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Real-world combinatorial optimization

There are many differences between real-world optimization problems and canonical
problems in NP. While the former may build on the latter, in many cases real-world
problems convolve multiple problem classes, or add additional constraints and
terms required to take into account real-world scenarios. For example, the Vehicle
Routing Problem is a well-known NP-hard optimization problem, which in its
canonical presentation requires only a given set of locations and a number of
agents to describe completely. However, in real-world applications, road networks,
scheduling time windows, and availability times all must be taken into account to
correctly represent the problem in practice. These real-world conditions may impose
additional constraints on the search space, yet often result in equally complex
problems. For instance, the Capacitated Vehicle Routing problem with Time
Windows, a more realistic representation of the problem where vehicle capacities
and delivery time windows are included, is still NP-hard. Thus, to address solving
such combinatorial optimization problems with QUBO/Ising formulations and
quantum annealing, we must introduce methods to incorporate such real-world
conditions in our modeling.

In this chapter we investigate two such techniques of solving real-world problems
with quantum annealing methods, each of which are fundamentally different. The
first involves deriving a QUBO from a real-life optimization problem in logistics (the
less-than-truckload problem). We introduce generic methods to model the various
constraints and optimization terms in QUBO form to accurately capture the real-
world nature of the problem. The specific limitations imposed by using quantum
annealing as a method to solve these QUBOs is addressed, and techniques are
proposed, implemented, and tested in this context. The (sometimes unfavorable)
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4. REAL-WORLD COMBINATORIAL OPTIMIZATION

scaling requirements of the problem description as a limiting factor is discussed in
detail.

The second method takes an opposite approach to solving real-world optimization
problems. Instead of deriving a QUBO to model the optimization problem directly,
we utilize a canonical NP-complete problem– the set cover problem, which has a
well-known QUBO form– as an oracle for a semi-supervised classification algorithm.
We consider a variety of open source datasets of different types, and utilize various
techniques to transform the data so that the task of data reconstruction (from a
reference database) can be performed by the set cover QUBO. We show how the
QUBO size and connectivity used to perform this task scale, and how these affect
the performance of our method. Finally, we show how to use this reconstruction
method to classify our data, and compare this to similar traditional classification
algorithms.

4.1 Combinatorial optimization with real-world
constraints

4.1.1 The shipment rerouting problem (SRP)

In order to introduce the idea of real-world applications of QUBO/Ising problems
and quantum annealing methods, we derive a QUBO formulation of a real-world
optimization problem as a case-study. We focus on a well-known problem in
logistics: the less-than-truckload network service design. The term less-than-
truckload (LTL) denotes shipments not exceeding a maximum weight significantly
below a full truck load. This application is a common problem in the logistics
industry, where complex delivery networks must be serviced regularly; for example,
a country-wide mail delivery service is a kind of problem in this class. The
transport of a single shipment in these scenarios can be described as a three step
process: (a) a collecting truck run (where shipments are picked up from service
locations), followed by (b) one or several linehaul truck runs (where shipments
are passed through a network of connecting distribution locations) and ending
with (c) a distributing truck run (a delivery to the shipments’ final destination
locations from a service hub). The work presented here focuses on the design of
the linehaul network, or step (b). The linehaul network for LTL is made up by
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4.1 Combinatorial optimization with real-world constraints

the set of terminals and timetable based truck runs, connecting the terminals and
thereby producing the long-hauls of all the shipments entering the network. Taking
limitations on transport times into account, the forwarding of the shipments is
meant to be as cost efficient as possible, measured here as the total distance each
shipment must travel from origin to destination. One key factor for cost efficiency is
the consolidation of multiple shipments in jointly utilized trucks, at least regarding
parts of their individual linehaul paths through the network. Meaning, it may
be favorable to merge multiple partially-filled trucks which service similar routes,
to reduce the total distance being traveled in the network. This saving measure
is represented by an increase in truck utilization. However, the consolidation of
multiple shipments with different origins and destinations in jointly utilized trucks
requires detours of shipments, thereby possibly increasing the distance traveled for
any individual shipment in the network. As detours come at a cost, the network
design problem searches for an optimal trade-off between detour costs and the
benefit of increased truck utilization. We focus on this central trade-off decision and
call this problem (the middle step in the process) the shipment rerouting problem
(SRP). We provide an illustrative example with two shipments in Fig. 4.1.

The input to our description of the SRP includes a set of terminals, their distances
between each other, and a maximum number of available trucks between any
two terminals. We have a set of shipments, each with a set of possible routes of
intermediate terminals throughout the network. These possible routes already
comply with constraints like maximum transport time or maximum detour factor,
and we consider the (weighted) graph network they represent as a fixed input to
the problem. These candidate routes include the direct route from the origin to the
destination of the shipment, which are also used as the default for all shipments.
Other candidate routes for rerouting are constructed in a pre-processing step based
on the graphical structure of the terminals and the distances between them. Thus,
a subset of shipments may be rerouted through alternate routes in order to reduce
the overall distance all trucks travel to deliver the shipments. Each shipment has a
size metric (volume, weight, etc.), and each truck has a corresponding capacity, i.e.
an upper bound for the total shipment size that can be loaded. For our purposes,
we denote the shipment sizes and truck capacities with respect to volume, and
refer to them as such throughout the rest of this chapter. We note that the
mathematical formulations we use to derive the final QUBO equally admit other
quantities.
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4. REAL-WORLD COMBINATORIAL OPTIMIZATION

Figure 4.1: An example of the SRP with two shipments. The default routing
(Trucks 1 and 2 carrying their respective shipments at 50% capacity each) is optimized
by replacing Trucks 1 and 2 with a single truck (Truck 3) which can be fully utilized.
The cost of rerouting each shipment to the route serviced by Truck 3 is offset by the
removal of Trucks 1 and 2, thereby reducing the overall distance travelled to deliver
the shipments.

In our case, a single shipment cannot be split across different routes. However, for
transporting a shipment between two terminals, we may split it to distribute it on
multiple trucks along the same route (this is necessary especially for shipments
with large volume). Given the input to the problem, the optimization task is to
decide on a route for each of the given shipments, which may include partial (or
entire) overlaps between shipments. Consequently, the result includes the number
of required trucks in the network, and which terminals are connected by truck runs
in which frequency. Conceptually, this is similar to [98], where it was shown how
to form a QUBO representation of a simple traffic flow combinatorial optimization
problem. In that work, individual vehicles are given multiple candidate routes
whose intersection needs to be minimized. This route-generation procedure is used
here as well, but with opposite intent: our objective is to consolidate as many
routes as possible. The SRP application we consider here is different from other
QUBO formulations found in literature as not only the selection of routes for each
shipment is variable, but also the number of trucks used on each edge along the
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4.1 Combinatorial optimization with real-world constraints

path is selected by the optimization. Typically, such parameters are inputs to
the QUBO construction which are then used to construct the appropriate QUBO.
Our formulation thus incorporates elements from both scheduling (route selection
in [98]) and packing problems (canonical problems in NP [77]).

4.1.2 Constructing a MIP for the SRP

Representing the SRP as a mixed-integer program (MIP) is straightforward, as we
can use multiple kinds of variables (binary, integer, real) and constrain both the
search space and solutions explicitly. Therefore, we start with a MIP representation
which we then later will transform to a QUBO.

First, we represent the connectivity of the terminals as a weighted directed graph G
where the vertices V are the terminals and the edges E between them represent
the ability to transport shipments from any single terminal to another; in other
words, we have an edge e ∈ E from a terminal a to a terminal b if there are trucks
available to drive from a to b. These trucks are called the trucks on e and the
maximum available number of trucks is denoted by tmax(e). The weight of e is the
distance from a to b and is denoted by d(e). For each shipment s, v(s) denotes
its volume and R(s) denotes the set of all routes that can be used to transport s
(candidate routes of s). For each edge e, R(e) denotes the set of all candidate
routes which pass through e. A shipment s is scheduled on some edge e if s is
transported using an associated candidate route r containing e.

In our scenarios, we assume all trucks have the same volume capacity, which we
denote by cvol. Moreover, all shipments have different origin-destination pairs so
that no two different shipments have common candidate routes (however, their
candidate routes may overlap). Therefore, for each candidate route r, we have
a unique shipment s(r) that can be transported using r. These choices simplify
our scenario, but result in no less of a general mathematical representation of the
problem.

Our objective is to transport each shipment entered in the network along an
associated candidate route such that the total distance of all used trucks in the
network is minimized. To represent this problem by a MIP, we introduce a binary
decision variable yr for each candidate route r that is 1 if r is used to transport s(r),
and 0 otherwise. For each edge e, we introduce a non-negative integer variable te
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4. REAL-WORLD COMBINATORIAL OPTIMIZATION

with maximal value tmax(e) representing the number of used trucks on e. Thus,
we represent the problem by the following MIP:

Objective: Minimize the total truck distance∑
e∈E

d(e) · te (4.1)

with respect to the following constraints:

Route-shipment constraints: For each shipment s, exactly one associated
candidate route is used: ∑

r∈R(s)

yr = 1. (4.2)

Capacity constraints: For each edge e, the total volume of all shipments
scheduled on e does not exceed the total volume capacity of the used trucks
on e: ∑

r∈R(e)

v(s(r)) · yr ≤ cvol · te. (4.3)

The capacity constraints ensure that on each edge e, enough trucks are used to
transport all shipments scheduled on e because we can split shipments to optimally
exploit the truck capacities. Note that in an optimal solution, each truck number
te is as small as possible, namely

⌈∑
r∈R(e) v(s(r)) · yr/cvol

⌉
. In that case, for each

edge e, we can completely fill all used trucks on e except possibly one truck that is
partially filled.

4.1.3 From MIP to QUBO

As discussed thoroughly in Sec. 2.4, contrary to a MIP, a QUBO contains only binary
variables and an objective function to be minimized without explicit constraints.
Thus, additional variables and constraints must be modeled with penalty factors.
Here, we show how to derive such factors to emulate the MIP constraints.

Our QUBO formulation also uses the binary variables yr for the candidate routes r.
In replacement of the integer variables te for the edges e, we use modified binary
representations of their values in the QUBO based on a concept in [77]: for each
edge e, we define T (e) to be the set of all powers of two less than or equal tmax(e),
and for each n ∈ T (e), we introduce a binary variable te,n to represent the number
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4.1 Combinatorial optimization with real-world constraints

of used trucks on e by
∑
n∈T (e) n · te,n. In this way, we can represent at least

each number up to tmax(e), i.e. each allowed truck number. However, the highest
number that can represented is 2nmax−1 where nmax is the maximal value in T (e).
Therefore, to avoid representations of numbers greater than tmax(e), we reduce the
coefficient nmax in

∑
n∈T (e) n · te,n by the surplus s := 2nmax − 1− tmax(e). The

new expression is denoted by ∑
n∈T (e)

n · te,n, (4.4)

i.e. we have nmax = nmax − s = 1 + tmax(e)− nmax and n = n for each n 6= nmax.
Now we can still represent each number up to tmax(e) but no other numbers. In
our QUBO, we reformulate the total truck distance (4.1) as∑

e∈E
d(e) ·

∑
n∈T (e)

n · te,n. (4.5)

To encode the route-shipment constraints (4.2), since that they are linear equalities,
they can be added directly as λ · (A−B)2 where λ is a large penalty factor ensuring
that the constraint is fulfilled at least in all optimal solutions of our QUBO. The
capacity constraints (4.3), however, cannot be implemented in the same way (after
reformulation using the representations (4.4)) because they are inequalities of
the form A ≤ B. However, as discussed in Sec. 2.4.1, such a constraint can be
transformed into an equality A+ ` = B by using a slack variable `. In the context
of the SRP, this slack of the capacity constraint for each edge e represents the
wasted volume in the used trucks on e (volume capacity slack on e). However,
determining the number of slack variables required must be determined from the
other coefficients in the inequality. Here we consider the “packing” constraint in the
QUBO formulation for the knapsack problem with integer weights in [77]:

H = A

(
W∑
n=1

nyn −
∑
α

wαxα

)2

. (4.6)

Here, wα is the weight of item α, with associated decision variable xα. The yn
variables function as unconstrained slack variables, allowing the total weight of
the knapsack to be any integer less than or equal to W , as required by definition.
Notice, however, that because integers are used for both the item weights and the
slack variables, then all partial sums of item weights are represented by the slack
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variables. In the SRP problem, the volume v(s(r)) is not restricted to integers,
and therefore needs more consideration. A naive attempt to use the standard
inequality constraint would require us to consider all partial sums of shipments
through every edge e in the graph network:|R(e)|∑

n=1

v(s(r))Cn∑
m=0

yn,m

− cvol
∑

n∈T (e)

n̄ · te,n

2

= 0. (4.7)

Here, yn,m would be a slack variable representing m possible sub-summations of
n shipments (with v(s(r))Cn being the binomial coefficient). Clearly, this is not
tractable and would result in significantly more QUBO variables than intended1.
To overcome this problem, we discretize the shipment volumes into bins: We divide
the capacity of each truck into the same number cbin of equally sized bins. We call
this cbin the bin capacity of the trucks. Each bin can only be used for transporting
one shipment and has the volume capacity cvol/cbin. Hence, for each shipment s,
the number b(s) of bins needed to transport s is given by b(s) = dv(s) · cbin/cvole.
Instead of the volume capacity slacks, we now have to represent the bin capacity
slack on each edge e, i.e. the number of unused bins in the used trucks on e. These
slacks are more tractable because they are integers that can be assumed to be less
than cbin.

On the other hand, we must consider the case where cbin is too small, and the bin
volume capacity cvol/cbin is large so that we may obtain several partially filled bins
in the trucks, especially if shipments exist that are smaller than the bin volume
capacity. Hence, we may not optimally exploit the truck capacities any more
which may increase the number of used trucks. We can improve the situation by
subdividing each bin into the same number of smaller bins.2 Therefore, cbin is a
crucial parameter for the QUBO construction: more bins may lead to a better
exploitation of the truck capacities, but at the cost of larger bin capacity slacks to
be represented. In our experiments, we used the bin capacity 10, which was an
empirically-determined compromise.

1Even considering duplicates in the partial sums, this is still factorially many terms in the
worst case for every edge in the graph.

2Simply increasing the bin capacity may worsen the situation. For instance, suppose that
v(s) = cvol/2 for each shipment s so that b(s) = dcbin/2e . If cbin = 2, then b(s) = 1 so that we
can put two shipments into a truck. But if cbin = 3, then b(s) = 2 so that we can put only one
shipment into a truck.
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4.1 Combinatorial optimization with real-world constraints

For each edge e, we introduce a non-negative integer variable `e representing the
bin capacity slack on e. Each bin capacity slack `e is less than cbin so that we can
represent these values in the QUBO by using a binary encoding scheme, introduced
in Sec. 2.4.3. We define L to be the set of all powers of two less than cbin, and for
each edge e and for each m ∈ L, we introduce a binary variable `e,m such that the
bin capacity slack of e is ∑

m∈L
m · `e,m. (4.8)

In this way, we can represent at least each number less than cbin, i.e. each relevant
bin capacity slack. Finally, we can reformulate the capacity constraints as follows:

Capacity constraints: For each edge e, we have∑
r∈R(e)

b(s(r)) · yr +
∑
m∈L

m · `e,m = cbin ·
∑

n∈T (e)

n · te,n. (4.9)

Similar to the route-shipment constraints, these capacity constraints are imple-
mented in the standard way, by introducing them as a large penalty term of the
form λ · (A − B)2. Putting all components together, we obtain the following
formulation of the QUBO:

Obj =
∑
e∈E

d(e) ·
∑

n∈T (e)

n · te,n + λ ·
∑
s∈S

 ∑
r∈R(s)

yr − 1

2

+ λ ·
∑
e∈E

 ∑
r∈R(e)

b(s(r)) · yr +
∑
m∈L

m · `e,m − cbin ·
∑

n∈T (e)

n · te,n

2

. (4.10)

Here, all variables are as before, and S is the set of all shipments in the problem.
We must now choose a penalty factor λ to ensure that only feasible solutions
are present in the global optimum of the QUBO objective, so that it is never
energetically favorable to violate one of the constraints in favor of minimizing
the total truck distance. In general, we may choose any λ greater than the total
truck distance d(feas) of any known feasible solution feas (for instance, the solution
transporting each shipment on its direct route). To see the correctness of this choice,
consider an optimal solution opt and suppose that opt violates a constraint. Then
the opt-value of the QUBO objective is at least λ and thus greater than d(feas).
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4. REAL-WORLD COMBINATORIAL OPTIMIZATION

But since feas is feasible, d(feas) is also the feas-value of the QUBO objective,
contradicting the optimality of opt.

The resulting QUBO representation now contains all the necessary terms to
correctly model the SRP problem. However, it requires many more variables
than the MIP in Section 4.1.2. This makes the problem more difficult to solve,
both in sense of increasing the search space (in terms of number of variables)
as well as the possibility of obfuscating optima via the choice in discretiza-
tion (meaning, we may accidentally cause over/under filling in the trucks due
to discretization). For each truck number variable te in the MIP, we have
|T (e)| = dlog2(tmax(e) + 1)e variables te,n. Additionally, we have |L| · |E| =
dlog2 cbine · |E| variables `e,m to represent the bin capacity slacks. Thus, we can
already see the overhead associated with conversion of a real-world optimization
problem to QUBO form.

4.2 Solving real-world QUBO models

4.2.1 Generating SRP QUBOs from data

The inputs used in this work were generated from a real-world network of delivery
hubs in Europe. The specific locations and distances between hubs were abstracted
to comply with data protection laws, but are nonetheless representative of the
original real-world network. Connections between hubs correspond to serviced
routes between hubs. We used one graphical model to represent the entire hub
network, and generated multiple inputs based on different numbers of shipments:
30, 50, 80, and 100 shipments. In all inputs, every shipment sij travels from
one hub (vi) to another (vj). The direct route, vi → vj along eij , is always
the first candidate route for sij . The other candidate routes are generated by
a staggered k-shortest path approach: shipments are categorized by their origin-
destination distance, and for each category the k shortest paths are calculated
where k increases with respect to the origin-destination distance of the category.
For example, shipments up to 200 km have one alternative route while shipments
over 1000 km have up to 10 routes. The volume of the shipments is randomly
generated using an adapted exponential distribution, resulting in many smaller
shipments and few larger shipments. We show in Table 4.1 the number of QUBO
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4.2 Solving real-world QUBO models

variables and the number of total terms in the QUBO for each of the problems we
generated.

Shipments Routes QUBO variables QUBO terms
30 223 787 4856
50 428 1526 16315
80 752 2305 40594
100 925 3318 59014

Table 4.1: Number of QUBO variables and terms needed to describe the SRP
instances.

4.2.2 Comparing QUBO and MIP solvers for the SRP

To understand the impact of our choices in modeling the SRP as a QUBO, we
employed the use of multiple other solvers. Here we provide a brief introduction and
motivation for each solver. It is important to note that in our inputs, all shipments
have different origin-destination pairs. Therefore, two different shipments cannot
have common candidate routes. However, candidate routes of different shipments
may overlap in some edges.

Direct shipments. We consider the “direct shipment” solution to the SRP as a
simple baseline for the other solvers to beat. The direct solution is computed by
routing every shipment (sij) along its most direct path (eij). Since every shipment
origin/destination is unique in our instances, this equates to using one truck per
edge for every shipment.
Simulated thermal annealing. We use the same simulated thermal annealing
algorithm used for experiments in Ch. 2 for the MIS instances. The specific imple-
mentation of simulated annealing in this analysis was from the D-Wave Python
package here [99].
Tabu search. This algorithm is another metaheuristic for combinatorial optimiza-
tion, operating on the principle that searching already-discovered solutions should
be actively discouraged (a “tabu list”). Individual variables’ states are flipped
based on their likelihood of importance in the global optimum [100]. Solutions
which worsen the objective function value may be explored by the search if no
other variable flip is possible, which allows for both global and local refinement of
solutions. The Python package used for Tabu can be found here [99].
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Gurobi. Optimal solutions and optimality bounds were produced by solving the
MIP in Section 4.1.2 using Gurobi, an exact branch-and-bound solver. The benefit
of using Gurobi is that a bound on the optimality of the solutions is provided.
Given that the objective function units are the same for all solvers, this optimality
gap can be used for all solvers in this analysis. The runtime allocated to Gurobi
was 24 hours per input to obtain good bounds for each instance.
D-Wave Hybrid Solver. As mentioned in Sec. 1.3, it is possible to construct
algorithms which use QPUs in their inner loop, thus leveraging both classical and
quantum resources. The smallest instance in our test set required 787 QUBO
variables. While small for the SRP application, this is larger than could be solved
on D-Wave QPUs at the time of experiments, which therefore necessitates the use
of a hybrid algorithm in order to be solved with quantum annealing. We used a
proprietary hybrid quantum-classical algorithm offered by D-Wave Systems, called
the Hybrid Solver Service (HSS), which admits QUBOs with up to 10k binary
variables. The HSS uses a QPU to optimize clusters of variables, allowing one
to leverage the use of a quantum processor without the overhead of embedding.
However, this hybrid algorithm does not allow direct access to control the QPU
in its inner loop. Therefore, we consider the HSS as a black-box optimizer, and
measure the performance as a function of the timeout parameter, similar to Gurobi
and other black-box solvers.

We present the timing information allocated to each solver in Table 4.2, and the
corresponding parameters in Table 4.3. For the D-Wave HSS, we limit the 30 and
50 shipment instances to only 5 minutes of runtime. We note that these 5 minutes
were sufficient for the problems tested. Because we could not control the usage of
the QPU in the D-Wave HSS, we report the QPU runtime in the timing results
rather than a parameter. All software solvers were executed using single-threaded
programs. To attempt a fair comparison, each QUBO solver was given roughly the
same amount of time per test instance. However, the specific parameter choices
corresponding to such times were found and set by hand.

We present the consolidated results from all solvers in Figure 4.2. While the total
runtime of Gurobi was set to a 24 hour timeout (to obtain good lower bounds),
good solutions with an optimality gap of less than 10 percent were already found
after a few minutes for all instances. For the 30 and 50 shipment instances, we also
obtained provably optimal solutions within the first few minutes of optimization.
The solutions from Gurobi were significantly better than those obtained by solving
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4.2 Solving real-world QUBO models

Instance Simulated Annealing Tabu HSS
30 1 hr 1 hr 5 min (QPU: 3.0s)
50 1 hr 1 hr 5 min (QPU: 1.4s)
80 1 hr 1 hr 1 hr (QPU: 3.61s)
100 1 hr 1 hr 1 hr (QPU: 4.34s)

Table 4.2: Table of runtime allocated to each solver in the experimental setup.

Instance Simulated Annealing Tabu HSS

30 2500 samples,
50000 sweeps

1 hr timeout 5 min timeout,
use_qpu = True

50 1600 samples,
50000 sweeps

1 hr timeout 5 min timeout,
use_qpu = True

80 1000 samples,
50000 sweeps

1 hr timeout 1 hr timeout,
use_qpu = True

100 500 samples,
50000 sweeps

1 hr timeout 1 hr timeout,
use_qpu = True

Table 4.3: Parameter sets used for each solver. Parameters not mentioned were
set to default values.

the QUBO formulation. However, this is possibly due to both the fact that Gurobi
is an exact solver and the way in which the MIP is discretized to form the QUBO,
as explained in Section 4.1.3. The lack of discretization for Gurobi may result in
more efficient packing of shipments along each edge, which would result in fewer
trucks, and therefore a lower objective function value (truck km). Tabu search
was able to find a near-optimal solution for the 30 shipment instance, but was
unable to find even feasible solutions for any of the other instances. Simulated
annealing was able to find feasible solutions, but only in the largest case of 100
shipments was the solution better than the direct shipment approach. The D-Wave
HSS was able to find better-than-direct solutions for the 30, 50, and 80 shipment
instances.

Throughout our initial experiments, we found that increasing the number of possible
routes for each shipment does not directly correlate with improved solutions to
the original problem (lower total truck km). This is due to the fact that each
additional route creates more minima and a more rugged landscape. It is important
to note that given the way we construct the QUBO– no trucks along an edge is a
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Figure 4.2: Performance of all solvers used in the experiments. We display the
results in units of truck kilometers for ease of comparison. Simulated annealing
(SA), Tabu, and the D-Wave HSS are QUBO solvers, Gurobi is a MIP solver, and
the direct solutions are the simple baseline of one truck per shipment.

valid solution– increasing the number of possible routes can only create additional
minima, not remove minima that have already been created. Furthermore, given
that all constraints are implemented as penalty factors in the QUBO, this created
an increased difficulty for the QUBO solvers to find optima. Given this insight,
it is even more important to consider the number of QUBO terms (in Table 4.1)
when modeling combinatorial optimization problems as QUBOs.

In general, both the SRP (in its original form) and the QUBO model the distance
minimization of a simple objective function– total number of truck kilometers used
to send shipments between nodes in a graph. The majority of our work focused on
deriving methods to translate the MIP representation of SRP to a QUBO using both
simple minimization objectives (truck kilometers as weights on decision variables),
and hard constraints (packing constraints on edges in the graph) to test both
quantum and classical optimization algorithms. In reality, it is evident that there
is a significant amount of work required to find such valid QUBO representations
for complex optimization problems inspired by real-world constraints. Despite
the relatively straightforward description of the problem, correctly modeling the
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solution landscape requires a more subtle approach, and required multiple iterations
of derivations, as explained throughout the text. Of the algorithms tested, Gurobi
performed the best despite being an exact branch-and-bound algorithm. Of the
heuristics, we found that the D-Wave HSS was able to find better than greedy
solutions for the smaller problem sizes tested. We stress that given our small test
bed we cannot conclude any one solver being the best relative to the others, nor was
this the intention. The context of the work presented was to assess the work that
was required to transform a real-world optimization problem to a clearly-defined
QUBO equivalent. We found that the bar defined as “acceptable” (finding solutions
that are better than direct shipments) was surprisingly difficult for the heuristics
to beat. This is important to note since simulated annealing was able to find valid
solutions for all the problem sizes, but better-than-direct for only one problem (the
largest). Furthermore, long runtimes were required to find these better-than-direct
solutions, and yet were still far from optimality. The significance of this result
is that despite QUBO being an NP-hard problem, the overhead in transforming
any single optimization problem to QUBO may be detrimental to the performance
of optimization algorithms which then solve the QUBO, and therefore it is not
always worth the effort of the transformation. Furthermore, throughout the studies
conducted in this section we found that naive and straightforward transformations
to QUBO using known techniques is sometimes impractical. In particular, the
inequality constraints required to correctly pack the shipment volumes in the truck
capacities required such an increase in the number of variables, that additional data
transformation was required to encode the constraint in the QUBO (discretization
of the capacities).

4.3 Adapting real-world optimization problems to
known QUBOs

We now turn our attention to a different approach to solving optimization problems.
Here we perform the task of data reconstruction and classification using a QUBO
model. Given some set of time series (TS) data, and a reference database, the task
of reconstructing the candidate time series from features in the database is a hard
problem. In our approach, we use a combinatorial optimization “oracle” in the form
of a QUBO problem to model the task of the time series reconstruction, thus solving
the underlying problem. In particular, we use the QUBO representation of the set
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cover problem as the oracle performing this task. In contrast to the previous section,
where the majority of the work was in deriving a valid QUBO, here we instead
focus our work on finding methods to transform the data so that it can be solved
effectively by the set cover problem without oversimplifying the original data. This
is also in contrast to other quantum machine learning techniques, where it has been
shown how to reformulate parts of classical classification algorithms as quantum
subroutines that can be executed on error-corrected gate-model QPUs [101, 102,
103, 104]. In quantum annealing, similar numerical approaches have been shown in
which the objective function of the classification task (minimizing distance metrics
between high-dimensional vectors) has been directly translated to a QUBO, with
each vector’s possible assignment represented via one-hot encoding to physical
qubits [105, 106].

By reformulating the critical task in our classification algorithm as a set cover
problem, we introduce two novel ideas to quantum classification algorithms: (i) we
avoid representing single vectors with polynomial numbers of qubits, instead
representing the features within the data as the qubits, and (ii) we perform
the classification task by transferring the core concepts of classification (and
reconstruction) to the quantum algorithm for set cover, as opposed to a direct
translation of a distance-based minimization procedure. This results in an algorithm
that avoids a classical “learning” procedure, therefore requiring significantly fewer
computational resources compared to other classical and quantum methods.

4.3.1 The set cover problem

The set cover problem is defined as follows: given a set of symbols (called a

universe) U = {1, ..., n}, and a set of subsets Vi, such that U =
N⋃
i=1

Vi, Vi ⊆ U , find

the smallest number of subsets Vi whose union is U . This is a well-known NP-hard
optimization problem, and is one of Karp’s original 21 NP-complete problems [50].
There is a known QUBO formulation for the set cover problem provided in [77].
We start by defining the following binary variables:

xi =
{

1, if set Vi is included,
0, otherwise. (4.11)
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We let α ∈ U denote an element of the universe set, and m signify if element α
appears in m subsets. Then, we have binary variables:

xα,m =
{

1, if the number of Vi which include α is m,
0, otherwise. (4.12)

We consider the full QUBO as a sum of two components:

HA = A

n∑
α=1

(
1−

N∑
m=1

xα,m

)2

+A

n∑
α=1

(
N∑
m=1

mxα,m −
∑
i:α∈Vi

xi

)2

, (4.13)

and

HB = B

N∑
i=1

xi. (4.14)

The complete QUBO is given by H = HA + HB. The first summation in HA

imposes that exactly one of xα,m must be selected in the minimum via a one-hot
encoding. The second summation in HA represents the number of times α is
selected, and that this is equal to the number of selected subsets α appears in
(m, as only one xα,m can be 1 in the minimum). This is similar to the packing
constraint from the previous section. The final term, HB, serves to minimize
the number of Vi needed to cover the universe U . The total number of variables
required is N + n(1 +M), where M is the maximal number of sets that contain
given element of U . The limiting case where each element of Vi included covers
only one element of U constrains the coefficient of HA and HB to 0 < B < A. The
closer the coefficients B and A, the more weight is given to (4.14), minimizing the
number of elements selected from V .

4.3.2 Time series reconstruction as a QUBO

Classification techniques generally require specific data representation, similarity
measure definitions, and algorithm selection. Similarly, in our QUBO approach,
we represent the time series data as encoded strings from which we formulate
semi-supervised classification and optimal reconstruction as a set cover problem,
and provide metrics based on solutions to the set cover problem. While different
than classical approaches [107, 108, 109, 110], we do not attempt to simplify the
complexity of the problem, and introduce a method that is based on latent features
within the data. The only assumptions we make about the time series data is that
it is separated into two categories: a training set and a test set. The training set
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we assume is labeled and is used as a reference database with which each time
series in the test set is reconstructed from.

In order to reconstruct given time series data, we start by discretizing both the
training and test data, and compare the encoded strings to generate the elements
of our universe to form the set cover. This technique is crucial to allow feature-wise
comparison of the data, as well as arbitrary reconstruction using existing (or
training) data. There are many ways to discretize time series data, and exploring
the trade-offs between the various methods is beyond the scope of this thesis. For
our purposes, we use the symbolic Fourier approximation (SFA) method [111],
as it provides differentiation between separate time series classes and features in
high-dimensional data sets, allowing us to use these representative symbols for our
set cover problem. Nevertheless, the exact discretization is data-dependent, with
various hyperparameters (such as number of letters in the alphabet, length of each
encoded string, etc.) present in the method. We therefore assume, under simple
conditions, that we can treat the SFA method as a black-box that takes time
series data as an input and returns symbolic strings encoding the data features as
output.

Given the encoded strings, we introduce a pair-wise method to compare the time
series features using what we call a “pulling procedure”, illustrated in Figure 4.3.
This pair-wise comparison is considered a pre-processing step necessary to for-
mulate our set cover problem. Starting with one fixed string (red in the figure),
we consider each encoded character as an independent element in the universe
set1 (U = {0, 1, 2, 3, 4} in the figure). A second string (green in the figure) is
compared element-wise by successively moving the second string along the first,
as illustrated. At every iteration, all character matches between the two strings
are recorded as a new set. In the example from Figure 4.3, the set of sets is
V = {{0} , {∅} , {0, 2} , {∅} , {1, 2, 3} , {∅} , {∅} , {3} , {∅}}.

The procedure is repeated for the rest of the encoded training tie series to form
the set of sets V . In this setup, the SFA routine needs to be performed only once
per time series, and that the pair-wise comparison is then performed in O(n2)
time. The set which is a union of all subsets obtained via the pulling technique
now represents the all features in common between the target (or test) time series

1It is important to note that by using the same encoding scheme for all time series data, we
ensure that all string characters belong to the same alphabet.
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Figure 4.3: Schematic illustration of time series encoding and pulling procedure
to produce subsets of set V = {{0} , {∅} , {0, 2} , {∅} , {1, 2, 3} , {∅} , {∅} , {3} , {∅}}.
The optimal selection to cover U = {0, 1, 2, 3, 4} in this case would be underlined
subsets V = {{0} , {1, 2, 3}} with item numbers 0 and 4.

candidate and all other time series in the reference data set. Given this aggregate
set, the goal is now to select the minimal subset that most closely reconstructs
the universe, which is the NP-hard set cover problem. In other words, the task
is to select the features in the reference database which correctly reconstruct the
given test time series. In the case illustrated in Figure 4.3, the optimal selection
of subsets is underlined in red. In principle, solutions of this set cover problem
do not preserve order of elements, and allow the use of the same element multiple
times. This feature is useful for time series comparison, as elements of the time
series data can be permuted and duplicated without affecting our reconstruction
method.

The final size of the set cover QUBO is heavily dependent on our choices dur-
ing discretization. For example, the number of binary variables is equal to
Ntrain TS (2L− 1) (L+ 1), where Ntrain TS is the number of time series in the
training set used for reconstruction, and L is the length of string that encodes the
time series. Increasing the string length to encode each time series changes the size
of the universe U . Allowing longer encoded strings to represent the data creates
more subsets Vi. Therefore, there exists a trade-off between the granularity of the
encoded strings and the ability to solve the set cover representation of the problem.
Including more characters in our alphabet for discretization changes the non-empty
sets Vi, which the number of quadratic elements in the QUBO depends on. The
general trend is, however, that the number of the quadratic element decreases
with the increase of the characters used in our alphabet. This is explained by
the properties of the pulling procedure described above, since a smaller alphabet
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produces more non-empty elements Vi which could be used for reconstruction of
the universe U . In Figure 4.4 we show how varying these hyperparameters of the
discretization affects the size of the QUBO problem, based on 20 test samples from
one of our data sets used in experiments [112].

Figure 4.4: (a) The number of quadratic terms in millions as a function of string
and alphabet length. (b) Quadratic elements as a function of alphabet length, with
string length being fixed to 6. (c) Quadratic terms as function of string length, with
alphabet length being fixed to 6. The corresponding isolines (b) and (c) are shown
with dashed line on surface plot (a). Analysis was performed using 20 test samples
from the BeetleFly data set [112].

4.4 Using QUBOs to perform classification

We can now combine the methods described in the previous sections– constructing
the sets U, V from discretized data and the QUBO representation of the set cover
problem– to perform semi-supervised classification from reconstructed data sets.
In our case we use training data sets with known labels, and the task we solve is
to use the labeled data to assign labels to the test set, given a valid reconstruction.
Normally, the training set with labeled data is significantly smaller than unlabeled
test set, which we exploit in our method.

We encode both the training and test data sets into strings using the pulling
method described previously. We then perform the reconstruction procedure for
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every time series in our test set using the entire training set. Each time series from
the test set is assumed to individually form a universe U , and is to be reconstructed
using the sets Vi, obtained via the pulling procedure. Explicitly, using Figure 4.3,
the red string is the time series from the test data set, and all strings in the training
set are pulled through (green strings) to obtain the Vi’s. This allows us to compare
every test time series to the full training set in one-versus-all manner. Then, using
the universe U and Vi’s from the pulling procedure, we formulate the set cover
problem outlined in Section 4.3.1. Thus, a single solution to that set cover problem
(even sub-optimal in the worst case) allows us to reconstruct each time series from
the test set using a set of discretized features obtained from all elements which
appear in the training set. Furthermore, since we employ metaheuristics to solve
the set cover QUBO, various optima could yield different ways to reconstruct the
test time series using the training set. Due to this, it is therefore the users’ task to
use these reconstructed strings to associate each test time series with a label from
the training set.

To classify the reconstructed test time series data we evaluated three different
similarity metrics using set cover solutions: largest common subset Vi, highest
number of common subsets Vi, and largest sum of common elements in selected Vi.
We briefly explain how each metric is calculated, and discuss the performance of
each.

• Largest common subset. Given a candidate solution to the set cover
problem, the label corresponding to the Vi which contains the most elements
is selected. The label is then assigned to the test time series. This metric
captures the longest continuous set of features from the training time series
data, and assumes that is sufficient to determine the label.

• Number of common subsets. Frequently, multiple Vi’s from the same
training time series are used to reconstruct a test time series. In this metric,
we count the number of Vi subsets used to cover the universe. The test label
is assigned the same label as the training time series which appears most
frequently in the set cover solution.

• Largest sum of subsets. This metric is a combination of the previous two.
For every training time series that is used to reconstruct a test set, the total
number of elements used by each is counted (summed over all Vi’s). The
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label which corresponds to the training time series with the largest sum is
assigned to the test time series.

These metrics allow us to quantify the accuracy of our semi-supervised classification
method. The first two metrics, being based on large sets of common features
between the time series, performed the best (experiments and results shown in the
next subsection). There was no significant difference between the two metrics, and
the superiority of one metric over the other varied between data sets. The third
metric, which was a combination of the first two, performed worse than either of
the first metrics in the majority of the cases tested. While unexpected to begin
with, this observation could be explained by the fact that because the third metric
admits matches with many small subsets Vi that are selected in the set cover, this
metric could miss significant signatures present in the time series data. Therefore,
the largest common subset metric was selected for the experiments presented in
the next section. It should also be noted that the use of labeled training data is
not designed to not reach the accuracy of supervised learning methods. Moreover,
there are modifications that could be made to the methods presented to improve
the accuracy, for example increasing the word length and/or using a larger train
set. Both are constrained in our use-case to prohibit excessively large QUBOs
from being constructed. The goal of this method is to allow for relatively high
accuracy using small sets of training data.

4.4.1 Classifying real-world time series data

We validate our method by using the set cover QUBO to reconstruct and classify a
variety of open-source, real-world time series data. The benchmarking experiments
performed here used labeled time series data available publicly [113, 114]. These
data sets were used as-is in the experiments presented below. Validation was
performed by measuring the classification rates of each methods on the labeled
test data. We restricted the analysis to univariate time series data with two classes
and small training set size. However, this method of semi-supervised classification
can be used with any number of classes, at the cost of QUBO size. Since both the
number of time series in the training data and the word length used to encode
the data contribute to the number of variables in the QUBO, we select data sets
that have small numbers of time series in the training set. The test and training
sets used in these experiments are already determined and labeled by the source,
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allowing us to easily calculate the classification rate of our method and avoid the
step of selecting a training set. To benchmark the performance of our classification
method, we compared the accuracy of our labeling method to semi-supervised and
unsupervised classical classification methods. The results of these experiments
for the various data sets are summarized in Table 4.5. To test the robustness of
our method we collected a variety of data sources of different types. We briefly
review each source and provide a literature reference for further details. We note
that in the data sources’ accompanying cited works, higher classification rates
than our methods are reported using supervised algorithms. In this analysis we
do not consider supervised classification algorithms, and instead compare our
semi-supervised quantum-based approach to similar classical algorithms.

SonyAIBORobotSurface1 [115] data is sensor data collected from a small,
dog-shaped, quadruped robot. It is equipped with multiple sensors, including a
tri-axial accelerometer. In the experiments we classify between roll accelerometer
measurements on two classes of surfaces: soft carpet and hard cement.

GunPoint [116] data includes motion tracking of actors’ hands during gun-drawing
and gun-pointing actions. For both classes the X-component of the actor’s right
hand centroid is tracked and used to distinguish between the two classes.

TwoLeadECG [117] and ECG200 [117] are electrocardiogram data sets available
at the PhysioNet database [118]. The first includes long-term measurements
from the same patient using two different leads. The classification task aims to
differentiate between each lead signal. In contrast, the second ECG200 set contains
electrical activity recorded during one heartbeat. The two classes are the normal
heartbeat and a Myocardial Infarction records.

BeetleFly [112] time-series data is generated from binary images developed for
the testing of shape descriptors. The external contour of these images is extracted
and mapped into the distance to the image center. The two image classes are
contours of beetles and flies.

Chinatown [119] data is collected by an automated pedestrian counting system
in the city of Melbourne, Australia. The classes are based on weekday or weekend
traffic.

The QUBOs generated by our methods were too large to be embedded and opti-
mized using the largest available QPUs (D-Wave 2000Q at the time of experiments).
The exact sizes of the QUBOs for each data set are shown in Figure 4.5. To solve
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the QUBOs we used the simulated thermal annealing metaheuristic which was
used for previous experiments in this thesis. The specific implementation of SA
was from the D-Wave Python package for classical QUBO optimizers [99]. We
found that 20,000 samples and 1000 SA sweeps (with geometric interpolation of
the inverse temperature) were sufficient to ensure that low-energy local minima
were sampled within reasonable times per QUBO. We use the default SA settings
in the package for initial and terminal inverse temperature selection (for more
information about the implementation of SA we refer the reader to [99]).

The specific parameters used for the time series encoding to generate the QUBOs
are shown in Table 4.4. In general, the longer the time series are and the fewer
time series are in the training set, the finer the discretization method required to
accurately classify the test data. In all data sets we were able to reconstruct each
test time series with elements from the training set, as explained in Section 4.3.1.
The distributions of the number of variables in each QUBO for all data sets is
shown in Figure 4.5.

We provide an illustrative example of our QUBO-based reconstruction and clas-
sification in Figure 4.6 using the BeetleFly data set. The task is to reconstruct
the data in Figure 4.6 (a) using (b) and (c). For this example, an alphabet of size
5 was used for encoding, color-coded in the figure. The results of the set cover
problem, formulated using the methods explained in previous sections, are three
sets, shown as v1, v2, and v3 in Figure 4.6. Meaning, each box (representing a fifth
of the time series data per box) that appears in one of the subsets forming the
solution is designated as such. Specifically, v1 = [‘A’, ‘E’], v2 = [‘E’, ‘B’], and
v3 = [‘C’]. Therefore, the union v1

⋃
v2
⋃
v3 = U , where U =‘ACEEB’, the test

time series data to reconstruct. For classifying the reconstructed sample, we refer
to the classes of the training data used for the reconstruction, and note that the
training samples in Figure 4.6 (b) and (c) belong to two different classes. Using
the similarity metrics defined above, it is easy to determine that v1 and v2 both
originate from the time series (b), whereas only v3 (which contains only a single
element) is obtained from (c). Therefore, (a) is assigned the same label as (b). This
example is representative of the majority of cases encountered during classification,
with components of the reconstructed time series varying across multiple training
samples, and often also across multiple classes.
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Figure 4.5: Distribution of number of QUBO variables for all data sets in Table
4.4.

4.4.2 Classification benchmarking

For the purposes of evaluating our QUBO-based classification method quantita-
tively, two classical time series classification algorithms were compared based on
dynamical time wrapping (DTW) [120] measures: k-means classification and a
classical analogue of the semi-supervised method described above. The motivation
for using these specifically is that both are based on pair-wise similarity metrics as
in the approach presented here. DTW applied to temporal sequences aligns the pair
series in a non-linear way to minimize differences and calculate Euclidean distance
afterwards. The DTW measure could be applied directly in unsupervised k-means
classification or similarly to the method described here in the semi-supervised
fashion. We use k-means classification with pairwise DTW metrics calculated
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Figure 4.6: An illustrative example of reconstruction and classification from the
BeetleFly data set. (a) A test time series sample (encoded as ‘ACEEB’) reconstructed
from two training TS. Each box in the sub-figure is encoded as a single letter in a
string, as per the color bar. The subsets vi obtained from the pulling procedure and
used to reconstruct this data are shown both in the reconstructed (test) time series
and in the training time series. (b) The first training data used for reconstruction and
classification (encoded as ‘EABBE’). (c) A second time series used for reconstruction
(encoded as ‘CCEAB’).

on the original TS (before encoding), with the labels being assigned based on
belonging to one of two clusters. The second method assigns the test TS labels
are by the DTW metric directly, calculated pairwise between each training and
test TS (without encoding). We use these two methods to calculate classification
rates for all data sources in the experiments.

As expected, the semi-supervised QUBO-based method outperforms classical
unsupervised methods. We note however, that the QUBO-based method operates
on a reduced dimensionality in contrast to the classical methods which use the
original TS, where full information is preserved. Even under this consideration the
accuracy of QUBO-based method is comparable with the semi-supervised DTW
methods, and could be improved still by enriching the set V , i.e. by augmenting
the training set or increasing the discretization granularity. The worst performance
of the QUBO-based algorithm is observed on the TwoLeadECG data set. This
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Data set Data type Train/Test Time series Word/Alphabet
size length length

SonyAIBORobotSurface1 Sensor 10/601 70 8/8
GunPoint Motion 30/150 150 5/5

TwoLeadECG ECG 20/1139 82 5/5
ECG200 ECG 20/100 96 5/5
BeetleFly Image 20/20 512 5/5
Chinatown Traffic 20/345 24 5/5

Table 4.4: Table with data set description, number of time series in training and
test sets, length of time series, and length of each encoded string and number of
different letters used to encode data set.

could be explained by the nature of our method, as well as the sensitivity of the
ECG data. By using the set cover problem, we allow for permutations of subsets
of TS data in the reconstruction of the test TS. It is likely that this permutation
of TS segments, and similar representation in Fourier space of the signals from
the two leads in the ECG measurements, makes our method not suitable for this
kind of data. The highest accuracy is obtained using the BeetleFly and Chinatown
data sets. In the first case, many permutations of the training set to construct
the test set are permissible, which our method takes advantage of. The accuracy
of our method is additionally improved by the relative size of the training set,
further augmenting the combinatorial space of permutations. This robustness can
also be explained by the dimensionality reduction technique for this data set: the
2D BeetleFly images (with different orientations) were mapped to 1D series of
distances to the image centre, which again is beneficial for permutation-based
methods. The Chinatown data set, for comparison, contained significantly shorter
TS than BeetleFly. Encoding the Chinatown TS data with the same word length
as BeetleFly resulted in higher granularity representations, and ultimately higher
accuracy. This provides additional evidence that the accuracy of our method can
be improved by increasing the granularity of the encoding.

Among the advantages of our method is the utilization of significantly less data with
respect to conventional classical methods, as well as a one-versus-all comparison
that allows the selection of segments of data from multiple sources to reconstruct
a single time series. This provides an additional robustness in the method with
respect to permutations of time series segments during the reconstruction. In order
to formulate this problem as a QUBO we apply time series dimensionality reduction
by encoding each time series as a separate string. This encoding procedure and
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Data set QUBO method k-means DTW
c1/c2/weighted c1/c2/weighted c1/c2/weighted

SonyAIBORobotSurface1 0.7/0.9/0.78 0.85/0.97/0.92 0.97/0.63/0.83
GunPoint 0.76/0.79/0.78∗ 0.53/0.51/0.52 0.82/0.77/0.79∗

TwoLeadECG 0.6/0.62/0.61 0.65/0.7/0.68 0.86/0.94/0.9
ECG200 0.61/0.82/0.75 0.62/0.8/0.79 0.87/0.51/0.64
BeetleFly 0.85/0.89/0.87 0.64/0.83/0.73 0.62/1.0/0.82
Chinatown 0.72/0.91/0.86 0.37/0.78/0.67 0.89/0.98/0.94

Table 4.5: The classification accuracy measured on two classes and weighted
average reported for QUBO-based and classical DTW-based methods. Bold text
signifies the most effective classification method (based on the weighted average of
the two classes) for each data set tested. Asterisk denotes a tie between the methods
within statistical variance.

selection of comparison metrics define the hyperparameter space of the problem.
The QUBO-based classification method performed the best on image and traffic
data, which is consistent with our method’s inherit ability to utilize permutations
of features/data within the time series to perform reconstruction.

Time series reconstruction and classification has a wide variety of useful applications,
such as: management of energy systems, factory process control, sensor systems,
and many more. The methods introduced in this section show how to reformulate
the tasks of reconstruction and classification of real-world data so they can be
solved as QUBOs. This is a fundamental departure from the traditional methods
used in solving optimization problems with QUBOs, and so we consider this a
novel contribution to the field of optimization of real-world problems which can be
built on in the future.
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