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1 General introduction

1.1 Background

Global greenhouse gas (GHG) emissions continued to grow with the annual addition
of 59 Gt CO2-Eq in 2019, despite slowed growth in recent years. Combating climate
change and meeting the Paris Agreement's long-term temperature goal is only
possible with urgent and ambitious actions across all sectors. These actions include a
transition to low-carbon electricity production, electrification of transport, a low or
nearly zero energy build environment and low-carbon industry processes, amongst
others, next to implementing carbon capture and utilization and circular material use.

As the second-largest GHG-emitting sector next to the energy sector, the
transportation sector accounts for ~15% of global annual GHG emissions in 2019".
Electrification of transportation services has been demonstrated as a technically
feasible, cost-efficient, and rapidly scalable option to mitigate GHG emissions in the
transportation sector. Vehicle electrification can significantly reduce GHG emissions of
passenger cars? alongside reducing dependency on oil resources®. It can further
contribute to the ‘smart city’ concept if electrification is combined with automated
driving* and fleet sharing®.

Passenger cars are the fastest growing segment of the transport sector that makes a
shift from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs). The
global EV fleet grew from a few thousand vehicles in 2005 to 10.1 million vehicles in
2021°. Strong growth can be foreseen in the next decades. The International Energy
Agency (IEA) projects 175-244 million EVs on the road globally in 2030, including 130-
190 million battery electric vehicles (BEVs) and 45-54 million plug-in hybrid electric
vehicles (PHEVs)®7, depending on policy support, technology advancements, and other

factors.

1.2 Sustainability challenges and opportunities related to the EV
transition with a focus on batteries
The EV transition faces technical challenges (e.g., range and durability of EV batteries);

economic challenges (e.g, purchase price compared to ICEVs); and consumer
awareness challenges (e.g., environmental benefits of EVs). These EV transition



challenges relate to and impact each other®. Understanding this complexity will help
address these EV transition challenges and even create opportunities that maximize
the benefits of the EV transition.

The batteries play a key role in understanding the EV transition challenges®®. Here, we
focus on the challenges for achieving environmentally sustainable batteries, as well as
the opportunities that battery use can bring to sectors other than the EV sector. The
following sections introduce the challenges and opportunities of EV batteries from a
battery life cycle perspective: battery production, battery use, and battery end-of-life.

Battery production. The future global EV fleet will demand massive amounts of
batteries, reaching 1.8-3 terawatt-hour (TWh) of batteries in 2030°. This requires the
rapid scale-up of battery production capacity and related supply chains, starting from
materials extraction and concentration, smelting, leaching, cathode (and other
components) production, cell production, to battery pack assembly. Concerns have
been raised with regard to various aspects: economically available reserves for battery
materials'® affordable, secure and sufficient supply of raw materials™ (especially for
lithium, cobalt, nickel); how to minimize carbon emissions related to battery

production'?; and other social and environmental impacts’.

Battery use. The increasing EV fleet, supported by large-scale battery production, is
set to reduce the demand for oil-based fossil fuels that would otherwise be required
by ICEVs. EVs also increase net GHG emissions benefit because EVs are 2-4 times more
efficient than ICEVs and the electricity supply is decarbonized by the transition to
renewables®. EVs are expected to lead to a reduction of 3-4.5 million barrels of oil per
day that would otherwise have been consumed by light-duty vehicles in 2030,
depending on EV fleet size. The net reduction of GHG emissions can reach 460-580
million tons (Mt) CO2-Eq in 2030°, where 280-340 Mt CO2-Eq (generated from EV use
due to electricity consumption) are offset by the avoidance of 740-920 Mt CO2-Eq

(which would have been emitted from ICEVs).

In addition, EV batteries on the vehicle board can provide energy storage service and
economic value for the power system through vehicle-to-grid technology. Vehicle-to-
grid charging can be smart to enable dynamic EV charging and load-shifting services
to the grid. EVs can also store electricity and deliver it to the grid at peak times when

power generation is more expensive'®. These opportunities rely on standards and



market arrangements that allow for dynamic energy pricing and the ability of owners
to benefit from the value to the grid (value includes deferred or avoided capital
expenditure on additional stationary storage, and power electronic infrastructure,
transmission build-out™).

Battery end-of-life. Battery useful capacity degrades as being used for EV driving and
vehicle-to-grid service (hereafter called battery degradation). Usually, when the
remaining battery capacity drops to between 70-80% of the original capacity batteries
become unsuitable for use in EVs' (hereafter called retired batteries). However, these
retired batteries may still have years of useful life in less demanding stationary energy
storage applications'. These batteries can contribute to grid stability and generate
substantial grid-based economic value.

Batteries with extremely poor state-of-health (SoH) are not useful anymore for any
applications (hereafter called EoL batteries). Recycling can be applied to EoL batteries
to recover valuable battery materials and used them for new battery production (ie.,
closed-loop recycling). In theory, closed-loop recycling can reduce the materials-
related environmental impacts of EV batteries. The reduction efficiency depends on the
input battery chemistry and recycling technology applied. Various recycling
technologies are developed and optimized to increase the recycling rates of materials
as well as lower the cost of input chemicals and energy'”.

The above points lead to questions with regard to insights that have to be developed
on battery demand and associated battery material flows, battery production and
related environmental impacts, the grid storage potential of EV battery use, etc. In the
next section, we discuss analytical methods that can give insights into these aspects,
followed by sections that specify research gaps, research questions, and the structure
of this thesis.

1.3 Analytical methods to assess challenges and opportunities

Various modeling tools and approaches exist that can help to analyze and understand
the challenges and questions discussed in the former section. The research methods
include mainly the dynamic material flow analysis and the prospective life cycle
assessment. Executing the dynamic material flow analysis and the prospective life cycle
assessment methods requires detailed insights into the battery chemistry, chemistry

mix, amongst others, battery lifetime, and compositions of batteries, which can be
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provided via battery technology modeling. Below we describe each method applied in
this thesis.

Dynamic material flow analysis. Dynamic material flow analysis (MFA) is a method
used to quantify past, current, and future stock and flows of materials used in our
society'®'® The inflow or in-use stock data of a product, a product lifetime distribution,
and product material compositions are essential information for the calculation of
dynamic MFA, and they can be extrapolated based on relevant social-economic
variables (GDP, population, etc.) or summarized based on the social questionnaire.
Inflow- or stock-driven dynamic MFA has been used widely to assess the flows of
various materials, such as metals'®, plastics®, rare earth elements®', etc. The
applications of dynamic MFA have increased the knowledge basement of materials
flows, including both the quantity and quality of materials®. The flows of critical battery
materials, mainly metals, can be assessed by dynamic MFA%, combined with scenario
analysis of EV fleet and battery chemistry.

Prospective life cycle assessment. Life cycle assessment (LCA) is a tool to assess the
current environmental impacts of a product along the life cycle, ie., from raw materials
extraction, via production and use, to end-of-life treatment/recycling®. To determine
the environmental impacts of emerging technologies, prospective LCA approaches
have been proposed by researchers®. A key aspect for prospective LCA is how to model
the future performance® of the foreground technology system (e.g., how to
extrapolate a life cycle inventory from pilot to commercial scale®®) as well as the
background system (e.g., taking into account the energy transition®®). A common way
to implement prospective LCA is to combine dynamic emerging foreground
technology scenarios?’” (such as battery chemistry change), long-term background
scenarios from integrated assessment models® (IAMs, such as the energy mix
scenarios from REMIND model), and other important changes that are not considered
well in IAMs. Prospective LCA methodology can provide a future dynamic perspective
in environmental impact assessment, although it faces comparability, data, and
uncertainty challenges that should be solved in future research?. When performing a
prospective LCA for batteries, the changes in battery technology next to other changes

in the foreground and background technology systems should be fully considered.

Battery technology modeling. Based on EV type, size, range, and other factors,

various lithium-ion battery chemistries have been developed, including lithium iron
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phosphate battery (LFP), lithium nickel cobalt manganese battery (NCM), and lithium
nickel cobalt aluminum battery (NCA). LFP NCA, and NCM differ in cost, special energy
(Wh/kg), and cycle life, as well as in material compositions and production processes.
LFP features lower cost and longer cycle life than NCM and NCA, while NCM and NCA
show higher special energy than LFP%. In the next decade, LFP, NCA, and NCM are
expected to dominate the EV market’. In the long term, solid-state lithium-based
batteries, such as lithium-air and lithium-sulfur batteries’, or sodium-ion batteries
could breakthrough and gain a foothold in the EV market.

Modeling the technical characteristics of different chemistries and the future battery
chemistry mix is significant for assessing the challenges and opportunities of battery
sustainability. The battery models can provide information on battery material
compositions, which can be used as inputs to the dynamic material flow analysis and
prospective life cycle assessment to assess the battery sustainability challenges. Also,
the battery models can give battery capacity degradation, which is an important input
to assessing the battery capacity available for grid storage that represents one key
battery sustainability opportunity.

1.4 Research gaps

Although dynamic MFA and prospective LCA methods have been applied to analyse
the future impact of EV batteries, these two methods have rarely been combined with
battery technology modeling. As indicated above, only such a combination of models
can give insight into future material requirements and emissions related to battery
production for the global EV market. With this combination of models, we aim to
overcome four key research gaps that are only partially researched in the existing

literature. Please see the four research gaps in detail in the following sections.

I. Future battery material demand. Future demand for raw materials for EV

batteries is essential for assessing potential supply risks as well as social and
environmental impacts, which in turn is essential strategic information for both
industry and policy makers. Studies have quantified the future demand for EV battery
materials for specific regions such as Europe®, the United States®'3?, and China?’, or
for specific individual battery materials3*%°. Weil et al.*® assess the global material
demand for EV batteries and find that shortages for key materials, including lithium
and cobalt, can be expected. However, their model does not investigate the influence
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of battery chemistry developments (e.g., improved NCM chemistries or novel Lithium-
Sulphur (Li-S) and Lithium-Air batteries (Li-Air)) as well as alternative fleet and different
recycling scenarios. There is hence a major need for considering different EV fleet and
battery chemistry scenarios and quantifying the global demand for different battery
materials.

II. Future cradle-to-gate GHG emissions of battery production per kWh battery

capacity. Although EVs have environmental advantages over ICEVs®’-*, the impacts of
battery production are still rather uncertain®®42. Studies find diverging life cycle
impacts of battery production®®#. This is due to the use of different data and
assumptions of battery performance and compositions®, geographical scope?’,
battery production life cycle inventory (LCl) data*®#, and environmental impact
assessment methodologies™. All these factors can lead to questionable conclusions on
the magnitude of environmental impacts of battery production. Moreover, changes in
environmental impacts of battery production in the next decades are often not taken
into account, due to the challenges in estimating futurized background LCI data and
modeling future battery production processes. There is hence a need for summarizing
the up-to-date battery production LCl data (for different battery chemistries) and
building a prospective LCA model that incorporates both the battery production LCI
data and futurized background LCI data systematically. The prospective LCA model can
then be used to estimate the future life cycle environmental impacts of different

battery chemistries.

II. Future life cycle GHG emissions of global battery production. Environmental

impacts of global battery production®">? are normally quantified using battery life cycle
assessments and used volumes of batteries**-*2, We discussed the future life cycle GHG
emissions of battery production under Il. But the total GHG emissions related to battery
production depend on the EV fleet size and battery capacity per vehicle, which will
differ between the main EV markets (e.g., US, EU, Asia). Further, the distribution of
battery production over regions may change due to regional battery production
capacity, resource constraints, and other factors. Therefore, there is a need for
developing future (regional) battery demand scenarios incorporating the development
of EV fleet size and battery capacity per vehicle, and further quantifying the future GHG
emissions of global EV battery production considering the future split of battery



production over production regions.

IV. Future global battery capacity available for grid storage. The utilization of EV

batteries for grid storage could improve the flexibility of electricity supply, while
reducing the capital costs and material-related emissions associated with additional
storage and power-electronic infrastructure. However, the total grid storage capacity
of EV batteries depends on business models, consumer behaviour (in driving and
charging), battery degradation, and more factors®>*. Investigating the future grid
storage capacity of EV batteries is essential to understand the role EV batteries could
play in the renewable energy transition. Previous global-level studies, including those
on vehicle-to-grid capacity>>>” and retired battery capacity®’*8, while informative,
rarely consider factors such as: non-linear, empirically-based battery degradation (they
often neglect the impact of battery chemistry®>-®"); geographical and/or temporal
temperature variance (which impacts battery degradation); and, driving intensity by
vehicle type in different countries/regions (which constrains the battery capacity
available during the day). These factors determine the technical grid storage capacity.
Additionally, consumer participation in the vehicle-to-grid market and in the second-
use market impacts the actual grid storage capacity>, which is significant but rarely
quantified. There is hence a need for quantifying the total grid storage capacity of EV
batteries including both vehicle-to-grid capacity and second-use capacity, which

considers factors of the battery capacity degradation and market participation rates.

1.5 Aims and Research questions

With the aim of closing the above-mentioned research gaps, this thesis integrates the
method of dynamic MFA, prospective LCA, and battery technology modeling to an
integrated model. The model is used to assess the environmental impacts and co-
benefits of EV batteries, and to address the overall research question (RQ): What are
the future environmental challenges and opportunities for automotive lithium-

ion batteries from a life cycle perspective?

To deal with the overall RQ, in relation to the research challenges discussed in section

1.4 we formulate four key sub-RQs (see Fig. 1.1):
RQ1: What is the future material demand for automotive lithium-ion batteries?
RQ2: What are future cradle-to-gate GHG emissions per kWh automotive
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lithium-ion battery production?

RQ3: What are the future GHG emissions of global automotive lithium-ion
battery production?

RQ4: What is the future grid storage capacity available from global automotive
lithium-ion batteries?

.-~ Battery modeling --~_

EV driving behavior

modeling
Battery degradation Co-benefl'F of future EV
. battery use: available grid
modeling

storage capacity (RQ4
-~ Futurescenarios -~ ge capacity (RQ4)
Future battery demand

Future EV fleet scenarios ’
modeling

Future battery material
demand (RQ1)

Future battery chemistry Material intensity per

| \
| |

| !

| !

| |

1 ‘

i scenarios ! 1 battery modeling )

| | R //

| |

[ Future metals mining \

} scenario : . .

; ; Future GHG emissions per __~ Future GHG emissions of

! ! battery production (RQ2) global battery production (RQ3)
1\ Future energy scenarios )

Fig. 1.1: Overview of research methods and models for four research questions, including future
scenarios and battery modeling.

1.6 Thesis outline

In relation to the research questions above, this thesis consists of 6 chapters. Chapter
1 presents a general introduction to this thesis. Chapters 2 to 5 answer and discuss the
RQs 1 to 4, respectively. Chapter 6 gives a general discussion of this research. In short,

the next chapters discuss (see also Fig. 1.1):

Chapter 2 uses a dynamic MFA model that goes beyond previous analyses: including
future EV fleet scenarios, future battery chemistry scenarios, and modelling material
intensity per battery chemistry type. First, the future EV fleet scenarios cover

information on EV technical parameters (range, fuel economy, and motor power) and



EV sales market share of small/mid-size/large BEVs/PHEVs. Second, the future battery
chemistry scenarios include information on technical parameters of batteries (capacity
in kWh and specific energy in Wh/kg) as well as future battery chemistry mixes. Last
but not least, in the dynamic MFA model we incorporate battery material compositions
that are modelled based on the technical parameters of both EV and battery. This
chapter illuminates the future challenges related to strong demand growth of critical
battery materials, such as sustainable supply of raw materials, social and environmental
impact of materials production, etc. The methods and results of this chapter contribute
to the analyses in following chapters 3-5.

Chapter 3 builds a prospective LCA model for battery production. The prospective LCA
model incorporates future energy scenarios that indicate (regional) energy mixes and
energy-related GHG emissions, in addition to the future metals mining scenarios, ie.,
technology changes for the supply of key battery metals. This chapter determines the
(future) life cycle battery production GHG emission per kWh battery capacity for
different battery chemistries, and gives a contribution analysis by battery components
and materials.

Chapter 4 combines the dynamic MFA model in Chapter 2 and the prospective LCA
model in Chapter 3 to assess the range of GHG emissions associated with global EV
battery production under different scenarios. Sensitivity analysis with regard to key

factors (such as closed-loop recycling) is further conducted.

Chapter 5 combines the dynamic MFA model in Chapter 2 (assess future battery stock
and EolL batteries), the EV driving behavior model (model EV driving distance and
charging behavior), and the battery degradation model (estimate battery capacity over
time). This chapter evaluates the future available grid storage capacity - including both
vehicle-to-grid capacity and second-use capacity - from EV battery use. Further, this
chapter compares "the total available grid storage capacity from EV batteries" with "the
demand for short-term storage capacity in an electricity system mainly using

renewables".

Chapter 6 answers the RQs, discuss limitations of this work, give recommendations for
future research, and provide policy implications of this research.






2 Future material demand for automotive lithium-based
batteries®

Abstract

The world is shifting to electric vehicles to mitigate climate change. Here, we quantify
the future demand for key battery materials, considering potential EV fleet and battery
chemistry developments as well as second-use and recycling of EV batteries. We find
that in a lithium nickel cobalt manganese oxide dominated battery scenario, demand
is estimated to increase by factors of 18-20 for Lithium, 17-19 for Cobalt, 28-31 for
Nickel, and 15-20 for most other materials from 2020 to 2050, requiring a drastic
expansion of Lithium, Cobalt, and Nickel supply chains and likely additional resource
discovery. However, uncertainties are large. Key factors are the development of the
electric vehicles fleet and battery capacity requirements per vehicle. If other battery
chemistries were used at a large scale, e.g., lithium iron phosphate or novel Lithium-
Sulphur or Lithium-Air batteries, the demand for Cobalt and Nickel would be
substantially smaller. Closed-loop recycling plays a minor, but increasingly important
role in reducing primary material demand until 2050, however, advances in recycling
are necessary to economically recover battery-grade materials from end-of-life
batteries. Second-use of electric vehicle batteries further delays recycling potentials.

2.1 Introduction

Electric vehicles (EVs) generally have a reduced climate impact compared to internal
combustion engine vehicles®2 Together with technological progress and governmental
subsidies, this advantage led to a massive increase in the demand for EVs®2. The global
fleet of light-duty EVs grew from a few thousand just a decade ago to 7.5 million
vehicles in 2019%. Yet, the global average market penetration of EVs is still just around

1.5% in 2019 and future growth is expected to dwarf past growth in absolute numbers®,

Lithium-ion batteries (LIBs) are currently the dominant technology for EVs®, Typical
automotive LIBs contain lithium (Li), cobalt (Co), and nickel (Ni) in the cathode, graphite

2 Published as: Xu, C., Dai, Q, Gaines, L., Hu, M., Tukker, A. & Steubing, B. Future material demand for
automotive lithium-based batteries. Communications materials 1, 1-10 (2020).
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in the anode, as well as aluminum and copper in other cell and pack components.
Commonly used LIB cathode chemistries are lithium nickel cobalt manganese oxide
(NCM), lithium nickel cobalt aluminum oxide (NCA), or lithium iron phosphate (LFP),
although battery technology is currently evolving fast and new and improved
chemistries can be expected in the future®264,

Due to the fast growth of the EV market, concerns over the sustainable supply of
battery materials have been voiced. These include supply risks due to high geopolitical
concentrations of cobalt®®® and social and environmental impacts associated with
mining®”%®, as well as the availability of cobalt and lithium reserves® and the required
rapid upscaling of supply chains to meet expected demand®.

Understanding the magnitude of future demand for EV battery raw materials is
essential to guide strategic decisions in policy and industry and to assess potential
supply risks as well as social and environmental impacts. Several studies have
quantified the future demand for EV battery materials for specific world regions such
as Europe®, the United States', and China??, or for specific battery materials only33-
35, Weil et al.3® assess the material demand for EV batteries at the global level and find
that shortages for key materials, such as Li and Co, can be expected. However, their
model does not investigate the influence of battery chemistry developments (e.g.,
improved NCM chemistries or novel Lithium-Sulphur (Li-S) and Lithium-Air batteries

(Li-Air)) as well as alternative fleet and different recycling scenarios.

Here, we go beyond previous studies by developing comprehensive global scenarios
for the development of the EV fleet, battery technology (including potentially game-
changing chemistries such as Li-S and Li-Air) as well as recycling and second-use of EV
batteries. We assess the global material demand for light duty EV batteries for Li, Ni,
and Co, as well as (for model see Supplementary Fig. 2.1) for manganese (Mn),
aluminum (Al), copper (Cu), graphite and silicon (Si). We also relate material demands
to current production capacities and known reserves and discuss key factors for
reducing material requirements. The results presented are intended to inform the
ongoing discussion on the transition to electric vehicles by providing a better
understanding of future battery material demand and the key factors driving it.

2.2 Methods

Model overview. We develop a dynamic material flow analysis (MFA) model, which is
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a frequently used approach to analyze material stocks and flows®®. Our stock-driven
MFA model estimates the future material demand for EV batteries as well as Eol
materials available for recycling. It consists of an EV layer, a battery layer, and a material
layer, and considers key technical and socio-economic parameters in three layers
(Supplementary Fig. 2.1). The EV layer models the future EV stock (fleet) development
until 2050 as well as required battery capacity. The EV stock then determines the
battery stock, which in turn determines the battery inflows and, considering their
lifespan distributions (Supplementary Fig. 2.2), the outflow of EoL batteries. The battery
layer considers future battery chemistry developments and market shares. The material
layer models material compositions of battery chemistries using the BatPaC model™.
The fate of EolL batteries is modelled considering three recycling scenarios and a
second-use scenario and these determine the material availability for closed-loop
recycling. The model layers and parameters are described in the following.

EV fleet scenarios and required battery capacity. Projections for the development
of the EV fleet vary, but most studies project a substantial penetration of EVs in the
light duty vehicle (LDV) market in the future (Supplementary Fig. 2.3). We use two EV
fleet development scenarios of the IEA until 2030: the stated policies (STEP) scenario
and the sustainable development (SD) scenario® (and estimate the annual EV stock
based on the equivalent IEA 2019 scenarios’’, see Supplementary Fig. 2.4). We then
extrapolate the EV fleet penetration until 2050 using a logistic model (see
Supplementary Fig. 2.5) based on a target penetration of EVs in the LDV market in 2050
of 25% in the STEP scenario and 50% in the SD scenario (which is in line with other EV
forecasts, as shown in Supplementary Fig. 2.3). To estimate future EV fleet until 2050,
we further assume a linear growth for global LDV stock from 503 million vehicles in
2019 to 3.9 billion vehicles in 2050, which is in line with projection by Fuel Freedom
Foundation’. Global predictions of the future development of BEV and PHEV shares
were not available. To estimate future shares of BEVs and PHEVs in the EV stock, we
assumed that the global share of BEVs increases in the same way as the US BEV share
projected by the US Energy Information Administration’®, but starting from the 2030
levels of the STEP and SD scenarios (i.e., from 66% in 2030 to 71% in 2050 in STEP
scenario and 70% in 2030 to 75% in 2050 in SD scenario, see Supplementary Fig. 2.6).

We classify EVs models into 3 market segments (small, mid-size, and large cars for both

BEVs and PHEVs) based on vehicle size classes used in the Fuel Economy Guide by EPA
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(see Supplementary Table 2.1)74, and collect global sales of each EV model from the
Marklines database’ . We use the distribution of cumulative sales until 2019 to
represent EV sales market shares among small, mid-size, and large segments
(Supplementary Fig. 2.7 and Supplementary Fig. 2.8). As a result, we obtained 19%,
48%, and 34% for small, mid-size, and large cars for BEVs, and 23%, 45% and 32% for
PHEVs. We assume EV sales market share remains constant, however, a sensitivity
analysis is conducted to obtain the upper and lower bounds for material requirements
if all vehicles were large BEV or small PHEV (see sensitivity analysis).

We collect range, fuel economy, and motor power of each EV model from Advanced
Fuels Data Center of US DOE’®, and calculate sales-weighted average range, fuel
economy, and motor power for 3 market segments for both BEVs and PHEVs”
(Supplementary Table 2.2 and Supplementary Table 2.3). By assuming 85% available
battery capacity for driving EVs based on BatPaC model™, we obtain 33 kWh, 66 kWh,
and 100 kWh for small, mid-size, and large BEVs (see Supplementary Table 2.3 for
PHEV).

Passenger car lifespans have been found to vary from 9 to 23 years among countries
with an average lifespan of around 15 years™. EV lifespan depends on consumer
behavior, technical lifespan (see next section), and other factors. Here we use a Weibull
distribution” to model the EV lifespan assuming the minimum, maximum, and most
likely lifespans of EVs to be 1, 20, and 15 years respectively (see Supplementary Fig.
2.2). We do not consider battery remanufacture and reuse from one EV to another EV

due to performance degradation, technical compatibility and consumer acceptance.

Battery chemistry scenarios and market shares. Although various EV battery
chemistries have been developed for EVs to decrease cost and improve performance,
current major battery roadmaps in US®, EU?', Germany®, and China® focus on cathode
material development considering high-energy NCM (transition to low cobalt and high
nickel content) and NCA based chemistries to be the likely next generation of LIBs for
EVs in next decade, as well as anode material development considering adding Si to
graphite anode. This is also reflected in commercial activities by battery producers (e.g.,
LG Chem or CATL)® and market share projections until 2030 by Avicenne Energy85,
which we use in this study. We assume that NCM batteries continue to decrease cobalt
content and increase nickel content after 2030 and compile the NCX scenario (where

X represents either Al or Mn) until 2050 (including 8 chemistries, see Supplementary
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Table 2.4. In the NCX scenario, we assume that NCM955 (90% nickel, 5% cobalt, 5%
manganese) are introduced in 203086, and gradually replace other previous
chemistries proportionally to reach a market share of one third by 2050 (i.e., market
shares of NCM111, NCM523, NCM622, NCM622-Graphite (Si), NCM811-Graphite (Si),
NCA, and LFP batteries are assumed to decrease proportionally after 2030, see Fig.
2.2b).

Future battery chemistry developments after 2030 are uncertain, but conceivable
battery chemistries, in addition to NCM and NCA batteries, include already existing
LFP batteries®”®, as well high-capacity Li-metal solid-state batteries, such as Li-S and
Li-Air®'8%. Therefore, we include two additional what-if scenarios next to the NCX
scenario: an LFP scenario and a Li-S/Air scenario. In the LFP scenario, the market share
of LFP chemistry is assumed to increase linearly from around 30% in 2019 to 60% by
2030 and remain at this level until 2050 (ie., other batteries lost market share
proportionally compared to the NCX scenario, see Fig. 2.2b). In the Li-S/Li-Air scenario,
we assume Li-S and Li-Air batteries to be commercially available in 2030 based on
commercial plans of Li-S by OXIS Energy® and Li-Air by Samsung Electronics®® and
then they obtain linearly increasing market share to 30% each (totally 60%) by 2040,
and maintain this share until 2050 (NCA and NCM batteries supply the rest of the
market by historical proportions, see Fig. 2.2b).

The real-world lifespan of batteries is influenced by additional factors not modelled
here, such as ambient temperature, depth, rates of charge and discharge, and driving
cycles®. We use the technical lifespan of batteries. Before 2020, we assume that
batteries are likely to last 8 years (based on the battery warranty of EV manufactures)®,
which is shorter than EV lifespan (Supplementary Table 2.5 and Supplementary Table
2.6). We assume a 50% battery replacement rate for EVs (ie, one EV requires 1.5
battery packs on average). Battery research agendas in the US®, EU®, and China®
include targets to increase the lifespan of batteries, which is why we assume that after
2020 batteries will have the same lifespan distributions as EVs and no replacement of
batteries is required. Note that we assume higher lifespans for LFP batteries (20 years
on average) (Supplementary Fig. 2.2), which leads to a higher second-use potential
than for the other battery types.

Battery material compositions. The battery material compositions are calculated by
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using the BatPaC model version 3.17° as a function of the 2 EV types (BEVs or PHEVs),
the 3 EV market segments (small, mid-size, and large cars), and the 8 battery
chemistries (LFR, NCA, NCM11, NCM523, NCM622, NCM622-Graphite (Si), NCM811-
Graphite (Si), NCM955-Graphite (Si)), which yields 48 unique battery chemistries. The
input parameters include the EV range, fuel economy, and motor power, which
determine the required capacity of each EV type and market segment (Supplementary
Table 2.2 and Supplementary Table 2.3), and battery chemistry and other parameters
(like the design of battery modules and cell components) for which we use the default
values in the BatPaC model. To calculate the material compositions of battery
chemistries that do not exist in BatPaC (i.e., NCM523, NCM622-Graphite (Si), NCM811-
Graphite (Si), NCM955-Graphite (Si)), we use the closest matching battery chemistry in
BatPaC as a basis and then adapt technical parameters, such as Ni, Co, Mn contents in
the positive active material and Si and graphite contents in the negative active material,
by stoichiometry, as well as active material capacities and open circuit voltage (see
Supplementary Table 2.7 and Supplementary Note 2.1). For Li-S and Li-Air chemistries,
we performed a literature review on the specific energy and material compositions of
Li-S and Li-Air cells (Supplementary Table 2.8 and Supplementary Table 2.9), and then
scale these linearly to meet required battery capacities for each EV type and market
segment. The pack components of Li-S and Li-Air are assumed to be based on the pack
configurations of NCA chemistry (i.e., the same weight ratio between cell components
and pack components). Supplementary Table 2.10 shows the material compositions

used in this paper.

Recycling scenarios. Recycling of Eol batteries provides a secondary supply of
materials. Here we assume 100% collection rates and explore the effects of recycling
efficiencies of three recycling scenarios (see Supplementary Table 2.11) on primary
material demand, including recovered quantities and some discussion of recycled
material qualities. The primary material demand when there is no collection and
recycling of EoL batteries is captured by the “without recycling” scenario (Fig. 2.4).
Currently commercialized recycling technologies include pyrometallurgical (pyro) and
hydrometallurgical (hydro) recycling. Direct recycling is under development for
cathode-to-cathode recycling. For NCX and LFP batteries, pyro, hydro, and direct
recycling are assumed in the three recycling scenarios, respectively, while mechanical

recycling is assumed for Li-S and Li-Air batteries in all three scenarios. Recycling
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technologies differ in recycled materials, chemical forms, recovery efficiencies, and
economic prospects'#9 (Fig. 2.5).

The pyrometallurgical recycling scenario we consider is in fact a hybrid pyro and hydro
process. After feeding disassembled battery modules and/or cells to the smelter,
graphite is burnt off, aluminum and lithium end up in the slag, and nickel, cobalt, and
copper end up in a matte. After leaching of the matte, copper ion is recovered as
copper metal through electrowinning, while the nickel and cobalt ions are recovered
as battery-grade nickel and cobalt compounds through solvent extraction or
precipitation. The lithium in the slag can be refined to produce battery-grade lithium
compounds, but it is only economical when lithium price is high and recycling at scale.
Technically, aluminum in the slag can also be recovered, but it is not economical and
not considered by pyro recycling companies (the slag may be used, e.g., as aggregate
in construction material).

The hydrometallurgical recycling scenario starts with shredding disassembled modules
and/or cells. The shred then goes through a series of physical separation steps to sort
the materials into cathode powder, anode powder, and mixed aluminum and copper
scraps. Depending on the scrap metal prices, the mixed aluminum and copper scraps
may be further sorted into aluminum scraps and copper scraps. The copper scraps can
be incorporated back into the battery supply chain with minimal processing (ie.,
remelting). The closed-loop recycling of aluminum is more challenging as the
recovered aluminum scraps are a mixture of different aluminum alloys (e.g., from
current collector and casing) and Al is, therefore, typically downcycled. Closed-loop
recycling of aluminum would require separating the aluminum alloy before or during
the recycling process, which may or may not be economical®. The cathode powder is
subsequently leached with acid, where nickel, cobalt, and manganese leach out as ions,
and recovered as battery-grade compounds after solvent extraction and precipitation.
Lithium ends up in solid waste which can also be used as construction materials. Similar
to pyro recycling, lithium in the solid waste can be recovered as battery-grade
compounds, but the economic viability depends on the lithium price. The anode
powder recovered through hydro, which can be a blend of graphite and silicon, is not
battery-grade. Although they can be refined to battery-grade, at present the economic

viability is unclear.

The direct recycling scenario is the same as hydro except for cathode powder recycling.
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In the direct process, the cathode powder is recovered and then regenerated by
reacting with a lithium source (re-lithiation and upgrading). Lithium, nickel, cobalt, and
manganese are therefore recovered as one battery-grade compound. Since lithium
refining is not needed here as with pyro and hydro, lithium recovery in direct process
is economical at least from a lab-scale perspective.

The material recovery efficiencies for pyro, hydro, and direct are taken from the
EverBatt® model developed at Argonne National Laboratory (Supplementary Table
2.11). As for mechanical recycling of Li-S and Li-Air batteries, we assume that only
metallic lithium is recovered from the process. The material recovery efficiency of
metallic lithium is assumed to be 90%, and the recovery is considered economical due
to the relatively simple process and high value of recovered lithium metal.

Second-use/use scenarios. EolL EV batteries may experience a second-use for less
demanding applications (non-automotive), such as stationary energy storage, as they
often have remaining capacities of around 70-80% of their original capacity®” .
Technical barriers exist (e.g., the performance of repurposed batteries) and economic
uncertainty (the cost of repurposing including disassembly, testing, and repackaging)
that depend on the battery chemistry, state-of-health, and the intended second-use
application®1%, Here we distinguish the second-use rates of LFP and other chemistries
due to the long cycle life'®" and the reduced chance of cascading failure of LFP%%, LFP
batteries are assumed to have a 100% second-use rate. For the rest of the battery
chemistries, we assume a 50% second-use rate before 2020, rising to 75% during 2020-
2050 because of improved technical lifespan of EV batteries (Supplementary Table
2.12). The second-use applications vary from home use to electricity system integration,
resulting in the second-use lifespan varying from 6 to 30 years'®. We assume a typical
10-year second-use lifespan®® to explore the effects of second-use on the availability
of materials for recycling. Note here the second-use assumes 100% reuse of battery

modules, while pack components enter recycling directly.

Sensitivity analysis. The effect of important factors such as EV fleet size and battery
chemistry are investigated in dedicated scenarios. In addition, we perform sensitivity
analysis for a) battery lifespan, b) required battery capacity per vehicle, c) the market
penetration of Co- and Ni-free battery chemistries, and d) the future specific energies

of Li-S and Li-Air chemistries (for which conservative numbers were assumed).



(a)

Battery lifespan has an important effect on the number of batteries required for
EVs. We perform a sensitivity analysis of the effect of lower battery lifespans on
battery material demand by assuming that also after 2020 one EV needs 1.5
batteries on average (results in Supplementary Fig. 2.9).

Future market shares of BEVs and PHEVs and EV battery capacity are also key for
determining the quantity of required materials. While battery capacity is driven by
many factors like EV range, fuel economy, and powertrain configurations, we
perform a sensitivity analysis on two extreme situations, 100% BEV with 110 kWh
capacity (large SUVs such as Tesla Model S Long Range Plus'®, see Supplementary
Table 2.13 for material compositions) and 100% PHEV with 10 kWh capacity, to
explore the bounds of future material demand (see Supplementary Table 2.14 for
material compositions, and annual results in Supplementary Fig. 2.10).

Similarly, we also explore the effects of 100% market share of LFP in the LFP
scenario and 100% market share of Li-S and Li-Air in the Li-S/Air scenario (see
Supplementary Fig. 2.11 and associated material requirements in Supplementary
Fig. 2.12 and Supplementary Fig. 2.13 respectively).

The improvement of material performance of battery chemistry, especially specific
energy (stored energy per weight), may reduce material demand dramatically.
Here we chose Li-S and Li-Air chemistries in the Li-S/Air scenario to perform a
sensitivity analysis of the potential specific energy improvement from 400 Wh/kg
to 600 Wh/kg for Li-S and from 500 Wh/kg to 1000 Wh/kg for Li-Air (values based
on review of industrial and lab-scale achievements, see Supplementary Table 2.10
for material compositions and associated material requirements in Supplementary
Fig. 2.14).

2.3 Results

2.3.1 EV fleet growth

Fig. 2.1 shows the projected EV fleet development. We base our scenarios on two
scenarios of the International Energy Agency (IEA) until 2030: the Stated Policies (STEP)

scenario, which incorporates existing government policies and the Sustainable

Development (SD) scenario, which is compatible with the climate goals of the Paris

agreement and includes also the target of reaching a 30% global sales share for EVs
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by 2030%3. According to these scenarios, EVs will make up 8-14% of the total light duty
vehicle fleet by 2030, of which 89-166 million are battery electric vehicles (BEVs) and
46-71 million are plug-in hybrid electric vehicles (PHEVs)”". We extend these scenarios
until 2050 assuming logistic growth curves where the global fleet penetration of EVs
in 2050 will be 25% in the STEP scenario and 50% in the SD scenario. This is in line with
other projections, see Supplementary Fig. 2.3. In the STEP scenario, the EV stock will
increase by a factor of 72 from 2020-2050 to nearly 1 billion vehicles and annual EV
sales will rise to 109 million vehicles (Supplementary Fig. 2.15). In the SD scenario, the
EV stock will increase by a factor of 102 from 2020-2050 to 2 billion vehicles and annual
EV sales will rise to 211 million vehicles (Supplementary Fig. 2.15).
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Fig. 2.1: Global EV stock development projected until 2050. BEV = battery electric vehicle. PHEV =
plug-in hybrid electric vehicle. STEP scenario = the Stated Policies scenario. SD scenario = Sustainable
Development scenario.

2.3.2 Battery capacity and market shares

Fig. 2.2 shows that in the STEP scenario approximately 6 TWh of battery capacity will
be required annually by 2050 (and 12 TWh in the SD scenario, see Supplementary Fig.
2.16). The required future battery capacity depends on the development of the EV fleet
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as well as the required battery capacity per vehicle (we assume 66 kWh and 12 kWh as
average capacity for BEVs and PHEVs, respectively, see Supplementary Table 2.2 and
Supplementary Table 2.3 for details) and the battery lifespans (see Supplementary
Table 2.6 and Supplementary Fig. 2.2). The material requirements depend on the choice
of battery chemistries used. Three battery chemistry scenarios are considered (see Fig.
2.2 and detailed description in methods).
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Fig. 2.2: Battery market shares and yearly EV battery sales until 2050 for the fleet development
of the STEP scenario. a NCX scenario. b LFP scenario. ¢ Li-S/Air scenario. See Supplementary Fig. 2.16
for the Sustainable Development scenario. See Supplementary Fig. 2.17 for battery sales in units.
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The most likely NCX scenario follows the current trend of widespread use of lithium
nickel cobalt aluminum (NCA) and lithium nickel cobalt manganese (NCM) batteries
(henceforth called the NCX scenario with X representing either Al or Mn)®. Battery
producers are seeking to replace costly cobalt with nickel, which has led to an evolution
from NCM111 to NCM523, NCM622, and NCM811 batteries (numbers denote ratios
of nickel, cobalt, and manganese)® and NCM955 (90% nickel, 5% cobalt, 5%
manganese) are expected to be available by 2030%. Specific energies at the pack level
assumed here range from 160 Wh/kg for NCM111 to 202 Wh/kg for NCM955-Graphite
(Si) battery for typical mid-size BEVs (Supplementary Table 2.15), and lifespans are
assumed to increase to an average of 15 years to match vehicle lifespans
(Supplementary Fig. 2.2)'%.

The LFP scenario considers the possibility that LFP (LiFePOs) batteries will be
increasingly used for EVs in the future. The principle drawback of LFPs is their lower
specific energy compared to NCA and NCM chemistries, which negatively impacts fuel
economy and range of EVs. Advantages of LFPs are lower production costs due to the
abundance of precursor materials, safety due to better thermal stability, and longer
cycle life™, While LFP batteries have seen their main application in commercial vehicles,
such as buses, there are prospects of a more widespread use of LFPs in light-duty EVs
(e.g., Tesla has recently announced to equip the Chinese version of its Model 3 with
LFP batteries®). In this scenario, we assume that LFP batteries (with a specific energy
of 129 Wh/kg at pack level for typical mid-size BEVs and on average lifespan of 20
years'%) will have a market share of 60% from 2030-2050, while the rest of the market
follows the trends in the NCX scenario.

In the Li-S/Air scenario, we consider the possibility of breakthroughs in Li-metal solid-
state battery chemistries, specifically, Li-S and Li-Air batteries, which are seen as
potential successors of LIBs®1%7. Although Li-S and Li-Air batteries are still in early
development and considerable challenges remain to be solved before
commercialization, e.g., low cycle life and safety issues®2%, Li-S batteries could reach 2
times and Li-Air batteries up to 3 times the specific energy of current LIBs, which would
likely lead to cost reductions and improved EV ranges®. Although it is highly uncertain
if and when such batteries could reach market readiness, we assume that Li-S and Li-
Air batteries (with specific energies of 308 and 383 Wh/kg, respectively, at pack level

for typical mid-size BEVs and lifespans equal to NCM batteries) enter the market in
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2030%" and reach a market share of 60% by 2040, while the rest of the market follows
the trends in the NCX scenario.

2.3.3 Battery material demand

Fig. 2.3a shows the global demand for Li, Co, and Ni for EV batteries (Mn, Al, Cu,
graphite, and Si are shown in Supplementary Fig. 2.18a). It can be observed that higher
EV deployments in the SD scenario lead to 1.7-2 times higher annual material demand
than in the STEP scenario. The demand for Li is only slightly influenced by the battery
chemistry scenario (although the Li-S/Air scenario requires slightly more Li due to the
Li-metal anodes in Li-S and Li-Air batteries). The demand for Ni and Co is strongly
influenced by the battery chemistry scenario and substantially smaller in the LFP and
Li-S/Air scenarios due to the lower market shares of NCX batteries. From 2020 to 2050
in the more conservative STEP scenario, Li demand would rise by a factor of 17-21
(from 0.036 Mt to 0.62-0.77 Mt), Co by a factor of 7-17 (from 0.035 Mt to 0.25-0.62 Mt),
and Ni demand by a factor of 11-28 (from 0.13 Mt to 1.5-3.7 Mt) (Supplementary Fig.
2.19, Supplementary Fig. 2.20, and Supplementary Fig. 2.21). Note that the demand
increase for Co is smaller than for Ni due to the assumed partial replacement of Co by
Ni in future NCM batteries. Mn and Si follow the same trend as Ni and Co in the three
battery scenarios as they are also not used in LFP, Li-S, and Li-Air batteries. The demand
for Al, Cu, and graphite in the LFP scenario is slightly higher than in the NCX scenario
due to specific energy differences, and lower in the Li-S/ Air scenario, since Li-S and
Li-Air batteries use less Al and Cu on a per kWh basis and typically do not contain

graphite.
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Fig. 2.3: Battery material flows from 2020 to 2050 for lithium, nickel, and cobalt in the NCX, LFP
and Li-S/Air battery scenarios. a Primary material demand. b materials in end-of-life batteries. STEP
scenario = the Stated Policies scenario. SD scenario = Sustainable Development scenario. See
Supplementary Fig. 2.18 for other materials. Mt = million tons.

Fig. 2.4 shows the cumulative demand from 2020-2050. It ranges from 7.3-18.3 Mt for
Li, 3.5-16.8 Mt for Co, and 18.1-88.9 Mt for Ni across fleet and battery chemistry
scenarios (numbers for all materials are reported in Supplementary Table 2.16). The
cumulative demand is twice as high in the SD scenario, and 2-2.5 times higher for Ni
and Co in the NCX compared to the LFP and Li-S/Air scenarios. Consequently, there is
a factor of 4-5 between the cumulative Ni and Co demands in the SD-NCX and the
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STEP-LFP or STEP-Li-S/Air scenarios.
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Fig. 2.4: Cumulative primary material demand in 2020-2050 without recycling and with
hydrometallurgical recycling. STEP scenario = the Stated Policies scenario. SD scenario = Sustainable
Development scenario. Grey error bars represent a sensitivity analysis for battery capacity considering
two extreme cases (if all EVs were PHEVs with small 10 kWh batteries or if all EVs were large SUVs with
110 kWh batteries, e.g., Tesla’s Model S Long Range Plus™®, see annual results in Supplementary Fig.
2.10). The black line represents known reserves’®. See Supplementary Fig. 2.22 for other materials.

2.3.4 Recycling potentials

Fig. 2.3b shows the materials contained in end-of-life (Eol) batteries over time (0.21-
0.52 Mt of Li, 0.10-0.52Mt of Co, and 0.49-2.52Mt of Ni in 9-27 Mt EoL batteries, see
Supplementary Fig. 2.23 for EolL battery weight, and Supplementary Fig. 2.24 and
Supplementary Fig. 2.25 for other materials in EoL batteries). The recovery of these
materials could help to reduce primary material production%, Current commercial
recycling technologies for EV Dbatteries include pyrometallurgical and
hydrometallurgical processing’®. Pyrometallurgical recycling involves smelting entire

batteries or, after pretreatment, battery components. Hydrometallurgical processing
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involves acid leaching and subsequent recovery of battery materials, e.g., through
solvent extraction and precipitation. In closed-loop recycling, pyrometallurgical
processing is followed by hydrometallurgical processing to convert the alloy into metal
salts, as illustrated in Fig. 2.5. Direct recycling aims at recovering cathode materials
while maintaining their chemical structures, which could be economically and
environmentally advantageous®, however, it is currently still in early development
stages'’. In order to quantify recycling potentials, we consider three potential recycling
scenarios: pyrometallurgical, hydrometallurgical, and direct recycling for NCX and LFP
batteries as well as mechanical recycling for Li-S and Li-Air batteries. They differ in

recovered materials and associated chemical forms (see methods and summary in Fig.
2.5).
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Fig. 2.5: Conceptual schematic showing how the three considered recycling scenarios close
battery material loops and which materials are recovered. In reality not all materials go through all
processing steps. For example, pyrometallurgical recycling (smelting) still requires hydrometallurgical
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processing (leaching) before cathode materials can be produced, while direct recycling is designed to
recover cathode materials directly. In pyro- and hydrometallurgical recycling the recovery of Li may not
be economical and in pyrometallurgical recycling graphite is incinerated and Al not recovered from the
slag (see also methods).

We also consider the potential second-use of EoL EV batteries. The exact second-use
application, the battery state-of-health, battery chemistry, and other factors determine,
if and for how long second-use is possible. For the sake of simplicity and to illustrate
the effect of second-use, we assume that 50% of NCX, Li-S and Li-Air batteries before
2020 (increasing to 75% after 2020), and 100% of LFP batteries, due to their higher
cycle life, experience a 10-year second-use in stationary energy storage, which is likely
to be economically and environmentally beneficial’", before finally entering recycling
(Supplementary Table 2.12)

Fig. 2.4 shows the cumulative battery material demand from 2020-2050 for both fleet
scenarios without recycling (representing the maximum primary material demand),
and with hydrometallurgical recycling of NCX and LFP batteries and mechanical
recycling of Li-S and Li-Air batteries without second-use (representing the minimum
primary material demand) (Supplementary Fig. 2.26 shows the development over time
for all materials). Considering additional material losses, e.g., during collection and
recycling, or material recovery delays due to second-use, would yield figures in
between these bounds. This shows that battery recycling has, at best, the potential to
reduce 20-23% of the cumulative material demand for Li until 2050 (8% for Li metal),
26-44% for Co, and 22-38% for Ni (see Supplementary Table 2.17 for other materials).
The most important reason for this is the fast growth of the EV market and the time
lag between the need for materials and the availability of EoL material. It should be
noted that in a steady-state system, i.e., once the battery stock of a saturated EV market
has been built up, secondary material shares could, theoretically, be as high as
recycling efficiencies, ie., above 90%. Supplementary Table 2.18 shows the increasing

potential of recycling to mitigate primary material demand over time.

Fig. 2.6 shows the temporal evolution of the closed-loop recycling potential (CLRP), i.e.,
the percentage of battery material demand that can be met with secondary material
from battery recycling, for the next three decades. While the CLRP is small for the
current decade (below 10%) it may reach as much as 20-71% during 2040-2050. The
CLRP for Co and Ni are higher in the LFP and Li-S/Air scenarios, since LFP, Li-S, and Li-
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Air battery chemistries do not require these materials and the total quantity of required
materials for NCX batteries is growing much slower or even stagnating for some time
(see Fig. 2.3). Note that CLRP of Li and Ni does not exceed 31% in the NCX and LFP
scenario due to the continued growth of NCX chemistries, while it surpasses 50% in
the Li-S/Air scenario (71% for Co) in 2040-2050 due to the higher stock of NCX
batteries built up until 2030 when Li-S/Air chemistries are introduced (see Fig. 2.2). In
the Li-S/Air scenario, lithium compounds (e.g., Li.CO3 or LiOH) used for cathode
production of LIBs need to be distinguished from lithium metal used for Li-S and Li-
Air battery anodes (see demand for each in Supplementary Fig. 2.14), since existing
recycling technologies recover lithium as compounds, and further processing of these
compounds would be necessary to produce lithium metal. Although this is technically
feasible, it is unlikely to be cost-competitive with primary lithium metal production
from brine, which does not require the intermediate compounds production step and
may work with lower-purity feedstock'2. In the Li-S/Air scenario, the CLRP of lithium
compounds surpasses 50% from 2040-2050. On the other hand, the CLRP for Li metal
barely reaches 10% during 2040-2050 due to the fast growth of the Li-S and Li-Air
batteries and the small historical stock (see also Supplementary Table 2.18).
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Fig. 2.6: Closed-loop recycling potential of battery materials in periods of 2020-2029, 2030-2039,
2040-2050 in the STEP scenario. Hydrometallurgical recycling is used for NCX and LFP batteries and
mechanical recovery of Li-metal for Li-S and Li-Air batteries. Grey dot displays the reduction of closed-
loop recycling potential as second-use delays the availability of end-of-life materials. See

Supplementary Table 2.18 for other materials.

If a significant share of batteries experiences a second-use, the recovery of that
material will be delayed in time and thus the CLRP will be substantially lower for the
decades to come (shown by the dashed lines in Fig. 2.6). The CLRP of other materials
follow similar patterns (see Supplementary Table 2.18).

2.4 Discussion

Given the magnitude of the battery material demand growth across all scenarios,
global production capacity for Li, Co, and Ni (black lines in Fig. 2.3) will have to increase
drastically (see Supplementary Table 2.19 and Supplementary Table 2.20). For Li and
Co, demand could outgrow current production capacities even before 2025. For Ni, the
situation appears to be less dramatic, although by 2040 EV batteries alone could
consume as much as the global primary Ni production in 2019. Other battery materials
could be supplied without exceeding existing production capacities (Supplementary
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Table 2.20), although supplies may still have to increase to meet demands from other
sectors®%, The known reserves for Li, Ni, and Co (black lines in Fig. 2.4) could be
depleted before 2050 in the SD scenario and for Co also in the STEP scenario. For all
other materials known reserves exceed demand from EV batteries until 2050
(Supplementary Table 2.16). In 2019 around 64% of natural graphite and 64% of Si are

3, However,

produced in China'®, which could create vulnerabilities to supply reliability
synthetic graphite has begun to dominate the LIB graphite anode market (56% market
share in 2018) due to its superior performance and decreasing cost over natural
graphite®. Thus, among EV battery materials Co and Li, and to a lesser extent Ni and
graphite, can be considered to be most critical concerning the up-scaling of
production capacities (see Supplementary Table 2.19), reserves and other supply risks,
which confirms previous findings®?366>113114 even without taking into consideration the
potential additional demand from heavy-duty vehicles** and other sectors®. In
contrast to Li and Ni, Co reserves are also geographically more concentrated and partly
in conflict areas', thus increasing potential supply risks®. Battery manufacturers are
already seeking to decrease their reliance on cobalt, e.g., by lowering the Co content
of NCM batteries, however, as shown in Fig. 2.3, absolute decoupling is unlikely to
occur in the coming decades. Shortages could also occur at a regional level, such as
the access to Li and Ni for Europe®. Obviously, it is possible that the outlined supply

risks change, e.g., with the discovery of new reserves'®.

According to our model, lithium demand for EV batteries in 2050 (0.6-1.5 Mt) could be
significantly lower than projected by Weil et al.3¢ (1.1-1.7 Mt) and likely higher than
projected by Hao et al.3 (0.65 Mt), Deetman et al.* (0.05-0.8 Mt), and Ziemann et al.>
(0.37-1.43 Mt). For cobalt, our estimations (0.25-1.25 Mt) are in line with the predictions
by Weil et al.3® (0.3-1.1 Mt) despite important differences in underlying scenarios and
likely considerably higher than Deetman et al3®> (0.06-0.62 Mt). For nickel our
estimations (1.5-7.6 Mt) partly overlap but are generally higher than those by Weil et
al.3® (0.6-2.6). There are thus notable uncertainties concerning the primary material
demand for EV materials related to several key factors that could be strategically
addressed to mitigate supply risks. Probably the most important factor is the future
required battery capacity. A sensitivity analysis is shown in Fig. 2.4 for two extreme
battery capacity cases, iLe., if all EVs were PHEVs with small 10 kWh batteries or if all
EVs were large SUVs with 110 kWh batteries, such as Tesla Model S Long Range Plus',
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While it is unlikely that the global average EV battery capacity will be close to either
end of this range, this analysis illustrates the high importance of this factor. The
demand for battery capacity depends on technical factors, such as vehicle design,
vehicle weight, and fuel efficiency'”, and perhaps even more importantly, on socio-
economic factors, such as the future EV fleet size (see also Fig. 2.4), consumer choices
concerning the size and ranges of EVs, the cost of EV batteries and raw materials, the
development of alternative transportation means and technologies (e.g., fuel cell
EVs'®), and policy.

Opportunities lie in the development of battery technology. As shown here, Li-S and
Li-Air batteries would reduce the dependency on Co, and Ni, while offering higher
energy densities. Our analysis assumes conservative, L.e., technically proven values, but
if higher specific energies were to be achieved, e.g., 600 instead of 400 Wh/kg for Li-S
and 1000 instead of 500 Wh/kg for Li-Air (Supplementary Table 2.10 and
Supplementary Table 2.21), the cumulative lithium demand in the Li-S/Air scenario
could be reduced by 20% and the Li-metal demand by 40% (Supplementary Fig. 2.14).
High market shares of Li-S/Air or LFP batteries or breakthroughs in post-Li batteries
based on abundant elements such as sodium, magnesium, or calcium® could lead to
an absolute decoupling from lithium, cobalt, and nickel (see Supplementary Fig. 2.11,
Supplementary Fig. 2.12, and Supplementary Fig. 2.13).

It is also uncertain whether the lifespans assumed here will be reached in practice,
especially for Li-S and Li-Air batteries®. Lower battery lifespans could require
additional battery replacements and thus lead to considerably higher material demand
(Supplementary Fig. 2.9 and Supplementary Table 2.22). On the other hand, batteries
in a state-of-health that would typically be considered to mark their EoL (i.e., 70-80%)
may still be used by consumers who prefer to accept a shorter range over the expense
of a battery replacement* (EVs with 80% residual battery capacity could still meet daily
travel requirements in 85% of cases in the US'"® and widespread charging infrastructure
could further support this').

Truly circular EV batteries will not be available anytime soon. Over the next decades,
we first need to produce the EV battery stock for a large fleet, mostly from primary
materials. Closed-loop recycling will gain importance, depending on EV fleet and
battery chemistry developments, second-use, and other factors, such as

122

standardization'?, legislation, business models'??, eco-design or design for recycling'?,
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collection systems, and recycling technology'”%. The difference between the recycling
technologies is not so much in the recycling efficiency for individual materials, but
whether materials are recovered and in what chemical form and purity'3¢. All
recovered battery materials can, in principle, be refined to battery-grade. For example,
in the pyrometallurgical process, lithium ends up in the slag, while in the
hydrometallurgical process, lithium ends up in the solid waste from the leaching step.
Both slag and solid waste could be refined to produce battery-grade lithium carbonate,
however, lithium has hardly been recovered so far as the lithium price did not enable
a cost-effective recovery®*'?*, The most economically and environmentally promising
technology for closed-loop recycling, although currently largely unproven outside of

|u

the lab, is direct recycling, which could recover cathode material “as is” without
intermediate smelting or leaching step (Fig. 2.5). Challenges for direct recycling include
the development of sorting processes that can separate cathode powder from different
battery chemistries, re-lithiation and upgrading processes for cathode chemistries that
have become obsolete and further standardization of batteries to support effective

recycling®.

The success of the transition to electric vehicles will depend partly on whether the
material supply can keep up with the growth of the sector in a sustainable way and
without damaging the reputation of EVs. Science-based sustainability assessments
should guide the selection of alternative battery chemistries and raw materials to avoid
unfavorable burden-shifts. The global demand scenarios presented here also provide
a basis to assess the global economic, environmental, and social impacts related to EVs

and batteries from a lifecycle perspective.
2.5 Data availability

The authors declare that the data used as model inputs supporting the findings of this
study are available within the paper and its Supplementary Information files. Data and
model are also provided as Excel files to facilitate further research
(10.6084/m9.figshare.13042001).
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2.6 Supplementary information

2.6.1 Supplementary Figures
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Supplementary Fig. 2.1: Stock dynamics model on the EV, battery, and material layers: research
questions (left), model structure (middle), and included categories (right). Driving factors are
classified into predominantly technical and socio-economic (in italic) drivers. We use two EC fleet
development scenarios until 2030 from International Energy Agency (IEA)*. The EV range, fuel
economy, and motor power of various EV models are collected from the US DOE (US Department of
Energy)'?>. The material compositions for various battery chemistries are calculated by using the BatPaC
(Battery Performance and Cost) model from Argonne National Laboratory’, expected for Li-Sulphur
and Li-Air chemistries (marked with * as they are associated with uncertainty for EV applications®’).
Abbreviations: E, B, and M = EV, battery, and material; e, b, and m = categories of EV, battery, and
material; In, stk, and out = inflow, stock, and outflow; y = year. See the section on battery replacement
and reuse for calculation equations.
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Supplementary Fig. 2.3: Projections of EV stock share in light-duty vehicles from 2030 to
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Supplementary Fig. 2.4: EV stock estimations of stated policies scenario and sustainable
development scenario from 2020-2030 of IEA global EV outlook 2020%7, in proportion with new
policies scenario and EV30@30 scenario of IEA global EV outlook 201932, respectively.
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Supplementary Fig. 2.5: Estimation of EV fleet penetration in stated policies scenario and
sustainable development scenario of IEA (reach 100% until the year 2135). The EV fleet
penetration until 2030 is based on the stated policies scenario and the sustainable development
scenario of IEA®, and we model the EV fleet penetration after 2030 by logistic model'®. Here the figure
shows the process of full transition to EVs in light-duty passenger vehicle market, and the time point
when EV fleet share reaches 100% in the stated policies scenario and the sustainable development
scenario, if our estimations of 25%-50% of EV fleet share in 2050 are realized.
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Supplementary Fig. 2.6: Global BEV share in total EV stock in 2030-2050, in proportion with US
BEV stock share projection by US Energy Information Administration'34.
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Supplementary Fig. 2.7: BEV sales market shares among small/mid-size/large segments. The

market shares are based on cumulative sales until 2019 of each BEV model included in each BEV market

segment. BEV sales market shares are assumed stable in 2020-2050, while sensitivity analysis is

conducted.
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Supplementary Fig. 2.8: PHEV sales market shares among small/mid-size/large segments. The
market shares are based on cumulative sales until 2019 of each PHEV model included in each PHEV

market segment. PHEV sales market shares are assumed stable in 2020-2050, while sensitivity analysis
is conducted.
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Supplementary Fig. 2.9: Result of sensitivity analysis of lower battery lifespan (i.e., one EV will
use 1.5 battery packs on average after 2020, while in the baseline scenario one EV will use 1
battery pack after 2020) on annual demand for Li, Co, Ni, Mn, Al, Cu, graphite, and Si in 2020-
2050 without recycling.
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Supplementary Fig. 2.10: Result of sensitivity analysis of required battery capacity (i.e., 100%
BEV with 110 kWh and 100% PHEV with 10 kWh) on annual demand for Li, Co, Ni, Mn, Al, Cu,
graphite, and Si in 2020-2050 without recycling.
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Supplementary Fig. 2.12: Result of sensitivity analysis of 100% LFP market share (by 2030) on
annual demand for Li, Co, Ni, Mn, Al, Cu, graphite, and Si in 2020-2050 without recycling.
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Supplementary Fig. 2.13: Result of sensitivity analysis of 100% Li-S and Li-Air market share (by
2040) on annual demand for Li, Co, Ni, Mn, Al, Cu, graphite, and Si in 2020-2050 without

recycling.

2030
Year

2040 2050

44

Material demand (Mt)

Material demand (Mt)

—

240
[+

0.3

o
)

I
s

Material demand (Mt)

0.0

= Baseline

Cobalt
_ 100% Li-S and Li-Air
market share

SN
\\\
| .

2030 2040

2050

Manganese

2030 2040

2050

Copper

2030 2040

2050

2020

Silicon

- -
-
. S

2030 2040
Year

2050



18
15
1.2
0.9
0.6
0.3
0.0

Li demand (Mt)

Supplementary Fig. 2.14: Lithium demand split by Li ion (in the form of chemicals like Li>COs,
LiOH, etc.) and Li metal (in Li anode of Li-S and Li-Air chemistries) in the Li-S/Air scenario,
including a sensitivity analysis for improved specific energy of Li-S and Li-Air chemistries. Based
on a review of the specific energy of Li-S and Li-Air cells from lab and commercial scales (see
Supplementary Table 2.22 and Supplementary Table 2.1), the specific energy of Li-S cells is improved
from 400 Wh/kg to 600 Wh/kg, and the specific energy of Li-Air cells from 500 Wh/kg to 1000 Wh/kg.
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Supplementary Fig. 2.15: Projections of global EV sales in the stated policies scenario and the
sustainable development scenario in 2020-2050. EV sales are in rapid growth phase until 2050,

based on the projections of EV stock share in light-duty passenger vehicles.
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Supplementary Fig. 2.16: EV battery sales by year in the NCX (a), LFP (b) and Li-S/Air (c)

scenarios until 2050 for the fleet development of the SD scenario (unit: 1 TWh = 10> GWh = 10°¢
MWh = 10° kWh).

47



STEP scenario SD scenario

a 120 240
mLFP
2 100 ' mNCMos5-Graphite (Si) 2 200
2 go | =NCM811-Graphite (Si) 2 160
= u NCM622-Graphite (Si) =
% 60 [ wNCM622 > 120
2 K4
S 40 | "NoMs23 S 80
> NCM111 >
[} [}
£ 20 [ =NCA £ 40
[ai] [an]
0 0
2020 2025 2030 2035 2040 2045 2050 2020 2025 2030 2035 2040 2045 2050
b 120 240
% 100 o 200
s s
= 80 = 160
£ £
< 60 > 120
< 2
8 40 & 80
by by
(<) (<)
g 20 £ 40
2] 2]
0 0
2020 2025 2030 2035 2040 2045 2050 2020 2025 2030 2035 2040 2045 2050
c 120 240
2 100 | = 200
= u Li-Air S
é 80 = Li-Sulphur :‘=f 160
E E
5 60 > 120
2 K4
8 40 8 80
5 4
= 20 B 40
[an] [ai]
0 0
2020 2025 2030 2035 2040 2045 2050 2020 2025 2030 2035 2040 2045 2050
Year Year

Supplementary Fig. 2.17: EV battery sales by year in the NCX (a), LFP (b) and Li-S/Air (c)
scenarios until 2050 for the fleet development of the STEP scenario and the SD scenario (unit:
millions).
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Supplementary Fig. 2.18: Primary material demand (a) and materials in EoL batteries (b) from
2020 to 2050 for Mn, Al, Cu, graphite, and Si in the NCX, LFP and Li-S/Air battery scenarios.
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Supplementary Figure 2.19 (Continued).

Increasing factors

Increasing factors

20

15

10

120
100
80
60
40
20

0 7
2020 2025 2030 2035 2040 2045 2050

20 20
Graphite Graphite Graphite
15 15
10 10 +
5 5 ~
= ==-- ="
0 0 . . . A . .

020 2025 2030 2035 2040 2045 2050

2020 2025 2030 2035 2040 2045 2050

2020 2025 2030 2035 2040 2045 2050

120 120
L 100 + Silicon 100 + Silicon
3 80 80
3 60 60
- 40 40
3 20 20 _

0
2020 2025 2030 2035 2040 2045 2050

2020 2025 2030 2035 2040 2045 2050

Supplementary Fig. 2.19: Increasing factors for the primary demand for Li, Ni, Co, Mn, Al, Cu,
graphite, and Si from 2020 to 2050 in the STEP scenario in the NCX (a), LFP (b) and Li-S/Air (c)
scenarios. Here recycling refers to hydrometallurgical recycling as an example.
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Supplementary Figure 2.20 (Continued).
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Supplementary Fig. 2.20: Increasing factors for the primary demand of Li, Ni, Co, Mn, Al, Cu,
graphite, and Si from 2020 to 2050 in the SD scenario in the NCX (a), LFP (b) and Li-S/Air (c)
scenarios. Here recycling refers to hydrometallurgical recycling as an example.
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Supplementary Fig. 2.21: Increasing factors for lithium demand split by Li ion (in the form of

chemicals like Li2CO3, LiOH, etc.) and Li metal (in Li anode of Li-S and Li-Air chemistries) demand
in the Li-S/Air scenario.
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Supplementary Fig. 2.22: Cumulative primary demand for Mn, Al, Cu, graphite, and Si in 2020-

2050 without recycling or with hydrometallurgical recycling. Grey error bars represent a sensitivity
analysis for battery capacity considering two extreme cases (if all EVs were PHEVs with small 10 kWh
batteries or if all EVs were large SUVs with 110 kWh batteries, e.g., Tesla’s Model S Long Range Plus').

The global known reserves in 2019 for Mn, Al, Cu, graphite, and Si are shown in Supplementary Table

2.2, which are much higher than cumulative primary material demand from EV batteries only.
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Supplementary Fig. 2.23: Future battery waste stream by chemistry in the NCX (a), LFP (b) and
Li-S/Air (c) scenarios until 2050 (unit: Mt = million tons). Under the STEP scenario, the EV battery
waste stream reaches around 11 Mt in 2050 if NCX scenario is realized, which is lower than the LFP
scenario (14 Mt) and higher than the Li-S/Air scenario (9 Mt). The differences among three battery
chemistry scenarios are associated with the relatively lower specific energy of LFP chemistry and higher
specific energy of Li-S and Li-Air chemistries compared to NCA and NCM series chemistries. Driven by
higher EV fleet deployments, the weight of EV battery waste stream reaches around 2 times in the SD
scenario than the STEP scenario.
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Supplementary Fig. 2.24: Materials in future EV battery waste steam potentially available for
recycling without second life use until 2050 in the STEP scenario in the NCX (a), LFP (b) and Li-
S/Air (c) scenarios (unit: Mt = million tons). The total weight of eight EoL materials in 2050 in the
NCX scenario is almost equal to the LFP scenario, but with different material shares, especially for the
EoL Ni weight in the NCX scenario is much higher than the LFP scenario. The total weight of eight EoL
materials in the Li-S/Air scenario (Li includes Li ion in lithium chemical compounds and Li metal) is
much lower than the other two battery scenarios, however, EoL Li weight is slightly higher.

56



u Graphite

mSi
uCu
mAl

Mn

Co
= Ni
mLi

m Graphite

u Sj
uCu
mAl

Mn

Co
= Ni
mLi

W OTNOOWWOSANO

—

—

(3IN) @15BM Aunreq Ul S|eLIsTRIA|

3]

0O NOOWWOSANO

—

—

(1N) @1sBM Aimeq Ul S[eLIBIRIA|

o

u Si

m Graphite
uCu

m Li metal

n Al
Mn
Co

= Ni

mLiion

0]
—

o

O NOOWWOSTANO

—

(W) aisem Aneq ur sjeLaley

Year

Supplementary Fig. 2.25: Materials in future EV battery waste steam potentially available for
recycling without second life use until 2050 in the SD scenario in the NCX (a), LFP (b) and Li-

S/Air (c) scenarios (unit: Mt = million tons). We can see the same pattern for EoL materials in the

SD scenario as in the STEP scenario. However, the weight of EoL materials available for recycling in the

SD scenario is around 2 times than STEP scenario.
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Supplementary Figure 2.26 (Continued).
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Supplementary Fig. 2.26: Primary battery material demand in the NCX (a), LFP (b) and Li-S/Air
(c) scenarios from 2020 to 2050 without recycling, with recycling, and with recycling and second

life. Here recycling refers to hydrometallurgical recycling as an example.
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2.6.2 Supplementary Tables

Supplementary Table 2.1: Compiled EPA car size class™ used in this study. Note here small cars
include two-Seaters, minicompact sedans, subcompact sedans, and compact sedans by the EPA car
size class. Large cars include large sedans, small station wagons, SUVs, and vans by the EPA car size
class.

Class Passenger & Cargo Volume (Cu. Ft.)
Small <110

Mid-size 110 to 119
Large > 119

Supplementary Table 2.2: Sales-weighted average BEV range, fuel economy, and motor power.
We collect sales of each BEV model including in small/mid-size/large car segments until 201975,
and calculate the distribution of cumulative sales until 2019 of three car segments (to represent
BEV market shares among small/mid-size/large car segments). The range, fuel economy, and
motor power of each BEV segment are calculated by cumulative sales-weighted average method. The
required battery capacity = EV range * fuel economy / 0.85, where 0.85 is the ratio of available battery
capacity for driving EVs based on the assumption in the BatPaC model when calculating battery
material compositions’. Average required battery capacity for BEVs reaches around 66 kWh.

BEVs Range Fuel economy Electric motor Required capacity
(miles) (Wh/mile) power (kW) (kWh)
Small BEVs 96 291 101 33
Mid-size BEVs 194 291 169 66
Large BEVs 241 353 295 100

Supplementary Table 2.3: Sales-weighted average PHEV range, fuel economy, and motor power.
Average required battery capacity for PHEVs reaches around 12 kWh.

PHEVS Range Fuel economy Electric motor Required
(miles) (Wh/mile) power (kW) capacity (kWh)
Small PHEVs 44 336 123 17
Mid-size PHEVs 22 303 55 8
Large PHEVs 22 470 61 12
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Supplementary Table 2.4: Summary of capacity of the cathode and anode of battery chemistry
as input to the BatPaC model. The majority of cathode and anode capacity are kept as defaults in the
BatPaC model™, unless otherwise based on Supplementary Table 2.28, Supplementary Table 2.15,
Supplementary Table 2.13, or references. We use composite graphite anode with 9 wt% Si to represent
Graphite (Si) anode in this table, and its capacity is from'>.

Battery chemistry Cathode Cathode capacity Anode Anode capacity
(mAh/g) (mAh/g)
LFP LiFePO4 150 Graphite 360
NCA LiNio.s0C00.15Al0.0502 200 Graphite 360
NCM111 Li10s(Ni13Mn1,3C01/3)0.9502 155 Graphite 360
NCM523 Li1.05(NiosMno3C00.2)0.9502 158 Graphite 360
NCM622 Li1.05(Nio.sMno.2C00.2)0.9502 180 Graphite 360
NCM622-Graphite (Si)  Liv.os(NiosMno2C00.2)0.9502 180 Graphite (Si) 51713
NCM811-Graphite (Si)  Liv.0s(NiosMno.1C00.1)0.9502 191 Graphite (Si) 51713
NCM955-Graphite (Si)  Li10s(Nio.sMno.0sC00.05)0.9502 211 Graphite (Si) 51713

Supplementary Table 2.5: The minimum, most likely, and maximum lifespans of EVs from 2005
to 2050 as input to the calculation of shape and scale parameters of Weibull lifespan distribution
of EVs (unit: year, expect for shape and scale parameters).

Period Minimum Most likely Maximum Shape Scale
erio

lifespan, a lifespan, d lifespan, c parameter, a parameter, B
2005-2050 1 15 20 6.3 14.4

Supplementary Table 2.6: The minimum, most likely, and maximum lifespans of EV batteries
from 2005 to 2050 as input to the calculation of shape and scale parameters of Weibull lifespan
distribution of batteries (unit: year, except for shape and scale parameters). Other chemistries
refer to all battery chemistries except LFP.

o . . Shape Scale
. L Minimum Most likely Maximum
Period Chemistries ) . . parameter, parameter,
lifespan, a lifespan, d lifespan, ¢
a B
2005- All
L 1 8 15 3.1 7.9
2019 chemistries
2020- Other
o 1 15 20 6.3 144
2050 chemistries
2020-
LFP 1 20 25 8.1 19.3
2050

61



Supplementary Table 2.7: Reference chemistry and changing parameters as input to the BatPaC
model for the calculation of the material compositions of the non-existing battery chemistries
in the BatPaC model. Here we assume a linear growth for open circuit voltage (OCV) at different levels
of battery state of charge (SOC) from NCM523, to NCM622-Graphite (Si), to NCM811-Graphite (Si), to
NCM955-Graphite (Si). The OCV of NCM523 = the average of OCV (NCM111) and OCV (NCM622) in
the BatPaC model. The OCV of NCM622-Graphite (Si) = OCV (NCM622) — 0.076 (see Supplementary
Note 2.1 for the assuming average voltage difference between graphite (Si) anode and graphite anode).
Cathode capacity and Li, Ni, Co, and Mn content are from Supplementary Table 2.14.

) NCM622- NCM811- NCM955-
Battery chemistry NCM523 . . . . . .
Graphite (Si) Graphite (Si) Graphite (Si)
Reference
. NCM111 NCM622 NCM622 NCM622
chemistry
Cathode capacity
158 180 191 211
(mAh/g)
Anode capacity
360 517 517 517
(mAh/qg)
OCV at 20% SOC
3.5405 3.489 3.5135 3.538
V)
OCV at 50% SOC
3.7105 3.674 3.7135 3.753
V)
OCV at 80% SOC
3.95 3.924 3.974 4.024
V)
OCV at 100%
4.15 4.124 4174 4224
SOC (V)
Li (g/g active
. 0.07751513 0.077221916 0.076949595 0.076813626
material)
Ni (g/g active
. 0.296520724 0.354478904 0.470971788 0.528915777
material)
Co (g/g active
. 0.119093288 0.118642798 0.059112203 0.031060614
material)
Mn (g/g active
0.166530137 0.11060014 0.055105055 0.027508722

material)
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Supplementary Table 2.8: Review of the specific energy of Li-S chemistry on cell level (unit:
Wh/kg).

References Battery shape Specific energy Technology readiness
Ref1136 400
Ref2'37 370
Ref3'38 300-620 R&D
Ref4%° Pouch 300-400
Ref4%0 Pouch 500-600 R&D
Ref51%° 400-620
Ref6'36 Pouch 350-400 Commercial
Ref7140 Pouch 300 Lab

Supplementary Table 2.9: Review of the specific energy of Li-Air chemistry on cell level (unit:
Wh/kg).

References Battery shape Specific energy Technology readiness

Ref113¢ 1700

Ref2'¥7 1700

Ref313® 500-900

Ref4™! Pouch 362 R&D

Ref5%1 520

Ref6'4 Coin 1000

Ref7'4 Folded structure 1214

Ref81%® 500-1000
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Supplementary Table 2.10: Modelled material compositions of a Li-S (600 Wh/kg) and a Li-Air
(1000 Wh/kg) pack used for sensitivity analysis. (unit: kg per battery pack)

EV types Materials Li-Sulphur Li-Air
Liion 0.19 0.12
Li metal 3.62 1.69
Al 16.42 9.92
Small BEVs

Cu 6.44 0.27
Al in modules 6.86 418
Cu in modules 6.14 0.10
Liion 0.39 0.24
Li metal 7.30 3.40
Al 30.20 18.25

Mid-size BEVs
Cu 13.33 0.77
Al in modules 13.72 8.36
Cu in modules 12.53 0.29
Liion 0.59 0.36
Li metal 11.03 5.13
Al 45.64 27.58

Large BEVs

Cu 21.75 2.12
Al in modules 20.63 12.58
Cu in modules 20.52 1.39
Li ion 0.10 0.06
Li metal 1.91 0.89
Al 7.26 4.39

Small PHEVs
Cu 7.52 2.62
Al in modules 3.53 2.15
Cu in modules 4.37 2.62
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Supplementary Table 2.10 (continued).

EV types Materials Li-Sulphur Li-Air
Liion 0.05 0.03

Li metal 0.88 0.41

Al 3.97 2.40

Mid-size PHEVs

Cu 4.51 1.84

Al in modules 1.70 1.04

Cu in modules 3.06 1.84

Liion 0.07 0.04

Li metal 1.32 0.61

Al 5.48 3.31

Large PHEVs

Cu 7.26 3.05

Al in modules 2.49 1.52

Cu in modules 5.08 3.05

Supplementary Table 2.11: Comparisons of three EV battery recycling technologies by recycled
material type, recycling efficiency, and the quality of recovered materials, where mechanical
recycling is especially for the recovery of Li metal (a different form compared to Li ion in
chemicals), Al, and Cu form Li-S and Li-Air chemistry. Numbers in the table show the material
recycling efficiencies. The different colors show the feasibility of recovered materials being reused in
new battery production (i.e., closed-loop recycling). Yellow color indicates the economic feasibility of
closed-loop recycling is in question, but maybe become potentially economical with future technology
development and price fluctuance of recovered materials. Pyro and hydro recycling are already
commercially available, while direct recycling and mechanical recycling marked with star (*) are in still

lab-scale development.

Technology Li Ni Co Mn
Pyro 90% 98% 98% 90% Not present
Hydro 90% 98% 98% 98% Lost
Direct* 90% 90% 90% 90% 90% Potentially economical
Mechanical* | 90% 90% 90% Eonomical




Supplementary Table 2.12: Assumptions of second-use rate of batteries distinguished by LFP
and other chemistries, based on the assumptions of EV and battery lifespan distribution
(Supplementary Table 2.19 and Supplementary Table 2.20).

Periods Battery chemistry Second-use rate
LFP 100%
2005-2019
Others 50%
LFP 100%
2020-2050
Others 75%
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Supplementary Table 2.13: Material compositions of a BEV battery with 110 kWh capacity used for sensitivity analysis. (unit: kg per battery pack)

. NCM622- NCM811- NCM955- Li- Li-
EV types Materials LFP NCA NCM111 NCM523 NCM622 . . . . . . .
Graphite (Si)  Graphite (Si)  Graphite (Si) Sulphur Air
Li ion 10.98 11.35 15.63 15.16 13.16 13.36 12.42 11.13 0.96 0.78
11.2
Li metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.15 6
Ni 0.00 73.36 38.42 55.88 58.02 59.22 73.36 73.79 0.00 0.00
Co 0.00 13.81 38.58 22.45 19.42 19.82 9.21 433 0.00 0.00
Mn 0.00 0.00 35.97 31.39 18.10 18.48 8.58 3.84 0.00 0.00
BEV with 60.5
Al 172.79 135.08 141.95 140.31 136.19 130.17 127.98 124.94 75.12
110 kWh 3
capacity Cu 99.58 86.46 87.62 86.66 85.42 86.01 85.07 84.02 3580 466
Graphite 130.80 117.71 120.79 119.27 116.56 78.64 77.26 75.60 0.00 0.00
Si 0.00 0.00 0.00 0.00 0.00 7.78 7.64 7.48 0.00 0.00
Alin 27.6
85.70 66.31 69.31 68.54 66.54 64.01 62.84 61.37 33.96
modules 0
Cuin
95.86 83.15 84.30 83.38 82.18 82.70 81.80 80.78 33.78 3.04
modules
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Supplementary Table 2.14: Material compositions of a PHEV battery with 10 kWh capacity used for sensitivity analysis. (unit: kg per battery pack)

. NCM622- NCM811- NCM955- Li- Li-
EV types  Materials LFP NCA NCM111  NCM523  NCM622 . . . . . . .
Graphite (Si) Graphite (Si) Graphite (Si) Sulphur Air
Liion 1.01 1.04 1.42 1.38 1.20 1.22 1.13 1.02 0.09 0.07
Li metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.65 1.02
Ni 0.00 6.66 3.49 5.07 5.27 5.37 6.66 6.70 0.00 0.00
Co 0.00 1.25 3.50 2.04 1.76 1.80 0.84 0.39 0.00 0.00
Mn 0.00 0.00 3.26 2.85 1.64 1.68 0.78 0.35 0.00 0.00
PHEV
with Al 29.81 16.90 17.27 17.13 16.86 16.45 16.29 16.14 6.28 5.07
10 kWh
) u 34.74 23.03 22.70 22.67 22.74 23.23 23.22 23.30 6.50 3.02
capacity
Graphite 11.83 10.71 10.99 10.86 10.61 7.16 7.03 6.88 0.00 0.00
Si 0.00 0.00 0.00 0.00 0.00 0.71 0.70 0.68 0.00 0.00
Alin
15.69 8.75 8.83 8.72 8.63 8.57 8.49 8.46 3.05 2.48
modules
Cuin
22.07 11.57 11.19 11.08 11.20 11.65 11.65 11.80 3.78 3.02
modules
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Supplementary Table 2.15: Specific energy of EV battery pack (unit: Wh/kg).

EV types LFP NCA NCM111  NCM523  NCM622 NCM_622'_ NCM,81 1', NCM,%S', Li-Sulphur  Li-Air
Graphite (Si) Graphite (Si) Graphite (Si)
Small BEVs 122 169 151 153 164 176 183 192 295 365
Mid-size BEVs 129 178 160 163 174 186 193 202 308 383
Large BEVs 128 176 159 162 172 185 191 201 308 384
Small PHEVs 101 151 132 134 147 155 161 169 265 327
Mid-size PHEVSs 74 109 103 104 109 116 118 121 224 272
Large PHEVs 75 115 106 108 114 119 121 124 234 287
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Supplementary Table 2.16: Cumulative demand for Li, Co, Ni, Mn, Al, Cu, graphite, and Si in
2020-2050 without recycling, compared to global known reserves in 2019 (unit: Mt). Note Li
demand includes Li ion demand (in the form of chemicals like Li.COs) and Li metal demand in the Li-
S/Air battery scenario, for example, 9.1 (4.8) for Li demand under the STEP and Li-S/Air scenario is
shown in the form of total Li demand (Li metal demand). * Yearend production capacity for Al reserve.

¥ Si reserves are not available, but ample for use. Known reserves in 2019 are referred from USGS™.

STEP STEP STEP SD SD SD Known
Materials ~ scenario,  scenario,  scenario,  scenario,  scenario,  scenario, reserves
NCX LFP Li-S/Air NCX LFP Li-S/Air in 2019
Li 7.8 73 8.8 (4.6) 16.0 15.1 18.3 (9.6) 17
Co 8.1 35 43 16.8 7.1 8.8 7
Ni 43.0 18.1 21.9 88.9 37.2 447 89
Mn 5.2 2.2 2.7 10.6 4.5 55 810
Al 89.3 106.5 67.4 183.8 218.7 138.1 779
Cu 59.8 66.8 37.6 121.0 134.6 754 870
Graphite 62.4 74.8 326 128.8 154.4 66.2 300
Si 2.4 1.0 1.2 5.0 2.1 24 Ample’
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Supplementary Table 2.17: Effects of recycling on cumulative demand for Li, Ni, Co, Mn, Al, Cu,
graphite, and Si in 2020-2050. Numbers in the table represent reduction percentages by recycling
compared to primary cumulative demand. Note Li demand includes Li ion demand (in the form of
lithium chemicals) and Li metal demand in the Li-S/Air battery scenario. For example, 20.2% (8.0%)
under the STEP scenario is shown in the form of the reduction percentage of total Li demand (reduction
percentage of Li metal demand). The reduction percentage of total Li demand is more than 2 times the
reduction percentage of Li metal demand. From this table, we can see the reduction of cumulative
material demand through 2050 could reach around 20%-30% by recycling in the NCX and LFP scenarios,
while it is raised to around 30%-40% in the Li-S/Air scenario due to the quick shift of battery chemistry
in this scenario. There is no big difference in reduction percentages among materials and between the

STEP scenario and SD scenario.

STEP STEP STEP SD SD SD
Materials scenario, scenario, scenario, scenario, scenario, scenario,
NCX LFP Li-S/Air NCX LFP Li-S/Air
. 21.3% 19.9%
Li 23.2% 23.1% 21.6% 21.5%
(8.4%) (8.3%)
Co 28.2% 32.5% 44.0% 26.3% 29.5% 41.0%
Ni 23.6% 26.6% 37.7% 22.2% 24.6% 35.4%
Mn 28.1% 33.0% 44.1% 25.9% 29.4% 40.6%
Al 23.2% 22.6% 28.0% 21.7% 21.2% 26.0%
Cu 23.1% 22.8% 31.7% 21.6% 21.3% 29.6%
Graphite 24.2% 23.0% 38.2% 22.5% 21.5% 35.6%
Si 16.7% 18.0% 27.3% 15.9% 17.0% 25.9%
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Supplementary Table 2.18: Closed-loop recycling potential (CLRP) in 2020-2029, 2030-2039,
2040-2050 in the STEP scenario by battery chemistry scenarios, recycling technologies, and
second life use.

Battery scenarios NCX LFP Li-S/Air

Time periods 2020-2029 [2030-2039  [2040-2050 [2020-2029 [2030-2039 [2040-2050 [2020-2029 [2030-2039  [2040-2050
No second life, pyro 0.03 0.17 0.28 0.03 0.17 0.28 0.03 0.24
No second life, hydro 0.03 017 0.28 0.03 0.17 0.28 0.03 0.24

) No second life, direct 0.03 0.17 0.28 0.03 0.17 0.28 0.03 0.24

e Second life, pyro 0.01 0.04 0.13 0.01 0.04 0.10 0.01 0.06 0.26
Second life, hydro 0.01 0.04 0.13 0.01 0.04 0.10 0.01 0.06 0.26
Second life, direct 0.01 0.04 0.13 0.01 0.04 0.10 0.01 0.06 0.26
No second life, mechanical 0.00 0.00

Li metal
Second life, mechanical 0.00 0.00
No second life, pyro 0.04 0.19 0.36 0.06 0.33 0.38 0.04 0.28
No second life, hydro 0.04 0.19 0.36 0.06 0.33 0.38 0.04 0.28
No second life, direct 0.03 0.17 0.33 0.06 0.30 0.35 0.03 0.25

CU Second life, pyro 0.01 0.06 0.17 0.02 0.10 0.22 0.01 0.08 0.36
Second life, hydro 0.01 0.06 0.17 0.02 0.10 0.22 0.01 0.08 0.36
Second life, direct 0.01 0.05 0.15 0.02 0.10 0.20 0.01 0.08 033
No second life, pyro 0.02 0.15 0.29 0.04 0.26 0.30 0.02 0.23
No second life, hydro 0.02 0.15 0.29 0.04 0.26 0.30 0.02 0.23
No second life, direct 0.02 0.14 0.27 0.04 0.24 0.28 0.02 0.21

N Second life, pyro 0.01 0.04 0.12 0.01 0.08 0.16 0.01 0.06 0.27
Second life, hydro 0.01 0.04 0.12 0.01 0.08 0.16 0.01 0.06 0.27
Second life, direct 0.01 0.04 0.11 0.01 0.07 0.15 0.01 0.06 0.25
No second life, pyro 0.05 0.18 0.32 0.09 0.33 0.33 0.05 0.27
No second life, hydro 0.06 0.20 0.35. 0.10 0.36. 0.36 0.06. 0.30
No second life, direct 0.05 0.18 0.32 0.09 0.33 0.33 0.05 0.27

u Second life, pyro 0.01 0.07 0.18 0.02 0.13 0.24 0.01 0.10 0.39
Second life, hydro 0.02 0.07 0.19 0.03 0.14 0.26 0.02 0.11 0.43
Second life, direct 0.01 0.07 0.18 0.02 0.13 0.4 0.01 0.10 0.39
No second life, pyro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No second life, hydro 0.03 0.17 0.28 0.03 0.16 0.28 0.03 0.21 0.36
No second life, direct 0.03 0.17 0.28 0.03 0.16 0.28 0.03 021 0.36

! Second life, pyro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Second life, hydro 0.02 0.11 0.21 0.02 0.09 0.18 0.02 0.13 0.27
Second life, direct 0.02 0.11 0.21 0.02 0.09 0.18 0.02 0.13 0.27
No second life, pyro 0.03 0.17 0.28 0.03 0.16 0.28 0.03 0.23 0.43
No second life, hydro 0.03 0.17 0.28 0.03 0.16 0.28 0.03 0.23 0.43
No second life, direct 0.03 0.17 0.28 0.03 0.16 0.28 0.03 0.23 0.43

. Second life, pyro 0.01 0.06 0.15 0.01 0.04 0.11 0.01 0.08 0.24
Second life, hydro 0.01 0.06 0.15 0.01 0.04 0.11 0.01 0.08 0.24
Second life, direct 0.01 0.06 0.15 0.01 0.04 0.11 0.01 0.08 0.24
No second life, pyro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No second life, hydro 0.03 0.18 0.29 0.03 0.16 0.28 0.03 0.27
No second life, direct 0.03 0.18 0.29 0.03 0.16 0.28 0.03 0.27

Graphite
Second life, pyro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Second life, hydro 0.01 0.05 0.14 0.01 0.03 0.09 0.01 0.07 0.31
Second life, direct 0.01 0.05 0.14 0.01 0.03 0.09 0.01 0.07 0.31
No second life, pyro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No second life, hydro 0.01 0.08 0.20 0.01 0.13 0.21 0.01 013 0.38
No second life, direct 0.01 0.08 0.20 0.01 0.13 0.21 0.01 0.13 0.38

~ Second life, pyro 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Second life, hydro 0.00 0.02 0.07 0.00 0.03 0.09 0.00 0.03 0.16
Second life, direct 0.00 0.02 0.07 0.00 0.03 0.09 0.00 0.03 0.16




Supplementary Table 2.19: Annual material demand in 2050 by three battery chemistry
scenarios without recycling, with recycling, and with recycling and second life, and 2019 global
mining production (unit: Mt) in the STEP scenario. The annual demand in 2050 for Li, Ni, Co, and
graphite (natural graphite) from EV batteries alone exceed global mining production in 2019.

Battery scenarios / Mt 2019 annual {pemand as percent of 2019 production
Materials |Demand sceanrios production /
NCX LFP Li-S/Air Mt NCX LFP Li-S/Air
Without recycling 0.65 0.62 0.77 848% 807% 1002%
Li With recycling 0.45 0.43 0.55 0.077 590% 565% 715%
With recycling and second life  |0.55 0.54 0.66 717% 707% 863%
Without recycling 0.62 0.25 0.25 440% 179% 176%
Co With recycling 0.37 0.15 0.10 0.14 265% 107% 2%
With recycling and second life  [0.49 0.19 0.14 347% 136% 102%
Without recycling 3.75 1.53 1.50 139% 57% 56%
Ni With recycling 2.57 1.04 0.81 2.7 95% 39% 30%
With recycling and second life  [3.16 1.25 1.04 117% 46% 38%
Without recycling 0.40 0.16 0.16 2% 1% 1%
Mn With recycling 0.25 0.10 0.07 19 1% 1% 0%
With recycling and second life  [0.30 0.12 0.08 2% 1% 0%
Without recycling 7.53 9.08 5.25 12% 14% 8%
Al With recycling 5.25 6.37 3.45 64 8% 10% 5%
With recycling and second life  [5.79 7.18 3.81 9% 11% 6%
Without recycling 5.06 5.68 2.73 25% 28% 14%
Cu With recycling 3.55 3.99 1.70 20 18% 20% 8%
With recycling and second life  [4.21 4.91 2.04 21% 25% 10%
Without recycling 511 6.31 2.04 464% 574% 186%
Graphite |With recycling 3.48 4.40 1.08 1.1 317% 400% 98%
With recycling and second life  [4.27 5.57 1.37 388% 506% 125%
Without recycling 0.25 0.10 0.10 4% 1% 1%
Si With recycling 0.19 0.08 0.07 7 3% 1% 1%
With recycling and second life  [0.22 0.09 0.08 3% 1% 1%

73



Supplementary Table 2.20: Annual material demand in 2050 by three battery chemistry
scenarios without recycling, with recycling, and with recycling and second life, and 2019 global

mining production (unit: Mt) in the SD scenario.

Battery scenarios / Mt 2019 annual |pemand as percent of 2019 production
Materials |Demand sceanrios production /
NCX LFP Li-S/Air Mt NCX LFP Li-S/Air
Without recycling 1.33 1.26 1.57 1724% 1641% 2038%
Li With recycling 0.91 0.87 111 0.077 1183% 1133% 1435%
With recycling and second life  (1.23 1.19 1.46 1593% 1542% 1899%
Without recycling 1.25 0.51 0.50 894% 364% 358%
Co With recycling 0.74 0.30 0.20 0.14 527% 214% 141%
With recycling and second life  [1.12 0.45 0.40 801% 320% 283%
Without recycling 7.63 3.10 3.05 282% 115% 113%
Ni With recycling 5.15 2.09 1.60 2.7 191% 7% 59%
With recycling and second life  (7.04 2.83 2.59 261% 105% 96%
Without recycling 0.81 0.33 0.33 4% 2% 2%
Mn With recycling 0.49 0.20 0.14 19 3% 1% 1%
With recycling and second life  [0.72 0.29 0.25 4% 2% 1%
Without recycling 15.27 18.37 10.66 24% 29% 17%
Al With recycling 10.51 12.71 6.91 64 16% 20% 11%
With recycling and second life  [13.54 16.47 9.22 21% 26% 14%
Without recycling 10.09 11.28 5.44 50% 56% 27%
Cu With recycling 6.97 7.80 3.32 20 35% 39% 17%
With recycling and second life  [9.24 10.50 4.75 46% 53% 24%
Without recycling 10.39 12.84 4.16 944% 1167% 378%
Graphite  [With recycling 6.98 8.82 2.15 11 634% 802% 196%
With recycling and second life  [9.55 12.09 3.48 868% 1099% 317%
Without recycling 0.50 0.20 0.20 7% 3% 3%
Si With recycling 0.38 0.16 0.13 7 5% 2% 2%
With recycling and second life  [0.47 0.19 0.18 7% 3% 3%

Supplementary Table 2.21: Selected specific energy of Li-S and Li-Air cells used for calculating

material compositions and sensitivity analysis values for specific energy(unit: Wh/kg), which is

based on Supplementary Table 2.22 and Supplementary Table 2.1.

Chemistry Baseline Sensitivity analysis
Li-S 400 600
Li-Air 500 1000
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Supplementary Table 2.22: Sensitivity analysis of lower battery lifespan (i.e., one EV will use 1.5
battery packs on average after 2020, while in the baseline scenario one EV will use 1 battery
pack after 2020) for cumulative demand for Li, Co, Ni, Mn, Al, Cu, graphite, and Si in 2020-2050
without recycling, compared to global known reserves in 2019 (unit: Mt). * Yearend production
capacity for Al reserve. * Si reserves are not available, but ample for use. Known reserves in 2019 are
referred from USGS™.

STEP scenario, SD scenario,
. NCX scenario, . NCX scenario, Known
. STEP scenario, . SD scenario, . .
Materials ) with lower . with lower reserves in
NCX scenario NCX scenario
battery battery 2019
lifespan lifespan
Li 7.8 8.8 16.0 18.1 17
Co 8.1 9.2 16.8 18.9 7
Ni 43.0 49.0 88.9 100.6 89
Mn 5.2 5.8 10.6 12.0 810
Al 89.3 101.6 183.8 207.6 77.9*
Cu 59.8 68.1 121.0 136.9 870
Graphite 62.4 70.9 128.8 145.3 300
Si 2.4 2.8 5.0 5.7 Amplet

Supplementary Table 2.23: Review of cathode capacity of NCM523 (unit: mAh/g). We use the
average number in this table as input into the BatPaC model to calculate battery material compositions
of NCM523 chemistry.

References Cathode capacity of NCM523
Ref1™* 157
Ref2146 164
Ref3'#7 150
Ref3™#7 142
Ref3™4 175
Average 158
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Supplementary Table 2.24: Review of cathode capacity of NCM811 (unit: mAh/g). We use the
average number in this table as input into the BatPaC model to calculate battery material compositions
of NCM811-Graphite (Si).

References Cathode capacity of NCM811
Ref148 207
Ref2'4 200
Ref3'#7 194
Ref3™# 185
Ref3™# 178
Ref3™#7 186
Ref3™#7 188
Ref3™# 193
Ref4149 192

Average 191

Supplementary Table 2.25: Review of cathode capacity of NCM955 (unit: mAh/g). We use the
average number in this table as input into the BatPaC model to calculate battery material compositions
of NCM955-Graphite (Si).

References Cathode capacity of NCM955
Ref1™7 205
Ref2'49 217
Average 211
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Supplementary Table 2.26: EV battery material compositions on pack level calculated by the BatPaC model (unit: kg per battery pack). Note the
material compositions of Li-S and Li-Air are calculated based on literature and report data. Table continued till Page 80.

EVtypes  Materials  LFP NCA  NCM111 NCM523 NCM622 NCM,GZZ_, NCM,SH_, NCM,%S', o Li-Air
Graphite (Si) Graphite (Si) Graphite (Si)  Sulphur

Li ion 3.29 3.40 468 454 3.94 4.00 372 333 0.29 0.23

Limetal  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.44 337

Ni 0.00 21.97 11.50 16.73 17.38 17.74 2197 22.10 0.00 0.00

Co 0.00 414 11.55 6.72 5.82 5.94 276 130 0.00 0.00

SB?\?! Mn 0.00 0.00 10.77 9.40 5.42 5.53 257 1.15 0.00 0.00
Al 5866  45.71 49.02 4842 46.33 4433 43.23 42.23 2463 19.83

Cu 2914 2451 26.74 26.29 24.71 24.97 24.16 23.88 9.66 0.55

Graphite  39.18 35.30 36.19 35.74 34.95 2358 23.17 2267 0.00 0.00

Si 0.00 0.00 0.00 0.00 0.00 233 2.29 2.24 0.00 0.00

Li 6.62 6.84 9.43 9.14 7.94 8.06 7.49 6.72 0.58 0.47

Mid-size  Limetal 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.95 6.79
BEVs Ni 0.00 44.26 23.18 33.71 35.00 35.73 44.26 4451 0.00 0.00
Co 0.00 833 2327 13.54 11.71 11.96 5.55 2.61 0.00 0.00
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Mn 0.00 0.00 21.70 18.93 10.92 11.15 5.18 2.32 0.00 0.00
Al 106.87 83.41 87.69 86.68 84.12 80.35 78.98 77.11 45.30 36.50

Cu 56.33 49.16 49.70 49.17 48.54 49.08 48.58 48.03 20.00 1.53

Graphite 78.84 70.93 72.79 71.87 70.24 47.39 46.55 45.55 0.00 0.00

Si 0.00 0.00 0.00 0.00 0.00 4.69 4.60 4.51 0.00 0.00

Li 10.01 10.34 14.24 13.81 11.99 12.17 11.32 10.15 0.88 0.71
Li metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.54 10.27

Ni 0.00 66.86 35.02 50.93 52.88 53.97 66.86 67.25 0.00 0.00

Co 0.00 12.59 35.16 20.46 17.70 18.06 8.39 3.95 0.00 0.00

l:gsse Mn 0.00 0.00 32.78 28.60 16.50 16.84 7.82 3.50 0.00 0.00
Al 162.87 127.52 134.00 132.45 128.57 122.92 120.86 118.01 68.46 55.16

Cu 92.60 80.24 81.37 80.50 79.37 79.90 79.05 78.09 32.63 4.25

Graphite ~ 119.32 107.42 110.22 108.83 106.37 71.77 70.51 69.00 0.00 0.00

Si 0.00 0.00 0.00 0.00 0.00 7.10 6.97 6.82 0.00 0.00

Li 1.74 1.79 2.47 2.39 2.08 2.1 1.96 1.76 0.15 0.12

Psl-r:anV”s Li metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 1.78
Ni 0.00 11.56 6.05 8.80 9.14 9.33 11.56 11.63 0.00 0.00
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Co 0.00 2.18 6.08 353 3.06 312 145 0.68 0.00 0.00
Mn 0.00 0.00 5.66 494 2.85 291 135 0.60 0.00 0.00
Al 35.16 21.27 26.66 26.32 21.82 20.95 20.38 19.59 10.89 8.78
Cu 34.72 24.49 25.98 25.65 24.76 25.30 24.74 24.02 11.27 5.24
Graphite 2047 18.48 18.95 18.72 18.30 12.34 1213 11.87 0.00 0.00
Si 0.00 0.00 0.00 0.00 0.00 1.22 1.20 117 0.00 0.00
Li 0.81 0.83 1.13 1.10 0.96 0.97 0.90 0.81 0.07 0.06
Li metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 131 0.82
Ni 0.00 5.30 2.77 404 419 428 5.30 533 0.00 0.00
Co 0.00 1.00 2.79 1.62 1.40 1.43 0.66 0.31 0.00 0.00
Mid-size
PHEVS Mn 0.00 0.00 2.60 2.27 1.31 1.33 0.62 0.28 0.00 0.00
Al 23.16 15.10 15.59 15.40 15.01 12.41 12.30 12.23 5.95 479
Cu 29.89 20.06 20.05 19.82 19.63 20.37 20.32 2035 6.76 367
Graphite  9.43 8.55 8.77 8.66 8.46 5.71 5.61 5.49 0.00 0.00
Si 0.00 0.00 0.00 0.00 0.00 0.56 0.55 0.54 0.00 0.00
Large Li 1.21 1.24 1.71 1.66 1.44 1.46 1.36 1.22 0.11 0.09
PHEVs Li metal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.98 1.23
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Cu
Graphite
Si

0.00
0.00
0.00
35.69
4474
14.18

0.00

7.99

0.00
20.27
30.21
12.84

0.00

4.18
4.20
3.92
21.45
30.86
13.17

0.00

6.09
2.44
3.42
21.17
30.52
13.01
0.00

6.32
2.1

1.97
20.16
29.50
12.72

0.00

6.45
2.16
2.01
19.75
3042
8.58
0.85

7.99
1.00
0.93
19.56
30.39
8.42

0.83

8.04
0.47
0.42
19.41
30.45
8.24
0.82

0.00
0.00
0.00
8.23
10.90
0.00
0.00

0.00
0.00
0.00
6.63
6.10
0.00
0.00
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Supplementary Table 2.27: Al and Cu compositions in EV batteries on module level as results of BatPaC model (unit: kg in battery modules). We
include this table only for Al and Cu here as the second-use of EV batteries are assumed to happen on battery module level which will delay materials available
for recycling. Note Li, Co, Ni, Mn, graphite, and Si compositions on battery module level are the same as that on the battery pack level in Supplementary Table
2.11.

NCM622- NCM811-  NCM955-

EV types Materials LFP NCA NCM111 NCM523 NCM622 Grap.hite Grap.hite Grap.hite SuILpi_hur Li-Air
(Si) (Si) (Si)
Small Al 27.06 20.41 2242 22.06 20.77 19.99 19.36 18.90 10.29 8.36
BEVs Cu 28.24 23.73 25.95 25.50 23.93 2417 2336 23.09 9.22 0.19
Mid-size Al 52.23 40.25 42.11 4163 40.40 38.81 38.09 37.19 20.58 16.72
BEVs Cu 53.87 47.07 4758 47.07 46.45 46.94 46.46 4592 18.79 0.57
Large Al 79.49 61.56 64.36 63.64 61.78 59.43 58.36 57.00 30.95 25.15
BEVs Cu 88.86 77.00 78.10 77.24 76.13 76.60 75.77 74.83 30.78 2.77
Small Al 18.18 11.30 12.69 12.47 11.71 11.30 1091 10.37 5.30 430
PHEVs Cu 22.28 13.71 15.45 15.18 14.22 14.39 13.89 13.18 6.55 5.24
Mid-size Al 13.61 7.70 7.90 7.77 7.57 7.55 7.50 7.51 255 2.07
PHEVs Cu 19.41 10.42 10.37 10.19 10.04 10.49 10.52 10.69 459 3.67
Large Al 19.30 10.76 11.48 11.29 1061 10.55 10.46 1045 373 3.03
PHEVs Cu 27.58 14.55 15.29 15.02 14.07 14.63 14.65 14.85 7.62 6.10
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Supplementary Table 2.28: EV battery pack weight as result of the BatPaC model (unit: kg). PHEV battery weight is much smaller than that of BEVs because
of the difference in required battery capacity between BEVs and PHEVs. For any car type and segment, we can see a decrease in battery pack weight to provide
the same energy capacity due to the improvements of the specific energy of battery chemistries (see Supplementary Table 2.27).

EV types LFP NCA NCM111 NCM523 NCM622 NCM,622_, NCM,81 ! _, NCM955-Graphite (Si)  Li-Sulphur  Li-Air
Graphite (Si) Graphite (Si)

Small BEVs 269.94 19499  218.63 214.67 200.36 187.16 180.17 172.00 111.75 90.20
Mid-size BEVs 21405 373.09  413.66 406.40 382.34 355.97 344.24 328.02 215.36 173.08
Large BEVs 78236 568.63  630.24 619.15 582.64 542.50 524.53 499.89 325.13 260.91
Small PHEVs 171.05 114.88  131.51 129.27 118.20 111.85 108.01 102.71 65.34 53.07
Mid-size PHEVs 10749  72.79 77.61 76.44 73.27 68.69 67.34 65.64 35.56 29.25
Large PHEVs 159.24 104.21 112.76 111.01 104.89 101.28 99.25 96.66 51.20 41.76
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2.6.3 Supplementary Methods
Battery and EV lifespans

The probability of Weibull lifespan distribution” is given by equation (1):
Fy) = { af~*(y —a)* texp {— (3%1)“} ify>a (1)
0 otherwise.

where o is the shape parameter (o > 0); B is the scale parameter ( > 0); y is the year;
a is the minimum lifespan.

By assuming the cumulative probability of Weibull lifespan distribution function
between the minimum and the maximum lifespans as 99.7% (based on the normal
distribution), the a and B in the Weibull lifespan distribution can be calculated by
equations (2) and (3)”:

1 - exp{- (%“)a} = 99.7% @

d=a+p(=)” @)
where c is the maximum lifespan; d is the most likely lifespan.

Battery replacement and reuse

Supplementary Table 2.29: Assumptions of battery replacement rate, based on the assumptions
of EV and battery lifespan distribution (Supplementary Table 2.19 and Supplementary Table
2.20).

Period Battery replacement rate
2005-2019 50%
2020-2050 0%

Battery stock dynamics model

Based on assumptions on lifespan distributions of EVs and replacement rate and reuse

rate of EV batteries, we calculate the battery flows by equations (4) and (5):

Be,b,out(y) = Be,b,in(y) - ABe,b,stk(y) 4)

y=2004 y-2005
Be,b,aut()’) =15% (Be,b,in(zoos) X fy—zoos fE(y)dy + Be,b,in(2006) X fy—zoos fE(y)dy + +Be,b,in(y
-1 x [} fr0)dy ®)
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where E, B, in, stk, and out are abbreviations of EV, battery, inflow, stock, and outflow
respectively; e and b are the categories of EV and battery; fe(y) are lifespan distributions
of EVs. 1.5 in equation (5) refers to battery replacement means one single EV uses 1.5
battery packs on average during EV lifespan.

2.6.4 Supplementary Notes
Supplementary Note 2.1

Average battery cell voltage = Average voltage of cathode — average voltage of anode.
Relative to Li*/Li, the average voltage of graphite (360 mAh/g) and Si are 0.15 V and
0.4 V. The average voltage of the graphite (Si) anode with 517 mAh/g active capacity
can be estimated as (360/517)*0.15 + (157/517)*0.4 = 0.226 (V), based on assumption
of a capacity averaged linear combination of graphite and Si'*°. Therefore, compared
to NCM622-Graphite, the open circuit voltage of NCM622-Graphite (Si) will be reduced
by 0.226-0.15 = 0.076 (V)™

Supplementary Note 2.2

The cell material compositions of Li-S batteries are obtained from'?, where required
cell materials are scaled linearly by a factor between cell level energy capacity and
required capacity of BEVs/PHEVs). The pack components of Li-S are calculated based
on the pack configurations of default NCA chemistry in the BatPaC model™, which
means the weight ratio of cell components and pack components, as well as the weight
ratios of various components/materials in the pack configurations for Li-S are assumed
equal to the NCA chemistry in the BatPaC model™. Similarly, we also use the same
calculation methods for the material compositions of Li-Air packs, based on the cell

level material compositions of the Li-Air battery from™".
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3 Future greenhouse gas emissions of automotive lithium-
ion battery cell production®

Abstract

Understanding the future environmental impacts of lithium-ion battery is crucial to
enable a sustainable transition to electric vehicles. Here, we build a prospective life
cycle assessment (pLCA) model for lithium-ion battery cells production for 8 battery
chemistries and 3 production regions (China, US, and EU). The pLCA model includes
scenarios for future life cycle inventory data for energy and key materials used in
battery cell production. We find that greenhouse gas (GHG) emissions per kWh of
lithium-ion battery cell production could be reduced from 41-89 kg CO,-Eq in 2020 to
10-45 kg CO»-Eq in 2050, mainly due to the effect of a low-carbon electricity transition.
Cathode is the biggest contributor (33%-70%) of cell GHG emissions in the period
between 2020-2050. In 2050, LiOH will be the main contributor to GHG emissions of
LFP cathode, and Ni,SO4 for NCM/NCA cathodes. These results promote discussion on
how to reduce battery GHG emissions.

3.1 Introduction

In the transportation sector, a global shift from internal combustion engine vehicles
(ICEVs) to electric vehicles (EVs) has been widely recognized as one of the most
effective ways to mitigate climate change®">'. The International Energy Agency (IEA)
expects the global light-duty EV fleet to grow from around 10 million in 2021 to 124-
199 million EVs in 20308. Due to recent policy incentives and ongoing innovations in
battery technologies and business models, amongst others, it is expected the global
light-duty EV fleet size will grow to 970-1940 million EVs by 2050°.

The transition to the use of EVs will impact the supply chain of the automotive
industry™2, One of the key changes exists in the production and use of batteries®. Due
to low cost and high performance, lithium-ion batteries dominate the current EV
market and are expected to dominate in the next decade. The most important battery

b Published as: Xu, C,, Steubing, B., Hu, M., Harpprecht, C, van der Meide, M. & Tukker, A. Future
greenhouse gas emissions of automotive lithium-ion battery cell production. Resources, Conservation
& Recycling 187, 106606 (2022).
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types include lithium nickel cobalt manganese oxide batteries (NCM), lithium nickel
cobalt aluminum oxide batteries (NCA), and lithium iron phosphate batteries (LFP).

Although a lot of studies have found that EVs have environmental advantages over
ICEVS3"%, the impacts of battery production are still rather uncertain*’-2, Current
studies find quite diverging battery impacts***>. This is due to the use of different data
and assumptions on battery performance and compositions*®, battery production
processes, geographical scope®’, and life cycle inventory (LCl) information*4°, and
environmental impact assessment methodologies®, amongst others. All these factors
can lead to questionable conclusions on the magnitude of environmental impacts of
battery production. Moreover, changes in environmental impacts of battery production
in the next decades are rarely estimated, due to the challenges in estimating futurized
background LCI data and modeling future battery production processes.

In this paper, we aim to overcome most of the aforementioned knowledge gaps by
building a prospective life cycle assessment (pLCA) model to estimate future GHG
emissions of the battery cell production per kWh battery capacity. The pLCA model
simulates the lithium-ion battery cell production for 8 types of battery chemistries in
3 production regions (China, US, and EU) for the period 2020-2050. The foreground
system is complemented by prospective life cycle inventory (pLCl) of background data
that considers i) future energy scenarios as modelled in the Integrated Assessment
Model REMIND'>3 for the Shared Socio-Economic Pathway 2 (SSP2)-Base (no climate
policy) and the SSP2-PkBudg 1100 scenarios (with climate policies)'™* as well as ii)
future supply chain of key battery metals including nickel, cobalt, copper, and others
(see details in methods). In this way, this paper aims to contribute to a better
understanding of the current and future GHG emissions of battery cell production and
the discussion of how to minimize such impacts in the context of a mobility transition

towards EVs.

The paper is structured as follows. In section 2 we discuss the approach to the pLCA,
discerning the goal and scope definition, life cycle inventory, and life cycle impact
assessment. Section 3 gives the results and interpretation. Section 4 ends with

discussions and conclusions.
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3.2 Methods

3.2.1 Goal and scope

The goal of our pLCA model is to evaluate GHG emissions per kWh of battery cell
production in 2020, 2030, 2040, and 2050. The modeled battery cell is a lithium-ion
battery cell used in battery electric vehicles. The modeled cell capacity is 0.275 kWh,
the most common size of an EV battery cell. The functional unit is chosen as 1 kWh in
terms of the nominal battery cell capacity. The study is an attributional LCA, with a
contribution analysis to reveal the environmental hotspots of battery cell production.
The results are intended to give prospective environmental information to battery
technology developers and EV policy makers.

The pLCA model covers 8 different battery chemistries and 3 production regions:

I. Battery chemistries. Battery chemistry development will lead to differences in
material compositions and production processes and corresponding environmental
impacts. Here we explore chemistry-specific GHG emissions by distinguishing 8
chemistries: LFP-Graphite, NCA-Graphite, NCM111-Graphite, NCM523-Graphite,
NCM622-Graphite, NCM622-Graphite (Si), NCM811-Graphite (Si), and NCM955-
Graphite (Si) batteries. We include these 8 chemistries because they are currently seen
as the most likely dominant battery chemistries in the future according to our previous

study’.

Il. Production regions. Battery production region determines where material and
energy are supplied from, which significantly influences the associated environmental
impacts. Here, we cover China, EU, and US as three main battery production regions in
the world to explore region-specific GHG emissions.

Emissions of batteries in the use phase are negligible to zero. In the end-of-life phase,
there may be benefits from 2" uses or recycling of components or materials, but such
scenarios and hence the environmental benefits of them are highly uncertain'®.
Therefore, we apply cradle-to-gate system boundaries for this study which allocates all
production impacts to the first use of the battery in an EV. We include the production
of all battery cell components, ie., cathode, anode, electrolyte, separator, and cell
container, as well as the electric energy used to assemble all components into a

complete cell (Fig. 3.1). We do not account for the environmental impacts of processing
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battery cells to battery modules and —packs, or other components such as battery
management systems, as they are minor (less than 10%*°) compared to the battery cell
production itself.

In the impact assessment, we focus on GHG emissions. We use the IPCC GWP 100
characterization method of 2013 that expresses GHG emissions in kg CO2-Eq."®. For
the LCA implementation, we use the Activity Browser software'’ to calculate the life
cycle impacts for all battery chemistries, production regions, temporal boundary, and
background scenarios.
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Fig. 3.1: Flow chart of the production of battery cells. Italicized underlined characters on top of the

figure refer to life cycle stages. Materials with underlines indicate the quality of materials up to battery-

grade, otherwise industry-grade.
3.2.2 Inventory analysis

Futurized background system

The futurized background system of our pLCA model is built based on the ecoinvent

3.6 database™®, considering future energy scenarios and supply chains of key battery
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metals. Firstly, we use the premise®® tool to build a futurized version of the ecoinvent
3.6 database™® (cut-off system model). The tool systematically builds regional LCls of
future electricity production based on detailed regional energy scenarios from the
Integrated Assessment Model REMIND'™3, Secondly, we incorporate technology
scenarios for the future supply of key battery metals into the futurized version of the
ecoinvent 3.6 database. Via this approach, we created the futurized background system
of our pLCA model as follows.

I. Processes obtained from ecoinvent 3.6. We used ecoinvent 3.6'*® as a basis to
build futurized LCls of battery raw materials. From ecoinvent 3.6, we included Li>Cos,
LiOH, CoSQOy4, NiSO4, MnSOy, Al, and other materials for the production of the cathode.
For the anode, we included graphite, silicon, Cu, and other materials. We further
included all relevant raw materials and processes leading to the production of the
separator, electrolyte, and cell container.

Il. REMIND energy scenarios. We use the REMIND model™ with Shared
Socioeconomic Pathway 2 (SSP2)™™°, a "middle-of-the-road” scenario with regard to
future population and GDP growth. Under this SSP2 pathway, we use two future
regional energy scenarios from REMIND model'? to distinguish the effect of climate
policy on the decarbonization of the electricity system. One is the "SSP2-Base” scenario
where no specific climate policies are implemented and thus the global temperature
could increase by more than 3.5 degrees Celsius by 2100. In the SSP2-Base scenario,
the share of renewable energy (wind, solar, and hydro) will increase from only 24% in
2020 to 45% in 2050 for China, from 26% in 2020 to 63% in 2050 for EU, and from 14%
2020 to 54% in 2050 for US. The corresponding energy mix in 2050 will result in 0.4,
0.14, and 0.18 kg CO2-Eq per kWh electricity for China, EU, and US, respectively,
reducing from 0.72, 0.36, and 0.48 kg CO2-Eq per kWh electricity in 2020. The second
is the “SSP2-PkBudg1100" scenario, which has a goal to limit the cumulative global
GHG emissions to 1,100 gigatons by 2100, thus limiting the global average
temperature increase to well below 2 degrees Celsius by 2100. In the SSP2-
PkBudg1100 scenario, the share of renewable energy (wind, solar, and hydro) will
further increase to 68%, 92%, and 93% for China, EU, and US in 2050, which leads to
0.079, 0.029, and 0.033 kg CO2-Eq per kWh electricity, respectively. Please see details
in Supplementary Fig. 3.1 and Supplementary Fig. 3.2 for regional energy mix and GHG
emissions per kWh electricity production in 2020, 2030, 2040, and 2050.
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lll. Future technology scenarios for the supply of key battery metals. We
incorporated the future technology supply scenarios of key battery metals as modelled
by Harpprecht et al.'® and van der Meide et al.'®' into the futurized version of the
ecoinvent 3.6 database to create the background system. We consider future
developments in the supply chains of the following key battery metals: copper',
nickel'®, aluminum'™?, lithium'' and cobalt'®". These future supply chains use LCls
for the current situation as provided by ecoinvent 3.6 as a basis. For copper, we use the
scenario developed by Harpprecht et al.'® to model future changes in ore grades,
energy efficiency improvements, and market shares of primary and secondary
production as well as of primary production routes. For nickel, we consider future ore
grades and increased secondary production. For lithium, an increase of future
secondary production share is assumed based on the work of*%*'. For aluminum, an
increase of future secondary production share is used based on the work of the
International Aluminium Institute®?. We use the future cobalt supply chain developed
by van der Meide et al.’®". This model takes into account cobalt ore grade development,
changes in the market shares of primary cobalt production routes, and changes in the
share of secondary cobalt production share.

Battery cell production stages

In relation to the futurized background system, this section describes the battery cell
production stages and relevant modeling choices, data sources, and assumptions.
Battery cell production is taking place in five life cycle stages, namely: mining, raw
materials production, upgrading battery materials, component production, and cell

production (Fig. 3.1).

I. Mining and metals production. This life cycle stage refers to the extraction and
concentration, smelting, refining, and other necessary procedures to produce metals.
This stage includes the production processes of Al, spodumene, Li brine, Co, Ni (99.5%),
manganese concentrate, and Cu for NCM cathodes; Al, spodumene, Li brine, Co, Ni
(99.5%), and Cu for NCA cathode; Al, spodumene, Li brine, and Cu for LFP cathode. The
data source for this stage is the aforementioned futurized background system.

Il. Raw materials production. Raw materials production refers to the production of
raw materials from relevant metals, such as hydrometallurgical leaching of Ni to
produce NiSO.. At this stage, the processes for producing Li>COs, LiOH, CoSOa, NiSOy,
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MnSQy, and other necessary battery raw materials are considered for NCM cathode;
LiOH, CoSQO4, NiSO4 Alx(SO4)s, and other necessary battery raw materials for NCA
cathode; LiOH, Fex(SO4)3, H3PO4, and other necessary battery raw materials for LFP
cathode. The data source for raw materials production is the aforementioned futurized
background system, except for CoSO4. We compile the LCls for producing CoSO,4 from
Co using information from the China battery industry reports in the period 2020-
202279,

Ill. Upgrading battery materials. The raw materials produced from the last life cycle
stage are at the level of industry-grade, which is not suitable for battery production
yet. In this stage, raw materials are upgraded to a battery-grade level with additional
materials and energy inputs. For the NCM cathode, this includes the production of
battery-grade Li»COs, battery-grade LiOH, battery-grade CoSQO,, battery-grade NiSO,,
battery-grade MnSO,, and battery-grade Al; for the NCA cathode, battery-grade
LioCO;s, battery-grade LiOH, battery-grade CoSO,, battery-grade NiSO,, and battery-
grade Al foil are required; and for the LFP cathode battery-grade LiOH is needed. For
the anode production, we include the process for producing battery-grade Cu foil,
battery-grade graphite, as well as solar-grade silicon if silicon is required for the anode
(L.e., Graphite (Si) anode).

The LCI data for upgrading industry-grade chemicals to battery-grade LiOH, battery-
grade CoSQOy, and battery-grade NiSO, are based on the EverBatt model*® developed
by Argonne National Laboratory to assess the cost and environmental impacts during
the battery life cycle. The LCls of battery-grade Li»COs, battery-grade MnSOy, battery-
grade Al foil, and battery-grade Cu foil are compiled using information from the China

battery industry reports'®

IV. Component production. At the component production stage, the battery cell
components, ie, cathode, anode, electrolyte, separator, and cell container, are
produced from battery-grade materials. From the EverBatt model*®, we derive LCl data
of cathode production from relevant battery-grade materials, including LFP NCA,
NCM111, NCM523, NCM622, and NCM811. These LCls of cathode production are
complemented by emissions inventory of nickel, cobalt, and manganese to air or water
during cathode production (which is lost in the EverBatt model*), using the
information given in the China battery industry reports'®. In addition, we model the
LCI of producing the NCM955 cathode based on that of NCM811 cathode, based on
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their differences in material compositions.

V. Cell production. During this stage, all battery cell components are assembled into
a complete cell. Our model for this stage considers material inputs and energy
consumption. The material inputs are based on the composition of the battery cells as
determined in previous work of the authors’. In cell production, electrical energy is
used, and we need to account for the amount of electrical energy required to combine
all battery components into a battery cell. There are only a few studies providing
detailed energy consumption data for cell production, and they have large

deviations'®®

. The total energy consumption per Wh cell production is highly
influenced by production volumes, and could range from over 1000 Wh in the lab and
pilot-scale to below 100 Wh on an industrial scale®. Here, we use an average electricity

consumption from 5 industrial-scale studies, i.e., 74 Wh per Wh cell production®,

3.3 Results and interpretation
3.3.1 GHG emissions

Fig. 3.2 shows the cradle-to-gate GHG emissions for producing 1 kWh of cell capacity
in 2020 by type of battery chemistry and production region. From the figure, we find
a significant variation in the cradle-to-gate GHG emissions per kWh of battery cell
production in China, US, and EU in 2020. This is mainly due to a substantial difference
in the share of renewable energy and resulting emission intensities for electricity used
for battery cell production across the three regions. In 2020, the EU electricity mix has
the lowest emission intensity (0.36 kg CO2-Eq per kWh electricity), followed by the US
(0.48 kg CO2-Eq per kWh electricity) and China (0.72 kg CO2-Eq per kWh electricity).
As a consequence, the GHG emissions per kWh of battery cells produced in EU are
16%-18% lower than in the US, and 38%-41% lower than in China in 2020.

In addition to production regions, GHG emissions depend on battery chemistry as
different materials and production processes are used. For instance, LFP does not
require nickel, cobalt, and aluminum metals whose production is very energy-intensive
and generates significant amounts of polluting emissions, while these metals are used
for NCM and NCA cell production. For this reason, LFP cell production generates 20%-
28% lower GHG emissions than NCA and NCM cells in terms of per kWh cell production,

depending on the production region.
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As a result, LFP cells produced in the EU can generate the lowest GHG emissions, while
NCA and NCM cells produced in China can generate the highest emissions in 2020.
There is a factor of ~2.2 between the lowest and highest GHG emissions per kWh of
battery cell production in 2020.
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Fig. 3.2: Cradle-to-gate GHG emissions per kWh of cell production by battery chemistry and
production region in 2020.

Future GHG emissions.

Given the similar GHG emissions of NCM and NCA chemistries, we show the future
cradle-to-gate GHG emissions per kWh of battery cell production for two distinct
chemistries in Fig. 3.3: LFP-Graphite cell and NCM622-Graphite cell (see results of other
cell chemistries in Supplementary Fig. 3.3, Supplementary Fig. 3.4, and Supplementary
Fig. 3.5). Mainly due to the development of renewable and low-carbon electricity used
for cell production, the cradle-to-gate GHG emissions of cell production per 1 kWh
capacity is significantly reduced significantly from 2020 to 2050. Depending on battery
chemistry and production region, the GHG emissions could be reduced by 49%-52%
under the SSP2-Base scenario in 2020-2050, and even 74%-81% under the SSP2-
PkBudg 1100 scenario during the same period.
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In addition, the absolute variation in GHG emissions between production region and

battery chemistry is expected to decline between 2020 to 2050. In 2020, the cradle-to-
gate GHG emissions range from 41 to 89 (difference of 48) kg CO2-Eq per kWh battery
cell capacity. In 2050, the cradle-to-gate GHG emissions range from 21 to 45

(difference of 24) kg CO2-Eq per kWh battery cell capacity in the SSP2-Base scenario
and from 10 to 17 (difference of 7) kg CO2-Eq in SSP2-PkBudg 1100 scenario.
Depending on energy scenarios, the corresponding absolute variation for GHG
emissions in 2050 is 2-6.5 times lower than that in 2020.
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Fig. 3.3: Future GHG emissions per kWh of cell production for LFP-Graphite and NCM622-
Graphite in China, EU, and US. Please see results for other cell chemistries in Supplementary Fig. 3.3,

Supplementary Fig. 3.4, and Supplementary Fig. 3.5.

95



3.3.2 Contribution analysis of battery cell

Fig. 3.2 and Fig. 3.3 also present the contribution of different cell components to GHG
emissions results. The cathode, anode, and cell production are the three most
important contributors to GHG emissions. The relative contribution of the cathode for
NCM/NCA cells is higher than that of LFP cells, while the relative contribution of the
anode and cell production for LFP cells is higher than that of NCM/NCA cells. These
are mainly due to different material compositions between NCM/NCA cells and LFP
cells.

The NCM/NCA cathode is, with 46%-55% depending on battery chemistry and
production region, the biggest contributor to GHG emissions in 2020, which is more
than the total contributions from all other components. This is because NCM/NCA
cathodes make up around 53%-59% of the weight of battery cells and also its
production relates to the majority of metals contained in a battery cell which require
GHG-intensive mining and refining processes (such as lithium, nickel, cobalt, and
others). The NCM/NCA cathode is expected to remain the primary contributor to
cradle-to-gate GHG emissions until 2050 (Fig. 3.3). Yet, its relative contribution is
expected to increase to 49%-60% in the SSP2-Base scenario and 60%-70% in SSP2-
PkBudg 1100 scenario during 2020-2050, depending on battery chemistry and
production region.

Fig. 3.4 provides a relative contribution analysis by battery production life cycle stage.
In 2020, the two most important life cycle stages from a GHG emissions perspective
are “"component production” followed by “cell production”. They together account for
74%-83% of GHG emissions for LFP cells and 54%-69% for NCM/NCA cells, depending
on production region/cell chemistry. These numbers could decrease to 39%-76% for
LFP cells and 23%-61% for NCM/NCA cells depending on energy scenarios, due to the
stronger effects of low-carbon energy development on life cycle stages of “cell

production” and component production” rather than other life cycle stages.

“Mining and metals production” could become a significant life cycle stage for
NCM/NCA cells in the future, especially when considering a stronger low-carbon
energy development scenario. The SSP2-PkBudg 1100 scenario could result in “mining
and metals production” as the primary life cycle stage to GHG emissions, accounting
for 33%-42% of NCA cells and 24%-47% of NCM cells in 2050. Note that for NCM cells,
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the future transition from NCM111 chemistry to NCM955 chemistry will improve the
contribution of “mining and metals production” to GHG emissions. This transition
increases the content of Ni with relatively high GHG emissions (7 kg CO2-Eq in 2020
and 3-4.7 kg CO2-Eq in 2050 per kg NiSO4 globally) and decreases the content of Co
with relatively low GHG emissions (2.7 kg CO2-Eq in 2020 and 1.2-1.7 kg CO2-Eq in
2050 per kg CoSO4 globally) for NCM cells, resulting in an overall increase in GHG
emission during the life cycle stage of “mining and metals production”.
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3.3.3 Contribution analysis of cathode

Given the substantial contribution of the cathode in the battery GHG emissions, we
perform an absolute contribution analysis for cathode disaggregated by life cycle
stage, with each stage divided into energy and materials input. Fig. 3.5 presents the
results for LFP and NCM622 cathodes produced in China in 2020 and 2050 (please see
the results of US and EU in Supplementary Fig. 3.6 and Supplementary Fig. 3.7). The
contribution analysis results differ a lot between LFP and NCM622 cathodes. For
battery cells produced in China in 2020, the life cycle stage of “mining and metals
production” and “cathode production” contributes to around 22% and 44% for
NCM622 cathode respectively, while these numbers are 2% and 71% for LFP cathode.

In addition, the energy input dominates (around 78%) the cradle-to-gate GHG
emissions of the LFP cathode, while the energy input and materials have almost equal
contributions to GHG emissions for the NCM622 cathode in 2020. In the future, input
materials, rather than input energy, will become more important contributors to GHG
emissions due to the decarbonization of the electricity system. Input materials will even
become the major source of cradle-to-gate GHG emissions for cathodes in 2050, with
a relative contribution of up to 34%-81% for LFP cathodes and 52%-71% for NCM/NCA
cathodes depending on energy scenarios/production regions/cell chemistries.
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EU in Supplementary Fig. 3.6 and Supplementary Fig. 3.7.

Fig. 3.6 further illustrates which specific materials and energy sources account for the
GHG emissions for LFP and NCM622 cathodes. LIOH and electricity are key
contributors to GHG emission of LFP cathodes. They together account for 82-86% in
2020 and 64%-82% in 2050 of GHG emissions for LFP cathodes, depending on the
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production region. Taking the perspective of the production of the whole LFP cell, LiOH
and electricity together contribute to 27%-29% in 2020 and 28%-35% in 2050 of GHG
emissions for the production of LFP cells.

Looking at the cradle-to-gate GHG emissions of NCM622 cathode production, NiSO4
and Li,CO; materials, rather than CoSO4 and other cathode materials, are important
contributors. NiSO, and Li;COs3 can contribute to 18%-30% and 6%-11% of GHG
emissions of NCM622 cathode in 2020 respectively. These numbers change to 25%-

46% and 8%-21% in 2050, depending on the production region and energy scenarios.
In other words, NiSO4 and Li,COs can account for 16%-31% and 5%-14% of GHG
emissions of NCM622 cells in 2050.
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Fig. 3.6: Absolute contribution analysis of GHG emissions of the cathode production split by

materials and energy, in terms of 1 kWh battery cell capacity.
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Discussion

In this study, we build a prospective LCA model to quantify future cradle-to-gate

GHG emissions per kWh battery cell production for 8 types of cell chemistries and

3 production regions until 2050. According to the pLCA model, our results for GHG
emissions per kWh battery cell production (53-85 kg CO2-Eq per kWh in 2020 and
10-45 kg CO2-Eq per kWh in 2050) lie in the lower end of the range of earlier studies
found in literature*4%1%7 (28-356 kg CO2-Eq per kWh). However, our results
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compare well with the findings from the International Council of Clean
Transportation ' (34-77 kg CO2-Eq per kWh in 2021). There are various
explanations for this. First, existing literature uses dated LCl| data for battery cell
production. Our modeling uses up-to-date LCl data based on the EverBatt model®
and China battery industry reports in the period 2020-2022%, which takes changes
in battery chemistry next to cell production into account. Second, we take into
account the effects of the low-carbon energy transition on battery production
based on integrated assessment model REMIND. Results are intended to give
reliable insights into future cradle-to-gate GHG emissions from battery cell
production, which can form a basis for doing suggestions to further reduce impacts
from this production.

Since LFP battery is expected to generate less GHG emissions than NCM/NCA batteries
until 2050, one option is to support LFP battery deployment. The somewhat lower
technical performance of LFP batteries compared to NCM/NCA batteries, in terms of
specific energy (Wh/kg), may however be an obstacle for the large-scale deployment
of LFP batteries. At the same time, advantages of LFP batteries are their relatively long
useful lifetimes and low materials cost of LFP battery. Battery producers can take
advantage of this, and at the same time invest in improving LFP battery performance.
One example is that several battery producers started to improve the mass and space
utilization of battery pack by removing modules and directly assembling cells into a
pack (the LFP blade battery created by BYD can reach the specific energy of 140 Wh/kg
at the pack level, which is higher than that of a standard NMC622 prismatic battery)®°.

Choosing battery production regions, which determine the electricity mix used to
produce batteries, could be another important factor to consider for battery producers
to reduce GHG emissions. China dominates the battery production market and is
expected to continue so in the next decade. Reducing the emissions of China's
electricity supply is key for achieving a lower GHG impact. EU and US provide greener
electricity supply than China, and in theory, they are ideal regions for producing
batteries with the lowest GHG emissions. However, it may not be possible to put a
complete battery production supply chain in EU and US in the short term due to an
uneven geographical distribution of extraction locations for primary materials required
for batteries. Putting some part of the battery production life cycle stages in EU or US,

rather than China, can be a pathway to start to reduce impacts of battery production.
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This could be particularly considered for energy-intensive production stages such as
cell production which uses electric energy to assemble all battery components into a
complete cell.

We must emphasize the crucial role of a low-carbon electricity transition for
reducing GHG emissions of battery production, reflected by the results of SSP2-
PkBudg 1100 scenario. The energy supply for battery production should be as
carbon-neutral as possible. For instance, Tesla's announced Giga watt-hour battery
production factory is planned to be built together with a solar energy supply
facility’®. In this case, a 100% supply of solar power for battery production is
ensured, which can lead to extremely low GHG emissions.

Given the major contribution of the use of NiSO4 and Li.CO3 to the GHG emissions
of the production of NCM/NCA batteries and of the use of LiOH to the production
of LFP batteries, reduction of GHG emissions along the supply chain of Ni and Li
metals is relevant too. Replacing fossil fuels with renewable electricity, improving
energy efficiency, as well as controlling and capturing the GHG emissions during
nickel mining and refining can be effective approaches to reduce impacts of NiSO4
production. We can apply similar approaches to Li. Moreover, LiCO3 produced from
the leaching of spodumene with sulfuric acid can generate less GHG emission as
when it is produced from concentrated brine'". The spodumene leaching pathway
has currently still a minor market share of the Li,CO3 production market. Promoting
this pathway is another option to reduce GHG emissions related to LFP battery

production.

There are some future developments, which we did not consider in this study. Firstly,
although we included a wide range of scenarios for battery chemistries, metal
production, and energy generation, other scenarios may play out in the future (e.g.,
lower or deeper decarbonisation of the energy system, or low-impact production
processes for certain materials, such as the application of inert anodes in the Hall-
Herault process for aluminum production”?. Secondly, it is possible that the expected
fast scaling up to high-volume production of the batteries considered in this study
leads to considerable learning effects. This can result in significant efficiency
improvements and lower costs and impacts, for instance by using automated
manufacturing technologies using robots'®. Thirdly, the development of new
breakthrough battery technologies, such as solid-state Lithium-Sulphur and Lithium-
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Air batteries 74, Na-ion'®, etc, may create radical changes in battery production
processes and relevant materials supply chains. It is currently unclear if such
technologies indeed will break through. There is further insufficient experience with
such novel battery technologies to make a reliable quantitative estimate of life cycle
inventory data, while also little is known about the impacts of such novel battery
technologies once they have been scaled up from lab or pilot scale to full production
plants.

3.5 Supplementary information
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4 Future greenhouse gas emissions of global automotive
lithium-ion battery cells and recycling potential till 2050°

Abstract

The global transition to electric vehicles (EVs) requires large-scale production of
lithium-ion batteries which are the leading chemistry type for EV batteries (EVBs). To
ensure a sustainable EV transition, greenhouse gas (GHG) emissions of EVB production
have to be minimized. Given the fact that cells are the major source of life cycle GHG
emissions of EVBs, we quantify the GHG emissions of global EVB cell production from
2020 to 2050. To this end, we build an integrated model that estimates the demand
for EVB cells with a dynamic battery stock model, and the GHG emissions per EVB cell
with a prospective life cycle assessment model. We find that GHG emissions of global
EVB cell production will increase to 26-155 Mt CO2-Eq in 2030 and 58-468 Mt CO2-Eq
in 2050, depending on EV demand growth, EV and related battery size, battery
chemistry, and energy mix scenarios. Despite an average 8%-12% annual growth rate
of global EVB cell demand between 2020 and 2050, global EVB cells GHG emissions
only increase annually by 2%-10% in the same period due to the increasing use of
renewable energy in EVB cell production and other factors. Decarbonization of energy
used in EVB cell production and the use of small rather than big EVs are crucial factors
to minimize growth in GHG emissions. EVB recycling offers potential GHG emissions

reductions, however, only in the longer term after 2030.
4.1 Introduction

Transportation accounts for ~15% of global GHG emissions in 2019, making it the
second-largest GHG emissions sector next to energy sector'. Cars for personal
transport accounted in 2019 for about ~6 Gt emissions'. Technology developers
proposed EVs, as an alternative to Internal Combustion Engine Vehicles (ICEVs), to
reduce GHG emissions of transportation sector, along with reducing dependency on
oil resources and (urban) air pollution®”'>". As major deployments of EVs, the global

¢ Submitted to Renewable and Sustainable Enery Review as: Xu, C., Steubing, B., Hu, M. & Tukker, A.
Future greenhouse gas emissions of global automotive lithium-ion battery cells and recycling potential
till 2050.
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light-duty EVs grew from a few thousand vehicles in 2005 to 10 million vehicles in 2021.
EV fleet scenarios of the International Energy Agency® extended to 2050 in our
previous paper’, estimate 124-199 million EVs in 2030 and 970-1940 million EVs by
2050.

The transition to EVs reduces vehicle in-use emissions significantly due to
improvements of vehicle energy efficiency'® and use of renewable electricity’”’.
However, it may increase vehicle production emissions because EVs require batteries
that are carbon intensive to produce. For a 100 kWh battery, life cycle GHG emissions
of the EVB cells production reach 4-9 t CO2-Eq in 2020"® (equals to the in-use
emissions of driving 16400-35600 km with a typical ICEV that emits on average 250 g
CO2-eq GHG emissions per km'). In earlier work, we estimated the global EVB cells
demand of 1.5-2.4 TWh in 2030 and 7-12 TWh in 2050". This would lead to GHG
emissions of 6-21 Mt CO2-Eq in 2030 and 30-104 Mt CO2-Eq in 2050 for global EVB
cell production, if the life cycle emissions of EVB cell production would not change
compared to 2020.

Most studies®™? on future GHG emissions from global EVB cell production use
scenarios of future EVB demand growth and current life cycle emissions of EVB cell
production*®-42, There are few studies that take into account regional EVB demand and
production and changes in battery production technology over the next decades,
which strongly influence the life cycle emissions of battery production. This is due to
two main challenges. First, future battery demand depends on the future EV fleet size
and battery capacity per vehicle, which will both change and differ between the main
EV markets (e.g., US, EU, Asia). Second, regional battery production will change due to
regional battery production capacity, resource constraints, and other factors. But at the
same time, the climate policy and associated energy mix may differ between such
regions, leading to potentially large differences in life cycle GHG emissions of battery
production. Therefore, there is a need for developing future (regional) battery demand
scenarios considering the development of EV fleet size and battery capacity per vehicle,
and quantifying the future GHG emissions of global EV battery production considering
the future distribution of battery production regions.

In this paper, we build an integrated model to estimate GHG emissions of global EVB
cell production between 2020-2050. The integrated model combines a dynamic

battery stock model” and a prospective life cycle assessment (LCA) model'’8, which are
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both developed in our earlier work to estimate future demand for EVB cells and life
cycle GHG emission per kWh capacity of EVB cell production. Considering the future
(regional) EV fleet size and battery capacity per vehicle, the dynamic battery stock
model includes three battery demand scenarios (low, medium, and high) specified in
future demand for EVB cells in China, EU, US, and rest of world (RoW) for the period
from 2020-2050. The dynamic battery stock model also includes two global-level
battery chemistry scenarios: an NCX scenario (NCA and NCM batteries dominate the
EV market) and an LFP scenario (LFP battery dominates the EV market). Life cycle GHG
emissions for EVB cell production for the period 2020-2050 are calculated by the
prospective LCA model, giving specific results by region and battery chemistry'’®. The
prospective LCA model further includes two energy mix scenarios, based on the
Remind Integrated Assessment Model™, reflecting different future regional energy
mixes and related carbon emissions for electricity used in cell production.

Using the integrated model, we explore hence a range of GHG emissions of global EVB
cell production between 2020-2050, using three different scenarios for battery
demand, two different scenarios for battery chemistry, and two different scenarios for
GHG emissions from electricity production. Next to this, we perform a sensitivity
analysis related to a variation of EVB production regions, on the life cycle emissions of
global EVB production. In this way, this paper contributes to a better understanding of
the global future environmental impacts of EVB production and options to reduce

these.

4.2 Methods
4.2.1 Model framework

The integrated model (Fig. 4.1) combines a dynamic battery stock model” and a (2)
prospective LCA model'”®. The dynamic battery stock model estimates the global future
demand for EVB cells, considering EV fleet size, battery lifespan, and battery material
compositions, as well as the end-of-life (EoL) of EVB cells. The dynamic battery stock
model was developed on a global scale in our previous study’. Here we apply the
dynamic battery stock model to a regional scale, by distinguishing the regional EV fleet
share, to project EVB cells demand and EolL materials from EVB cells in China, US, EU,
and RoW during 2020-2050 based on an IEA projection®. This projection is only
available until 2030 and the regional shares are kept as in 2030 for the years after.
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Further details of the dynamic battery stock model are explained in Xu et al.”.

The prospective LCA model estimates future production region and battery chemistry-
specific life cycle GHG emissions per EVB cell production and cell material. The model
from our previous study'”® combines i) the battery cell production data is simulated
based on the EverBatt model*® and China battery industry reports'®; and ii) the
prospective life cycle inventory (LCl) background database is derived from the
ecoinvent database'®, but taking into account changes in production technologies of
key battery metals (nickel, cobalt, copper, and others), next to changes in energy mixes
by region (decarbonization of electricity generation due to climate policy) based on
outputs of Remind Integrated Assessment Model™. The prospective LCA model
presents results for 3 production regions (China, US, and EU) and 8 types of chemistries
for the period 2020-2050. For details on this prospective LCA we refer to Xu et al."”8,

Based on the outputs of the dynamic battery stock model and prospective LCA model,
we calculate GHG emissions of the global EVB cells production in 2030, 2040, and 2050
without considering the effects of recycling, under various scenarios of battery demand,
battery chemistry, and energy mix (see section 2.2). Further, we perform sensitivity
analysis of production region and recycling with regard to GHG emissions (see section
423).

Production region

|
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Dynamic battery stock Global future demand for i
model (Xu, C et al., 2020) EVB cells v
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Fig. 4.1: Integrated model to estimate future GHG emissions of global EVB cell production.

Dashed lines and italics indicate sensitivity analysis of GHG emissions.
4.2.2 Scenarios

The former section described how we build an integrated model to estimate the GHG
emissions of global EVB cell production. We take into account 3 scenarios for EVB cell
demand, 2 scenarios for battery chemistry, and 2 scenarios for energy mix between
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2020-2050. This totally results in 12 scenarios.

Battery demand scenarios. We first use a medium battery demand scenario based
on the EV fleet size of stated policy (STEP) scenario’, which includes the fleet size of
both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The
battery capacity per vehicle of small, mid-size, and large BEVs is assumed as 33, 66,
and 100 kWh, respectively, while the average battery capacity of a PHEV is assumed as
14 kWh. The market share among small/mid-size/large is assumed as 19%, 48%, and
33% at any year between 2020-2050. We refer to Xu et al.” study for details of battery
capacity per vehicle, share of BEVs/PHEVs, amongst others, share of small/mid-
size/large BEVs.

The high battery demand scenario uses the same battery capacity per vehicle as the
medium battery demand scenario, but a higher EV fleet size based on sustainable
development (SD) scenario’. Since SD scenario suggests around double EV fleet size
than STEP scenario, the high battery demand scenario indicates around two times
demand for global EVBs capacity than the medium demand scenario.

The low battery demand scenario is developed based on the same EV fleet size as the
medium battery demand scenario (i.e., STEP scenario), but on a lower battery capacity
per vehicle: we assume all BEVs are small BEVs with a 33 kWh battery capacity. This
assumption is based on two arguments: first, small BEVs can provide most of the daily

driving demand for consumers'®'

, even though they have a lower driving range than
large BEVs equipped with a high-capacity battery. Second, the development of
widespread EV charging infrastructure, including fast charging technology, could help
to overcome the range anxiety of small BEV owners. The increasing use of small BEVs
in the low battery demand scenario will reduce EVBs demand and GHG emissions

significantly.

Battery chemistry scenarios. Given the uncertain battery chemistry development, we
use two battery chemistry scenarios until 2050: the NCX scenario with the NCA and
NCM series batteries dominating future EV market (including 1 NCA and 6 NCM
batteries with X denoting manganese or aluminum, and NCX batteries will account for
over 90% of EVBs market in 2030-2050), and the LFP scenario with LFP battery
dominating the future EV market (LFP will reach a 60% market share in 2030-2050). We

refer to the detailed descriptions of battery chemistry scenarios in our previous work’.
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We assume that battery chemistry scenarios would not differ between regions in view
of limited data availability.

Energy mix scenarios. As indicated above, we take into account changes in energy
mixes by region due to climate policy based on the Remind Integrated Assessment
Model'. We apply two scenarios here, both based on Shared Socioeconomic Pathway
2 (SSP2) that indicates a ‘middle-of-the-road’ scenario with regard to future population
and GDP growth. One is the ‘3.5 °C scenario’ that projects the increase of global
average temperature by more than 3.5 °C by 2100. Another is the 'well below 2 °C
scenario’ that aims to limit the cumulative global GHG emissions to 1,100 Gigatons (ie.,
SSP2-PkBudg1100 scenario as described in our previous paper'’8) and the increase of
global average temperature by well below 2 °C by 2100. The two scenarios lead to
quite different GHG intensities of electricity production per region, and as a
consequence, life cycle GHG emissions of EVB production.

4.2.3 Sensitivity analyses with regard to GHG emissions
Influence of EVB production region

As shown above, we estimate the future GHG emissions of global EVB cells production
during 2020-2050, based on global future demand for EVB cells and future life cycle
GHG emissions per kWh capacity of EVB cell production (Fig. 4.1). However, the GHG
intensities of EVB cell production differ between production regions, which are
relatively high in China, medium in the US, and low in the EU. We assume China, EU,
and US will produce 70%, 18%, and 12% of global EVBs during 2020-2050 while RoW
is supplied by China, EU, and US proportionally. This assumption is based on
predictions'18 of regional distribution of battery cell production capacity around the
world in 2030.

It may however be that in future there will be a different production distribution mix.
We, therefore, do a sensitivity analysis of battery production regions. Since EU
generates the lowest energy-related GHG emissions and China generates the highest
energy-related GHG emissions among three investigated battery production regions,
here we perform sensitivity analysis between two extreme situations that all batteries
supplied by EU producers (100% EU production) versus China producers (100% China

production).
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Potential benefits of closed-loop, circular recycling

In the above-mentioned scenarios (section 2.2), all life cycle GHG emissions are
allocated to the use of batteries in EVs. No second uses or beneficial recycling of
battery materials is assumed. We, therefore, perform a sensitivity analysis that includes
a closed-loop, circular use of battery materials at their end of life. Battery recycling
technologies, usually based on hydro*- or pyrometallurgy*®, develop fast and differ a
lot according to battery chemistry, recycling volume, and other factors. This implies
that using current LCl data for future battery recycling is unreliable. To avoid the use
of highly uncertain estimates of environmental impacts during battery recycling, we
define a ‘'maximum impact reduction potential by recycling’: the GHG emissions of
primary materials production that can be avoided if recycled materials would be used
to substitute primary materials. This potential simply assumes that apart from a
percentage loss in recycling all secondary materials available in EoL EVBs can be used
as primary materials again, without considering e.g., energy input, chemicals use, and
emissions during recycling. Including reliable future-oriented LCl for recycling in future
studies can promote insights into to what extent a circular use of battery materials may
reduce life cycle GHG emissions of EVB production.

We calculate the maximum impact reduction potential by recycling based on global
future EoL materials from EVB cells (recycled material) and future GHG emission of EVB
cell materials that will be substituted by recycled materials. Calculating this recycling
potential requires the match of type and quality between recycled materials and
primary materials, as well as information on which and where primary materials, along
the cell production chain, are substituted by recycled materials, as explained in the
following.

Recycled materials amount, type, and quality. We consider two commercially
available recycling technologies (pyro-*® and hydro- recycling), and their recycled
materials type, quality, recycling efficiency (Table 4.1). Although the outputs of both
pyro- and hydro- recycling are industry-grade materials, the hydro- recycling can
recycle more materials (such as graphite) with high recycling efficiency than pyro-
recycling. The total amount of secondary/EoL materials available for re-use was
calculated based on the amount of available EoL EVBs in a specific year from our
dynamic battery stock model, and the recycling efficiencies in pyro- and

hydrometallurgy assuming a 50%/50% market share of
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pyrometallurgical/hydrometallurgical recycling. Since the uncertainty around market
share between pyro- and hydro- recycling technologies, we conduct sensitivity analysis
of 100% pyro- and 100% hydro- recycling and investigate their effects on recycling

potential.

GHG emissions of primary cell materials that are substituted by recycled
materials. According to our prospective model'”®, EVB cell production includes five life
cycle stages: mining, raw materials production, upgrading battery materials,
component production, and cell production. Here we assume recycled materials will
substitute primary materials at the level of ‘raw materials production’ since pyro- and
hydro- recycling can generate battery industry-grade materials.

Besides which and where primary materials are substituted, the GHG emissions of
primary materials matter for the recycling potential. However, GHG emissions of
primary materials are sensitive to their production regions where energy is supplied.
We assume EolL EVBs are recycled and re-used in the same region where the EVBs are
used. The EoL materials from EVB cells in China will be recycled in China and substitute
primary cell materials produced in China, US for US, and EU for EU. While for RoW, we
assume EolL EVB cells in RoW will be exported to China for recycling since the
expansion of battery recycling capacity in China, and naturally the recycled materials
will substitute primary cell materials produced in China. Consequently, around
50%/32%/18% of global EoL EVB cells are recycled and reused to substitute primary
materials produced in China/EU/US respectively.

Table 4.1: Recycling efficiency of battery materials by pyrometallurgical and hydrometallurgical

technologies.

Materials Pyrometallurgical“® Hydrometallurgical®
Copper 90% 100%
Aluminum foil / 100%
Graphite / 100%
Li+ in product / 80%
Co2+ in product 98% 98%
Ni2+ in product 98% 98%
Mn2+ in product / 80%
Al3+ in product / 80%
Electrolyte organics / 100%

Cell aluminum container 90% 90%
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4.3 Results and discussion
4.3.1 Battery cells demand

The global demand for EVB cells will increase from 0.4 TWh (terawatt hour) in 2020 to
1.5 TWh in 2030, and 7 TWh in 2050 in medium battery demand scenario (Fig. 4.2),
with an increasing factor of 19 and an average annual growth rate of 10% during 2020-
2050. China, EU, US, and RoW account for 47%, 22%, 12%, and 19% of global demand
in 2050, respectively.

Compared to the medium demand scenario, low battery demand scenario sees 42%
lower EVB cells demand in 2020-2050 due to lower battery capacity per vehicle, while
high battery demand scenario finds a ~70% higher EVB cells demand in 2020-2050
because of double EV fleet size. As a result, global demand for EVB cells will reach as
low as 0.9 TWh (low battery demand scenario) and as high as 2.4 TWh (high battery
demand scenario) in 2030 and 4-12 TWh in 2050. Global demand is expected to
increase by a factor of 11-31 and average annual growth rates of 8%-12% between
2020 and 2050.

Low battery demand scenario Medium battery demand scenario High battery demand scenario
15
=
E 12
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3 3 China
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Fig. 4.2: Scenarios of global future demand for EVB cells, including China, EU, US, and RoW. 1
TWh = 10° kWh.

4.3.2 GHG emissions

Fig. 4.3 presents the GHG emissions of global EVB cell production in 2030, 2040, and
2050, without considering effects of recycling. Note that the figure includes also the
sensitivity analyses assuming full production in China or the EU, respectively. In the
medium battery demand scenario, the global GHG emission of EVB cells production
will range from 44-99 Mt CO2-Eq in 2030, 54-173 Mt CO2-Eq in 2040, and 99-287 Mt
CO2-Eq in 2050 (range depends on battery chemistry and energy mix scenarios). High
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battery demand scenario leads to 1.5-1.7 times higher annual GHG emissions than in
the medium demand scenario, while low demand scenario results in 58%-59% of
annual GHG emissions of the medium demand scenario. There is a factor of 2.6-2.9 for
GHG emissions of global EVB cell production between the low demand scenario and
the high demand scenario.

In addition to battery demand scenarios, scenarios of battery chemistry and energy
mix also affect GHG emissions of global EVB cell production. Since LFP batteries
generate lower GHG emissions than NCX batteries, the GHG emissions in LFP scenario
are 12%-15% lower than NCX scenario (range depends on battery demand scenarios).
Compared to battery chemistry, energy mix has a stronger impact on GHG emissions.
The GHG emissions under well below 2 °C scenario are 48%-65% lower than under
3.5 °C scenario, because well below 2 °C scenario results in higher low-carbon energy
use during battery production that can lead to over 50% reduction of GHG emission
per EVB cell production. Consequently, in each battery demand scenario, GHG
emissions of global EVB cell production range from low boundary in “LFP and well
below 2 °C scenario” to high boundary in “NCX and 3.5 °C scenario”.

Despite an 8%-12% annual growth rate of global demand for EVB cells during 2020-
2050 across low-medium-high demand scenarios, associated GHG emissions only
increase annually by 2%-10% in the same period. Therefore, EVB cells’ GHG emissions
relatively decouple, ie., emissions per kWh of battery decrease, while overall emissions
continue to increase due to the fast growing demand. To illustrate this, we define a

relative decoupling rate, based on'®

, as the relative change of annual growth rates
between GHG emissions and demand. The relative decoupling rate from 2020-2050
ranges from 19% to 70% for EVB cells, depending on battery demand, battery

chemistry, and energy mix scenarios.

As indicated the region where EVBs will be produced is uncertain. Given the different
GHG emission intensities of electricity production in China, US and EU this affects GHG
emissions of global EVB cell production and the relative decoupling rate between GHG
emissions and demand. Figure 3 shows also a sensitivity analysis assuming 100%
production in China and the EU respectively. The effects are more limited in well below
2 °C scenario than in 3.5 °C scenario. The GHG emissions of global EVB cell production
will increase to 61-519 Mt CO2-Eq in 2050 and the relative decoupling rate during
2020-2050 will decrease to 16%-68% if 100% China production; these numbers change
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to 49-333 Mt CO2-Eq and 29%-77% if 100% EU production (error bars in Fig. 4.3).
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Fig. 4.3: Future GHG emissions of global EVB cells production under different battery demand,
battery chemistry, and energy mix scenarios.

4.3.3 Potential benefits of closed loop recycling

EVB recycling can reduce the GHG emissions of EVB cells since recycled materials
contain less embodied GHG emissions than primary materials'®. We quantify
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maximum impact reduction potential by recycling, ie., avoided GHG emissions of
primary materials that can be substituted by recycled materials, while at the same time
neglecting the environmental impacts during recycling. The higher GHG emissions of
EVB cell production, the higher maximum impact reduction potential by recycling. In
other words, the highest maximum impact reduction potential by recycling exists in
'high battery demand-NCX-3.5 °C’ scenario, and the lowest potential in ‘low battery
demand-LFP-well below 2 °C' scenario. The global maximum impact reduction
potential by recycling will range from 0.4 to 1.3 Mt CO2-Eq in 2030 and from 4 to 41
Mt CO2-Eq in 2050 (see Supplementary Fig. 4.1), which is 1-2 orders of magnitude
lower compared to battery production GHG emissions (Fig. 4.3).

We further investigate the relative maximum impact reduction potential by recycling
for the next three decades: maximum impact reduction potential by recycling divided
by battery production GHG emissions, iLe., the percentage of battery production GHG
emission that can be mitigated by using recycled materials to substitute primary
materials (see results in Fig. 4.4). Material recycling only has a minor but increasing
contribution to reduce GHG emissions. The relative maximum impact reduction
potential by recycling for GHG emissions is increasing from less than 1% in 2021-2030
to 2%-5% in 2031-2040, and to 3.5%-10% in 2040-2050 (left of Fig. 4.4). This is mainly
because the volume of materials entering the EoL stage in a specific year is just a
fraction of the required new use (5%-30%) due to the fast growth of the EV fleet. This
situation can be only partly solved once the EV battery market has reached a steady
state, Le., when recycled EoL materials can almost completely meet material demand.
With a hypothetical future steady state after 2050 (right of Fig. 4.4), the relative
maximum impact reduction potential by recycling can improve to 8%-22% in 2021-
2030 to 10%-30% in 2031-2040, and to 13%-35% in 2040-2050. These potentials are
still far below 100%. The reason is that recycled materials of pyro- and hydro-recycling
can substitute/be used as industry-grade primary materials whose production
generates fewer GHG emissions than the further processing to battery-grade materials

or components.

The recycling potential depends on not only the amount of availability of EoL battery
materials, but also on which primary battery materials will be substituted by recycled
materials - affected by recycled material type and quality - and what GHG emission

intensity of primary battery materials will be avoided. Pyro-recycling and hydro-
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recycling can both recover industry-grade materials (lower quality than battery-grade
materials), but hydro-recycling recovers more material types (such as graphite) than
pyro- recycling. Compared to 100% pyro-recycling, 100% hydro-recycling only slightly
improves the relative maximum impact reduction potential by recycling (error bars in
Fig. 4.4). It is hence important to develop industrial-scale reconditioning technologies
that allow the re-use of EolL battery components as components or battery-grade
materials, such as direct recycling technology'® that can recover and re-use battery
cathode.
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Fig. 4.4: Relative maximum impact reduction potential by recycling for GHG emissions of global
EVB cells production in periods of 2021-2030, 2031-2040, and 2041-2050, with future growth-
state (left) and hypothetical future steady-state (right), under medium battery demand scenario.
Bar charts refer to a 50%/50% market share of pyro- /hydro- recycling. Error bars indicate 100% hydro-
recycling and 100% pyro- recycling. Please see results under low and high battery demand scenarios

in Supplementary Fig. 4.2 and Supplementary Fig. 4.3.
4.4 Conclusions

In this paper, we build an integrated model, consisting of a dynamic battery stock
model and a prospective LCA model, to quantify future GHG emissions of global EVB
cell production during 2020-2050. We further investigate the effect of different
regional distributions of production and the GHG emissions reduction potential related

to avoided primary material production due to closed-loop recycling. We find that:

(1) Due to demand growth for EVB cells, GHG emissions of global EVB cell production
will increase to 26-155 Mt CO2-Eq in 2030 and 58-468 Mt CO2-Eq in 2050,
depending on battery demand, battery chemistry, and energy mix scenarios.
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(2) Despite 8%-12% average annual growth rate of global demand for EVB cells
during 2020-2050, associated GHG emissions only increase annually by 2%-10%
in the same period. There is thus a relative decoupling of GHG emissions related
to demand by 19%-70% from 2020 to 2050. This is due to a reduction of the
emission intensity of battery production by over 50% that mainly results from the
decarbonization of the consumed electricity during battery production, especially
under the well below 2 °C scenario.

(3) Maximum impact reduction potential by recycling for GHG emissions will reach
0.4-1.3 Mt CO2-Eq in 2030 and 4-41 Mt CO2-Eq in 2050, which is 1-2 orders of
magnitude lower compared to battery production GHG emissions. Recycling
offers initially only a small potential to reduce GHG emissions, but the potential
increases after 2030 because of the increasing availability of EoL battery materials.

In short, to avoid important GHG emissions due to battery cell production for EVs it is
crucial to realize the following. First, the energy system should be decarbonized
strongly, since this is the single most important factor determining GHG emissions
from EVB cell production. Second, we see that using small EVs that can operate using
relatively low battery capacities reduces life cycle GHG production emissions even
further. Third, we see that LFP batteries have slightly lower life cycle GHG emissions
than NCX batteries. Finally, we see that recycling or re-use of secondary batteries on
the short term will not reduce life cycle GHG emissions a lot since building up stocks
of EVBs requires much more new materials as that there are EolL batteries available.
These findings give clear recommendations to policy to reduce GHG emissions from
EVB production. Particularly the stimulation of use of small EVs is crucial, next to
ensuring batteries are designed and developed such that easy re-use after end of life
is possible. An important other development that could be stimulated is the use of
self-driving cars* and sharing vehicles®. These are likely to be used much more
intensively by different users, which could reduce the required battery capacity and

related life cycle GHG emissions for production additionally by several factors'.
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4.5 Supplementary information
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Supplementary Fig. 4.1: Global maximum impact reduction potential by recycling for GHG
emissions of global EVBs cells production under low, medium, and high battery demand

scenarios.
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Supplementary Fig. 4.2: Relative maximum impact reduction potential by recycling for GHG
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Supplementary Fig. 4.3: Relative maximum impact reduction potential by recycling for GHG
emissions of global EVBs cells production in periods of 2021-2030, 2031-2040, and 2041-2050,
with future growth-state, under high battery demand scenario. Bar charts refer to a 50%/50%
market share of pyro- /hydro- recycling. Error bars indicate 100% hydro- recycling and 100% pyro-
recycling.
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5 Electric vehicle batteries alone could satisfy short-term
grid storage demand by as early as 20304

Abstract

The energy transition will require a rapid deployment of renewable energy (RE) and
electric vehicles (EVs) where mass transit or personal transit options are unavailable.
EV battery storage could complement variable RE generation by providing short-term
grid services. However, estimating the market size of this opportunity requires an
understanding of many socio-technical parameters and constraints. We quantify
global EV battery capacity available for grid storage using an integrated model which
incorporates future EV battery deployment, battery degradation, and market
participation rates. We include both the ‘in-use’ and ‘end-of-life’ potential of EV
batteries. We find a technical capacity of 32-62 TWh by 2050 and that modest market
participation rates (12%-43%) are needed to provide most if not all short-term grid
storage demand globally. This demand could be met as early as 2030 across most
regions. Our estimates are generally conservative and offer a lower bound of future
opportunities.

5.1 Introduction

Electrification and the rapid deployment of renewable energy (RE) generation are both
critical to a low-carbon energy transition®®”3., They also address many other
environmental issues, including air pollution. However, the variability of critical RE
technologies, wind and solar, combined with increasing electrification may present a
challenge to grid stability and security of supply>®"3. To address this, there are several
supply-side options for meeting demand including, in approximate ascending order of
today's estimated cost: energy storage, firm electricity generators (such as nuclear or
geothermal generators), long-distance electricity transmission to balance variations,
over-building of RE (resulting in curtailment in periods of lower demand), and power-
to-gas'®. In addition to these supply-side options, demand-side management is also

4 Under the second revision with Nature Communications, as: Xu, C, Behrens, P, Gasper, P, Smith, K.,
Hu, M., Tukker, A. & Steubing, B. Electric vehicle batteries alone could satisfy short-term grid storage
demand by as early as 2030.
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vital in shifting and flattening peak demand'®. Given rapid cost declines, batteries are
one of the major options for energy storage and can be used in various grid-related
applications to improve grid performance. These declines in cost have also driven a
cost-decline of EVs. Given that many batteries will be produced for light-duty transport
these could offer a cost- and materially-efficient approach for the short-term storage
requirements needed on electricity grids across the world™®.

EV batteries can be used while they are part of the vehicle in vehicle-to-grid
approaches, or after the end of the life (EolL) of the vehicle (when they are removed
and used separately to the chassis). Vehicle-to-grid charging can be smart to enable
dynamic EV charging and load-shifting services to the grid. EVs can also be used to
store electricity and deliver it to the grid at peak times when power generation is more
expensive'. These opportunities rely on standards and market arrangements that
allow for dynamic energy pricing and the ability of owners to benefit from the value to
the grid (value that can include deferred or avoided capital expenditure on additional
stationary storage, power electronic infrastructure, transmission build-out etc').

There will also be substantial grid-based value for EV batteries at vehicle EoL (hereafter
called retired batteries). Usually, when the remaining battery capacity drops to between
70-80% of the original capacity batteries become unsuitable for use in EVs'®. However,
these retired batteries may still have years of useful life in less demanding stationary
energy storage applications'®. These batteries can continue to buffer differences in

supply and demand and contribute to grid stability.

The utilization of EV batteries could improve the flexibility of supply while reducing the
capital costs and material-related emissions associated with additional storage and
power-electronic infrastructure. However, the total grid storage capacity of EV batteries
depends on different socio-economic and technical factors such as business models,
consumer behaviour (in driving and charging), battery degradation, and more®*>4,
Investigating the future grid storage capacity of EV batteries is essential in
understanding the role EV batteries could play in the energy transition. Previous
global-level studies, including those on vehicle-to-grid capacity®*>” and retired battery
capacity®”>®8, while informative, rarely consider several important factors such as: non-
linear, empirically-based battery degradation (they often neglect the impact of battery
chemistry>°"); geographical and/or temporal temperature variance (which impacts

battery degradation); and, driving intensity by vehicle type in different
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countries/regions (which constrains the total capacity available during the day). These
factors determine the technical grid storage capacity. Additionally, consumer
participation in the vehicle-to-grid market and in the second-use market impacts the
actual grid storage capacity®, which is important but rarely quantified.

Here we link three models and databases to provide an estimate of the grid storage
capacity of EV batteries globally by 2050 for both vehicle-to-grid applications and EoL
opportunities (see Methods and Supplementary Fig. 5.1). We cover the main EV battery
markets (China, India, EU, and US) explicitly, and combine other markets in a Rest of
the World region (RoW). The first model is a dynamic battery stock model, which
estimates the future battery demand in each region as part of transport fleets per
region (Supplementary Fig. 5.2). The model incorporates two EV fleet development
scenarios from the IEA (International Energy Agency), the stated policy scenario (STEP)
and the sustainable development scenario (SD). The scenarios include two battery
chemistry variants to encompass different technological paths: one which is dominated
by Lithium nickel cobalt oxides (NCX, representing NMC or NCA with X denoting
manganese or aluminum) and another dominated by Lithium-ion phosphate or (LFP).
The second model assesses EV use and provides potential EV driving and charging
behavior for small, mid, and large size BEV (battery electric vehicles) and PHEV (plug-
in hybrid electric vehicles) based on daily driving distance distributions for different
regions (Supplementary Fig. 5.3, Supplementary Fig. 5.4, and Supplementary Fig. 5.5).
The third model combines information from the other models on EV use behavior,
battery chemistry, and temperature in each region with the latest battery degradation
data for NCX3969197 and LFP®' chemistries to account for region- and chemistry-specific
battery degradation (Supplementary Fig. 5.6).

We first analyze the technical capacity for short-term grid storage from vehicle-to-grid
and second-use. We choose the industry standard, 4-hour storage capacity on a daily
basis, as EV batteries are unsuitable for longer-term, seasonal storage due to their
chemistries and use cases. We further analyze the impact of different participation
rates of EV owners in vehicle-to-grid as well as the impact of different second-use
participation rates of retired EV batteries in second-use business (see methods for
further details). Finally, we compare these potentials against several scenarios for

future storage requirements from the literature.

Short-term grid storage demand scenarios. Future electricity grids will require a
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combination of short-term energy storage (discharge duration of several hours
throughout a day, such as battery energy storage) and long-term storage (discharge
duration of days, months, and seasons, such as pumped hydro storage technologies).
We focus here on short-term energy storage since this accounts for the majority of the
required power storage capacity'. Short-term energy storage demand is defined as a
typical 4-hour storage system, referring to the ability for the storage system to operate
at a capacity where the maximum power delivered from that storage over time can be
maintained for 4 hours. For example, the 4-hour storage capacity of batteries that
together deliver a maximum of 0.25 GW until depletion will be 1-Gigawatt hour'?
(GWh). The short-term storage capacity and power capacity are defined based on a
typical 1-time equivalent full charging/discharge cycle per day (amounting to 4 hours
of cumulative maximum discharge power per day).

We compare our results with storage requirements reported in the IRENA
(International Renewable Energy Agency) Planned Energy Scenario (with a warming
“likely 2.5°C" in the second half of this century) and the Transforming Energy Scenario
(with a warming of “well below 2°C" in the second half of this century)®. We also
compare our results with storage capacity requirements summarized by the influential
Storage Lab for both conservative and optimistic scenarios'®. Both Storage Lab
scenarios result in a warming of “well below 2°C" by 2100, but differ in the role of grid
storage in the energy system. For further details on these scenarios see Supplementary
Table 5.1. These scenarios lead to short-term grid storage demands of 3.4, 9, 8.8, 19.2
TWh respectively, or 10 TWh on average by 2050. With the 4 hours delivery period,
this implies that a power capacity demand is within a range of 850-4800 GW or 2500
GW on average by 2050.

5.2 Methods

5.2.1 Model overview

We develop an integrated model to quantify the future EV battery capacity available
for grid storage, including both vehicle-to-grid and second-use (see Supplementary

Fig. 5.1 for an overall schematic). The integrated model includes three sub-models:

1) A dynamic battery stock model” to estimate total future EV battery stock and
the retired batteries at vehicle EoL. This model considers EV fleet (ie., battery
stock) development and EV lifespan distribution (Supplementary Fig. 5.2), as
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well as future chemistry development.

2) An EV use model which includes behavioral factors such as EV driving cycle
and charging behavior (changing power, time, and frequency), based on daily
driving distance data for small/mid-size/large BEVs and PHEVs
(Supplementary Fig. 5.3, Supplementary Fig. 5.4, and Supplementary Fig. 5.5).

3) A battery degradation model based on the latest battery degradation test
data, to estimate battery capacity fading over time under different EV use,
battery chemistry, and temperature conditions (Supplementary Fig. 5.6).

5.2.2 Dynamic battery stock model

We build on results and methods from a previous study’ where we built a global
dynamic battery stock model to quantify the stock and flows of EV batteries. We model
future EV fleet development (ie., battery stock) until 2050. We determine the retired
battery availability based on battery stock development and EV lifespan distribution
(which is assumed to determine the time when EV batteries are retired). Battery
degradation does affect the technical performance (such as driving distance capability)
of EVs, thus influencing consumers’ choice of time when EVs come into EoL. Here, for
model simplicity, we assume batteries will be retired only when EVs come into EoL.
While for EV battery capacity, we use an average capacity of 33, 66, and 100 kWh for
small/mid-size/large BEVs, and 21, 10, and 15 kWh for small/mid-size/large PHEVs.

EV fleet scenarios. We use two EV fleet scenarios until 2030 from the IEA: the stated
policies (STEP) scenario and the sustainable development (SD) scenario. We further
extend these two scenarios to 2050 based on a review of EV projections until 2050. We
use the EV fleet share across 5 main EV markets (China, India, EU, US, and RoW) from
the IEA until 2030, and keep the EV fleet share by countries/regions in 2030-2050 the
same as the year 2030 due to lack of reliable data after 2030 (see Supplementary Data
for EV fleet scenarios by countries/regions). Further, we include 56 cities in China, 9
cities in India, 32 cities in EU, 53 cities in US, and 9 cities in RoW. We compile future EV
sales share among 159 cities globally in STEP scenario and SD scenario based on future
EV fleet projections by counties/regions from the IEA'® and other data sources'%'%

(see Supplementary Data).

Battery chemistry scenarios. We consider battery market shares by chemistry based
on the market share projections until 2030 from Avicenne Energy'® and potential

trends until 20508818 Two battery chemistry scenarios are developed, including a
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Lithium Nickel Cobalt Manganese Oxide and Lithium Nickel Cobalt Aluminum Oxide
battery dominated scenario or NCX scenario (with X representing Manganese or
Aluminum), and a Lithium Iron Phosphate battery dominated scenario or LFP scenario.
The detailed battery market shares by chemistry in two scenarios are discussed in’.

5.2.3 EV use model

Daily driving distance (DDD). We explore the EV driving behavior based on DDD
distributions. We build historical EU DDD distributions for small/mid-size/large
BEVs/PHEVs models based on data from Spritmonitor.de’, which has been widely
used in literatures®®0', We exclude the DDD less than 5 km from the dataset. By
comparing various DDDs in multiples of EV range, we classify 5 DDD classes to
formulate driving intensity and charging behavior. These 5 classes are divided between
0% of the EV range to 200% of the EV range (i.e., a DDD twice the range of the EV) with
intervals of 0-25%, 25-33%, 33-50%, 50-100%, 100-200%. We use the mean DDD of
each class for calculations. Further, we compile future DDD in different
countries/regions (Supplementary Fig. 5.7, Supplementary Fig. 5.8, Supplementary Fig.
5.9, and Supplementary Fig. 5.10) by assuming the future DDD is proportional to the
future energy consumption per vehicle. We calculate future energy consumption per
vehicle in different countries/regions based on the IEA's projection on future EV fleet
size and associated energy consumption until 2030"%.

EV driving cycle. We assume two commuting trips between home and working place
per day on weekdays and two entertaining trips on weekends for all countries/regions.
Each trip distance is half of DDD. According to the required trip distance, we compile
the driving cycle of each trip (speed versus time) based on the standard US combined
driving cycle (ie, 55% city driving and 45% highway driving, see details in
Supplementary Fig. 5.4 and Supplementary Fig. 5.5, and Supplementary Note 5.1).

EV charging. Charging behavior may be affected by charging infrastructure, amongst
others, on-board EV charger, consumer preferences. We assume an immediate and
slow home charging at constant charging power to full charge for all EV sizes and types
because home charging is the major charging way (see Supplementary Data). We
assume the home charging power as 1.92, 6.6, 22, and 1.92 kW for small, mid-size,

202

large BEV, and PHEV, respectively=®“. We assume that due to high costs and limited

utility no consumers will install higher power charging infrastructure at home. We
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further anticipate the charging behaviors in terms of changing frequency by comparing
the various DDDs in multiples of the EV range. As driving intensity increases, the higher
charging frequency is assumed for 5 DDD classes (1x every four days, 1x every three
days, 1x every two days, 1x each day, and 2x every day respectively). For example, if
the DDD of mid-size BEV (with a 312 km EV range) increases from 75 km to 625 km,
and the battery needs to be charged more frequently from 1 time per four days to 2
times per day.

Battery State-of-Charge (SoC) profile. We calculate the EV battery SoC second by
second under three EV states: driving, parking and charging, and parking without
charging. For battery SoC during driving, we use FASTSim model*® developed by NREL
to calculate EV battery SoC second-by-second based on inputs of the EV driving cycle,
EV configurations, and battery performance parameters (specific energy and battery
capacity). We select one representative EV model from the FASTSim model®®? for each
EV size and type as EV configuration (Supplementary Table 5.2), and NCM622 as
representative chemistry for all EV types; because it was found that EV configurations
and battery performance parameters (such as specific energy) had small effects on the
resulting battery SoC simulations. For battery SoC during charging, we assume the
battery SoC increases linearly under a constant charging power with a 90% charging
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efficiency®. For battery SoC during parking without charging, the battery SoC

decreases due to self-charging. A typical self-discharging rate of 5% per month is
assumed for lithium-ion battery?®*. Note that for the sake of battery safety, a portion
of battery capacity is unusable (15% for BEVs and 30% for PHEVs based on the BatPac
model?®), therefor we assume the usable battery SoC range as 5%-90% for BEV battery

and 15%-85% for PHEV battery.

Battery temperature. The battery temperature depends on the heat generation from
chemical reactions inside batteries, amongst others, ambient temperature and
environment (such as solar power radiation), battery management system (air or liquid
cooling system to control battery temperature). The temperature can also vary from
cell to cell, module to module, and component to component in the battery pack. The
modelling of battery temperature is complicated and out of scope of this study. Here
we use city ambient temperature to represent battery temperature, which is then used
to battery degradation. Here, we use the monthly average temperature of total 159

cities to capture the effects of geographic and temporal temperature variance on
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battery degradation. The temperature data is collected from?2%6-29, which can be found
in Supplementary Data.

5.2.4 Battery degradation model

Degradation model development. Battery degradation is crucially important for
determining EV battery capacity both in use and for second life applications, but there
are still many open research questions surrounding the importance of EV driving habits,
charging behavior, and battery chemistries on capacity development?', Degradation

211 as well as machine

model approaches include physics based degradation models
learning models’>2'? though there is no agreed-upon best practice?'®. Here, to balance
the complexity and accuracy of battery degradation model, we develop a semi-
empirical battery degradation model based on method from®'. The model considers
both calendar life and cycle life aging (equation (1)), assuming a square-root
dependence on time for calendar life (degradation rates depend on temperature and
SoC, see equation (2)) and a linear dependence on energy throughput for cycle life
(degradation rates depend on temperature, Depth-of-Discharge (DoD), and Current

rate (Crate) S€€ €qUation (3)).

q= 1- QLoss,calendar — qLoss,Cycling (1)
~E, (1 1 aF Uy Ugres
Loss,catendar = Kca1 * €XP (R_Ta <T - E)) s exp (7 (Ta - ;r:‘ >> Wt 2
2
GLoss,cycling = kcyc : (A -DOD + B) ) (C ) Crate + D) ) (E ) (T - Tref) + F) "EFC (3)

where q is the relative battery degradation, quosscalendar is the relative calendar life
degradation, quosscycling is the relative cycling life degradation, T is temperature, t is time
(unit: days), EFC is equivalent full cycles. Note R is the universal gas constant (8.3144598
J/molK), Ter is the reference temperature (298.15 K), F is Faraday constant (96485
C/mol), kear (unit: dayso's), E. (unit: J/mol-K), and a (no unit) are fitting parameters for
calendar life degradation, and kcyc (unit: EFC"). A, B, C, and D (no units) are fitting
parameters for cycling life degradation. The value of the anode-to-reference potential,
Ua (unit: V), is calculated from the storage SoC using equations (4) and (5)'.

Xq — 0.1958)

0.1088
X, — 0.5692)

0.0875

Ug(x,) = 0.6379 4+ 0.5416 - exp(—305.5309 - x,) + 0.044 tanh (—

x, — 1.0571 X +0.0117

—0.1978 tanh( 0.0854 0.0529

) ~0.6875 tanh( ) ~0.0175 tanh(
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where x, which represents the lithiation fraction of the graphite, is a simple linear
function of the SoC?'>:

x4(S0C) = x40 + SOC  (X4100 — Xa0)> Xap = 0.0085,x, 10 = 0.78 5)

where X,0 is the lithiation fraction of the graphite at 0% SoC and x,,100 is the lithiation
fraction of the graphite at 100% SoC.

To obtain these fitting parameters, we collect publicly available battery degradation
data, including calendar life aging and cycle life aging, for NCM®" and LFP>960191
chemistry. These data sets represent state-of-the-art lifetime performance for each
chemistry; the LFP cells shown reach between 5000 and 8000 equivalent full cycles
before reaching 80% remaining capacity, 4000~5000 equivalent full cycles for NCM
cells. This experimental data was then fit with the semi-empirical model equations (1),
(2), and (3) using a non-linear least squares solver in MATLAB. The NCM model has no
Crate dependence, due to lack of data in the aging data set, so the parameters C and D
are simply set at 0 and 1. We first fit the calendar fade data with the time-dependent
portion of the model (qiosscalendar, Parameters keca, Es, and o); the parameter o is
bounded between -1 and 1, with other parameters unbounded. The parameters for
the cycling fade (A, B, C, and D) are optimized on the cycling aging data. For both LFP
and NCM, the raw cycling fade data was processed prior to optimizing a model based
on expert judgement. For LFP, only cells with linear fade trajectories and data for at
least 5000 EFCs were used for model optimization. For NCM, only data after 200 EFC
at T >5°Cand data atq < 0.85at T < 5 °C was used for optimization of the NCM
cycling model parameters. The optimized parameters for the LFP and NCM
degradation models are shown in Supplementary Table 5.3. Fitting results are shown
in Supplementary Fig. 5.11 and degradation rates are shown in Supplementary Fig.
5.12.

Note that we assume NCA battery has the same degradation patterns as NCM battery
due to a lack of state-of-the-art open-source data for NCA batteries. Besides cell
chemistry, capacity degradation characteristics vary with cell design, manufacturing
process, and proprietary additives?'%2'8, which is out of scope of this study. We use cell
degradation patterns to represent battery pack degradation without consideration of
cell-to-cell and module-module differences.

Battery degradation under different driving and temperature conditions. For
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simulation of the degradation under the EV driving loads (battery SoC evolution over
time) and during dynamic temperature changes, the degradation model is
reformulated to solve for the degradation occurring during consecutive timesteps®.
We choose a timestep of 1 day for making SoH updates and update the SoC timeseries
for each day by the current SoH. At each timestep, the temperature is the average
temperature during the simulation month at cities from different countries/regions.
Average SoC, DoD, Crate, and the number of EFCs is extracted from the SoC timeseries.
Average SoC refers to the time-averaged value of SoC. DoD is the difference between
the maximum and minimum values of SoC. C.t is calculated using the absolute change
of SoC per second, and then taking the average of all Cates greater than 0 during the
entire timeseries. The number of EFCs is calculated by summing the changes to SoC
over the timeseries. Dependence of the expected degradation rate on current SoH is
incorporated by calculating a 'virtual time'®®. The virtual time is found by inverting the
calendar degradation equation to solve for time:

— /qcurrent

t = 6

/c e (e (o)) e (4 (Y - Yozt ©
cat " XP\RT\T " T,,;) ) “P\R\T ~ T,

The degradation change Aqg during any given timestep At is then calculated by

the following equation:

) —E, (1 _ 1)), aF (U, Ua,ref)
R (7)) oo (5 (52 /
1= 2 ireua + AL

™
+keye - (A-DOD +B) - (C Crare + D) - (E- (T = Tyep)’ +F ) - AEFC

For cycling fade, the virtual EFC does not need to be calculated, as the degradation
rate is constant with respect to the change of EFC during any given timestep. This
reformulation of the degradation model captures the path-dependent degradation
observed in real-world battery use. See Supplementary Note 5.2 for modelled battery
degradation for NCM and LFP.

5.2.5 Available capacity from EV batteries

Battery capacity during use and when retired from EV. Vehicle EoL does not
necessarily correspond to battery EoL. With technological improvements in battery
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reliability and durability, many batteries in EoL vehicles may still have years of useful
life at the end of vehicle end of life. Vehicle battery EolL is usually as defined the time
at which remaining battery capacity is between 70%-80% of the original capacity'. We
assume an EV lifespan distribution, as in our previous work’ to account for EoL of EV.
In our modelling approach, the vehicle lifespan distribution determines when batteries
are not used in EVs any more (i.e, retired batteries). Retired batteries may have quite
different capacity under different use conditions. When vehicles reach EoL due to
consumer choices or other issues before the battery pack reaches 70% relative capacity,
retired batteries will still have over 70% relative SoH and are assumed to be used in a
second-life application. When battery pack reaches 70% relative SoH before a vehicle
reaches its EolL, we assume that batteries may still be used in EVs for low distances-
driving. Retired batteries from such vehicles will have lower than 70% relative SoH and
are assumed to be recycled rather than for a second-use. We assume any battery with
a relative SoH lower than 60% is recycled and removed from potential grid storage
capacity?'’. However, even batteries with a relative SoH of 60%-70% have a limited
economic value and can have relatively high safety risks. (methods)?'®.

Vehicle-to-grid capacity. We define technical vehicle-to-grid capacity as the
availability of EV battery stock capacity for vehicle-to-grid application, considering the
capacity reserved for EV driving, the capacity of PHEVs that will not participate in
vehicle-to-grid due to low capacity, and capacity fade due to battery degradation. We
further define the actual vehicle-to-grid capacity as the availability of technical vehicle-
to-grid capacity for the grid under different consumer participation rates in the
vehicle-to-grid business. Results focus on investigating under which participation rate
can actual vehicle-to-grid capacity meet grid storage demand.

Second-use capacity. The technical second-use capacity is defined as the retired
battery capacity that can be repurposed (ie., retired batteries with over 70% relative
SoH). We further investigate actual second-use capacity under different market
participation rates (ie., not all retired batteries will participate in second-use). The
results are intended to determine the required market participation rate for the actual
second-use capacity to meet grid storage demand.

5.3 Results
Total technical capacity. We define technical capacity as the total cumulative available
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EV battery capacity in use and in second use at a specific time, taking into account
battery degradation and the capacity needed to meet driving demand. Globally, the
SD scenario sees total technical capacity twice that of the STEP scenario due to the
larger fleet size (see Supplementary Fig. 5.13 and Note 1). The LFP scenario sees a
higher cumulative capacity than NCX due to the lower degradation of LFP across most
countries/regions (see Supplementary Data for a comparison of LFP and NCM battery
degradation). As shown in Fig. 5.1, the highest total technical capacity is provided in
the SD-LFP scenario that is 48% higher by 2030 and 91% higher by 2050 than in the
STEP-NCX scenario (respectively 3.8 TWh and 2.6 TWh in 2030 and 32 TWh and 62
TWh in 2050).

Under all scenarios, the cumulative vehicle-to-grid and second use capacity will grow
dramatically, by a factor of 13-16 between 2030 and 2050. Putting this cumulative
technical capacity into perspective against future demand for grid storage we find that
our estimated growth is expected to increase as fast or even faster than short-term
grid storage capacity demand in several projections®® ' (Fig. 5.1). Technical vehicle-to-
grid capacity or second-use capacity are each, on their own, sufficient to meet the
short-term grid storage capacity demand of 3.4-19.2 TWh by 2050. This is also true on
a regional basis where technical EV capacity meets regional grid storage capacity
demand (see Supplementary Fig. 5.14).
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Fig. 5.1: Total technical capacity for EV batteries and comparison to grid storage demand. a STEP-

136



NCX scenario. b SD-NCX scenario. ¢ STEP-LFP scenario. d SD-LFP scenario. The storage requirements
of grids are 0.37-0.745 TWh in 2030 based on the IRENA®®, and that of 2050 from both IRENA and
Storage Lab'** (see details in Supplementary Table 5.1).

Factors limiting total technical capacity.
Vehicle-to-grid.

Examining the vehicle-to-grid opportunity alone, without considering second use, we
find that 21%-26% of the global theoretical battery stock capacity (i.e., on-board EV
battery capacity of the entire EV fleet without considering battery degradation) could
be available for vehicle-to-grid services by 2050 (Fig. 5.2a). The most important limiting
factor is the battery capacity required to meet consumer driving demands'>'% which
can limit the technically available stock capacity by 57%-63%. PHEVs, which make up
around 11% of the theoretical stock capacity in 2050, are not considered for vehicle-
to-grid as they have a low storage potential due to low capacities. On average, just 5%
of the theoretical stock capacity is lost due to battery degradation by 2050. These
losses vary between 7% in India and 4% in RoW due to differences in regional factors
such as use conditions and temperature (see regional results in Supplementary Fig.
5.15). Overall, taking these factors into account yields a technical vehicle-to-grid
capacity of roughly 18-30 TWh by 2050 (see Fig. 5.2).

However, there are other factors that may limit actual available storage capacity. The
vehicle-to-grid participation rate is the most important of these. That is, not all EV
consumers will necessarily participate in the market. The impact of different
participation rates, defined as the percentage of the technical vehicle to grid capacity
actually connected to the grid, is shown in Fig. 5.2b. To satisfy the short-term storage
demand of 10 TWh in 2050, participation rates of 38% and 20% are required for the
STEP-NCX and SD-NCX scenarios, respectively. In practice, it is likely that EVs with high
battery capacities and low degradation will be used for providing vehicle-to-grid
services since these will provide the highest revenue for EV owners?'® (the full battery
capacity distributions by 2050 across countries/regions is available in Supplementary
Fig. 5.16, Supplementary Fig. 5.17, Supplementary Fig. 5.18, Supplementary Fig. 5.19,
and Supplementary Fig. 5.20).
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Fig. 5.2: Global available vehicle-to-grid capacity in 2050. a Technical vehicle-to-grid capacity.
Hatched bars indicate the capacity limits due to key factors and blue bars the technical vehicle-to-grid
capacity. b Actual vehicle-to-grid capacity as a function of participation rates. Results are shown for the
STEP-NCX and the SD-NCX scenarios with a comparison to the range of storage demand computed
by IRENA and Storage Lab models in 2050 (orange shading). Please see Supplementary Fig. 5.21 for
global actual vehicle-to-grid capacity under the STEP-LFP and the SD-LFP scenarios, which shows
similar results as STEP-NCX and SD-NCX scenarios. Supplementary Fig. 5.22, Supplementary Fig. 5.23,
Supplementary Fig. 5.24, and Supplementary Fig. 5.25 for regional actual vehicle-to-grid capacity.

Second-use.

Over time EV batteries degrade so far that they cannot be used to power vehicles’. This
is typically when the battery relative State of Health (SoH), defined as actual capacity
as percentage of original capacity, has reached 70%-80%", although the relative SoH
could fall even lower if a consumer is willing to accept relatively poor battery health
and shorter ranges'". Given their high value, size and end of life requlations in many
countries we assume all retired batteries will be collected’. Once collected, batteries
are health tested to determine if the retired EV battery can be used in a less critical

second-use application, or if the battery must be recycled?®°.

Given the technical and economic feasibility of retired batteries for a second-use?'8, we
consider batteries with an SoH of 70% and higher only for second-use (this threshold
is often assumed as a technically and economically feasible value for second-use
businesses?'™®). Using this criterion, we find that for all scenarios between 2030 and
2050 74% of the retired NCX batteries can be repurposed for second-use globally (i.e.,
repurposing percentage), while 26% goes to recycling by 2050. Regional differences
can be significant due to the impact of temperature on NCX battery degradation (see
Supplementary Fig. 5.26 and Supplementary Data). In contrast, virtually all LFP retired
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batteries can be repurposed.

Business models are still developing, and repurposing is highly dependent on the
technical specifications and market requirements of second-use applications®?'. Since
battery disassembly is costly?'®, battery repurposing will likely happen on the pack level
instead of modules and cell level. Repurposing will consist mainly of rebalancing and
reconnecting the retired battery packs. There is no strong technical reason to model a
capacity difference before and after the repurposing processes.

For these assumptions, 2.1-4.8 TWh of retired batteries are estimated to become
available as annual technical second-use capacity globally in 2050, as shown in Fig.
5.3a. The cumulative technical second-use capacity is expected to reach 14.8-31.5 TWh
by 2050 when using a 10-year second-use life scenario®?? (Fig. 5.3b). The actual second
second-use lifespan is uncertain due to uncertainties surrounding the retired battery
SoH, use conditions, etc. Another uncertainty is the further battery degradation during
secondary use, which is difficult to model due to complicated degradation mechanisms
of retired batteries®?. Further research into degradation and second-use life span is
required to improve estimates of technical second-use capacity.

Similar to estimates for actual vehicle-to-grid capacity, the second use participation
rate determines which percentage of the technical second-use capacity is actually
available and connected to the grid. To meet the requirement of a 10 TWh short-term
storage capacity in the STEP-NCX scenario (14.8 TWh technical capacity) a participation
rate 68% is required, while in the SD-LFP scenario (31.5 TWh technical capacity) a

participation rate of 32% is needed.
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Fig. 5.3: Global available second-use capacity in 2050. a Annual addition and cumulative technical
capacity in 2050. Capacity refers to the technically available capacity considering battery degradation,
or maximum theoretical potential second-use capacity without considering the battery second-use
participation rate. b Impacts of second-use participation rate on cumulative actual second-use capacity
and a comparison to storage demand in 2050 (orange shading). See Supplementary Fig. 5.27,
Supplementary Fig. 5.28, Supplementary Fig. 5.29, and Supplementary Fig. 5.30 for regional actual
second-use capacity.

Combining vehicle-to-grid and second-use participation rates.

As we describe above, the global technical capacity for short-term grid storage of EV
batteries grows rapidly in all scenarios. However, the actual available capacity depends
strongly on the vehicle-to-grid and second-use participation rates. We show the actual
available capacity as a function of these participation rates in Fig. 5.4 for the STEP-NCX
scenario (please see Supplementary Fig. 5.31, Supplementary Fig. 5.32, and
Supplementary Fig. 5.33 for other scenarios). If 50% participation rates can be realized
for both vehicle-to-grid and second-use, the combined actual available capacity is 25-
48 TWh by 2050, far above requirements estimated from the literature. Changes in
vehicle-to-grid participation rates of 23%-96%2%422> could influence this actual
available capacity in 2050 by as much as -24% to +21%. When second use participation
rates vary 10%-100%, the actual available capacity varies between -41% and 12%.
Taken together, vehicle-to-grid participation rate and second use participation rate
could alter the actual available capacity in 2050 by -61% to +32%.
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Fig. 5.4: Total actual available capacity under various conditions in STEP-NCX scenario in 2050.

Blue, white, and red colors depict minimum, average, and maximum values. See Supplementary Fig.
5.31, Supplementary Fig. 5.32, and Supplementary Fig. 5.33 for other scenarios.

5.4 Discussion

Previous research has suggested that large EV fleets could exert additional stress on
grid stability (e.g., if the majority of EVs are charged at grid peak time)?2%. Our findings,
from a different perspective, show EV batteries could promote electricity grid stability
via storage solutions from vehicle-to-grid and second-use applications. We estimate a
total technical capacity of 32-62 TWh by 2050. This is significantly higher as the 3.4-
19.2 TWh (10 TWh on average) as required by 2050 in IRENA and Storage lab scenarios.

The actual available capacity depends on participation rates for vehicle-to-grid and
second use. Participation rates may vary regionally depending on future market
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incentives and infrastructure along with other factors®?’. However, we show how EV
batteries in primary and secondary use could provide the 10 TWh short-term grid
storage capacity required in the IRENA and Storage Lab scenarios by 2050. The STEP-
NCX scenario presented in Fig. 5.4 has the lowest technical capacity (32 TWh compared
to 62 TWh in the SD-LFP scenario) which already easily meets requirements at
participation rates of 40%-50% for vehicle-to-grid and second-use. At a regional level,
even lower participation rates may still contribute significantly to grid stability. Overall,
EV batteries could meet short-term grid storage demand by as early as 2030 (if we
assume lower requirements from the literature and higher levels of participation). By
2040-2050 storage demands are met across almost all scenarios and even low
participation rates. Harnessing this potential will have critical implications for the
energy transition and policymakers should be cognizant of the opportunities.

As we include a broader set of limitations for the total opportunity our results are
difficult to compare with other literature. Our estimated global EV fleet capacity in 2050
(68-144 TWh) is considerably higher than the estimate from IRENA (7.5-14 TWh)*®. This
is due to the IRENA's very conservative scenarios on future EV fleet size and battery
capacity per vehicle. The IRENA scenario also does not consider the availability of EV
fleet capacity for grid services. An IEA estimate does not extend beyond 2030 but
highlights the importance of including battery degradation in analyses, which we
include here to project until 2050 (Fig. 5.3).

We note several limitations in our approach that could be improved as data availability
improves. For example, while we include battery degradation by using state-of-art data,
future battery degradation is highly uncertain and depends on further technological
breakthroughs in battery chemistry such as Na-ion, Li-Air, and Li-Sulphur??® along with
developments in battery management systems. Further, while we derived driving
behaviour from empirical data, future changes in driving habits are uncertain and
dependent on various factors such as EV-related infrastructure. Vehicle chargers
increase in power output over time and 50 kW charging is already common across
many countries®?. Frequent fast charging could lead to faster degradation, especially
in hot/cold climates®®. This challenge may be addressed by future technology

improvements to battery materials'

, electrode architectures, and optimized synergy
of the cell/module/pack system design'®. A further limitation is that we compare

technical and actual available vehicle-to-grid capacity with an average 4-hour storage
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requirement as provided in the scenarios by IRENA and Storage Lab. This omits
potential differences in storage requirements at shorter time scales (seconds/minutes).
Improved modelling and data can overcome this gap. It is however likely that the
technical vehicle-to-grid capacity will be sufficient given low vehicle utilization rates of
just 5% for many regions32, Additionally, development of smart charging infrastructure
and grid digitization is likely to provide additional flexibility for matching electricity
demand and supply?®.

A final limitation is that we assume that the rated capacity per vehicle remains the
same in the future and that a small number of large BEVs might provide large actual
vehicle-to-grid capacity (Supplementary Fig. 5.22, Supplementary Fig. 5.23,
Supplementary Fig. 5.24, and Supplementary Fig. 5.25). These capacities may change
further in the future due to policy incentives, vehicle design, consumer preferences,
charging infrastructure, among other factors. Further, the transportation system could
see radical and fundamental changes. A significant and rapid shift away from private
car use to mass transit, a move to shared electric vehicles, autonomous driving, and
the success of battery swap systems®* could all alter the available capacity via
utilization rates and other factors by 2050.

Glossary

Dynamic battery stock model:

EV: electric vehicles.

BEV: battery electric vehicle.

PHEV: plug-in hybrid electric vehicle.

LFP: lithium-iron-phosphate / graphite battery.

NCM: lithium Nickel Cobalt Manganese Oxide / graphite battery.
NCA: lithium Nickel Cobalt Aluminum Oxide / graphite battery.
NCX: NCM and NCA, with X denoting manganese or aluminum.
EV use model:

Ambient temperature: the temperature of the air surrounding the EVs under

consideration.
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Daily driven distance (DDD): assumed as the mean value of DDD distribution.

State of Charge (SoC): level of charge of a battery relative to its rated capacity, and
the units of SoC are percentage points (0% = empty; 100% = full).

C.ate: the charge or discharge current divided by the battery's capacity to store an
electrical charge. The unit of the Cyate is hour™.

Depth of discharge (DOD): the fraction or percentage of the battery's capacity which
is currently removed from the battery with regard to its (fully) charged state.

Equivalent full cycles (EFCs): the charge throughput of partial cycles relative to a full
charge/discharge cycle.

Battery degradation model:
Rated capacity: the maximum energy of the battery at the start of life.

Battery degradation: the amount of charge a rechargeable battery can deliver at the
rated voltage decreases with use, depending on lots of stress factors: Ambient
temperature SoC, Crate, DoD, and EFCs.

Battery capacity: a property of that a battery’s maximum capability to store the energy

at a given moment in time and conditions, as the battery degradation.
Relative SoH: state of health, is assumed as Battery capacity / Rated capacity.
Vehicle-to-grid model:

Theoretical battery stock capacity: on-board EV battery capacity of total EV fleet,
without considering capacity lost due to battery degradation. Theoretical battery stock

capacity = Rated capacity per EV * number of total EVs.

Technical vehicle-to-grid capacity: availability of theoretical battery stock capacity
for vehicle-to-grid applications, considering driving demand, battery degradation, and
PHEV. Technical vehicle-to-grid capacity = Theoretical battery stock capacity — Battery
capacity reserved for BEV driving — Battery capacity of PHEV - Battery capacity lost due
to battery degradation.

Vehicle-to-grid participation rate: Number of EVs participating in vehicle-to-grid /
Number of total EVs.
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Actual vehicle-to-grid capacity: availability of technical vehicle-to-grid capacity for
vehicle-to-grid applications. Actual vehicle-to-grid capacity = number of EVs
participating in vehicle-to-grid * technical vehicle-to-grid capacity per EV.

Second-use model:
Retired battery: battery out of service from first life of EV.

Capacity per retired battery. battery capacity when coming to the end of the first life
of EV.

Collection rate per year: number of collected batteries per year / number of retired
batteries per year. Number of collected batteries per year = number of repurposed
batteries + number of recycled batteries.

Repurposing battery: retired battery that is suitable for electricity storage. The model
assumes collected battery with relative SoH above 70% will be repurposed.

Recycled battery: retired battery that is collected for material recycling.

Repurposing rate per year: rate of repurposing batteries in collected batteries.
Repurposing rate per year = number of collected batteries with relative SoH above 70%

per year / number of collected batteries per year.

Recycling rate per year: rate of recycled batteries in collected batteries. Recycling rate
per year = 1- repurposing rate per year.

Technical second-use capacity per year: battery capacity of repurposed batteries per
year. Technical second-use capacity per year = number of retired batteries per year *

collection rate per year * repurposing rate per year * capacity per retired battery.

Second-use participation rate per year: number of batteries participating in second-
use / number of repurposing batteries (or collected batteries with relative SoH above
70%) per year.

Actual second-use capacity per year: availability of technical second-use capacity
per year for second-use applications. Actual second-use capacity per year = technical
second-use capacity per year * second-use participation rate per year * capacity per
retired battery.
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5.5 Supplementary information

5.5.1 Model overview
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Supplementary Fig. 5.1: Model framework consisting of a dynamic battery stock model, a EV use model, and a battery degradation model.
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Dynamic battery stock model

EV range, fuel EV fleet until 2030 STEP scenario
F?:Ié/vmrsgl:li:ets Eﬁ;?zs economy, motor  (IEA) and estimation SD scenario
power (US DOE) until 2050

SN |

EV inflow EV stock EV outflow
NCX scenario
LFP scenario /
Battery positive and
Battery mark_et negative active material EV lifespan Battery lifespan
share by chemistry .
\ capacity (BatPac model) \ /
Battery inflow Battery stock Battery outflow

STEP scenario = stated policies scenario IEA = International Energy Agency
SD scenario = sustainable development scenario USDOE = U.S. Department of Energy
NCX scenario = NCM and NCA battery dominated scenario BatPac = Battery Performance and Cost Model

LFP scenario = LFP dominated battery dominated scenario
NCM = lithium nickel cobalt manganese battery

NCA = lithium nickel cobalt aluminum battery

LFP = lithium iron phosphate battery

Supplementary Fig. 5.2: Dynamic battery stock model’.
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EV use model
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5.3: EV use model. NREL National Renewable Energy Laboratory. ANL Argonne National Laboratory.
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cycSecs cycSecs
Cumkm 11.99043319 Cumkm 16.50681747
Average speed (m/s) 8.752141014 Average speed (m/s) 21.54937007
Time (s) 1369 Time (s) 765

Average daily driving distance = x

Trip distance = 0.5*x

Required UDDS trip distance = 0.55*0.5*x

Required UDDS trip time = ROUND (0.55*0.5*x / UDDS average speed, 0)

Required multiples of UDDS = FLOOR (Required UDDS trip time / UDDS trip time, 1)

Required downsize factor UDDS = Round (UDDS trip time / MOD (Required UDDS trip time / UDDS trip time), 2)

Required HWY trip distance = 0.45*0.5*x

Required HWY trip time = ROUND (0.45*0.5*x / HWY average speed, 0)

Required multiples of HWY = FLOOR (Required HWY trip time / HWY trip time, 1)

Required downsize factor HWY = Round (HWY trip time / MOD (Required HWY trip time / HWY trip time), 2)

For UDDS and HWY, first scale the resolution from 1s to 0.01 s. new cycMps (for cycSecs in 0.00-0.49, 0.01s interval) = old cycMps (0); new
cycMps (0.50-1.49) = old cycMps (1); new cycMps (1.50-2.49) = old cycMps (2) ...

Downsized cycMps (0) = average ( new cycMps (0, downsize factor) );

Downsized cycMps (1) = average ( new cycMps (downsize factor+0.01, 2*downsize factor+0.01) )

Supplementary Fig. 5.4: EV use model where driving cycle is compiled on trip distance and
standard UDDS and HWY driving cycle.
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Supplementary Fig. 5.5: EV use model where a drive cycle example is compiled for a mid-size
BEV when the daily driving distance is 126.3 km.

150



Battery degradation model
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Supplementary Fig. 5.6: Battery degradation model.
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5.5.2 Additional Figures and Tables

Supplementary Figures

STEP scenario SD scenario
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Supplementary Fig. 5.7: Daily driving distance (DDD) distributions for small BEV across
counties/regions. The historic DDD distribution for EU is collected from Spritmonitor.de. Combined
with the IEA's projection of future EV fleet energy consumption for China, India, EU, US, and RoW'®, we
compile the future DDD distributions for countries/regions.
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Supplementary Fig. 5.8: Daily driving distance (DDD) distributions for mid-size BEV across
counties/regions. The historic DDD distribution for EU is collected from Spritmonitor.de’. Combined
with the IEAs projection of future EV fleet energy consumption for China, India, EU, US, and RoW'®, we
compile the future DDD distributions for countries/regions.
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Supplementary Fig. 5.9: Daily driving distance (DDD) distributions for large BEV across
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counties/regions. The historic DDD distribution for EU is collected from Spritmonitor.de’. Combined
with the IEA's projection of future EV fleet energy consumption for China, India, EU, US, and RoW'®, we
compile the future DDD distributions for countries/regions.
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Supplementary Fig. 5.10: Daily driving distance (DDD) distributions assumed for PHEVs for all
counties/regions.
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Supplementary Fig. 5.11: Battery degradation model fitting results. a calendar life aging of LFP. b
calendar life aging of NCM. ¢ cycling life aging of LFP. d cycling life aging of NCM. Residual errors are
plotted to the right of each fit.
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Supplementary Fig. 5.12: LFP and NCM battery degradation rates. a Calendar life degradation rate
versus the square-root of time as a function of temperature and SoC (state-of-charge). b Cycle life
degradation rate versus energy throughput, in units of EFCs (equivalent full cycles), as a function of
temperature and DOD (depth-of-discharge).
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Supplementary Fig. 5.13: Global EV stock development projected until 2050 for STEP and SD
fleet scenarios. a STEP scenario. b SD scenario. BEV battery electric vehicle, PHEV plug-in hybrid
electric vehicle, STEP scenario the Stated Policies scenario, SD scenario Sustainable Development
scenario.
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Supplementary Fig. 5.14: Total technical capacity from EV batteries and comparison to grid storage demand in countries and regions. The grid storage
demand in countries/regions is estimated based on future peak power demand in countries/regions, where assuming a proportional relationship between grid
storage demand and peak power demand for countries/regions is the same as global. Global peak power will increase to 6686 GW in 2030 and 10000 GW in
2050, derived from Storage Lab'®. China's peak power will increase to 1258 GW in 2030 and 1881 GW in 2050. India's peak power will increase to 430 GW in
2030 and 643 GW in 2050. EU peak power will increase to 616 GW in 2030 and 922 GW in 2050. US peak power will increase to 445 GW in 2030 and 665 GW in
2050. Regional peak demand is from the IEA%".
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Supplementary Fig. 5.15: Available vehicle-to-grid capacity in 2050 by countries/regions.
Hatched bars indicate the capacity limits due to key factors and blue bars the technical vehicle-to-grid
capacity. It is found higher technical vehicle-to-grid capacity for LFP scenario compared to NCX
scenario in China, EU, and US, while higher vehicle-to-grid capacity for the NCX scenario in India and
RoW (Rest of World).
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Supplementary Fig. 5.16: Battery capacity distribution for China battery stock by 2050.
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Supplementary Fig. 5.17: Battery capacity distribution for India battery stock by 2050.
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Supplementary Fig. 5.18: Battery capacity distribution for EU battery stock by 2050.
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Supplementary Fig. 5.19: Battery capacity distribution for US battery stock by 2050.
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Supplementary Fig. 5.20: Battery capacity distribution for RoW battery stock by 2050.
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Supplementary Fig. 5.21: Global actual vehicle-to-grid capacity as a function of participation

rates in STEP-LFP and SD-LFP scenarios, and comparison to grid storage capacity demand in
2050.
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Supplementary Fig. 5.22: China actual vehicle-to-grid capacity as a function of participation rate
and comparison to grid storage capacity demand in 2050.
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Supplementary Fig. 5.23: India actual vehicle-to-grid capacity as a function of participation rate
and comparison to grid storage capacity demand in 2050.

~
-

2 ——SD-NCX Z ——SD-LFP

& 6 s 6

g ——STEP-NCX g STEP-LFP

< ~5 o5

e 52

SFE 4 o4

oS o=

o’ o’

s’ £8°3

> c > c

572 72

2 2

s 1 8 1

> >

w 0 1 1 1 1 1 1 1 1 w o 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Vehicle-to-grid participation rate (%) Vehicle-to-grid participation rate (%)

Supplementary Fig. 5.24: EU actual vehicle-to-grid capacity as a function of participation rate
and comparison to grid storage capacity demand in 2050.
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Supplementary Fig. 5.25: US actual vehicle-to-grid capacity as a function of participation rate
and comparison to grid storage capacity demand in 2050.
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Supplementary Fig. 5.26: Global share of retired NCX batteries with SoH lower than 70% in total
retired NCX batteries (i.e., repurposing rate per year). Repurposing rate per year = number of
collected batteries with relative SoH above 70% per year / number of collected batteries per year.
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Supplementary Fig. 5.28: India available second-use capacity in 2050. a Annual addition and

cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering

battery degradation, or maximum theoretical potential second-use capacity without considering the

battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual

second-use capacity and a comparison to storage demand in 2050 (orange shading).
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Supplementary Fig. 5.29: EU available second-use capacity in 2050. a Annual addition and
cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering
battery degradation, or maximum theoretical potential second-use capacity without considering the
battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual
second-use capacity and a comparison to storage demand in 2050 (orange shading).
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Supplementary Fig. 5.30: US available second-use capacity in 2050. a Annual addition and
cumulative technical capacity in 2050. Capacity refers to the technically available capacity considering
battery degradation, or maximum theoretical potential second-use capacity without considering the
battery second-use participation rate. b Impacts of second-use participation rate on cumulative actual
second-use capacity and a comparison to storage demand in 2050 (orange shading).
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Supplementary Fig. 5.31: Total actual available capacity under various conditions in STEP-LFP

scenario in 2050. Blue, white, and red colors depict minimum, average, and maximum values.
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Supplementary Fig. 5.32: Total actual available capacity under various conditions in SD-NCX

scenario in 2050. Blue, white, and red colors depict minimum, average, and maximum values.
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Supplementary Fig. 5.33: Total actual available capacity under various conditions in SD-LFP

scenario in 2050. Blue, white, and red colors depict minimum, average, and maximum values.
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Supplementary Table

Supplementary Table 5.1: Future grid storage capacity demand. I[EA = International Energy Agency.
IRENA = International Renewable Energy Agency. BNEF = Bloomberg New Energy Finance. SD scenario
= sustainable development scenario. Remap = Renewable Energy Roadmap. PES = Planned Energy
Scenario. The “Planned Energy Scenario (PES)" is the primary reference case for this study, providing a
perspective on energy system developments based on governments’ current energy plans and other
planned targets and policies (as of 2019), including Nationally Determined Contributions under the
Paris Agreement unless the country has newer climate and energy targets or plans. TES = Transforming
Energy Scenario. The “Transforming Energy Scenario (TES)" describes an ambitious, yet realistic, energy
transformation pathway based largely on renewable energy sources and steadily improved energy
efficiency (though not limited exclusively to these technologies). This would set the energy system on
the path needed to keep the rise in global temperatures to well below 2 degree Celsius (°C) and towards
1.5°C during this century. Unit: TWh. TWh = 10° kWh.

Annual Annual

. growth rate  growth rate
Capacity . . . . .
Reference Scenarios 2030 2040 2050 /increasing  /increasing
demand . .

factor in factor in

2030~2050  2040~2050

Stationary
IEA%3 storage SD / 2.9884 /
batteries
Behind the
IRENAZ® meter Remap / / 9
storage
batteries
Electricity

storage Reference

IRENAZ? 7.22 / /

energy scenario
capacity
Electricity

storage Doubling

IRENAZ? 13.58 / /

energy scenario
capacity
Stationary

IRENA>® ‘ PES 0.37 / 34 0.12/9.19
storage
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Supplementary Table 5.1 (Continued).

Annual
growth rate

Annual
growth rate

Capacity . ) . ) .
Reference Scenarios 2030 2040 2050 /increasing  /increasing
demand . .
factor in factor in
2030~2050  2040~2050
Stationary
IRENA%® TES 0.745 / 9 0.13/12.08
storage
Energy
BNEF?238 storage / / 2.85 /
installations
Flexibility
Storage grid Optimistic
/ 2.8 8.8 0.12/3.14
Lab™* storage approaches
capacity
Flexibility
Storage grid Conservative
8.8 19.2 0.08/2.18
Lab™* storage approaches
capacity
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Supplementary Table 5.2: Selected EV models for modeling daily driving distance (DDD)
distributions and driving cycles.

Vehicle type . o Representative model for
EV models for modeling DDD distribution . .
and class modeling drive cycles
Smart fortwo, Mitsubishi i-MiEV, ) o
Small BEV Mitsubishi i-MiEV

BMW i3, Volkswagen e-Golf

L Nissan Leaf, Mercedes-Benz B250e, Honda .
Mid-size BEV . . . Nissan Leaf 30 kWh
Clarity EV, Hyundai loniq Electric, Tesla Model 3

Tesla Model S, Kia Soul Electric, Hyundai Kona
Large BEV Electri TESLA Model S60 2WD
ectric

Toyota Prius, Ford C-MAX Energi Plug-In . .
PHEV Prius Prime

Hybrid, Hyundai loniq Plug-in Hybrid

Supplementary Table 5.3: Optimized parameters for LFP and NCM degradation model.

Parameter LFP NCM
kcal 1.9234E-3 (days®) 4.0149E-4 (days®®)
Ea 3.0233E4 (J/mol-K) 5.9178E4 (J/mol-K)
a -0.05590 -1
keyc 2.93583E-6 4.3131332E-6
A 1.4761E-11 0.3549361
B 7.4008E-3 1.2308964E-4
C 0.082035 0
D 0.0313111 1
E 0.33344256 0.6149392
F 331.652158 63.619859

5.5.3 Supplementary Notes
Supplementary Note 5.1

As shown in Supplementary Fig. 4, we compile the trip driving cycle based on a
standard US combined driving cycle (ie, 55% UDDS city driving and 45% HWY
highway driving). We first model the required trip distance and time for UDDS city
driving and HWY highway driving, respectively. By comparing the required driving
distance with the distance of the standard driving cycle, the required multiples (ie., the
repeated times of standard UDDS or HWY driving cycle) and downsizing factor (the
downscaling of standard UDDS or HWY driving cycle to satisfy a small driving distance)
are modeled, respectively, thus scaling up or down of standard driving cycle to the

required driving distance. Supplementary Fig. 5 shows the driving cycle example of
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mid-size BEV, where the mean driving distance between 33%-50% EV range is 126.3
km. A 63.1 km of trip distance requires 2 multiples of standard UDDS city driving and
1 multiple of standard HWY highway driving, as well as 1 downsized standard UDDS
driving distance with a downsizing factor of 1.11 and 1 downsized standard HWY
driving with a downsizing factor of 1.38.

Supplementary Note 5.2

According to degradation models fit with aging data from state-of-the-art NCM and
LFP batteries, LFP batteries show lower levels and less variance of degradation than
NCX as LFP is less sensitive to temperature variation, state-of-charge, and depth of
discharge in both calendar-life and cycle-life degradation rates (Supplementary Figs.
32 and 33). For a mid-size battery electric vehicle (BEV), an increase of daily driving
distance (DDD) from 0%-25% EV range to 100%-200% of EV range could reduce the
relative battery State-of-health (SoH) at 8 years (ie., battery lifetime warranty by most
EV manufacturers) by 5.5-22% for NCM and 1-1.5% for LFP, depending on temperature
conditions (see Supplementary Data for degradation for different EV size and type).
Higher utilization of plug-in hybrid vehicle (PHEV) batteries leads to higher
degradation for PHEV batteries than for BEV batteries. Battery degradation variations
among countries/regions are driven by driving intensity and climate conditions; the
lifetime of NCM batteries in Europe is expected to be substantially shorter than other
regions due to increased degradation caused by cycling at low average temperatures,
while the lifetime of LFP batteries is shortest in India due to increased calendar
degradation rate at high average temperatures (see Supplementary Figs. 28~31 for

DDD distributions, Supplementary Data for city temperature and battery degradation).
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6 General discussion

6.1

Answers to research questions

Table 6.1 summarizes the related research questions identified in the introduction as

well as the methods applied and the answers provided in the previous chapters.

Table 6.1: Summary of research questions, and the methods applied to come to answers on the

research questions.

Questions

Methods

Results

What is the future material

v" Dynamic MFA

v

Strong demand growth
for lithium, cobalt, nickel

demand for automotive Vv EV fleet and battery )
. . . . . v Closed-loop recycling
lithium-ion batteries? chemistry scenarios
only matters after 2030
v GHG emissions per kWh
What are future cradle-to- v°  Prospective LCA model storage capacity during
gate GHG emissions per kWh including 8  battery 2020-2050
automotive lithium-ion chemistries and 3 v LIOH matters for LFP
battery production? production regions emissions, NiSO4 for
NCA/NCM emissions
v Global EV battery
demand will result 149-
266 Mt CO2-Eq of GHG
emissions in 2050
What are the future GHG v" GHG emissions reduce
emissions of global v Combine dynamic MFA from 50%-75% by 2050
automotive lithium-ion and prospective LCA per kWh of battery, which
battery production? results in a relative
decoupling
v’ Battery demand matters
more than recycling for
GHG emissions reduction
v' Electric vehicle batteries

What is the future grid
storage capacity available
from  global  automotive

lithium-ion batteries?

v' Vehicle-to-grid and
second-use

v' EV driving behavior and
battery degradation

alone could satisfy short-

term grid storage
demand by as early as

2030
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6.1.1 RQ1: What is the future material demand for automotive lithium-ion
batteries?

Methods

Dynamic MFA. To project battery material flows, we build a battery stock dynamics
model’ that consists of an EV layer, a battery layer, and a material layer. The EV layer
models future EV fleet size (ie., EV stock) and battery capacity demand. EV stock
determines battery stock. The battery stock determines the battery demand and end-
of-life (EoL) batteries each year, considering EV and battery lifespan distributions. The
battery layer reviews battery chemistry development and models future market shares
by chemistry. The material layer uses the BatPac model® to model material
compositions of different battery chemistries, with parameter inputs of intended EV
type (BEV or PHEV), EV performance (range, fuel economy, motor power), and battery
performance (positive and negative electrodes and their active capacity).

EV fleet and battery chemistry scenarios. We use two EV fleet scenarios of IEA: the
stated policies (STEP) scenario and the sustainable development (SD) scenario®. The
IEA scenarios only project EV fleet size until 2030, split by BEVs and PHEVs. We further
project the EV fleet size in the period from 2030-2050 based on literature reviews of
EV fleet penetration and global vehicle stock’ during this period. We assume that the
future share of BEV in the global EV fleet in 2030-2050 increases at the same rate as
that in the US".

NCM, NCA, and LFP are three common lithium-ion battery chemistries used for EVs,
and they are expected to dominate the EV market in the next decade. However,
NCM/NCA/LFP chemistries differ in technical lifespan, specific energy (Wh stored
energy capacity/kg battery weight), stability, and other performance factors?®. NCM
and NCA batteries (NCX, with X denoting manganese and aluminum) possess higher
specific energy and power performance than LFP. LFP has advantages of materials cost,
cycle life, and thermal stability over NCX. Researchers also develop lithium-based
solid-state chemistries, such as Li-Air and Li-Sulphur batteries that have a potentially
very high specific energy and that are very safe to use. But given the current
development stage, only after 2030 Li-Air and Li-Sulphur batteries’ can be expected to
be practically applied in EVs at a large scale. Based on reviews of battery technology

development roadmaps, we therefore develop an NCX scenario where NCM and NCA
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batteries will dominate the EV market until 2050, an LFP scenario where LFP batteries
will dominate the EV market by 60% after 2030, and a Li-S/Air scenario where Li-Air
and Li-Sulphur batteries will dominate the EV market by 30% each (totally 60%) during
2040-2050.

Results

Strong demand growth for lithium, cobalt, nickel. The SD scenario results in a 1.7-
2 times higher annual material demand than the STEP scenario since the EV fleet in
that scenario is almost twice as big. The annual material demand for lithium does not
differ a lot between the three chemistry scenarios, but for nickel and cobalt the
chemistry scenario influences demand a lot. The annual demand for nickel and cobalt
is lower in LFP scenario and Li-S/Air scenario since lower market shares of NCX
batteries, which contain nickel and cobalt, in these two scenarios. Depending on EV
fleet and battery chemistry scenarios, demand is estimated to increase by factors of
18-20 for lithium, 17-19 for cobalt, 28-31 for nickel, and 15-20 for most other materials
during 2020-2050. The cumulative material demand during 2020-2050 is in the range
of 7.3-18.3 Mt for lithium, 3.5-16.8 Mt for cobalt, and 18.1-88.9 Mt for nickel.

Closed-loop recycling only matters after 2030. EVs are a fast-growing market and
EVBs hence inevitably need primary material input. Given the average battery lifetimes
of ~15 years, in the coming decades the amount of EoL batteries materials are hence
just a fraction of primary material demand for batteries. So closed-loop recycling can,
at best (ie, without delay of recycling), reduce 20%-23% of the cumulative material
demand for lithium during 2020-2050, 26%-44% for cobalt, and 22%-38% for nickel. A
crucial condition for realizing this closed-loop recycling potential is that recycling
technologies are developed that can economically recover battery-grade. Second-use

of batteries will obviously delay recycling.

6.1.2 RQ2: What are future cradle-to-gate GHG emissions per kWh automotive

lithium-ion battery production?
Methods

Prospective LCA model including 8 battery chemistries and 3 production regions.
To project cradle-to-gate GHG emissions per kWh automotive lithium-ion battery

production, we build a prospective LCA model that simulates battery production by
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five life cycle stages: "mining”, “raw materials production”, “upgrading battery
materials”, “component production”, and “cell production”. We present 24
combinations of LCls for battery production: 8 battery chemistries, which result in
different material compositions and production processes, and 3 production regions
(China, US, and EU), which affect where raw materials and energy are supplied. We
compile a battery production Life Cycle Inventory (LCl) based on the EverBatt model*,
China battery industry reports'®®, and literature assumptions*® where applicable. The
prospective LCA model also incorporates a prospective LCl background database that
is derived from the ecoinvent 3.6 database'®, but takes into account changes in the
production of key battery metals (nickel'®, cobalt', copper'®, and others), next to
changes in energy/electricity mixes by region based on outputs of the Remind
Integrated Assessment Model'®, for the period between 2020 and 2050.

Results

GHG emissions per kWh storage capacity during 2020-2050. GHG emissions per
kWh automotive lithium-ion battery production vary significantly between the 3
production regions (China, US, and EU). The GHG emissions per kWh battery cell
produced in EU are 16%-18% lower than in the US, and 38%-41% lower than in China
in 2020. This is mainly due to the substantial difference in the share of renewable
energy and resulting emission intensities for electricity used for battery cell production
across the regions: 0.36 kg CO2-Eq per kWh electricity in EU (low), 0.48 kg CO2-Eq per
kWh electricity in US (middle), and 0.74 kg CO2-Eq per kWh electricity in China (high)
in 2020.

The battery chemistry also affects GHG emissions since different materials and
production processes are used. A clear example is that LFP production does not require
nickel and cobalt - their production is energy intensive and generates significant
emissions - while NCX cell production requires these metals. Due to this and other
differences in production processes between LFP and NCX, LFP cell production
generates 20%-28% lower GHG emissions per kWh storage capacity than NCX cell
production in 2020.

Depending on production regions and battery chemistry, GHG emissions per kWh of
automotive lithium-ion battery production are in the range of 41-89 kg CO2-Eq in 2020.
Compared to 2020, GHG emissions could more than halve to 10-45 kg CO2-Eq in 2050,
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mainly due to the development and use of low-carbon electricity for cell production.

LiOH matters for LFP emissions, NiSO, for NCA/NCM emissions. The production
of the cathode is the biggest contributor (33%-70%) to the cradle-to-gate cell GHG
emissions between 2020-2050, followed by anode production and cell production, the
latter using energy (such as electricity) to assemble battery components to a cell.
Cathode production requires the supply of different battery materials.

Cathode production requires the supply of different battery materials, especially metal-
based chemicals and compounds. These metal-based materials may contribute
significantly to the battery cell's GHG emissions. The contribution analysis of different
battery materials to GHG emissions will differ between cathodes of LFP and NCA/NCM
since their differences in the production process and the required materials (LiOH,
Fe2(SO4)3, H3PO4, etc, are necessary materials for the production of LFP cathode,
while NiSO4, CoSO4, LiOH/Li2CO3, etc., for NCA and NCM cathodes).

The production and use of LiOH and electricity together account for 82%-86% in 2020
and 64%-82% in 2050 of GHG emissions for LFP cathodes, depending on the
production regions. From the perspective of the whole battery cell, LIOH and electricity
together contribute to 27%-29% in 2020 and 28%-35% in 2050 of the GHG emissions
of LFP cells.

Fore NCX cells a different picture arises. There, the production of NiSO4 and Li,COs is
the most important contributor to GHG emissions. CoSO, and other cathode materials
are less important. Using NCM622 as an example, NiSO4 and Li,COj3 contribute to 18%-
30% and 6%-11% of GHG emissions of NCM622 cathode in 2020 respectively. These
numbers change to 25%-46% and 8%-21% in 2050, depending on the production
region and energy scenarios. In other words, NiSO4 and Li,CO; account for 16%-31%
and 5%-14% of the life cycle GHG emissions of NCM622 cell production in 2050.

6.1.3 RQ3: What are the future GHG emissions of global automotive lithium-

ion battery production?
Methods

Combine dynamic MFA and prospective LCA. We build a model to estimate the GHG
emissions of global automotive lithium-ion battery cell production during 2020-2050.

The model framework combines the dynamic MFA model discussed under RQ17, which
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projects global demand for EV battery cells, and the prospective LCA model discussed
under RQ2'® which projects cradle-to-gate GHG emissions per kWh battery
production. As main scenarios discern a low, medium, and high demand for batteries.
The low demand scenario follows the STEP scenario but combined with an average
battery capacity of 33 kWh per BEV and 14 kWh per PHEV; the medium demand
scenario follows the STEP scenario in section 2.1.1 combined with an average battery
capacity of 66 kWh per BEV and 14 kWh per PHEV; The high demand scenario assumes
the same battery capacity per vehicle as the medium demand scenario, but follows the
SD scenario in section 2.1.1 that is about double EV fleet size than the STEP scenario.
We incorporate further in these battery demand scenarios with 2 battery chemistry
scenarios (in section 2.1.1) and two energy mix scenarios (in section 2.1.2). In addition
to scenario analysis, we conduct sensitivity analysis of battery production region and
closed-loop recycling with regard to total GHG emissions for global battery production.

Results

Global EV battery demand will result in 149-266 Mt CO2-Eq of GHG emissions in
2050. We find the life cycle GHG emissions of the global EVB cell production will
increase to 26-155 Mt CO2-Eq in 2030 and 58-468 Mt CO2-Eq in 2050, depending on
EV demand growth, battery chemistry, and energy mix scenarios. In the medium
battery demand scenario, the global GHG emission of EVB cells production will range
44-99 Mt CO2-Eq in 2030, 54-173 Mt CO2-Eq in 2040, and 99-287 Mt CO2-Eq in 2050
(the range depends on battery chemistry and energy mix scenarios). The high battery
demand scenario leads to 1.5-1.7 times higher annual GHG emissions than in the
medium demand scenario, while the low demand scenario results in 58%-59% of the
annual GHG emissions of the medium demand scenario. Between the high and low
demand scenario there is a factor of 2.6-2.9 difference in GHG emissions of global EVB

cell production in 2050.

In addition to the battery demand scenarios, the battery chemistry and energy mix
scenarios also affect the GHG emissions of global EVB cell production. Since LFP
battery production generates lower GHG emissions than production of NCX batteries,
the GHG emissions in the LFP scenario are 12%-15% lower than in the NCX scenario
(range depends on battery demand scenarios). Changes in the GHG intensity of energy
have a higher influence on GHG emissions as changes in the battery chemistry. In a

GHG emission scenario that aims to keep temperature rise well below 2 °C, GHG
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emissions from battery production are 48%-65% lower than in a GHG emission
scenario that will end up with 3.5 °C temperature rise.

GHG emissions reduce from 50%-75% by 2050 per kWh of battery, which results
in a relative decoupling. Despite an 8%-12% annual growth rate of the global
demand for battery cells during 2020-2050, life cycle emissions of battery production
only increase annually by 2%-10% in the same period. There is hence relative
decoupling, which can be defined as the relative change of annual growth rates of life
cycle emissions of battery production, and battery demand. The relative decoupling
rate can range from 19% to 70%, depending on battery demand, battery chemistry,
and energy mix scenarios.

Battery demand matters more than recycling for GHG emissions reduction.
Battery demand - determined by the EV fleet size and battery capacity per vehicle -
provides a promising opportunity to reduce battery GHG emissions. This is reflected
by the GHG emissions comparison among three battery demand scenarios. The
comparison indicates that drastic reductions are possible if mainly small EVs are used
with 33kWh storage capacity, as opposed to the 66 kWh we used on average. If
additionally, self-driving cars breakthrough, which are more intensively used, a further
reduction could be realized of required battery stock and related life cycle GHG
emissions of their production.

Materials recycling only has a minor but increasing role to reduce life cycle GHG
emissions of battery production. The relative maximum impact reduction potential by
recycling for GHG emissions (see methods in Chapter 4) is increasing from 0.25%- 0.76%
in the period from 2021-2030 to 2%-5.4% in 2031-2040, and to 3.8%-10.7% in 2040-
2050. This is mainly because the volume of materials entering the EolL stage in a specific
year is, given the vast expansion of the EV fleet, just a fraction of the required new use
(5%-30%). This situation can be only partly solved once the EV battery market has
reached a steady state, ie., when recycled EoL materials can almost completely meet
material demand. Under a hypothetical future steady state, the relative maximum
impact reduction potential can improve from 8%-22% in 2021-2030 to 10%-30% in
2031-2040, and to 13%-35% in 2040-2050. Note that this potential is not taking into
account the GHG emissions from collection and recycling processes. It is hence

essential that efficient, low-carbon techniques for battery recycling are developed.
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6.1.4 RQ4: What is the future grid storage capacity available from the global
use of automotive lithium-ion batteries?

Methods

Vehicle-to-grid and second-use. We develop an integrated model™ to assess the
future available (both technical and actual) grid storage capacity from EV batteries. In
the following, we describe both vehicle-to-grid capacity (i.e., batteries in use in EVs)
and second-use capacity (ie., EV batteries that reached their end of life but can be
used in less critical storage applications).

We define the technical vehicle-to-grid capacity as the availability of EV battery stock
capacity for vehicle-to-grid application, considering the capacity reserved for EV
driving, the capacity of PHEVs that will not participate in vehicle-to-grid, and capacity
loss due to battery degradation. We further define the actual vehicle-to-grid capacity,
under different consumer participation rates, as the actual availability of technical
vehicle-to-grid capacity for the grid.

We assume that batteries will retire from EVs when vehicles reach their EoL. Typically,
the retired batteries should have over 70% of their original capacity to meet the
technical and economic feasibility of the second use. We define the technical second-
use capacity as the capacity of the retired batteries that can be repurposed for a second
use, considering the capacity loss during their use in EVs. We further investigate the
actual second-use capacity under different market participation rates (ie., not all

retired batteries maybe end up as second-use).
Results

EV driving behavior and battery degradation. A battery degradation model - based
on the latest battery degradation test data differed by battery chemistries (LFP and
NCM) - is developed to estimate battery capacity loss over time under different
conditions of EV use, battery chemistry, and temperature. The model builds upon the
battery degradation method of Smith. et al. from NREL®' and considers both calendar
life and cycle life aging. The calendar life aging consists of all aging processes that
result in a degradation of a battery cell independent of charge and discharge cycles,
which is modeled based on factors of battery temperature and state-of-charge; the

cycle life aging refers to a degradation of a battery cell due to charging and discharging
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cycles, which is modeled based on factors of battery temperature, depth-of-discharge,
and current rate. The calendar life aging is an important factor than the cycle life aging
for the lithium-ion batteries applied in EVs where the driving periods are substantially
shorter than the idle parking periods.

We build an EV use model including behavioral factors such as the EV driving cycle
and charging behavior (charging power, time, and frequency), based on daily driving
distance datasets for small/mid-size/large BEVs and PHEVs provided by
Spritmonitor.de'®. In this model, EV battery SoC (state-of-charge) is simulated second-
by-second under three EV states: driving; parking and charging; and parking without
charging. For battery SoC during driving, we use the FASTSim model?®, developed by
NREL, to simulate battery SoC second-by-second with inputs information on the EV
driving cycle (vehicle speed over time), EV configurations (such as drag coefficients),
and battery performance parameters (specific energy and battery capacity). For battery
SoC during parking and charging, we assume a constant charging power with a 90%
charging efficiency?®® such that the battery SoC increases linearly until a full charge
state. If an EV is parked without charging, the SoC of the battery is slowly decreasing
due to losses caused by battery self-discharging. We assume a typical discharge rate
of 5% per month for lithium-ion batteries?%.

Electric vehicle batteries alone could satisfy short-term grid storage demand by
as early as 2030. The expanding use of wind and PV for electricity generation will lead
to a need for short- and long-term storage of electricity. Here, we focus on short-term
electricity storage since this accounts for the majority of the required power storage
capacity in kW' We have used the Planned Energy Scenario and the Transforming
Energy Scenario developed by the International Renewable Energy Agency? as well as
the conservative and optimistic scenarios'* developed by the Storage Lab. These
scenarios all give the level of penetration of renewable wind and PV technologies.
These levels of penetration estimate a short-term storage capacity requirement of
respectively 3.4, 9, 8.8-19.2 TWh by 2050 globally. The future demand for short-term
grid storage refers to the 4-hour storage capacity defined as a typical 1-time equivalent
full charging/discharge cycle per day, amounting to 4 hours of cumulative maximum

discharge power per day.

EV and second-use batteries are in principle an option to provide this storage capacity.

We define total technical storage capacity as the cumulative available EV battery
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capacity in use and in second use at a specific time, taking into account battery
degradation and the capacity needed to meet the demand for driving. Under all EV
fleet and battery chemistry scenarios, the total technical capacity will grow dramatically,
by a factor of 13-16 between 2030 and 2050. Putting this total technical capacity into
perspective against the future demand for short-term grid storage, we find that our
estimated capacity growth is expected to increase as fast or even faster than short-
term grid storage capacity demand in several projections®®'%, Technical vehicle-to-grid
capacity or second-use capacity are each, on their own, sufficient to meet the short-
term grid storage capacity demand of 3.4-19.2 TWh by 2050. This is also true on a
regional basis where technical EV capacity meets regional grid storage capacity
demand. Modest market participation rates (12%-43%) are needed to provide most if
not all short-term grid storage demand globally.

6.1.5 Answers to overall research question

Overall RQ: What are the future environmental challenges and opportunities for
automotive lithium-ion batteries from a life cycle perspective?

Methods

We build an integrated model that links dynamic MFA, prospective LCA, and state-of-
art battery technology modeling. The model was adjusted to answer various specific
RQs. First, we use this model to estimate the future battery material demand (challenge
1). It links the dynamic MFA method and the battery chemistry model (including
battery chemistry mix and material compositions). Second, we use this model to assess
the GHG emissions per kWh of battery production (challenge 2). It links the prospective
LCA method and the battery chemistry model. Third, we use this model to quantify the
GHG emissions of global battery production (challenge 3). It links the dynamic MFA
approach, the prospective LCA method, and battery chemistry modeling. Last, we use
this model to explore available grid storage capacity from global EV battery use
(opportunity 1). It links the dynamic MFA method and battery degradation modeling
(Le., battery capacity over time).

Results

According to our model, EV battery production poses several challenges to the

environment. There are however ways to limit these challenges. First, increasing EV
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battery deployments will lead to strong demand growth for raw materials - especially
lithium, cobalt, and nickel, which are defined as critical materials by the European
Commission. We can reduce battery material demand by developing batteries that use
low amounts of (critical) material (such as batteries based on chemistries using low
amounts of cobalt), closed-loop material recycling, and stimulating the use of small
cars using mall batteries. Self-driving cars that are driven much more intensively than
private cars could lower materials demand even further. Further, transparent, secure,
and sustainable supply chains of battery raw materials should be promoted. Second,
battery production will generate a significant amount of GHG emissions. The future
GHG emission per kWh battery storage capacity varies a lot by production region
(China/EU/US) and battery chemistry, and most importantly the energy mix (the share
of low-carbon renewable energy). Therefore, the use of low-carbon renewable energy,
especially for energy-intensive processes, during battery production should be
promoted. Third, the GHG emissions related to global battery production will increase
due to battery demand growth. This increase in GHG emissions can be reduced if we
use smaller cars with smaller batteries that have a lower GHG emission intensity. And
as already discussed under material demand, the use of self-driving cars could reduce
battery requirements and related GHG emissions from production even further.

Although the production of EV batteries will pose challenges to the environment, they
obviously will lead to a massive reduction in driving emissions in the first place (an
issue not further researched in this thesis). The use of EV batteries can further generate
co-benefits in terms of providing energy storage capacity for the power system. This
co-benefit, including both vehicle-to-grid capacity and second-use capacity, could
satisfy short-term grid storage demand by as early as 2030. The co-
benefit/opportunity of EV batteries to the power system should be promoted by

supporting policy, innovative business, and consumer participation.
6.2 Limitations and recommendations for future research

Projecting EV fleet size. We compiled two EV fleet scenarios for the period between
2020 and 2050. Such scenarios were done in 2020, however, are by definition uncertain.
They should be updated regularly, maybe even on a yearly basis, to incorporate the
implications of the fast development of EV technology, supply equipment (such as

charging infrastructure), and policy incentives. For instance, the IEA publishes a global
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EV outlook report and updates EV fleet scenarios each year, with projections until 2030
only. The IEA's projection of EV fleet size in 2022° is slightly higher than that in previous
years 2020%" and 20212, Also, instead of two EV fleet scenarios in 2020 and 2021, IEA
in 2022 presents three EV fleet scenarios that are associated with different climate and
EV policy goals: a stated policy scenario; an announced policy scenario; and a net-zero
emissions by 2050 scenario®. Among the three scenarios, the net-zero emissions by
2050 scenario projects the highest EV fleet size that follows a net-zero emissions
trajectory for energy system®, which should be included in future research.

Moreover, we do not consider self-driving vehicles* and vehicle sharing® in our EV fleet
scenarios. This is rarely considered in current studies, due to uncertainties with regard
to commercialization timelines and consumer acceptance of these potential
developments. Yet, such developments have potentially dramatic impacts on EV fleet
sizes and battery demand. Future research is hence recommended to include the
impacts of self-driving and sharing vehicles, since these technologies could lead to
lower EV fleet size and battery demand while at the same time reducing challenges
with regard to material requirements and life cycle GHG emissions of battery
production.

Battery chemistry. Three battery chemistry scenarios are developed on a global level,
and used also on a regional level. However, battery chemistry scenarios will differ in
regions, depending on regional battery policies and development roadmaps. For
instance, China prefers LFP batteries over NCA and NCM batteries, while the US and
EU prefer NCA and NCM batteries over LFP batteries®®. Future research can develop
regional-specific battery chemistry scenarios, which will increase the accuracy of
projecting regional battery materials demand and environmental impacts.

Further, battery technologies develop fast, and including the impacts of uncertain, but
potentially breakthrough battery technologies in our results is challenging. Although
we include a Li-S/Air scenario, we do not include any other chemistries beyond lithium-
based chemistries, such as aluminum, and sodium-based batteries®®. Such novel
chemistries can also be potentially used for EVs. For example, CATL started the

production of first-generation sodium-ion batteries for EVs?*'

, which do not require
lithium, cobalt, and nickel during battery production. Broader scenario analyses of such

possible future changes in battery chemistries are recommended.
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Battery production. When simulating battery cell production in the prospective LCA
model, future development of material efficiency is not incorporated in the model®*.
Higher material efficiency will result in lower material use and thus lower GHG
emissions. This can be achieved in many ways, such as designing batteries requiring
lower amounts of materials, reusing battery components and materials during
production, etc®. Future research should include the future development of material
efficiency and investigate its potential to reduce GHG emissions of battery cells.

Our analysis showed that the decarbonization of the energy system has a crucial
impact on the life cycle GHG emission of battery production. Various energy scenarios
exist from different Integrated assessment models, which can result in different life
cycle environmental impacts for future energy production. Selecting and adjusting
such energy scenarios to match battery production technology developments is hence
crucial in further research. Future research should include close-to-reality and specific
energy transition scenarios for different battery production stages/processes.

Battery use. We use state-of-art data to model battery degradation for LFP and NCM.
However, if drastic innovations in battery technology take place (such as Na-ion, Li-Air,
and Li-Sulphur?®, as discussed before), this may have a significant impact on battery
lifespans and degradation rates. Further, while we derived driving behaviour from
empirical data, future changes in driving habits are uncertain and dependent on
various factors such as EV-related infrastructure. Vehicle chargers increase in power
output over time and 50 kW charging is already common across some countries®?.
Frequent fast charging could lead to faster degradation, especially in hot/cold
climates®®. This challenge may be addressed by future technology improvements to
231

battery materials®®, electrode architectures, and optimized synergy of the

cell/module/pack system design'®®.

Our research found that technically EV batteries alone could satisfy by 2030 short-term
storage demand in electricity grids relying on input of PV and wind. Optimizing
vehicle-to-grid capacity or second-use capacity of EV batteries may enhance the
penetration level and use efficiency of renewable energy?*424, This may, in turn, result
in lower GHG emissions for battery production. An interesting subject for future
research could be building a model which can simulate interactions between EV

battery use, renewable energy production and storage, and battery production.
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Battery end-of-life. The battery lifespan strongly affects the demand for new batteries
and the end of life scenarios (second-use or recycling). It is uncertain due to consumer
behavior, battery state-of-health®*®, etc. Actual battery lifespan data should be
collected alongside the EV fleet exapansion, and included in future research to increase
the reliability of results.

Since recycling can reduce material demand and GHG emissions for EV batteries, we
do include the impacts of recycling in the analysis. However, the energy and materials
input to recover materials from EoL batteries during recycling are neglected due to the
lack of reliable data. Recycling may generate more GHG emissions than the emissions
mitigated by recovered materials (such as pyrometallurgical recycling of LFP
batteries*®), depending on battery chemistry and recycling technologies. It is necessary
to collect reliable LCI data on battery recycling and use the data along with a consistent
methodology for quantifying environmental costs and benefits of battery recycling.

6.3 Policy implications of this research

Battery materials. Given the expected strong demand growth for battery materials,
the global production capacity for critical materials - lithium, cobalt, and nickel - needs
to expand drastically. For lithium, demand from global light-duty EVs alone can exceed
the 2019 global lithium production, now mainly used in applications such as portable
batteries, ceramics, and catalysts in the next decade. This potential lithium supply
bottleneck is reflected by the recent lithium price spike of 438% in 2020%¥, due to
COVID lockdowns and supply chain issues®®. It is hence crucial to start lithium mining
and refinement projects well ahead of the demand increase given the fact that such
projects have years of lead time; considering alternative methods of extracting and
refining lithium (such as lithium from seawater) that can expand and speed up the
supply?¥. Similar problems can be expected for cobalt. Cobalt demand for EV batteries
alone in the next decade will be as high as the global cobalt production in 2020. Using
batteries with low cobalt content (such as NCM batteries in which cobalt content is
gradually reduced) or even batteries not containing cobalt (Li-Sulphur and Li-Air
batteries) can relieve the potential cobalt supply shortage’. For nickel, demand from
global EV battery production only, could surpass the 2019 global nickel production
used in all applications between two and three decades. The situation for nickel is

hence somewhat less critical as for lithium and cobalt in the long term. Increasing the
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mining and refining capacity of Class 1 nickel, which is required for batteries, can avoid
a nickel supply shortage for EV batteries®®. Note the criticalities and supply chain
vulnerabilities of different battery materials can change dramatically in a short term
due to material trade restrictions, social and political disruptions (such as the recent
war between Russia and Ukraine®®?), and the concentration of material production in a
few countries and regions. Building new production sources and developing material

251

reserves for battery materials, such as deep-sea mining®' and the recent mining

project in Greenland?>?, can improve the security of the materials supply chain.

In sum, a vast ramp-up of extraction and production of battery materials is required to
maintain an adequate supply. However, such a development poses environmental
challenges, along with social and governance complexities'. Since GHG emissions of
battery materials vary significantly under different conditions including production
technologies, battery chemistries, and the pace of the low-carbon energy transition,
we should stimulate conditions that lead to lower GHG emissions related to battery
production. Our results in Chapters 3 and 4 provide a basic understanding of how GHG
emissions related to battery production could be minimized.

Low-carbon energy transition. We must highlight the importance of low-carbon
energy transition in reducing GHG emissions of battery cell production (over 50%
reduction of battery GHG emissions). Increasing the share of low-carbon energy (such
as wind and solar) in the energy system and, at the same time, the use of low-carbon
energy during battery production should be a priority measure to reduce GHG
emissions from battery production. One practical measure is to install a solar power

70 - such that low-carbon

generation facility along with a battery production factory
electricity is generated and directly used for battery production without long-distance

electricity transmission.

Given the fact that the low-carbon energy transition is mainly driven by solar and wind
power installments, we should speed up the installations of solar and wind that
generate low-carbon electricity. However, electricity production by solar and wind
fluctuates due to weather variability (if no/weak/strong wind and sunshine), and they
require solutions to ensure a match of supply and demand on the electricity grid, such
as stationary battery energy storage. For large-scale deployment of stationary battery
energy storage, cutting down battery costs is necessary but challenging®3. The

opportunity that EV batteries alone could satisfy short-term grid storage demand by
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as early as 2030 should not be missed and used as a cost-effective storage solution
(ie., vehicle-to-grid and second use) for an energy system based on solar and wind. To
realize vehicle-to-grid, policy incentives should support the development of an EV
charging infrastructure that is capable of using as well vehicle-to-grid services,
business models to encourage the participation of EV consumers, and the inclusion of
EV battery energy storage in future electricity market design are all necessary supports.
The energy storage opportunity can also be provided by the second use of retired EV
batteries. Policies should focus on the establishment of a collection system for retired
batteries, the technology for rapid battery health checks and remanufacturing, and
business that can maximize the value of second-use batteries in the grid storage
applications.
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Summary

A rapid and large-scale shift from Internal Combustion Engine Vehicles (ICEVs) to
Electric Vehicles (EVs) is one of the most effective pathways to meet climate mitigation
goals for the transportation sector. Such a shift can reduce driving emissions of cars
significantly, especially when combined with the supply of renewable electricity. At the
same time, the use of batteries - dominated by lithium-ion batteries - will increase
drastically. To maximize the greenhouse gas (GHG) mitigation potential of EVs, further
efforts to lower the lithium-ion battery-related GHG emissions are essential. To guide
such efforts, it is essential to have a quantitative understanding of both the
sustainability challenges and opportunities that the large-scale use of EV batteries
provides.

In this thesis, | built an integrated model that combines dynamic MFA (material flow
analysis), prospective LCA (life cycle assessment), and battery technology modeling.
We use the integrated model and scenario analysis in chapters 2 to 5 to answer the
overall research question: What are the future environmental challenges and
opportunities for automotive lithium-ion batteries from a life cycle perspective? By
combining dynamic MFA and battery technology modeling, we estimate the global
stocks and flows of battery materials until 2050 (Chapter 2). By combining prospective
LCA and battery technology modeling, we assess life cycle GHG emissions of future
battery production discerning different battery production regions, battery chemistries,
and energy mix scenarios (Chapter 3). By combining dynamic MFA, prospective LCA,
and battery technology modeling (i.e., combining Chapter 2 and Chapter 3), we explore
the total GHG emissions associated with global EV battery production and also discuss
the effect of closed-loop material recycling (Chapter 4). Lastly, in addition to the above-
mentioned battery environmental challenges, we evaluate the energy storage capacity
potentially available from EV batteries by combining the dynamic MFA model and the
battery technology modeling. We compare this storage potential to the demand for
the grid storage capacity (Chapter 5). The model integration enables us to
systematically investigate and analyze the sustainability challenges and opportunities
of the large-scale deployments of EV batteries.

Chapter 2 assesses the future material demand for EV batteries, including critical

materials (lithium, cobalt, and nickel) that are crucial to the global economy and
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associated with environmental and social impacts. Our analysis in Chapter 2 is based
on the detailed modeling of the future battery chemistry mix and the material
compositions of each chemistry. For modeling battery material compositions, the
parameter inputs include EV type (battery electric vehicle/plug-in hybrid electric
vehicle), size (small/mid-size/large), and performance (EV range and fuel economy) as
well as battery chemistry (positive and negative active material capacity of 8
chemistries) and performance (e.g., specific energy). Results show the dynamic
development of battery stock, the demand for 8 battery materials, and the number of
end-of-life batteries. We find a strong demand growth for battery materials (a factor
of ~20 from 2020 to 2050). The modeling results for three battery chemistry scenarios
assert that the material demand strongly depends on the battery chemistry. The
demand for nickel and cobalt is lower when deploying more lithium iron phosphate
batteries and lithium-sulfur/lithium-air solid-state batteries instead of lithium nickel
cobalt aluminum/ lithium nickel cobalt manganese batteries. This, in turn, reflects the
importance of modeling future battery chemistry mixes and the material compositions
of each chemistry.

Chapter 3 quantifies the GHG emissions of future battery production using a
prospective LCA model that simulates the life cycle inventories (LCls) of future battery
production. The data source for the foreground LCls is based on the EverBatt model
(Argonne’s closed-loop battery life-cycle model), China battery industry reports
(environmental assessment reports for battery production), and others (such as
literatures); the background LCls are based on the integration of ecoinvent 3.6 (world’
s most consistent and transparent life cycle inventory database), future energy mix
scenarios with an ambitious and moderate GHG emission reduction policy based on
the REMIND (Regional Model of Investment and Development) Integrated Assessment
model, and future technology changes for the supply of key battery metals. The
analysis is performed for different combinations of battery production regions, battery
chemistry, and energy mix. The results show that the future life cycle GHG emissions
of battery production relies heavily on the future energy mix. The scenario that includes
a low-carbon energy transition, which aims well below 2 degrees Celsius for global
warming, can result in an 50%-75% reduction in the life cycle GHG emissions of EV

batteries.
Chapter 4 shows the total GHG emission of global EV battery production. This chapter
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is based on the dynamic MFA model from Chapter 2, but develops three more specific
future battery demand scenarios (low/medium/high) considering EV fleet size and
battery capacity per vehicle. Taking into account the life cycle GHG emissions of battery
production including differences therein between battery production regions
(China/EU/US), Chapter 4 presents the magnitude and range of total GHG emissions
related to global EV battery production. The decreasing life cycle GHG emissions of
battery production result in a relative decoupling between total GHG emissions of
battery production and global battery demand. Despite this relative decoupling, results
show that there is no absolute decoupling due to the strong demand increase overall
until 2050. Reduction of the production emission requires an even faster penetration
of renewable energy production, using battery chemistries (such as lithium iron
phosphate batteries) that emit less GHG during production, etc.

Finally, Chapter 5 presents an opportunity of EV battery use: the co-benefit of
providing grid storage. This is important, since in future a significant part of electricity
production will come from intermittent sources such as wind and solar power. Chapter
5 uses the results of Chapter 2 on future battery stocks and outflows, which are
differentiated by battery capacity and chemistry. Further, based on a detailed dataset
on the daily driving distance of various EV types/sizes/models, Chapter 5 models the
EV driving behavior and battery use states. The battery use states (driving/charging)
over time, combined with the battery chemistry and information on ambient
temperature, are used to estimate battery degradation over time (ie, the dynamic
battery capacity under various conditions). Results present the total gird storage
capacity from EV batteries until 2050, including both vehicle-to-grid and second-use,
under assumed market participation rates of vehicle-to-grid and second-use. By
comparing this total grid storage capacity with demand scenarios for storage capacity,
we find that EV batteries alone could satisfy short-term grid storage demand by as
early as 2030.

Combining the results of Chapters 2-5, increasing battery demand and battery
production driven by EV fleet penetration will continue to pose challenges to raw
materials supply and GHG mitigation in the context of achieving climate goals. Large-
scale production of EV batteries would weaken the driving emission reduction benefits
resulting from EVs. The results point out the important factors (e.g., battery chemistry,

production region, and low-carbon energy transition) and their effects on the
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magnitude of the challenges. This has fundamental implications for the guidance with
respect to relieving these challenges and even turning challenges into opportunities
for achieving environmentally sustainable batteries.

A lower emission and even net-zero battery industry can be achieved by the adoption
of new battery production processes using low-carbon electricity, in addition to other
potential low-carbon energy sources. Reducing life cycle emissions from battery
production should require further coordinated actions throughout battery value chains
to promote all mitigation options. This includes reducing battery demand (such as
stimulating the use of small EVs that can be driven with low-capacity batteries);
improved and innovative battery technologies that enhance battery lifetimes, and are
less dependent on materials that are critical or require high levels of energy to be
produced; increasing material and energy efficiency during battery production;
implementing circular economy principles (such as close-loop recycling).
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Samenvatting

Een snelle en grootschalige overstap van voertuigen met een verbrandingsmotor
(ICEV's) naar elektrische voertuigen (EV's) is een van de efficiénste manieren om de
klimaatdoelen voor de transportsector te halen. Deze omschakeling kan de uitstoot
van auto's aanzienlijk verminderen, vooral in combinatie met de levering van
hernieuwbare elektriciteit. Tegelijkertijd zal het gebruik van batterijen - met name
lithium-ionbatterijen - drastisch toenemen. Om de klimaatimpact van EV's te
minimaliseren, is het essentieel om de uitstoot van broeikasgassen (BKG's) van de
productie van lithium-ionbatterijen te verlagen. Om dergelijke inspanningen in goede
banen te leiden, is het essentieel om een kwantitatief inzicht te hebben in zowel de
duurzaamheidsuitdagingen als de kansen die het grootschalige gebruik van EV
batterijen biedt.

Deze dissertatie beschrijft een geintegreerd model dat dynamische MFA (Material Flow
Analysis  of materiaalstroomanalyse), ex-ante of toekomstgerichte LCA
(levenscyclusanalyse) en modellering van batterijtechnologie combineert. We
gebruiken het geintegreerde model en een scenario-analyse in de hoofdstukken 2 tot
5 om de hoofdonderzoeksvraag te beantwoorden: Wat zijn de toekomstige milieu-
uitdagingen en kansen voor lithium-ion batterijen voor EV's vanuit een levenscyclus
perspectief? Met de combinatie van dynamische MFA en het batterijtechnologiemodel
schatten we de wereldwijde voorraden en stromen van batterijmaterialen tot 2050
(hoofdstuk 2). Door ex-ante LCA en het batterijtechnologiemodel te combineren,
beoordelen we de toekomstige broeikasgasemissies van de batterijproductie
gedurende de levenscyclus, waarbij wij verschillende productieregio's, batterijtypen en
energiescenario's onderscheiden (hoofdstuk 3). Door alle drie de modellen (d.w.z. door
hoofdstuk 2 en hoofdstuk 3) te combineren, onderzoeken we de totale
broeikasgasemissies die gepaard gaan met de wereldwijde productie van EV-batterijen
en bespreken we ook het effect van recycling van materialen in gesloten kringlopen
(hoofdstuk 4). Naast de bovengenoemde milieu-uitdagingen voor batterijen evalueren
we tenslotte de potentiéle opslagcapaciteit van EV-batterijen om de stabiliteit van een
door wind- en zonne-energie gevoed elektriciteitsnet te vergroten, door het
dynamische MFA-model en het batterijtechnologiemodel te combineren. We

vergelijken dit opslagpotentieel met de behoefte aan opslagcapaciteit voor elekticiteit
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(Hoofdstuk 5). De modelintegratie stelt ons in staat om de batterijtechnologie
systematisch te onderzoeken en te analyseren met betrekking tot de duurzaamheid
van de grootschalige inzet van EV batterijen.

Hoofdstuk 2 onderzoekt de toekomstige vraag naar materialen voor EV-batterijen,
inclusief kritieke materialen (lithium, kobalt en nikkel) die cruciaal zijn voor de
wereldeconomie en wier productie gepaard gaat met ecologische en sociale
problemen. Onze analyse in hoofdstuk 2 is gebaseerd op een gedetailleerde
modellering van de toekomstige mix van batterijtypen en de materiaalsamenstellingen
van elke type. Het model van de samenstelling van batterijmaterialen heeft als
invoerparameters het EV-type (Batterij Electrische Voertuigen/Plug-in Hybride
Electrische Voertuigen), de grootte (klein/middengroot/groot), en de prestaties
(rijpereik en brandstofrendement) alsook de batterijchemie (8 combinaties van
verschillende anode- en kathodematerialen) en de prestaties (zoals opslagcapaciteit).
De resultaten tonen de ontwikkeling van de batterijvoorraad, de vraag naar 8
batterijtypes, en het aantal afgedankte batterijen. Wij constateren een sterke groei van
de vraag naar batterijmaterialen (een factor ~20 van 2020 tot 2050). De
modelresultaten voor drie specifieke batterijchemiescenario's bevestigen dat de vraag
naar materialen sterk afhangt van de batterijsamenstelling. De vraag naar nikkel en
kobalt is lager wanneer meer LFP- en Li-S/Li-Air-batterijen worden gebruikt in plaats
van NCA/NCM-batterijen. Hieruit blijkt hoe belangrijk het is om modellen te maken

van de toekomstige samenstellingen van batterijen en batterijmaterialen.

In hoofdstuk 3 worden de toekomstige broeikasgasemissies van batterijproductie
gekwantificcerd met behulp van een ex-ante LCA-model dat de
Levenscyclusinformatie (LCl) van de toekomstige batterijproductie simuleert. De
gegevensbronnen voor de LCI's van de batterijproductie zelf (de zogenaamde
voorgronddata) zijn onder anderen het EverBatt-model en een rapport van de Chinese
batterijindustrie. De LCl’'s van toeleverende productieprocessen (de zogenaamde
achtergronddata) zijn gebaseerd op de integratie van de LC| database ecoinvent 3.6,
toekomstige energiemixscenario's met een ambitieus en gematigd BKG-
emissiereductiebeleid op basis van het Remind Integrated Assessment Model, en
toekomstige technologische veranderingen voor het produceren van de belangrijkste
metalen gebruikt in batterijen. De analyse wordt uitgevoerd voor verschillende
combinaties van batterijproductieregio's, batterijsamenstellingen en energiemixen. Uit
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de resultaten blijkt dat de toekomstige broeikasgasemissies van de batterijproductie
sterk afhangen van de toekomstige energiemix. Het scenario met een energietransitie
die gericht is op minder dan 2 graden Celsius opwarming kan resulteren in een
vermindering van de broeikasgasemissies van de productie van EV-batterijen met
50%-75%.

Hoofdstuk 4 toont de totale broeikasgasemissies van de wereldwijde productie van
EV-batterijen. Dit hoofdstuk is gebaseerd op het dynamische MFA-model van
hoofdstuk 2, maar ontwikkelt drie specifiekere scenario's voor de toekomstige vraag
naar batterijen (laag/gemiddeld/hoog) rekening houdend met de omvang van het EV-
wagenpark en de batterijcapaciteit per voertuig. Rekening houdend met de
broeikasgasemissies van batterijproductie, met inbegrip van de verschillen tussen de
batterijproductieregio’s (China/EU/VS), wordt in hoofdstuk 4 de omvang en de
bandbreedte van de totale broeikasgasemissies met betrekking tot de wereldwijde
productie van EV-batterijen gepresenteerd. De afnemende broeikasgasemissie van
batterijproductie resulteert in een relatieve ontkoppeling tussen de totale
broeikasgasemissies en de wereldwijde vraag naar batterijen. Ondanks deze relatieve
ontkoppeling blijkt uit de resultaten dat er geen absolute ontkoppeling is als gevolg
van de sterke toename van de totale vraag tot 2050. Een vermindering van de
productie-emissies vereist een nog snellere overstap naar hernieuwbare energie, het
gebruik van batterijtypes die minder energie vergen tijdens de productie (zoals LFP),

enz.

Tot slot wordt in hoofdstuk 5 een mogelijkheid gepresenteerd voor het gebruik van
EV-batterijen: de mogelijkheid om elektriciteit van het net te bufferen. Dit is van belang
omdat in de toekomst naar verwachting een aanzienlijk deel van de
elektriciteitsproductie uit niet continue bronnen zoals wind en zon zal komen.
Hoofdstuk 5 maakt gebruik van de resultaten van hoofdstuk 2 over toekomstige
instroom, uitstroom en totale voorraad van batterijen in de economie, die worden
gedifferentieerd naar batterijcapaciteit en -chemie. Verder, gebaseerd op een
gedetailleerde dataset over de dagelijkse rijafstand van verschillende EV-modellen,
worden in hoofdstuk 5 het rijgedrag en gebruik van batterijen van EV's in de tijd
gemodelleerd. De gebruiksstatus van de batterij (rijden/laden) in de tijd,
gecombineerd met de batterijchemie en informatie over de omgevingstemperatuur,
wordt gebruikt om de degradatie van de batterij in de tijd te schatten (d.w.z. de
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dynamische batterijcapaciteit onder verschillende omstandigheden). De resultaten
tonen de totale netopslagcapaciteit van EV-batterijen tot 2050, met inbegrip van zowel
voertuig-naar-net als tweedehands gebruik, onder veronderstelde marktdeelname van
beide toepassingen. Door deze totale netopslagcapaciteit te vergelijken met scenario's
voor de vraag naar opslagcapaciteit, komen we tot de bevinding dat EV-batterijen al
in 2030 in de volledige vraag naar korte-termijnopslag kunnen voorzien.

Uit de combinatie van de resultaten uit hoofdstukken 2-5 blijkt het volgende. De
stijgende vraag naar en productie van batterijen als gevolg van de elektrificatie van het
wagenpark resulteert in aanzienlijke materiaalbehoeften en BKG emissies.
Grootschalige productie van batterijen kan dus de netto vermindering beperken van
BKG uitstoot door gebruik van elektrische voertuigen. Dit proefschrift geeft echter ook
inzicht in de belangrijkste factoren die BKG emissies van de productie van batterijen
kan verminderen (zoals batterijtype, de productieregio, en de snelheid van de
energietransitie). Deze inzichten zijn cruciaal om voornoemde uitdagingen te lijf te
gaan of zelfs om te zetten in kansen.

Een batterijproductie met een BKG emissie die laag of zelfs nihil is kan productie te
richten op batterijtypes die weinig energie vergen in de productie en waarbij gebruik
wordt gemaakt van emissiearme elektriciteit, naast andere potentiéle duurzame
energiebronnen. Verder moet in de hele waardeketen van batterijen gezocht worden
naar reductie-opties om alle kansen te benutten. Dit omvat het verminderen van de
vraag naar batterijen (zoals het stimuleren van het gebruik van kleine EV's die kunnen
worden aangedreven met batterijen met een kleinere capaciteit); verbeterde en
innovatieve batterijtechnologieén die de levensduur van batterijen verlengen en
minder afhankelijk zijn van materialen die kritisch zijn of veel energie vergen om te
worden geproduceerd; het verhogen van de materiaal- en energie-efficiéntie tijdens
de batterijproductie; en het toepassen van de beginselen van de kringloopeconomie

(zoals hoogwaardige recycling).
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