
Applications of quantum annealing in combinatorial
optimization
Yarkoni, S.

Citation
Yarkoni, S. (2022, December 20). Applications of quantum annealing in
combinatorial optimization. Retrieved from
https://hdl.handle.net/1887/3503567
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3503567
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3503567


ch
ap

te
r

5
Hybrid quantum algorithms for real-world op-
timization

While the potential benefits of quantum computing and quantum annealing are well-

motivated, it is clear from the previous sections that there are several limitations

when trying to solve optimization problems directly in current-generation QPUs.

In recent years, classical software development has complemented the quantum

hardware in an attempt to bridge the gap between the restrictive quantum hardware

and more real-world applications of quantum annealing. One of the proposed ways

to use quantum annealing in practice is the concept of hybrid quantum-classical

algorithms. With these, algorithms are constructed so that the quantum annealing

QPU is used in some way by an inner loop (as a sub-solver/sampler, a mutation

step in a genetic algorithm, etc.), thus offloading some difficult critical task to the

QPU. These kinds of algorithms have been used in the past to tackle arbitrarily-

structured optimization problems, in an attempt to solve larger and more realistic

combinatorial optimization problems [37, 38, 39]. To support the development

of these algorithms, D-Wave Systems released a Python package dedicated to

constructing such hybrid algorithms, called dwave-hybrid [99]. In this chapter we

investigate the construction and use of hybrid algorithms using these tools, as well

as the black-box hybrid optimization algorithm provided by D-Wave System. We

motivate and contextualize their use through real-world combinatorial optimization

problems, and build custom optimization routines to solve QUBO/Ising problems

in real-time.
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5.1 Motivating a real-world traffic optimization
use-case

One of the first real-world applications demonstrated for quantum annealing in
practice was traffic flow optimization [98]. This was motivated by the increased
focus on autonomous driving, smart cities/infrastructure, and the need for cutting-
edge computational resources to handle the complex task. In order to test this in
practice, a pilot project was conducted in which the QUBO outlined in [98] was
solved in real-time to navigate a fleet of buses, providing a turn-by-turn navigation
service for the Web Summit 2019 conference in Lisbon, Portugal. The motivation
for this project comes from observations in the automotive industry, that as cities
around the world continue to grow in both size and population, traffic congestion
becomes an increasingly prevalent problem [121]. This is especially apparent
during events that congregate large numbers of people for specific periods of time.
For example, conferences, sporting events, and festivals can cause temporary but
significant disruption to the cities’ transportation systems, resulting in delays for
the residents of those cities [122, 123]. A key issue is that permanent transportation
infrastructure, such as rail lines or roads, are costly and slow to modify given
the temporary nature of these events. In light of this, the advent of smart
traffic management systems offers possible improvements to existing transportation
systems with minimal overhead in regards to implementation. Some requirements
for such systems include the management of the mobility flows in real- or near to
real-time using flexible and modular software components. The goal of this project
was therefore meant to address two very specific questions related to applying
quantum annealing in a real-world scenario:

1. How do we design customized bus routes to avoid traffic congestion during
big events?

2. How would one build a real-time production application using a quantum
processor to manage such a traffic system?

In order to address both of these questions, we separate the work into two separate
phases: the first is concerned with understanding the input required for such
a live navigation service to run in practice, and the second phase presents the
construction of hybrid optimization service that complies with the demands of the
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5.1 Motivating a real-world traffic optimization use-case

first. Concretely, the goal is to adapt the model presented in [98] to a live setting,
and test the assumption that using quantum annealing to avoid overlaps between
vehicle routes reduces traffic congestion. Thus, we are able to construct meaningful
optimization problems in an application setting, and address the application needs
using hybrid quantum techniques.

To answer the first question, we needed to consider real-world road networks and
movement data as input to our navigation service. This required us to find and
fix (possibly multiple) start and endpoints of a custom bus service, where each
bus had its individual route customized by considering all other buses in the fleet
in real-time, as described in detail in [98]. By analyzing origin/destination (OD)
matrices of peoples’ movement data, detailing the volume of movement streams
from the Web Summit conference venue (Altice arena) to different zones of the
city of Lisbon on an hourly basis, we were able to identify locations of interest
for our navigation service. The results showed a total of 225 OD matrices in a
study area of 93 zones throughout Lisbon, shown in Figure 5.1. This data included
demographic census data, mobility behavior from surveys, Lisbon traffic counts,
floating car data, mode of choice and network models from the city, for both dates
within and outside the Web Summit time frame.

Three express bus lines were proposed to serve the demand from the selected zones
to the Web Summit: a red, green, and blue line, with a total of 23 bus stops. One
express line was dedicated for the return traffic from the conference venue to the
city center (the black line). The red and green bus lines operated only during the
morning period, whereas the black and blue lines operated both in the morning
and evening. Bus departures were scheduled every 30 minutes for all lines. For the
morning, two lines (red and green) covered the demand in the northern part of
the city center, picking up visitors along 7 dedicated bus stops and meeting at the
farthest point of the line at the Saldahna roundabout. From this point to Web
Summit, the visitors were no longer picked up and the bus was navigated solely
using the quantum navigation service. For the black and blue lines, the portion of
the routes between the Web Summit and Alameda station were navigated using
the quantum navigation service.

To determine the schedules of the fleet, we identified the peak traffic demand in the
selected zones was from 09:00-10:00 and 10:00-11:00, with 6314 trips towards Web
Summit. For the evening demand (the return trips to the city center), peak hours
were from 16:00-17:00 and 17:00-18:00 with 7600 trips leaving the Web Summit.

89



5. HYBRID QUANTUM ALGORITHMS FOR REAL-WORLD
OPTIMIZATION

Figure 5.1: Left: Origin-destination matrices from the Web Summit conference
to the city center. Right: Selected OD matrices for hotel- and room rental-related
trips. Visualization provided by PTV Visum software.

The results also highlighted that the zone with the lowest public transport usage

was zone 75 (Santa Maria Maior-Castelo), with 45% of total trips being public

transit. This indicated that the modal split in this zone can be heavily improved

relative to other zones with higher average public transit usage (65% and above).

Given the performed analysis for each of the four selected zones, and considering the

estimated demand in both the morning and evening, a total of 9 buses was proposed

to Carris as a recommendation for the Quantum Shuttle fleet volume.

5.2 Building a quantum optimization service

Building a functioning web service that uses a quantum processor while providing

meaningful navigation optimization imposes a specific set of both conditions and

constraints. By setting the goal of navigating buses in real-time, we require that a

live connection between three different services be consolidated simultaneously– the

navigation app (run on an Android tablet), the traffic data, and the hybrid quantum

optimization. We briefly describe the content and scope of each component, then

explain how they were combined in the final optimization service, which we call

the Quantum Web Service (QWS).

90



5.2 Building a quantum optimization service

5.2.1 Bus navigation Android app

Development of the Android app was divided into two parts: the front-end (visual-
ization for the bus drivers) and the back-end (server-side communication to the
QWS). We explain separately how the two parts were implemented, then consoli-
dated, to satisfy the demands of the navigation service. The front-end development
was outsourced to an external supplier, while the back-end optimization (including
the API to access it and database management) was developed and implemented
internally.

Front-end. The front-end of the bus navigation comprised of an Android appli-
cation, visualizing the turn-by-turn navigation, operated on an Android tablet.
The main role of the app was to plot the custom routes provided by the QWS and
initiate turn-by-turn navigation with voice instructions. Additional functionality
was built into the app to allow bus drivers to start/stop the current and next trips
they were meant to follow, as well as to track the current location of the buses in
the fleet to allow for the optimization of the route selection. Trips were also ended
automatically once a vehicle was within 15 meters of its defined destination. The
visualization portion of the app was built using the Mapbox SDK1 to render the
custom routes obtained by the QWS.

Back-end. The back-end of the navigation app acted as an interface between the
Android app and the QWS. The back-end was used to send the collected data
of all the vehicles in the fleet at fixed time intervals to the QWS over HTTP.
Responses from the QWS were also distributed by the back-end to their respective
vehicles.

The most important role of the back-end was to keep the data flow in sync between
the vehicles and the QWS, as both synchronous and asynchronous communication
protocols were used. This was necessary in order to properly construct correct
traffic-flow QUBOs which represented the live navigation conditions. The QWS
was designed in such a way that it accepted a single consolidated request consisting
of the location information for all the vehicles, both live and projected. It was the
role of the back-end software to consolidate all the locations it received from all the
vehicle devices at different frequencies, and send it to the QWS. This meant that
the back-end maintained an index of each vehicle’s request and response. Because of

1https://www.mapbox.com/
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the different requirements of the live location tracking and the projected locations,
the requests submitted by the back-end to the QWS were separated between two
destinations on the QWS: /update and /optimize. The /update request submitted
the live location of each Quantum Shuttle vehicle to the QWS on a 30 second
interval, while the projected location (and in return the customized route returned)
was submitted to the /optimize URL at an interval of 120 seconds. The necessity of
splitting the requests to separate URLs and their respective timing was discovered
during the testing phase, explained in Section 5.3. Lastly, the back-end was also
responsible for determining the difference between two subsequent optimized routes
for the same vehicle.

5.2.2 Constructing live traffic-flow QUBOs from data

The approach used for custom navigation of the vehicles followed an approach based
on [98]. At the start of every trip and at regular time intervals until completion of
each trip, multiple candidate routes needed to be generated between the current
location of each bus in the system to its assigned destination. These routes also
needed to be traffic-aware to reflect the current conditions of the city road network.
To accomplish this, we used a live traffic services provider, HERE Technologies 1.
Using their routing API 2, we were able to generate between 3-5 traffic-aware
candidate routes per vehicle at every optimization step with minimal overhead. It is
important to note that since the vehicles were operated in parallel in different parts
of Lisbon, different routes were likely to be suggested for each vehicle in the system
at every optimization step. Often, however, subsets of these suggested routes
overlapped, necessitating the optimization of the routes’ selection to minimize
congestion. In this scenario, identical GPS points were returned from the HERE
API describing the shape of the overlapping portion of the routes. Therefore, the
GPS points were used directly to form the optimization problem, instead of the
road segments as in [98]. The QUBO formulation of the objective function is
then:

Obj =
∑
p∈P

cost(p) + λ
∑
i

∑
j

qij − 1

2

, (5.1)

1https://www.here.com/
2https://developer.here.com/
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where qij are the binary decision variables associated with vehicle i taking route j,
P is the set of all GPS points that overlap in the suggested routes, λ is a scaling
factor ensuring only one route is selected per vehicle in the QUBO minimum, and
cost(p) is the cost function associated with each GPS point p in P :

cost(p) =

 ∑
qij∈B(p)

qij

2

. (5.2)

Here, qij is as before, and B(p) is the set of all binary variables that contain the
GPS point p. Thus, the final selection of routes in the optimum of the QUBO
represent the routes that minimally overlap with all other selected routes.

5.2.3 Solving the traffic-flow QUBOs with quantum anneal-
ing

For live traffic navigation, our quantum optimization service needed to meet specific
conditions. Because of the time-sensitive nature of traffic navigation, our solution
needed to respond with valid solutions to the optimization problem quickly. The
algorithm also needed to handle varying sizes and complexity of the traffic-flow
optimization problem, as it needed to optimize the route selections of the vehicles
automatically at regular intervals. We used the D-Wave 2000Q QPU and its
respective software stack to deploy our solution on quantum hardware. Three
different methods of using quantum annealing was tested to solve the traffic flow
optimization QUBOs. We briefly explain each method, how it was implemented,
and evaluate them based on our navigation application.

Direct embedding. The most straightforward approach to solving the QUBOs
is by minor embedding the graph directly to the topology of the QPU. The
benefit of this approach is speed– even with the overhead of transforming the
traffic-flow problem to a QPU-compatible graph, using the QPU at the fastest
annealing time (1µs to obtain a single sample) still returned valid solutions to the
problem. The minor-embedding process can be performed on the order of tens or
hundreds of milliseconds for small-sized problems. However, the drawbacks of this
approach have already been explored and presented in detail in Ch. 2. During the
development phase of the Web Summit project we tested various configurations of
the direct embedding approach, and found that this method was suitable for up to
10 cars with 5 routes each.
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Custom hybrid algorithms. One of the primary goals of this project was
to assess whether hybrid quantum algorithms could assist in solving QUBOs in
practice. The advantage of this approach is that the use of the QPU in the
algorithm can be tailored to the QPU’s strength, making better use of a limited
resource. However, run-time is sacrificed in waiting for the QPU’s response to
continue the iterative classical procedure. The original traffic-flow work in [98]
employed a hybrid algorithm that used a 64 variable fully-connected graph as the
inner loop for the QPU to optimize sub-problems [37]. However, as mentioned
previously, minor-embedding dense problems significantly degrades the QPUs
performance, which in this case still came at the cost of waiting for the QPU
responses. Furthermore, new embeddings needed to be generated for each problem
being submitted. In light of this, we developed a custom hybrid algorithm to make
better use of the QPU in a timely manner. Our algorithm performed the same
Tabu search in the outer classical loop as in [37], but instead of using a single
64 variable sub-problem, we found natural sub-graphs within the TFO problem
that were already Chimera structured, thus circumventing the embedding issue.
We were able to deploy a hybrid algorithm similar to [39] but without employing
chains in the sub-problem. Our method allowed us to increase the throughput of
sub-problems to the QPU. However, due to time constraints, we were not able
to parallelize the implementation so that it could continually run independent
of the request/response portion of the QWS. Therefore, the hybrid algorithm
was restarted every time a new route optimization was requested. This incurred
significant overhead time, delaying the response to an unacceptable level for live
use.

Hybrid Solver Service. As part of D-Wave’s online cloud service, in addition to
direct QPU access, a state-of-the-art hybrid algorithm is also offered. This service,
named the Hybrid Solver Service (HSS), is tailored to solve large, arbitrarily
structured QUBOs with up to 10,000 variables. The disadvantage of this method
is that we cannot control the exact method with which the QPU is used, instead
we use the HSS as an optimization black-box. Access to the HSS was provided
through the same API as the D-Wave QPU, which allowed us to integrate it in to
the QWS in a modular way. By offloading the overhead associated with starting
the hybrid algorithm to the D-Wave remote server, we were able to reduce the
response time significantly compared to the other approaches. That the HSS can
solve problems significantly larger than the QPU also allows us to seamlessly scale
up our QWS to handle hundreds of vehicles with tens of route options for future
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applications. The HSS provided the best compromise of speed, accessibility, and
performance, and was used for the live navigation service during the Web Summit
conference.

5.2.4 Creating the live navigation service

We now present an overview of the navigation service as a whole, detailing the var-
ious components comprising of the system and how they communicate, for review
and clarity. A diagram of the system is presented in Figure 5.2. The components
are color-coded according to their roles in the service: blue components relate to
data-processing steps, which can be considered as input to the hybrid optimization
routine. Gray components comprise the core of the QUBO construction and opti-
mization to solve the traffic-flow problem. The white components are black-boxes
provided by external parties.

Quantum Web Service
(3)

HERE API
(6)

QPU
(7)

QUBO
construction

(4)

MongoDB
database

(5)
Bus

Android app
(1)

App
back-end

(2)

Figure 5.2: Diagram detailing the QWS and its interactions with the other
components in the hybrid navigation system, as per the text.

Blue components.

• Component (1), the front-end Android tablet application, provided visual
turn-by-turn navigation with vocal instructions to the Quantum Shuttle bus
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fleet and their drivers. The bus locations were sent every 30 seconds to
Component (2).

• Component (2) was the Android app back-end, and submitted the POST
requests to the QWS, Component (3). Component (2) consolidated the
locations of the vehicles and submitted them to (3) via the /update URL
every 30 seconds; this component also formed the POST request to the
Component (3) /optimize URL for the route optimization, interpreted the
response, and sent the new routes back to (1).

Gray components.

• Component (3) is the framework hosted on AWS (exposed using Flask1) and
served as the central consolidation point of the other components. In the event
of an /update POST request from (2), the QWS updated Component (5),
the MongoDB database used to store the data. In the event of an /optimize
POST request from Component (2), Component (6) was accessed to request
the suggest routes, and that data was passed to Component (4) to construct
the traffic flow optimization QUBO problem, then stored in the database
using (5). The QUBO was submitted to the D-Wave HSS, Component (7).
Component (3) then interpreted the results of the optimization, stored them
via (5), and pushed the selected routes back to (2). The API used to
communicate with the QWS was custom-built for this application.

• Component (4) is the Python module that implemented the traffic flow
optimization QUBO formulation described in Section 5.2.2.

• Component (5) is the Python module wrapped around the MongoDB database;
accessing and writing data from the QWS to the database was performed by
this component.

White components.

• Component (6) is the HERE Technologies traffic/routing API.

• Component (7) is the D-Wave HSS (or other QPU-based services), accessible
via HTTPS.

1Flask is a minimalist Python framework for making web-apps, and can be found at:
https://www.palletsprojects.com/p/flask/.
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5.3 Deploying a quantum optimization service

In preparation for the Web Summit conference, multiple trial runs were performed
in both Wolfsburg, Germany (Volkswagen AG headquarters) and Lisbon, Portugal.
In this section we describe the two different test scenarios and the lessons learned
from each.

5.3.1 Initial tests: Wolfsburg

The first testing phase occurred in Wolfsburg in August 2019, where a small
number of cars (1-3) were driven between various origin/destination pairs using the
Android app. The goal of this testing phase was to ensure the proper integration of
the Android navigation app, QWS API, and the MongoDB database used to keep
track of active trips and record results. During testing, several key observations
were made, which were used to modify the system.

Location tracking. As mentioned in Section 5.2, it was necessary to both track
the live positions of the vehicles, as well as specify a new “origin” per vehicle
for every optimization request. In order to ensure that the locations used for
optimization didn’t result in infeasible or unrealistic route selections, a projected
location was used for each vehicle. Specifically, given a route in the form of a
sequence of GPS coordinates, a GPS point further along along the route was passed
as the origin for the next optimization step. During the initial testing phase, this
position was also used to track the locations of the vehicles. However, this proved
to be problematic, since the update frequency was faster than the change in the
projected location, making it impossible to track the locations of the vehicles. To
solve this, the live location and the location used to determine the new routes
were separated: location updates were sent to a different URL independently from
the optimization requests every 30 seconds, with the live locations now stored
server-side after every update.

Optimization interval. Before testing, the route optimization occurred every 60
seconds. During testing it was observed that this frequency was too fast, resulting
in different routes being assigned to the vehicles every time an optimization
problem was solved. Furthermore it was observed that, given a new route A
after the optimization, a different new route B would sometimes be suggested
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while navigating to route A. This would have made navigating buses with real
passengers impractical. It was discovered that this phenomenon occurred due to
two main reasons: firstly, quantum annealing and other such hybrid algorithms are
metaheuristic optimization algorithms, meaning they are not guaranteed to return
the same solution every time they are queried. In the event that multiple minimal
solutions to the optimization problem have equal cost, the QPU may return any
of the solutions [75]. Secondly, because of the frequent optimization requests, the
vehicles’ projected positions often stayed the same between optimization requests,
causing the same QUBO problem to be formulated in successive requests, which is
not particularly useful. After testing various optimization intervals (both faster
and slower), 120 seconds between optimization requests resolved the issue, allowing
for sufficient time to change the projected locations of the vehicles.

5.3.2 Final tests: Lisbon

The second testing phase occurred during September 2019, with a small number of
buses and drivers in Lisbon. The final bus route start and end points as selected
in Section 5.1 were tested using the Android navigation app and the quantum
web service, including the changes implemented after the initial testing phase in
Wolfsburg. The significantly different conditions in Lisbon allowed us to further
tune our navigation system, explained below.

Street exclusions. The road network of Lisbon is significantly different from
that of Wolfsburg. Apart from the major roads and highways in Lisbon, many
of the local streets are narrow and one-way, making them not well suited for
public transit. Additionally, many roads have steep inclines, which are difficult
for buses to climb. Neither of these two conditions were present in Wolfsburg,
which lead to multiple unacceptable scenarios when testing the buses in Lisbon.
More than once, routes were suggested that utilized these small streets through
which the buses could not fit, causing them to either turn back (adding delay to
the travel time), or even worse, forcing them to stop completely. For example,
between Saldanha roundabout and Alameda station there is a network of highly
connected one-way streets. Suggested routes using these roads could be useful
for cars, but were completely undesirable for the buses in the Quantum Shuttle
fleet. Similarly, a network of narrow one-way streets exists near the Web Summit
conference center, which also needed to be avoided. To accomplish this, whenever
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routes were suggested that utilized roads in these networks, the GPS locations
were recorded, added to a list stored on the QWS server. This list (in the form of
bounding boxes of areas to avoid on a map) was submitted as part of the HERE
routing API request, which returned only routes that avoided those areas. This
list of forbidden areas was actively updated throughout the successive tests in
Lisbon based on feedback from the bus drivers, resulting in only valid routes being
generated by the end of the final testing phase. This list of excluded regions was
then used for the live run during the Web Summit.

Time filtering. The number of candidate routes that can be requested from
the HERE routing API per vehicle is an unconstrained parameter client-side. By
default, 3 candidate routes per vehicle were requested, to keep consistent with the
work in [98]. However, it was observed that in some cases one or more of the routes
suggested were significantly slower than the fastest route suggested, resulting in
extremely slow routes sometimes being suggested. The reason for these slow routes
being selected was due to the way the cost functions are formulated in the QUBO
problem. The goal is to reduce the amount of congestion caused by the vehicles,
defined by the number of streets/GPS points shared between candidate routes
across all vehicles. The slower routes suggested by the HERE routing API were
often significantly longer than the fastest suggested route, and thus had lower
overlap with the faster routes, causing some of the vehicles to be assigned to the
slower routes. To circumvent this, a time filter was implemented to assure only
reasonably fast routes were considered as valid candidates. After testing various
values for the time filter, a value of 2 minutes provided the best trade-off between
the number of routes selected and the routes’ relative expected travel times. By
allowing the slowest suggested route to be at most two minutes slower than the
fastest route suggested, we were able to maintain three valid candidates per vehicle
for the majority of the trips.

5.3.3 Web Summit 2019: Live run

For the launch of the event at the Web Summit conference, this project was
presented under the name “Quantum Shuttle”. The service was active from
November 4-7, 2019, and was operational for public use from November 5, 8:00 in
the morning Lisbon time, to 18:00 in the evening on November 7, 2019. A total of
185 trips were recorded during the 4 day period with a total fleet size of 9 buses.
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However, a small number of trips were erroneously recorded, due to manual driver
cancellation or restart of the trip. Such trips were identified in two ways: either a
small number of vehicle locations recorded in the database (fewer than 5), or one
of the origin/destination points being far from the expected location (more than 1
km). Of the 185 trips, 162 (87.6%) were valid trips corresponding to the expected
“Quantum Shuttle” service. The exact counts per day and line of the service are
presented in Table 5.1. As per Section 5.1, two of the lines operated from the city
center of Lisbon to the Web Summit: Alameda station to Web Summit (blue line)
and Saldanha roundabout to the Web Summit (red line1). The third line (black)
ran from the Web Summit to Alameda station.

Black line Blue line Red line
Conference total 53 56 53

8:00-12:00 17 21 47
12:00-18:00 36 35 6

Table 5.1: The 162 trips taken by Carris buses operating the Quantum Shuttle,
separated by time of day and line.

All three lines had roughly equal number of trips throughout the conference.
The route frequency matches the expected demand in Lisbon– the red line from
Saldanha was the popular choice during the morning, whereas the blue line from
Alameda was used more in the afternoon. Likewise, the only line from the Web
Summit back to Lisbon city center (black line) had double the trip frequency in
the afternoon compared to the morning, again matching the demand of conference
attendees returning to their accommodations after the conference ended each day.
The duration of each trip was recorded together with the location history of each
vehicle in the fleet throughout the conference. The corresponding average trip
times are shown in Table 5.2. The trip times are recorded from the moment a
driver presses the start button, until either the trip is manually ended or the bus
is within 50 meters of its destination.

One of the key design goals in our traffic navigation system was making sure it
could operate continually without manual intervention. As a consequence, there
was significant variation in the complexity of the optimization problems being
solved throughout the conference, depending on the number of active vehicles in

1Since the quantum navigation of the green and red lines have identical origin and destination,
we combine them and refer to them together as the red line.
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Black line Blue line Red line
Conference total 23 min 41 s 23 min 18 s 26 min 34 s

8:00-12:00 25 min 36 s 22 min 43 s 27 min 36 s
12:00-18:00 22 min 46 s 23 min 38 s 18 min 19 s

Table 5.2: Average trip times for the Quantum Shuttle, separated by time of day
and line.

the fleet. A total of 1275 optimization problems were solved by the QWS for the
162 trips, with an average response time of 4.69 seconds. Of those, 728 problems
(57.1%) involved more than one route per vehicle in the system, with an average
response time of 6.78 seconds. We consider the optimization problems for which
there is more than one route per vehicle as the “harder” version of the traffic flow
problem, since otherwise the route selection is trivial. It is important to note
that the ability to navigate the fleet buses strongly depended on creating and
solving the optimization problems in a timely manner. Since we cannot anticipate
in advance whether the vehicles have one or more possible routes (depending on
the traffic conditions), our system needed to operate uninterrupted in all cases.
Additionally, while there was a fallback mechanism in place stored locally on
each device, 100% of the calls to the D-Wave HSS completed successfully, thus
maintaining our automated navigation system’s integrity for the duration of the
conference, regardless of the complexity of the problem being solved1.

The goal of this project was to evaluate the use of solving the QUBO formulation
of the traffic-flow optimization problem in a live setting to perform turn-by-turn
navigation. Therefore, we now focus on interpreting the data and results of the
project in this application context. The distribution of all the Quantum Shuttle
trip data is shown on a map of Lisbon in Fig. 5.3. The trips are colored based on
the lines to which they belong, as described above. The red, blue, and black circles
correspond the the origins of their respective lines. The black circle is the Web
Summit conference location, and is therefore also the destination for the red and
blue lines. It is important to note that none of the three lines used the same route
for all trips throughout the Web Summit, showing that our QWS navigation system
provided flexible traffic-aware routing. The three highways that connect between

1The largest QUBO that was solved consisted of 12 variables, with 5 buses being navigated
concurrently. This occurred on November 5, 9:11 Lisbon time, which was the busiest period
during the conference.

101



5. HYBRID QUANTUM ALGORITHMS FOR REAL-WORLD
OPTIMIZATION

Figure 5.3: Distribution of all recorded Quantum Shuttle trips. The trips are
color-coded based on the line they correspond to. The circles represent the origins
and destinations of the respective lines [124].

the city center and the conference center were used extensively (although not
exclusively), and at different times by the different lines. That these highways were
prominent in the route selections is attributed to two design choices: time filtering
and excluded streets. Highways are typically the fastest method of driving medium-
and long-range distances, making them likely candidates for selection. Furthermore,
the regions that were excluded from the route selection as per Section 5.3.2 removed
fast route suggestions that avoided highways. It is reasonable to assume that in
the case of navigating cars, as opposed to buses, Figure 5.3 would show increased

102



5.3 Deploying a quantum optimization service

distribution over the smaller city streets as well.

To quantify the customization of the routes used by the vehicles, we measure
the dissimilarity between them. Specifically, we measure the overlap between the
location histories of vehicles being navigated concurrently by our system. The
overlap is defined as the fraction of GPS points in a vehicle’s location history
that coincided with another vehicle’s route (that was being navigated at the same
time), within a distance of 50 meters1. The overlap metric is therefore defined
to lie between [0, 1]. Distance (d) between GPS points was calculated using the
haversine formula:

d = 2r arcsin
(√

sin2
(
φ2 − φ1

2

)
+ cosφ1 cosφ2 sin2

(
λ2 − λ1

2

))
, (5.3)

where φ1, φ2 are latitudes, λ1, λ2 are longitudes, and r = 6, 371, 009 meters is the
Earth’s radius.

Because the navigation system re-optimized the distribution of routes at most every
120 seconds, each vehicle’s recorded trip is a sum of successive routes suggested by
the optimization. It is important to note that the suggested routes, as obtained
via the HERE API, are traffic-aware, and therefore already circumvent the existing
traffic congestion in the city. Thus, by minimizing the overlap between the fleet
vehicles, we minimized the additional traffic congestion caused by our fleet. In
Figure 5.4 we show the overlap between pairs of buses, grouped by the lines the
buses are following. There are six possible ways to compare the buses this way:
three within the same line (red-red, blue-blue, black-black), and three between the
lines (red-blue, red-black, and blue-black).

To contextualize the results in Figure 5.4, we also calculate the overlap between the
most direct (i.e., fastest) routes suggested by the HERE API for each line without
the traffic-aware component. This therefore simulates our navigation system in an
“offline” mode– public buses typically have pre-defined routes that are not deviated
from even in the presence of traffic congestion. Using these static routes, we obtain
the following overlaps: 0.70 for red-blue, 0.01 for red-black, and 0.16 for blue-black
(intra-line overlaps are trivially 1, since the same routes would be used for every
vehicle in that line). The red-black and blue-black overlaps are similar in offline

1This definition differs from the one in Section 5.2.2, since the recorded location histories
were irregular, as opposed to the points used to construct the traffic-flow optimization problem.
The location histories were interpolated using the HERE API for consistency.
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Figure 5.4: Box plot showing the fractional overlap of routes being navigated
simultaneously in the Quantum Shuttle fleet. Boxes are grouped by the line colors.
The number of observations are in parentheses below the boxes.

and online mode, however the expected time for the offline mode would be higher
due to the lack of traffic-aware routing. For the red-blue overlap (as well as the
intra-route overlaps), our online method significantly reduces the overlap between
the routes. It is also worth noting that in all categories in Figure 5.4, the mean
and median overlaps were below 0.5, meaning that the majority of every route
was different from every other vehicle in the fleet. By using the QWS we were
therefore able to both circumvent existing congestion as well as avoid creating new
congestion.

From a technological perspective, the Quantum Web Service’s modular implemen-
tation allowed us to communicate with a live QPU in a timely fashion, making
it suitable for our traffic optimization use-case. The test runs in Wolfsburg and
Lisbon were particularly instrumental, allowing us to fine-tune the connections
between the components of the QWS given the constraints of the application.
Due to this, the final implementation of the Quantum Web Service can handle
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live optimization of other, non-traffic related processes provided modifications to
the QUBO construction and live data components. Many production processes
have similar constraints to the those present in the Quantum Shuttle, making
our work adaptable to other scenarios. However, we stress that the problem sizes
investigated here were small (no more than 30 variables in all cases), well within
the range of problem sizes addressable by classical algorithms. Therefore, while
the application ran adequately in a live environment for a demonstration, further
research is necessary to fully understand how well the problem can be solved by
quantum annealing at scale.

5.4 Motivating a better real-world optimization
use-case

We now explore another real-world optimization problem from the automotive
industry. The paint shop problem refers to a set of combinatorial optimization
problems where the objective is to color a (fixed) sequence of cars with a fixed
number of colors such that the total number of color switches is minimized, given
a set of customer orders. This simple problem poses interesting scientific questions,
which in turn have real impact for solving such problems in practice. The paint
shop problem was originally posed by Epping et. al [125] as a form of coloring
problem. Some clarification on nomenclature: the given car sequence can also be
referred to as a word, where each car is denoted by a character. In [125], it was
shown that the paint shop problem is NP-complete in both the number of colors
and cars in the sequence. Furthermore, results show that, for bounded numbers
of colors and unique cars, there exists a polynomial-time dynamic programming
solution to these instances. Subsequent work [126] extended these results, proving
that even the simplest coloring version, with only two colors, is both NP-complete
and APX-hard. Additional results show that a subset of problems meeting specific
conditions can be solved in polynomial time. Therefore, this class of problems are
good candidates for quantum optimization algorithms, and initial such studies have
been conducted on a restricted definition of the problem [127] (different sub-classes
are distinguished shortly).
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5.4.1 The paint shop optimization problem

One of the steps in car production at Volkswagen is painting the car body before
assembly. In general, this can be viewed as a queue of car bodies that enter
the paint shop, undergo the painting procedure, and exit the paint shop. It is
important to note that the area of the factory immediately proceeding the paint
shop is typically assembly, where car components are assembled into the car bodies.
Because of the many different models and configurations being produced, designing
a sequence of cars to be assembled that is optimal (also known as the car sequencing
problem) is a known NP-hard problem in itself [128]. In practice it is imperative to
solve the sequencing problem because of worker safety and regulatory issues, and
we therefore treat the sequence of cars entering the paint shop as a fixed queue.
However, the colors assigned to the cars within a given sequence are still randomly
distributed, and thus we can focus on optimizing them. An example with three
different car groups is shown in Fig. 5.5 (top).

Each car body entering the paint shop is painted independently in two steps: the
first layer is called the filler, which covers the car body with an initial coat of
paint, and the final color layer is the base coat, which is painted on top of the filler.
The base coat is the color that matches the final customer order: blue, green, etc.
However, the filler has only two possible colors: white for the lighter base coats
colors, and black for darker colors. We define a customer order as the number of
cars of each configuration to be painted one of the color choices. We associate each
coating step (filler or base coat) with a unique class of paint shop problems, each
of which are NP-complete [125, 126]. A simple version of the filler optimization
is when there are only two cars of each unique configuration in the sequence and
each needs to be painted a different color; this is referred to as the binary paint
shop problem (BPSP) [127]. More generally, the filler optimization is referred to as
the multi-car paint shop problem, where the cardinality of each set of unique cars
in the sequence is unconstrained, but the cardinality of the color set is restricted
to two (e.g., black or white). The base coat optimization is therefore an extension
of the MCPS problem, where the cardinality of the color set is also unconstrained–
we call this version of the problem the multi-car multi-color paint shop problem.
In our work we focus on the filler optimization, the MCPS problem, which can
be formulated natively as a binary optimization problem. We formally define the
problem as follows:
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Given: a word w defining the fixed sequence of N cars (wi denotes
the ith character in w),

set of C = {C1, . . . , CM} unique configuration groups,

binary choice of colors {W,B},

function k(Ci) which defines the number of wi to be pain-
ted B in w,

function f(w) to count the number of color switches in w,

such that: #wi|B = k(Ci), ∀Ci ∈ C,
minimize: f(w).

In practice (i.e., in the real paint shop), the information required to formulate
this optimization problem is always available, as it is a necessary part of fulfilling
customer orders. Therefore, this MCPS problem representation above corresponds
exactly to the industrial use-case of paint shop optimization on the filler line. This
provides a more tangible use-case to solve using the hybrid quantum optimization
methods developed in the previous sections. In Fig. 5.5 we show a simple example
of the MCPS problem with three car groups.

Figure 5.5: Simple example of a multi-car paint shop problem with three car
groups (C1, C2, C3). The three corresponding orders are k(C1) = 3, k(C2) = 2, and
k(C3) = 3. Top: The fixed sequence of cars in the paint shop queue. Middle:
Sub-optimal solution to the problem with 3 color switches. Bottom: Optimal
solution to the problem with 2 color switches.

Despite the focus of our work on the filler, we briefly address the optimization
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of the base coat. Although the filler and base coat are painted independently in
separate locations, computationally the two problems are not separable. Abstractly,
optimizing the base coat line (i.e., solving the multi-car multi-color paint shop
problem) is a straightforward generalization of the MCPS problem: we can extend
the binary color variables to discrete color variables, where k(Ci) denotes the
number of times each color appears in a car group. In practice, it is useful to
consider solving the multi-color problem after solving the MCPS problem. Due to
the aforementioned one-to-one mapping between base coat and filler color, it is still
possible to permute the order of base coat colors within a contiguous sequence of
filler colors to reduce the base coat color switches. Although discrete optimization
problems can be represented as binary optimization problems, we do not solve the
multi-color version of the problem and leave this work for future studies.

5.4.2 Ising model representation of MCPS

In principle, the formulation of the MCPS as an Ising model is straightforward: we
start by representing every car in the sequence w (wi) with a single spin variable
(si). The spin up state denotes if the car is painted black, and the spin down
state denotes if it is white. The Ising model which represents our problem can be
divided into a hard constraint component and an optimization component. The
optimization component is a simple Ising ferromagnet with J = −1 couplings
between adjacent cars in the sequence:

HA = −
N−2∑
i=0

sisi+1. (5.4)

This incentivizes adjacent cars to have the same color. The second component
of our Ising model is the hard constraint, ensuring that the correct number of
cars are colored white/black per customer orders. This is encoded in a second
energy function, as a sum over independent k-hot constraint for each group of cars
Ci:

HB(Ci) = (#Ci − 2k(Ci))
∑
i

si +
∑
i<j

sisj . (5.5)
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Therefore, the final Ising model is the sum of the two components:

HMCPS = −
N−2∑
i=0

sisi+1

+ λ
∑
Ci∈C

(#Ci − 2k(Ci))
∑
i

si +
∑
i<j

sisj

 , (5.6)

with terms as previously defined in the MCPS problem statement. In order to
ensure only valid configurations of spins are encoded in the ground state, it is
necessary to scale HB by the factor λ. The value of λ is chosen to be large enough
such that it is never energetically favorable to violate a constraint to reduce the
energy of the system. In our study we set λ = N , the total number of cars in our
sequence, which guarantees this condition.

5.5 Creating Ising models from paint shop data

5.5.1 Data sources

The MCPS problem instances we used were generated from real data taken from a
Volkswagen paint shop in Wolfsburg, Germany. The reason for this is two-fold:
firstly, the main goal of this work is to test the viability of quantum annealing
methods in solving industrial optimization problems. It is our goal to accurately
capture the complexity of the industrial use-case without relying on simplifications
or randomly-generated problem instances. Secondly, the paint shop currently
operates on a first-come-first-served basis, where customer orders are entered into
the queue as soon as they arrive. This guarantees a certain amount of randomness
(although not uniformity) in the problem instances we solve: different car models,
configurations, and base coat colors appear throughout the sequences in ways we
do not control. Therefore, these conditions are suitable for our analysis.

A total of 104,334 cars were used in this study. To reproduce real-world conditions
as faithfully as possible, the car sequences used are multiple independent sets of
car sequences, each representing one week of continuous production, which are
stitched together as one continuous block. The data is collected over a period
of one year, roughly once every six weeks, to avoid seasonal biases in customer
order preferences. There are 121 unique car configurations in the data set. Of
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those, 13 of the configurations appeared only once in the data set, and therefore
do not need optimization at all. Typically this indicates that either a custom
configuration was built that cannot normally be ordered, or a prototype assembled
for testing purposes. Rather than exclude these from the study, we include them in
the optimization, because fixing a color at one location in the sequence influences
the adjacent cars (and consequently the total number of color switches) in a
non-trivial way. We do, however, eliminate the spin variable from the Ising model
by conditioning on the color.

5.5.2 MCPS problem sizes

To generate a variety of input sizes from the full data set, we partition the data into
different sized sequences without permuting the car order. This is motivated by
the amount of cars that need to be optimized for different purposes. For example,
the paint shop used as a basis for this analysis has a queue capacity of roughly
300 cars. This is not the total capacity of the paint shop, but rather the maximum
number of cars that can be physically inside the paint shop queue before they are
painted. We consider this a rough lower bound on the problem size for industrially-
relevant problem instances. An upper bound is more difficult to establish. From a
theoretical point of view, there is merit in investigating the behavior of quantum
systems in the infinite size limit, as in [127]. From an industrial perspective, car
orders can be placed weeks to months in advance, which would yield problem
sizes of 103 − 105 variables. In reality, real-time and last-minute adjustments
(due to manufacturing problems, supply chain issues, or imperfections in painting)
can happen on a daily basis. We limit the analysis to problems of up to 3000
variables, which roughly corresponds to a few days worth of production. The data
partitioning is performed by dividing the entire data set into equal chunks for
each problem size N . Each partition is considered a candidate instance, yielding a
total of b 104,344

Ncars
c partitions per problem size. We then mine these partitions and

select suitable partitions to generate problem instances from. This is due to the
fact that there could be little frustration within some partitions. For example,
it is possible that all cars of any one configuration (Ci) all need to be painted
either black or white. While in general this is an accurate reflection of production,
for experimental analyses this scenario is not useful. Therefore we deem a data
partition to be a usable MCPS instance if the total number of non-fixed cars is at
least 70% of the cars in the partition. Meaning that, in a 10-car data partition,
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at least 7 of the cars must have the freedom of being painted either color. We
show the total number of partitions for the various problem sizes and how many
partitions were valid problem instances in Table 5.3. For our experiments we
randomly selected 50 valid instances to test at each N , except for the largest
problem size of which we use all 34 valid instances.

Table 5.3: Problem sizes and number of problem instances generated from the
data set partitions.

Problem size Num. partitions Num. instances
(cars) (% of partitions)
10 10,433 172 (1.6%)
30 3,477 418 (12.0%)
100 1,043 756 (72.5%)
300 347 341 (98.3%)
1000 104 102 (98.1%)
3000 34 34 (100%)

5.5.3 Classical, quantum, and hybrid solvers

To evaluate the efficacy of quantum (and hybrid) algorithms in both the small-scale
and industrially-relevant limit, we validate our methods using multiple algorithms.
The goal of this analysis is to provide a fair but thorough comparison of results
across different regimes of the MCPS problem, from small toy problems to large-
scale instances, and represent real-world optimization conditions as closely as
possible.
Random. Without optimization, we consider any assignment of colors to cars in
a sequence where the orders are fulfilled to be a valid, but not necessarily optimal,
solution to the problem. Thus, we can trivially generate random sets of valid
solutions by uniformly assigning the color black to k(Ci) cars for each car group
Ci. While far from optimal, this solution to the MCPS problem may be preferable
if other steps in the car manufacturing process are valued over the painting step.
This was indeed the case for the data obtained from the paint shop in Wolfsburg,
and thus random valid solutions serves as the baseline the competition algorithms
are tasked with beating. For our study, we generate 2Ncars random valid solutions
at each problem size to estimate the number of color switches that would occur
naturally in the paint shop.
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Black-first. This is the simplest algorithm that is used to solve the MCPS
problem. Starting at the beginning of the sequence, we greedily assign the color
black to every car until a white color must be assigned to the next car. In greedily
obtained solutions the number of color switches grows linearly with the number of
cars and is sub-optimal except for a minority of cases [126, 127]. Nonetheless, it
serves as a good benchmark for more sophisticated optimization algorithms, as the
improvement over random assignments grows with the problem size.
Simulated annealing. The simulated annealing metaheuristic used here is the
same as those in the previous analyses in this thesis [99].
Tabu search. The Tabu metaheuristic here is also the same as in the previous
chapters, and the same implementation is used [99].
D-Wave 2000Q. One of two different D-Wave QPUs used in this study, this
QPU was the older-generation Chimera architecture with maximum degree 6. The
processor used in this study had 2041 functional qubits.
D-Wave Advantage. The newest-generation QPU provided by D-Wave with a
different topology and a significantly higher qubit count than its predecessor. The
new topology, Pegasus, had a maximum degree of 15, and the QPU used in our
study contained 5436 functional qubits. For further information regarding the
D-Wave QPU topologies and the differences between them, we refer the reader
to [64].
D-Wave Hybrid Solver. At large instance sizes (300 cars and higher) it was no
longer possible to embed problems directly onto both D-Wave QPUs. Therefore
we employed the hybrid quantum-classical algorithm used previously, the Hybrid
Solver Service (HSS). As before, the QPU it uses cannot be programmed fully
directly by the user, and thus we treat this algorithm as an optimization black-box
with a single timeout parameter.

5.6 Benchmarking solvers in the industrial limit

We interpret our results relative to two different regimes: small-scale (10-100 cars)
and industrial (300-3000 cars). Each solver used in these experiments was tuned in
good-faith, but not necessarily optimally. Meaning, considerable effort was made
to ensure solvers were being used to their strengths, but fully optimizing over all
sets of hyperparameters for the solvers was deemed out of scope. We compared
all solvers’ performance in terms of their “improvement” over the random solver,
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defined as the difference in f(w) between the best solution obtained by each solver
and the random solver. This metric is representative of the real-world expected
improvement using each of the solvers. In Table. 5.4 we report the median for each
solver. We quote the median to be less susceptible to tails of the distribution. The
results therefore represent the typical MCPS case at each problem size, rather than
the expected value of each solver’s overlap with the ground states. The solutions
obtained from all solvers were post-processed (if needed) to ensure that the k(Ci)
constraint was satisfied in each problem. We show how often this occurred in
Table 5.4 as well. We consider this necessary in order to interpret the solutions
relative to the application, since it is trivial to reduce the number of color switches
by ignoring the customer order constraint. In Fig. 5.6 we highlight the empirical
scaling of our results in the industrial limit.

Solving problems directly with both QPUs was only possible for problem sizes
10-100. Embeddings were generated using the standard D-Wave embedding tool
Python package, the same that used in previous experiments in this thesis [68].
The chain strengths required by each QPU was different depending on the length
of the chains in the embeddings. We calculated the algebraic chain strength
chaini = |hi| +

∑
j∈adj(i) |Jij | for every spin in the Ising model, and introduce

an additional scaling parameter s = [0.1, 0.2, . . . , 1]. Thus, the chain strength is
defined as s ·max(chaini), where s was optimized per problem size using a subset
of the instances (10 per size), and 50 · N samples per instance. Optimal s was
defined as the value which yielded the highest frequency of valid solutions relative
to the constraints of the MCPS problem in Eq. 5.6 (not chain breaks). We found
that the D-Wave Advantage QPU had optimal s = 0.3, whereas the D-Wave 2000Q
QPU had optimal s = 0.45. This is consistent with the fact that the Advantage
QPU required shorter chains to embed the same Ising models as the 2000Q. Each
QPU was then sampled for 500 ·N samples per problem size N , with annealing
time ta = 1µs. We used N spin-reversal transforms for each sample set, as it
has been shown that there are diminishing returns between 100-1000 samples per
transform [75].

We found that for the 10 car instances both QPUs matched the consensus best
results between all solvers (median of f(w) = 2), and for the 30 car instances very
near the best results (f(w) = 5 as opposed to SA’s and HSS’s 4). For the 100 car
instances, with 50,000 samples per problem, the 2000Q QPU found valid solutions
for 22/50 instances, as opposed to 37/50 for the Advantage QPU. From this we
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conclude that 50,000 samples is insufficient for the QPUs, but due to limited time
availability we could not take more samples. We note that it was also possible to
embed 47/50 of the 300 car instances onto the Advantage QPU. However, due to
the poor performance on smaller sizes with limited resources, we did not evaluate
those problems. Furthermore, due to the limited problem sizes that could be
solved with the QPUs and the quality of results, we do not include these results in
Fig. 5.6.
The Tabu solver was given bN/3c seconds per problem as its timeout parameter,
and all other parameters were set to their default value. This solver struggled to
find valid solutions past the 10 car instances. Due to the post-processing technique,
which greedily corrected each sample to satisfy order k(Ci), the Tabu results were
essentially a worse version of the greedy algorithm at all problem sizes but the
smallest.
Simulated annealing (SA) has many tunable hyperparameters: number of sweeps
(Nsweeps), number of samples (Nsamples), and (inverse) temperature (β) schedule. In
our experiments we fixed the schedule to β = [0.01, 10], interpolated geometrically
using Nsweeps. We set Nsweeps = 10 · N and Nsamples = 20 · N , where N is the
number of cars. The solutions obtained by SA (shown in Fig. 5.6) were consistently
better than the greedy algorithm. Using the given parameters SA was able to
provide valid solutions for 50/50, 49/50, and 44/50 for the 30, 50, and 100 car
instances. However, the timescales necessary to obtain results were prohibitive
from extending the experiments: 300 variable problems were terminated after
running for 24 hours without returning a solution. We include the SA results
in Fig. 5.6 due to their high quality at small sizes. Using a single-threaded SA
implementation, run-time of the algorithm was on the order of seconds to minutes
for the 10 and 30 car instances, and between 1-3 hours for the 100 car instances.
We note that SA was the only solver which was allotted quadratically scaling
computing resources: both sweeps and samples scaled with N . This is necessary
for SA to be competitive, and exemplifies the trade-off between results quality and
algorithmic run-time when using heuristics.
The D-Wave HSS was given equal time to the Tabu solver, given its only parameter
is the timeout: bN/3c seconds per problem. The HSS was the only solver to
consistently provide better solutions than the greedy algorithm for all problem
sizes. The improvement continued to grow with increasing problem size, shown
in Fig. 5.6. However, the gap between the HSS and the greedy algorithm shrank
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with increasing problem size, performing only slightly better than greedy for the
3000 car instances.

Figure 5.6: Number of color switches within the sequence shown as improvement
over random configurations of orders.

Despite the simplicity of the Ising model representation of the MCPS problem,
almost all solvers exhibited difficulty in finding valid solutions. This is particularly
evident in the performance of the two different models of QPUs tested. The results
degrading rapidly from 30 to 100 cars indicate that the problem became more
difficult to solve disproportionately to the increase in system size. The SA and
Tabu solvers exhibited similar trends, despite the increase in resources allotted
to them. While the HSS was the best-performing algorithm, it also missed valid
solutions for some problems of intermediate size (100 and 300 car instances). We
identify two possible issues: first is the connectivity of the problem graph. Each
order k(Ci) requires a separate k-hot constraint which is represented using a
fully-connected graph. This yields sub-cliques within each problem that increase
with the problem size. In QPUs, denser problems create longer chains and higher
chain strengths. For classical solvers, these sub-cliques create rugged landscapes
which make single-flip optimization algorithms significantly less useful. Therefore,
that the maximum sub-clique of the MCPS problem graph increases as a function
of the number of cars is a bottleneck for performance. Secondly, the normalization
terms necessary to encode the MCPS problem as an Ising model also scale with
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problem size. In Eq. 5.6, we set λ = N to ensure the constraints are valid in
the ground state of the Ising problem. Therefore, we observe that the numerical
precision necessary to formulate the MCPS problem scales as 1/N . This effect
compresses the gaps between the local (and global) minima, making it harder
to differentiate between them. Using a direct embedding approach for QPUs
requires even higher precision due to chains: the chain strengths scale with N ,
and therefore the encoding precision as 1/N2. This may be prohibitively low in
large-scale problems and analog devices due to finite control errors.
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