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Chapter 1

General introduction and scope



Living entities are part of the most complex systems we know. At the
most basic level, a single cell comprises huge numbers of molecules and
is structured in a very densely organised space. All of those molecules
are involved in a variety of biochemical reactions that are driven by
highly regulated enzymes and interfere with the cell in the form of
hormones, drugs, or variations in the amount of nutrition available.
With the evolution of modern biosciences, multiple techniques have
been developed to collect information about the elementary building
blocks of an organism, also known as omics data'. Before the first gen-
ome was sequenced in 1995, the proteobacteria Haemophilus influenza
(Fleischmann et al.), we believed we could comprehend the metabolic
behaviour of a biological system and all its genetic elements by know-
ing its complete genomic sequence, starting with what it is known as
genomics. This genotype-phenotype assumption might be correct for
a simple biological system, such as Mycoplasma genitalium, consisting
of 521 genes (Fraser et al.). Nevertheless, the metabolic behaviour
of complex biological systems is difficult to fully understand due to
the complexity of the interactions of their gene products, increasing
the complexity of the genotype-phenotype relationship in a biological
system. Velculescu et al. pioneered transcriptomics by characterising
the entire set of RNA transcripts produced by the yeast Saccharomyces
cerevisiae, where genes are expressed differently under different condi-
tions. Additionally, the longer the genome is, the more likely it is to
have non-coding DNA. For that reason, scientists aimed to find gene
products in cells, isolate them and characterise them; the data acquired
was called the bibliome (Grivell et al.). Later, it was discovered that
a gene product does not do much by itself. The interaction with other
gene products is necessary to manifest a biological function, e.g., in
glycolysis, where all 12 chemical transformations are catalysed by their
respective gene products need to be active (Berg et al.). Moreover,
glycolysis is just a pathway within a larger biological system and will
never function independently. Single-gene defects cause over 4,000
human diseases (Ropers). A single gene mutation can disrupt an entire
biological system by affecting all low-molecular-weight molecules in the
cellular environment, which later was described as the metabolome.

n this context, the suffixes -ome and -omics are used to describe entire biological
datasets, such as sets of biomolecules deriving from a single organism (e.g. proteome
and lipidome), related to each other (e.g. genome, transcriptome and metabolome)
or refer to the structure or function (e.g. chemome and glycome). Omics data
can be obtained from big databases or technologies like next-generation sequencing,
mass spectrometry or NMR spectroscopy.



From prokaryotes to eukaryotes, biological systems are highly or-
ganised in their structure and function. Additionally, they evolve by
adapting to their environment. These modifications make their beha-
viour difficult to predict from the properties of individual parts, as it
was believed before sequencing the genome of Haemophilus influenza
(Fleischmann et al.).

Systems biology, an approach used in biomedical research, integ-
rates the complexity of living entities, the evolution of modern bios-
ciences, and the rise of omics to study biological systems. This ap-
proach provides new insights into the biochemical origins of diseases or
allows us to predict novel targets for biomarkers or design new therapies
(Heinken et al., Preciat, L. Moreno, Wegrzyn and others, Norsigian
et al., Aurich et al., Brunk et al.). Systems biology combines omics
data to obtain a mathematical description of a biological system. In
principle, if we understand the set of instructions a biological system
follows, we might be able to adjust it to comprehend the pathogenesis
of complex diseases or develop novel therapies. This can be done
through highly detailed computer models to precisely calculate the
interactions of components to predict system behaviour. These models
incorporate experimental conditions by incorporating physicochemical
or experimental constraints. (Zierer et al., Das et al.)

Modelling biological systems

Mathematical models can be used to represent a biological system and
recreate aspects of the organism’s function. The models are useful for
a variety of purposes, including developing intuition, filling in gaps in
processes where we have made observations or testing all parameters
at once (Figure 1).

However, a model doesn’t behave exactly as an organism would
do in the real world, but it can be used to approximate key aspects
of it, allowing us to simulate experiments that would otherwise be
impossible to run and allow us to test all of the parameters in the
model at once. They can also be used to conduct experiments in order
to test hypotheses and develop a theory.
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Figure 1: An example of a model.
A metabolic network with five metabolites (m1, ma, ms, ma and ms), four internal
reactions (vi, vz, vz and vy4), and four exchange reactions (vs, ve, v7 and vg)
within the boundary (a). Set of equations for estimating the concentration of each
metabolite over time (b).

Mathematical models have different properties. Some of the prop-
erties can be summarised in Table 1.

With the evolution of modern biosciences, the information obtained
from biological systems has grown and modelling approaches have be-
come more complex, necessitating the implementation of computa-
tionally efficient algorithms. Various modelling approaches have been
developed to study biological systems, where they can be used for basic
exploration, disease biomarker discovery, and physiological phenotyp-
ing.

Machine learning. It is an explicit, statistical, and indicative model
used to predict trends and patterns. These models learn from the
experience provided in the form of data and eliminate irrelevant or
redundant information to discover relevant patterns.

Kinetic models. It describes network dynamics using ordinary dif-
ferential equations by modelling changes over time. This is accom-
plished by relating the rates of change for the elements in the model.
They are typically dynamic, nonlinear, explicit, small, and deductive
models.

Mechanistic models. They are based on fundamental natural sci-
ence laws, such as physical and biochemical principles. They analyse
the mechanism observed in an experimental scenario recreated through
simulations based on a series of constructive principles. This approach
includes different properties to represent the biological system, such as



steady-state, linearity, implicit, mechanistically, discrete, and deductive
modelling.

Table 1: Properties of mathematical models.
The correct modelling approach is achieved by identifying the types of data available
as well as the purpose of the study.

Property Options Description Representation
Steady state It is time-invariant; it is used to calculate the Sw=0
Y elements of system in equilibrium. -
Time |Unsteady state Time dependent. y1 =% + ¥
Represent time-dependent changes in a system;
Dynamic |involves the combination of algebraic and Ve (©) = g1 (W (), ., X0 ()
differential equations.
) Represent systems that can be graphically _
Linearity Linear represented as a straight line. ysEFl
Nonli The output difference is not proportional to the _ .3
oniinear input difference. y=x
Method Expl-icit Inputs are known. y=f(x)
Implicit Outputs are known. Rx,y)=0
A unique output is produced to a unique output for
Mechanistic |linear models and multiple outputs are possible for Sv=0

non-linear models.

Sums up a collection of statistical assumptions
from sample data.

Accounts uncertainties caused due to the varying
Probabilistic |behavioural characteristics; same inputs produce x(t) = f(t) + h(®)e(t)
different outputs.

Approach Statistical Y,=a+fX +g

B
Discrete Represent states in a statistical model. y= Z(x)
Frequency *:“
Continuous |The state change continuously over time ¥ :f (x) dx
0
Small Describe detailed processes. 5 € R¥**
Scale

Genome-scale |Describe complex/multidimensional processes. S € R1280x3402

Deductive  |Logical structures. -

Nature Indicative  |Based deductive models. -

Floating  |Based on the invocation of the expected structure. -

These approaches have been used to study complex diseases (Pre-
ciat, L. Moreno, Wegrzyn and others, Dinov et al.), which are the result
of the convergence of several genomic variations, including diseases such
as Parkinson’s disease, diabetes, and cancer.

Parkinson’s disease

After Alzheimer’s, Parkinson’s disease is the most common neurode-
generative disease (Balestrino and Schapira). The most noticeable



symptoms of this disease are slowness of movement, muscle rigidity, and
resting tremors. Parkinson’s disease affects many areas of the nervous
system and different types of neurons and other cells, such as astrocytes
and microglia. Still, much emphasis has been placed on dopaminergic
neurons in brain regions associated with motor symptoms, particularly
the substantia nigra pars compacta, an area of the midbrain (Oliveira
et al.). This region is part of a major pathway in the brain that is
important for movement facilitation. In Parkinson’s disease, dopam-
inergic neurons in the substantia nigra die gradually, resulting in a
malfunction of this pathway and the characteristic motor symptoms.
Drugs that replace or mimic dopamine are frequently used to treat these
types of deficits, but their efficacy diminishes over time. In addition,
although deep brain stimulation may be used to treat symptoms, no
current treatment slows neurodegeneration.

In most cases of Parkinson’s disease, clumps of misfolded proteins
within neurons are a distinct pathology. Lewy bodies are the most com-
mon and are formed with the aggregation of alpha-synuclein (Munoz
et al., Lehtonen et al., Oliveira et al.). Parkinson’s has also been
linked to problems with mitochondria (Yao et al., Requejo-Aguilar
et al., Hedrich et al., Ge et al.), which provides the neuron with the
energy to perform vital functions and with neuroinflammation (Borsche
et al., Jiang et al.). Another idea is that glial cells surrounding neurons
may play a role in Parkinson’s disease, causing neuroinflammation and
therefore, damaging dopaminergic neurons (Belanger et al.).

Novel approaches to studying Parkinson’s disease are being pro-
posed. Lucumi Moreno et al. developed a three-dimensional cell culture
bioreactor that employs microfluidics to induce neuroepithelial stem cell
differentiation in dopaminergic neurons. Aggregation models, based on
neuronal connectivity, predict the spread of misfolded proteins such
as alpha-synuclein, which is likened to Parkinson’s disease (Oliveira
et al.). Dinov et al. used machine learning and big data on Parkinson’s
disease to analyse clinical, demographic, and genetic data to predict
Parkinson’s disease with an accuracy of 0.96. However, due to the
multifactorial nature of the disease progression, understanding Parkin-
son’s disease necessitates an interdisciplinary approach involving exper-
imental and modelling studies in addition to clinical studies. In Borsche
et al. is identified an association between Parkinson’s disease geno-
types, increased mtDNA release, and neuromodulation in Parkinson’s
disease patients after analysing different proteins and circulating cell-
free mtDNA in serum of 245 participants in two cohorts from tertiary



movement disorder centres. Jiang et al. showed that KH176m inhibited
the enzymatic activity of a metabolite up-regulated by inflammatory
stimuli in both mouse macrophage-like cells and human fibroblasts,
which may aid in treating patients with mitochondrial diseases and
other diseases associated with inflammation.

Constraint-based modelling, the approach used in this thesis, is a
mechanistic approach, which aims to represent the genotype-phenotype
relationship of a biological system according to a multidimensional
space representing the metabolism of a dopaminergic neuron, a neuron
associated with the motor symptoms of Parkinson’s disease.

Constraint-based modelling

Biological systems are subject to environmental constraints, such as
temperature, osmolarity, or the availability of nutrients. Regulatory
constraints enable cells to eliminate suboptimal conditions in order to
confine themselves to fit behaviours; for example, a neuron will not use
lactose for energy production if glucose is available.

Constraint-based modelling is a computational and mathematical
approach that uses genome-scale metabolic models to simulate real-life
biological activities in silico, providing an integrated view of a bio-
logical system. The goal is to predict the net flux of the metabolic
reactions in the genome-scale metabolic model, given the constraints of
the biological system.

The flux distribution is calculated mathematically as Sv = dx/dt,
which represents a system with internal reactions occurring within the
biological system and external reactions representing metabolites ex-
changed with the environment; S € R™*" is the stoichiometric matrix
representing the biochemical network, m is the number of metabolites,
and n is the number of reactions; v represents the flux vector, and
dx/dt represents the metabolite concentrations over time.

A genome-scale metabolic model includes several physicochemical
and context-specific constraints to predict the net flux, such as (1)
the connectivity between metabolites and reactions, represented by
the stoichiometric matrix S; (2) thermodynamic constraints indicate
the reaction directionality since some reactions cannot be reversed,
such as hexokinase, a glycolysis-related enzyme; (3) maximum flux
rates, represent enzyme turnover rates, nutrient uptake or metabolite



secretions; and (4) the steady-state constraints, or null space, predicts
the net flux with no metabolite accumulation, represented by Sv = 0.

Considering all the constraints, a multidimensional space is gener-
ated with all possible fluxes, allowing for the optimisation of specific
features of a biological system e.g., Flux Balance Analysis (FBA). In
FBA the feature of a genome-scale model to be optimised is math-
ematically represented by the objective function and may represent
nutrient uptake minimisation, metabolite production maximisation, or
Euclidean norm minimisation (Figure 2).

a. Biochemical network b. Stoichiometric matrix c. Flux space
Vy Vp V3 Vy Vs Vg V7 Vg
Yy Vs V3 Uy Vs Vg V7 Vg lb:[OOOO-mOOO]
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mz11-1-1 00000
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Figure 2: An example of a constraint-based modelling workflow

A biochemical network represents a constraint on the connectivity between meta-
bolites and reactions (a) and its mathematical representation is the stoichiometric
matrix S (b). Thermodynamic and flux rate constraints are indicated by the lower
and upper bounds (Ib and ub). For this example, the reactions vs and vg are the
inputs. S, Ib and ub form a unique convex flux space, representing all the possible
fluxes (c). Optimisation methods such as FBA are used to identify an optimal
solution for the given constraints in the flux space. c¢ is the objective function,
Sv = 0 is the steady-state constraint and the maximum and minimum reaction
bounds were set between too, therefore —co < v < 0o (d). The optimal state is
represented by a point in the flux space, where each coordinate represents the flux
of a metabolic reaction (e).

Several protocols for generating genome-scale metabolic models have
been developed (Thiele and Palsson, Norsigian et al., Preciat, Wegrzyn,
Thiele and others), as well as algorithms for extracting them using
context-specific information such as gene expression (Becker and Pals-
son, Zur et al., Agren et al.), a set of active reactions (Jerby et al.,



Preciat, Wegrzyn, Thiele and others, Vlassis et al.) or metabolite’s
concentrations (Aurich et al., Preciat, Wegrzyn, Thiele and others,
Capela et al.). Different modelling approaches can also be used to
integrate transcriptomics (Zur et al.) or metabolomics (Aurich et al.,
Preciat, Wegrzyn, Thiele and others) data.

The formulation of the objective function is critical in constraint-
based modelling for accurately representing the phenotypic behaviour
of a genome-scale model given by the flux vector v. An objective
function represents a context-specific or a mathematical feature of a
biological system. Context-specific objective functions may include
reactions to ensure the system’s growth or maintenance, such as bio-
mass growth, cellular synthesis, and turnover requirements (c in Figure
1d). Among the mathematical objective functions is found the zero
norm (||v||,), which minimises the total number of non-zero elements
in the flux vector; the one norm (||v|; ), which minimises the sum of the
magnitudes in the flux vector; or the two norm (||v||,), which minimises
the distance between the elements in the flux vector. Furthermore,
mathematical and context-specific objective functions could be com-
bined by weighting the norms with biological or chemical data such
as reaction expression based on transcriptomic data or the number of
bonds broken and formed in a biochemical reaction (¢ ||v|| > Where
p is the norm and ¢ a vector with context-specific data for each re-
action). Alternatively, an unbiased description of a flux distribution
can be provided by sampling the flux space uniformly to have the flux
distribution of each metabolic reaction (Haraldsdottir et al.).

Finally, constraint-based modelling can be used in combination with
experimental methods. Tracer-based metabolomics is an experimental
approach for determining the distribution of stable isotope tracers across
multiple metabolic stages (Wiechert). The distribution of the tracers
enables a quantitative link between precursor and product, which aids
in the identification of metabolic intermediates in biological systems.
Data from tracer-based metabolomics can be analysed and interpreted
using a constraint-based modelling approach. Modelling biological sys-
tems with efficient objective functions could be used to develop novel
therapies or experiments in an attempt to better understand the neuro-
degeneration caused by Parkinson’s disease (Figure 3).
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Scope and outline

This thesis aims to generate a control model of a dopaminergic neuron
derived from an induced pluripotent stem cell-derived dopaminergic
neuronal culture, integrating omics data, and use it to design novel in
vitro, tracer-based experiments.

It was assumed that the integration of omics information into a
genome-scale model would increase the predictive capacity of the model.
If the model holds up to reality, it could be used to interpret patient-
specific metabolic data, combine these models with clinical data to
develop diagnostic methods, identify biomarkers that reduce the se-
lective death of dopaminergic neurons in the sustantia nigra, aid in the
design of tracer-based metabolomics experiments or compare the flux
predicted in the models to biomarkers found in clinical samples.

a. Generic metabolic c. Generic model

network b. Generic flux :l::ce phenotype

Samples EER estimation

Flux estimation

B sampled space

Probability

-30 -20 -10 0 10 20 30
Flux of reaction n (uMol/gDW /hr)

d. Context-specific e. Context-specific f. Context-specific
metabolic network flux space maodel phenotype
s les Flux 0.06
amples g estimation 0.05
0.04 Flux estimation
= [ ) Sampled space
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=
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& 00 § Measured
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Figure 3: Generic vs context-specific models
A generic metabolic network with structural and thermodynamic constraints (a) has
its own flux space (b) that can be sampled or used to predict the reaction’s fluxes to
analyse the phenotype of a biological system (c). Reactions, genes, and metabolites
can be added or removed by incorporating context-specific data into a metabolic
network, such as bibliomic, metabolomic, or transcriptomic data. Context-specific
data could also be used to constrain reaction rates. (d). By adjusting the constraints
of the generic model, the flux space can be reshaped (e), resulting in new predictions

(f)-
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The specific aims were: (1) to integrate qualitative omics data into
genome-scale models for the generation of context-specific models; (2)
to generate a context-specific model using omics data from induced
pluripotent stem cell-derived dopaminergic neuronal culture; (3) to
compare existing atom mapping tools, a one-to-one correspondence
between an atom in a substrate and an atom in a product using dir-
ected graphs, for the integration of chemomics data in genomic-scale
models; and (4) to generate an atomically resolved, context-specific
genome-scale model for neuronal dopaminergic metabolism (Figure 4).

Chapter 3. Dopaminergic neuronal 8
genome-scale model ~o-

Bibliomics Chapter 2.
I Omics integration
Metabolomics ﬁ
(K< ),

Generic human Dopaminergic neuronal
metabolic network omics data
Transcriptomics| XomicsToModel
Chapter 4. Chapter 5.
Comparison of atom- Atomically-resolved
mapping algorithms iDopaNeuro

AR WP  Chempmics
o SRRt

) sphorous ®
o o iDopaNeuro iDopaNeuro

Figure 4: Scope of the thesis

Chapter 2, describes the development of the XomicsToModel pipeline, which allows
integrating omics data into a generic genome-scale model for the generation of
context-specific models. In Chapter 3, the XomicsToModel pipeline was implemen-
ted to generate a context-specific model, denoted as iDopaNeuro, using the generic
human reconstruction Recon 3D, bibliomics, metabolomics, and transcriptomics
data from induced pluripotent stem cell-derived dopaminergic neuronal culture. In
Chapter 4, existing atom mapping algorithms were compared to integrate chemo-
mics data into genomic-scale models. The most accurate atom mapping algorithm
was used in Chapter 5 to generate a pipeline that atomically resolves genome-scale
models, including the iDopaNeuro model, generating a chemoinformatic database of
metabolite structures and atom-mapped reactions.

In Chapter 2, is presented the XomicsToModel pipeline. It was
integrated context-specific information from sources, such as proteo-
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mics, metabolomics, bibliomics, and transcriptomics with a thermo-
dynamic and flux-consistent, context-specific genome-scale metabolic
model. The pipeline allowed flexible, modular integration of context-
specific constraints into a genome-scale metabolic model. The pipeline
also allowed several thermodynamic and flux-consistency checks, as well
as quality checks on flux feasibility.

In Chapter 3, the XomicsToModel pipeline was used to generate a
thermodynamically consistent and context-specific genome-scale model
from a dopaminergic neuronal culture derived from induced pluripotent
stem cells (iDopaNeuro) that allowed to analyse the phenotypes and
genotypes seen in Parkinson’s disease.

The iDopaNeuro model was generated using different context-specific
information, such as (1) bibliomics, information about reactions, genes,
and metabolites known to be active or inactive, known reaction rates
and coupled reactions for neuronal maintenance, all based on a review of
the literature; (2) transcriptomic, RNA-seq data from a dopaminergic
neuronal culture; and (3) exometabolomics, maximum and minimum
reaction rates for the uptake and secretion of metabolites based on their
change in concentration in the spent media. The iDopaNeuro model
was validated by performing in silico perturbations, inhibiting the
mitochondrial complex I and mitochondrial complex V and comparing
it to the exometabolomic phenotype of a dopaminergic neuronal culture
treated with rotenone and oligomycin, which also inhibits the mitochon-
drial complex I and mitochondrial complex V respectively. Further-
more, a novel experimental design approach was developed to maxim-
ally shrink the set of external reaction fluxes by consistently identifying
the top-ranked exometabolites whose corresponding external reactions
would be the most important to constrain reducing model uncertainty.
Finally, to go beyond stoichiometry, the iDopaNeuro model can be
described at the atomic level. This description can be accomplished by
obtaining the reaction mechanism described by the atom mappings in
all of the reactions in the iDopaNeuro model.

In Chapter 4, the predictive capacity, features, and availability
of various atom mapping algorithms were compared for the further
integration of chemomics data in genome-scale metabolic models. The
selected algorithm was chosen based on the accuracy of the tested
algorithms by comparing them to >500 manually curated atom-mapped
metabolic reactions. The decision was also influenced by technical and
special features shared by the three tested algorithms, such as hydrogen
atom mapping, reaction centre identification, and chemically equivalent
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atom identification or availability. The algorithm chosen allows for the
development of a cheminformatic database specific to a genome-scale
metabolic model.

In Chapter 5, a pipeline was developed to generate a database of
standardised metabolite structures and atom-mapped reactions (gene-
rateChemicalDatabase). The metabolite information in a genome-
scale metabolic model was used to determine the most consistent meta-
bolite structure for a genome-scale model based on an InChl-based
comparison where features such as stereochemistry, charge, metabolite
formula, and similarity with different sources were considered. The
metabolite structures were represented in a variety of formats, includ-
ing database identifiers or chemoinformatic formats, such as chemical
tables, SMILES, and InChl. The standardised metabolite structures
were used to generate a database of metabolic reactions with atoms
mappings using the algorithm with the greatest predictive capacity
tested in Chapter 4. The number of broken and formed bonds and
the enthalpy change in a metabolic reaction were identified based on the
reaction mechanism depicted with the predicted atom mappings. The
pipeline was used to generate a chemoinformatic database of different
genome-scale models, including the iDopaNeuro model and Recon3D,
a generic human reconstruction. Additionally, the iDopaNeuro model
was used to design tracer-based experiments.

Finally, Chapter 6 provides a general conclusion to the thesis’s
genome-scale metabolic model generation approach and iDopaNeuro
models. Perspectives and recommendations on how to improve and
apply the proposed approach are also provided.
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