5.17: Battery capacity distribution for India battery stock by 2050.  
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Supplementary Fig. 5.18: Battery capacity distribution for EU battery stock by 2050.  

 

Supplementary Fig. 5.19: Battery capacity distribution for US battery stock by 2050.  
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Supplementary Fig. 5.20: Battery capacity distribution for RoW battery stock by 2050.  

 

Supplementary Fig. 5.21: Global actual vehicle-to-grid capacity as a function of participation 

rates in STEP-LFP and SD-LFP scenarios, and comparison to grid storage capacity demand in 

2050.  
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Supplementary Fig. 5.22: China actual vehicle-to-grid capacity as a function of participation rate 

and comparison to grid storage capacity demand in 2050.  

 

Supplementary Fig. 5.23: India actual vehicle-to-grid capacity as a function of participation rate 

and comparison to grid storage capacity demand in 2050.  

 

Supplementary Fig. 5.24: EU actual vehicle-to-grid capacity as a function of participation rate 

and comparison to grid storage capacity demand in 2050.  
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Supplementary Fig. 5.25: US actual vehicle-to-grid capacity as a function of participation rate 

and comparison to grid storage capacity demand in 2050.  

 

Supplementary Fig. 5.26: Global share of retired NCX batteries with SoH lower than 70% in total 

retired NCX batteries (i.e., repurposing rate per year). Repurposing rate per year = number of 

collected batteries with relative SoH above 70% per year / number of collected batteries per year.  
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Supplementary Fig. 5.27: China available second-use capacity in 2050. a Annual addition and 

cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering 

battery degradation, or maximum theoretical potential second-use capacity without considering the 

battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual 

second-use capacity and a comparison to storage demand in 2050 (orange shading). 

 

Supplementary Fig. 5.28: India available second-use capacity in 2050. a Annual addition and 

cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering 

battery degradation, or maximum theoretical potential second-use capacity without considering the 

battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual 

second-use capacity and a comparison to storage demand in 2050 (orange shading).  
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Supplementary Fig. 5.29: EU available second-use capacity in 2050. a Annual addition and 

cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering 

battery degradation, or maximum theoretical potential second-use capacity without considering the 

battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual 

second-use capacity and a comparison to storage demand in 2050 (orange shading).  

 

Supplementary Fig. 5.30: US available second-use capacity in 2050. a Annual addition and 

cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering 

battery degradation, or maximum theoretical potential second-use capacity without considering the 

battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual 

second-use capacity and a comparison to storage demand in 2050 (orange shading).  
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Supplementary Fig. 5.31: Total actual available capacity under various conditions in STEP-LFP 

scenario in 2050. Blue, white, and red colors depict minimum, average, and maximum values.  
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Supplementary Fig. 5.32: Total actual available capacity under various conditions in SD-NCX 

scenario in 2050. Blue, white, and red colors depict minimum, average, and maximum values.  
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Supplementary Fig. 5.33: Total actual available capacity under various conditions in SD-LFP 

scenario in 2050. Blue, white, and red colors depict minimum, average, and maximum values.  
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Supplementary Table 

 

 

Supplementary Table 5.1: Future grid storage capacity demand. IEA = International Energy Agency. 

IRENA = International Renewable Energy Agency. BNEF = Bloomberg New Energy Finance. SD scenario 

= sustainable development scenario. Remap = Renewable Energy Roadmap. PES = Planned Energy 

Scenario. The “Planned Energy Scenario (PES)” is the primary reference case for this study, providing a 

perspective on energy system developments based on governments’ current energy plans and other 

planned targets and policies (as of 2019), including Nationally Determined Contributions under the 

Paris Agreement unless the country has newer climate and energy targets or plans. TES = Transforming 

Energy Scenario. The “Transforming Energy Scenario (TES)” describes an ambitious, yet realistic, energy 

transformation pathway based largely on renewable energy sources and steadily improved energy 

efficiency (though not limited exclusively to these technologies). This would set the energy system on 

the path needed to keep the rise in global temperatures to well below 2 degree Celsius (°C) and towards 

1.5°C during this century. Unit: TWh. TWh = 109 kWh.  

Reference 
Capacity 

demand 
Scenarios 2030 2040 2050 

Annual 

growth rate 

/increasing 

factor in 

2030~2050 

Annual 

growth rate 

/increasing 

factor in 

2040~2050 

IEA235 

Stationary 

storage 

batteries 

SD / 2.9884 /   

IRENA236 

Behind the 

meter 

storage 

batteries 

Remap / / 9   

IRENA237 

Electricity 

storage 

energy 

capacity 

Reference 

scenario 
7.22 / /   

IRENA237 

Electricity 

storage 

energy 

capacity 

Doubling 

scenario 
13.58 / /   

IRENA56 
Stationary 

storage 
PES 0.37 / 3.4 0.12/9.19  
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Supplementary Table 5.1 (Continued). 

Reference 
Capacity 

demand 
Scenarios 2030 2040 2050 

Annual 

growth rate 

/increasing 

factor in 

2030~2050 

Annual 

growth rate 

/increasing 

factor in 

2040~2050 

IRENA56 
Stationary 

storage 
TES 0.745 / 9 0.13/12.08  

BNEF238 

Energy 

storage 

installations 

/ / 2.85 /   

Storage 

Lab194 

Flexibility 

grid 

storage 

capacity 

Optimistic 

approaches 
/ 2.8 8.8  0.12/3.14 

Storage 

Lab194 

Flexibility 

grid 

storage 

capacity 

Conservative 

approaches 
/ 8.8 19.2  0.08/2.18 
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Supplementary Table 5.2: Selected EV models for modeling daily driving distance (DDD) 

distributions and driving cycles.  

Vehicle type 

and class 
EV models for modeling DDD distribution 

Representative model for 

modeling drive cycles 

Small BEV 
Smart fortwo, Mitsubishi i-MiEV, 

BMW i3, Volkswagen e-Golf 
Mitsubishi i-MiEV 

Mid-size BEV 
Nissan Leaf, Mercedes-Benz B250e, Honda 

Clarity EV, Hyundai Ioniq Electric, Tesla Model 3 
Nissan Leaf 30 kWh 

Large BEV 
Tesla Model S, Kia Soul Electric, Hyundai Kona 

Electric 
TESLA Model S60 2WD 

PHEV 
Toyota Prius, Ford C-MAX Energi Plug-In 

Hybrid, Hyundai Ioniq Plug-in Hybrid 
Prius Prime 

Supplementary Table 5.3: Optimized parameters for LFP and NCM degradation model.  

Parameter LFP NCM 

kCal 1.9234E-3 (days0.5) 4.0149E-4 (days0.5) 

Ea 3.0233E4 (J/mol∙K) 5.9178E4 (J/mol∙K) 

α -0.05590 -1 

kCyc 2.93583E-6 4.3131332E-6 

A 1.4761E-11 0.3549361 

B 7.4008E-3 1.2308964E-4 

C 0.082035 0 

D 0.0313111 1 

E 0.33344256 0.6149392 

F 331.652158 63.619859 

5.5.3 Supplementary Notes 

Supplementary Note 5.1 

As shown in Supplementary Fig. 4, we compile the trip driving cycle based on a 

standard US combined driving cycle (i.e., 55% UDDS city driving and 45% HWY 

highway driving). We first model the required trip distance and time for UDDS city 

driving and HWY highway driving, respectively. By comparing the required driving 

distance with the distance of the standard driving cycle, the required multiples (i.e., the 

repeated times of standard UDDS or HWY driving cycle) and downsizing factor (the 

downscaling of standard UDDS or HWY driving cycle to satisfy a small driving distance) 

are modeled, respectively, thus scaling up or down of standard driving cycle to the 

required driving distance. Supplementary Fig. 5 shows the driving cycle example of 
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mid-size BEV, where the mean driving distance between 33%-50% EV range is 126.3 

km. A 63.1 km of trip distance requires 2 multiples of standard UDDS city driving and 

1 multiple of standard HWY highway driving, as well as 1 downsized standard UDDS 

driving distance with a downsizing factor of 1.11 and 1 downsized standard HWY 

driving with a downsizing factor of 1.38.  

Supplementary Note 5.2 

According to degradation models fit with aging data from state-of-the-art NCM and 

LFP batteries, LFP batteries show lower levels and less variance of degradation than 

NCX as LFP is less sensitive to temperature variation, state-of-charge, and depth of 

discharge in both calendar-life and cycle-life degradation rates (Supplementary Figs. 

32 and 33). For a mid-size battery electric vehicle (BEV), an increase of daily driving 

distance (DDD) from 0%-25% EV range to 100%-200% of EV range could reduce the 

relative battery State-of-health (SoH) at 8 years (i.e., battery lifetime warranty by most 

EV manufacturers) by 5.5-22% for NCM and 1-1.5% for LFP, depending on temperature 

conditions (see Supplementary Data for degradation for different EV size and type). 

Higher utilization of plug-in hybrid vehicle (PHEV) batteries leads to higher 

degradation for PHEV batteries than for BEV batteries. Battery degradation variations 

among countries/regions are driven by driving intensity and climate conditions; the 

lifetime of NCM batteries in Europe is expected to be substantially shorter than other 

regions due to increased degradation caused by cycling at low average temperatures, 

while the lifetime of LFP batteries is shortest in India due to increased calendar 

degradation rate at high average temperatures (see Supplementary Figs. 28~31 for 

DDD distributions, Supplementary Data for city temperature and battery degradation). 


