
Applications of quantum annealing in combinatorial
optimization
Yarkoni, S.

Citation
Yarkoni, S. (2022, December 20). Applications of quantum annealing in
combinatorial optimization. Retrieved from
https://hdl.handle.net/1887/3503567

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3503567

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3503567

ch
ap

te
r

2
Combinatorial optimization and quantum an-
nealing

Metaheuristic algorithms are often used in practice to solve a variety of traditionally
difficult optimization problems. Their power derives from the tunability of their
parameter sets, often providing practitioners with trade-offs between global search
space exploration and local optimization. Annealing algorithms in particular
are popular due to their strong theoretical motivation from physical processes
and relative ease of implementation [33]. In this chapter we introduce the basic
concepts of the quantum annealing algorithm, from both the theoretical and
practical aspects, and present the methodology with which optimization problems
are solved using quantum annealing hardware.

2.1 Adiabatic quantum computing and the adia-
batic theorem

The Adiabatic Quantum Computing (AQC) model1 is a computational model
for quantum computing which exploits the adiabatic theorem: given a quantum
system in its ground (minimum) energy state, if the governing Hamiltonian is
changed “sufficiently slowly”, then the quantum system remains in its instantaneous
ground state. It has been shown that, given a register of qubits, this adiabatic
theorem can be used in order to simulate quantum Hamiltonians and perform
algorithmic computation [40]. Furthermore, it has been shown that this AQC

1This model of computation is also known as the Adiabatic Quantum Optimization model,
abbreviated AQO.

15

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

model is polynomially equivalent to the gate-model of quantum computing, by
showing how quantum Hamiltonians can be constructed to simulate arbitrary
quantum circuits [41]. However, the ability of AQC to solve (or simulate) arbitrary
problems is not perfectly understood. The notion of “sufficiently slowly” depends
on the both the specific Hamiltonian and the conditions of evolution, and can be
difficult to compute. A generic time-dependent Hamiltonian for adiabatic evolution
is given by:

H(t) = A(t)Hi +B(t)Hf . (2.1)

Here, Hi is the Hamiltonian in which the system is intialized (referred to as
the initial or driver Hamiltonian), and Hf is the Hamiltonian at the end of the
evolution (referred to as the final or target Hamiltonian). The boundary conditions
on the relative magnitudes of each Hamiltonian are given by B(t = 0) = 0 and
A(t = τ) = 0, for an evolution on timescale τ . Thus, one could construct Hf to
represent a quantum circuit and use Eq. (2.1) to perform AQC. A visualization of
the transition in magnitudes is shown in Fig. 2.1.

The theoretical motivations for AQC can also be used in the context of optimization.
Instead of settingHf to represent a quantum circuit, it can be used as a Hamiltonian
representation of an optimization problem. Thus, successfully evolving to a
ground state of Hf can solve complex combinatorial optimization problem with
Hamiltonian representations. In realizable quantum hardware it is not always
possible to evolve adiabatically (as any physical system is always coupled to its
environment), but it is known that even in the absence of perfect adiabaticity, a
quantum system that is evolved “sufficiently slowly” maintains proximity to its
ground state [42]. Here we consider only models in which time evolution dependence
can be parameterized by a single variable t ∈ [0, τ]. This parameter is also
sometimes normalized by τ , and referred to as normalized time, s = t/τ ∈ [0, 1].
Generally, it is known that the magnitude of τ required to remain near the grounds
state is related to the difference between the two lowest energy states, E0 and E1.
This point at which this energy difference occurs is called the avoided crossing or
minimum gap, and is visualized in Fig. 2.2. The timescale of evolution is typically
expressed via the approximation:

max
ti≤t≤tf

〈Hf (t)| dH(t)
dt |Hi(t)〉

|E1(t)− E0(t)|2 � τ. (2.2)

16

2.2 Theory of quantum annealing

t=0 t=τ

Time (t)

E
n

er
gy

A(t)

B(t)

Figure 2.1: Generic evolution of a Hamiltonian as dictated by A(t) and B(t) in the
AQC model. In software (meaning, when simulating quantum annealing), the shape
of these functions can be programmed and controlled. In hardware, the shapes are
hard-coded via the control electronics of the quantum processor and its calibration.
To allow for full manipulation of these curves would require controls which are
beyond the current capabilities of the technology.

Thus, if the final Hamiltonian Hf represents a target optimization problem, then an
evolution on timescale τ can be used to solve it. However, in practice, calculating
|E0(t)− E1(t)| requires knowledge of the entire eigenspectrum of the Hamiltonian
H (in the worst case), and is therefore NP-hard in itself.

2.2 Theory of quantum annealing

Originally described as a metaheurstic in classical software used to solve combinato-
rial optimization problems, quantum annealing (QA) is closely related to AQC [35].
Analogous to classical simulated thermal annealing, quantum fluctuations are used
in order to tunnel through energy barriers in a combinatorial landscape, as opposed
to thermally-assisted hops in simulated annealing. In quantum annealing, these
fluctuations induce quantum tunneling effects, where the wavefunction is split

17

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

across energy barriers to different energy minima. At the end of the evolution
(ideally) the wavefunction is concentrated at global optima of the energy landscape.
However, instead of initializing the algorithm with random initial configurations
(like in thermal annealing) the QA algorithm is initialized by setting qubits’ states
to a simple ground state (generally a superposition over all states), and is evolved
over time to target a final Hamiltonian Hf . Quantum annealing can be viewed as
a subclass of AQC, where the Hamiltonian type used for Hf is fixed, and adia-
baticity is not guaranteed. Thus, the result is a heuristic quantum optimization
algorithm that has a non-zero probability of returning a candidate solution to
an optimization problem, rather than a deterministic quantum simulation. In its
simplest form, quantum annealing is implemented using the transverse-field Ising
Hamiltonian:

H(t) = A(t)Hi+B(t)Hf = A(t)
[∑

i

σxi

]
+B(t)

∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j

 , (2.3)
where σxi and σzi are the Pauli-X and -Z spin matrices applied to the ith qubit,
and hi and Jij are used to define the spin-glass representation of the optimization
problem. Here, as in Eq. (2.1), A(t) and B(t) are time-dependent functions that
dictate the magnitudes of each term in the Hamiltonian. Since it is known that
finding the ground state of the 2D Ising spin-glass problem is NP-hard [43], this
Hamiltonian definition is sufficient to address many interesting combinatorial
optimization problems. However, as with AQC, the probability of obtaining (or
remaining close to) a ground state at the end of the computation is bound by
the evolution timescale τ and the smallest energy difference between the ground
state and first excited state in Eq. (2.2). As this evolution time is a parameter
to the quantum annealing algorithm, it is typically referred to as the annealing
time, ta. The dependence of QA’s performance on time is a known problem in
quantum optimization. Particularly, how optimal (minimal) ta scales as a function
of problem size for different problem classes is generally regarded as the true scaling
of the algorithm, as the goal is to relate the evolution time of QA to observing the
ground state of the system.

Many interesting experiments have been performed to assess the conditions of
scaling for quantum annealing, both in simulation and in hardware. Early work with
quantum Monte Carlo simulations showed the ability of QA to solve combinatorial
optimization problem in some limits [44]. Additional work (in quantum Monte
Carlo simulations) investigated the correlation between exponentially small energy

18

2.2 Theory of quantum annealing

Solution space (t = 0)

E
n

er
gy

Solution space (t = τ)

E
n

er
gy

(a)

t=0 t=τ

Time (t)

E
n

er
gy

E1

E0

|E0 − E1|

(b)

Figure 2.2: (a) Schematic of the evolution of the energy landscape for a combi-
natorial optimization problem. On the left, all states are minima, representing the
equal superposition of the two basis states for Hi(t = 0). The red circle represents
a single state in this space. On the right, a visualization of a Hf (t = τ), where
there are well-defined minima at the end of the evolution. The red circle represents
a state corresponding to an optimum, having tunneled through an energy barrier
from a higher-energy state. (b) Here, a diagram of the minimum gap shows the
difference between the two lowest energy levels in the quantum system (as a function
of evolution time), which defines the adiabatic condition of evolution.

19

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

gaps and the probability of observing ground states using maximum independent
set instances [45]. A similar experiment testing the scaling of annealing time in
the presence of thermal excitations was performed using QA hardware in [46]. For
a complete assessment of state-of-the-art theory and a thorough discussion of the
scaling of QA in general, see [42].

2.3 Binary and combinatorial optimization

We now focus on the representation of general optimization problems in either of
the admissible binary forms so they can be solved using quantum annealing. The
first model is the classical Ising spin-glass model:

Hf =
∑
i

hisi +
∑
i<j

Jijsisj , (2.4)

where si ∈ {−1, 1} are the individual spin variables, hi are the real-valued linear
weights, and Jij are the so-called quadratic interaction terms. Alternatively, for
binary variables xi ∈ {0, 1} the quadratic unconstrained binary optimization
(QUBO) form is used:

Obj(Q, x) = xT ·Q · x, (2.5)

where x = (x0, x1, . . . , xN−1) is a vector of N binary variables, and Q is an N ×N
real-valued matrix of interaction terms (diagonal elements are the variable weights,
and off-diagonal elements are the quadratic interactions). Many canonical examples
of combinatorial optimization have been studied extensively in literature using both
of these forms, and often for research in computer science and quantum computing:
the traveling salesperson problem (and related vehicle routing problem) [47], max-
cut [36], satisfiability [48], graph coloring [49] and more. In general, all of these
analyses in combinatorial optimization exploit binary programming, also known
as 0− 1 binary programming, or binary optimization (and in some cases pseudo-
Boolean optimization). The task is to assign the optimal value for each binary
variable in a set such that a particular objective function is minimized. Originally,
as one of Karp’s 21 NP-complete problems, the objective function was represented
as binary integer problem [50]. Formally, we are interested in a more general
formulation, namely pseudo-Boolean objective functions. We define these as a
family of functions whose domain is the set of N binary variables, which are then
mapped to a real number:

20

2.3 Binary and combinatorial optimization

f : BN → R. (2.6)

As an NP-hard problem itself, Boolean optimization can be used to represent all
other NP-hard problems, and therefore is sufficient to describe these canonical
combinatorial optimization problems (not just binary optimization problems), with
some polynomial overhead. Therefore, the initial step for using QA in practice
is that of problem definition: the objective function of the optimization problem
must be represented entirely with binary variables.

It is both common and useful in the context of quantum annealing (and quan-
tum computing in general) to study combinatorial optimization from a graph
representation perspective. Every Ising/QUBO problem can be represented as an
undirected weighted graph, with every variable represented by a vertex vi ∈ V
and pairwise interaction term represented by an edge eij ∈ E between nodes vi
and vj . In the Ising (QUBO) model, each hi in Eq. (2.4) (diagonal elements of Q
in Eq. (2.5)) is the corresponding weight for vi in the graph representation, and
likewise the Jij (off-diagonal elements of Q) for eij . A simple demonstration of
the equivalence between QUBO, Ising, and weighted undirected graphs is shown
in Fig. 2.3.

(a) (b) (c)

Figure 2.3: (a) A simple objective definition of a three-variable Ising model. (b)
Equivalent representation of a QUBO matrix in upper-triangular form. The terms
in the QUBO matrix which correspond to (a) can be derived using the change of
basis si = 2xi − 1. (c) A graph network representation of same system, with
variables as nodes and interaction terms as edges. The specific weights in the graph
depend on the choice of basis, (a) or (b).

Collectively, these are referred to as binary quadratic models (BQMs). To generalize
binary models to arbitrary variable types, specific mathematical techniques are

21

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

used in practice. The relevant approaches used in the studies of this thesis (and
the related works) are introduced next.

2.4 Generalizing QUBO and Ising

Although binary optimization is NP-hard, the polynomial overhead incurred when
modeling more general problems means that certain classes of optimization are
better (or conversely, less) suited for quantum annealing. Furthermore, different
classes of real-world optimization problems require different categories of variables.
Here we review the types of variables and general terms that are often used for
quantum annealing in practice.

2.4.1 Constrained optimization

In QUBO/Ising form, the real-valued constant variable coefficients are uncon-
strained. As quantum annealing is an analog process, there is also no way to
explicitly constrain the variables during the evolution. Therefore, all equalities
(and inequalities) must be implemented in a quadratic objective form in order
to be included in the model. This means that constrained optimization cannot
be performed directly, but is instead addressed by including an additional term
scaled by a constant (known as a penalty factor) to separate feasible and infeasible
solution spaces in the optima of the optimization problems. One example of an
important constraint– the one-hot constraint, where exactly one binary variable is
1 and the rest are 0– is transformed as follows (with binary variables xi):

∑
i

xi = 1 −→
(

1−
∑
i

xi

)2

= 0. (2.7)

The left hand side of the equation above represents the equality constraint with a
simple summation over the variables. Adding these factors to a QUBO would result
in a minimum where all xi = 0, obviously violating the purpose of the one-hot
constraint. Thus, the right hand side is implemented to constrain the variable
space by expanding the square, which has only linear and quadratic terms that
can be added to the QUBO objective function. This now has the correct minimum
with one binary variable set to 1 and the rest to 0. Arbitrary linear constraints
are expressed in QUBO form as:

22

2.4 Generalizing QUBO and Ising

λ

(
b−

∑
i

aixi

)2

= 0, (2.8)

where λ, b, ai are all real-valued numbers, and xi are a subset of all binary variables
in the problem. Because the contribution of a satisfying configuration of the binary
variables is zero, the cost of violating this condition can be set by the parameter
λ. In pure constraint satisfaction problems, this isn’t strictly necessary, since (by
addition) the individual contributions of the constraints are zero, and thus the
objective function value of a satisfying solution will also be zero. When mixing
optimization terms and constraints in the objective function, it is necessary to set
λ appropriately such that it is never energetically favorable to violate a constraint
in favor of reducing the value of the objective function.

These concepts can be further extended to address inequalities as well, by introduc-
ing slack variables. In general, linear inequality constraints (on binary variables x)
are presented as: ∑

i

aixi − b ≤ 0, (2.9)

where ai, b are integer coefficients. To transform this inequality to QUBO, we
must create an degenerate objective function such that all minima satisfy the
inequality. We start by adding auxiliary variables such that the total slack is
accounted for:

λ

∑
i

aixi +
W∑
j

wjyj − b

2

= 0. (2.10)

The number of slack variables W and their coefficient wj can be derived from
the coefficients ai and b, where at most W = b slack variables are needed1. Now
the equality constraint is equivalent to the original inequality constraint, since
it can be fulfilled for all values of the binary variables xi satisfying the original
inequality by choosing some appropriate values for the slack variables, which
remain unconstrained. For values violating the original inequality constraint, the
equation can never be fulfilled regardless of the values of the slack variables. The
equality constraint written in the quadratic form is then added as a penalty term
to the QUBO cost function.

1In general, it is possible to use binary encoding schemes such that only dlog2(n)e auxiliary
qubits are needed.

23

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

2.4.2 Discrete variables

Non-binary discrete variables can also be represented in Ising/QUBO, and have been
investigated in the context of quantum annealing in scheduling problems [51, 52]
and graph colouring [53, 54, 55], among others. Here, each discrete variable
can be encoded by using multiple qubits to represent a logical integer variable
subject to a single constraint [56, 57, 58]. Binary encoding, analogous to classical
binary encoding, is efficient in the number of qubits in the sense that one can
encode d discrete states using only dlog2(d)e qubits. However, the binary encoding
is not used much in practice for application problems, since the interactions
necessary to enforce the validity of the encoding as well as the realization of the
couplings between logical variables are rather complicated to implement with the
binary encoding. Additionally, this encoding has been investigated in previous
works and has been shown to be detrimental to the QPU’s ability to find ground
states [59, 49].

The one-hot encoding is a standard technique where a logical variable with d

possible states is represented by d qubits. Each qubit’s state corresponds to one
possible value of the discrete variable if set to |1〉, and all other qubits are |0〉. The
corresponding constraint is typically implemented as quadratic interaction terms
between all d qubits, shown in Eq. (2.7). The advantage of this technique is the
fact that the one-hot case can be trivially extended to the k−hot case, where a
subset of exactly k qubits are |1〉 and the rest |0〉– however, this requires all-to-all
connectivity between the qubits. This is expressed in the form:(

k −
∑
i

xi

)2

= 0. (2.11)

An alternative to the one-hot constraint is the domain-wall encoding, which can
encode discrete variables with one fewer qubit per variable, i.e., d− 1 qubits for d
states, and requires only a chain of couplings rather than all-to-all. It has been
shown to be more efficient in different test problems [59, 49, 60]. However, the
main drawback of this method is that it cannot extend directly to the k−hot
constraint using the same technique. Rather, k copies of the d− 1 chain must be
connected (non-trivially) to enforce the same combinatorial landscape, which is no
longer efficient in the number of qubits.

24

2.5 Quantum annealing in hardware

2.4.3 Continuous variables

Representing continuous numbers using binary variables is also possible using
QUBO/Ising, although due to the binary encoding necessary it is not often used
in practice. Much like in classical computing, these numbers are represented by
binary encoding schemes. A single decimal variable x̃ with N bits of precision
would be encoded as follows (using binary values x):

x̃ =
N−1∑
i=0

2ixi. (2.12)

There are several drawbacks to using this encoding scheme. Firstly, this requires
high precision in encoding the optimization problem, which makes the solution
landscape more difficult to explore due to thermal noise in quantum hardware.
Furthermore, the individual energy levels (or local optima) are exponentially
spaced, making them more less likely to be explored. Lastly, the connectivity
between the qubits is again quadratic, increasing the density of the problem being
solved. However, expressing continuous variables is sometimes unavoidable, and
this technique has been used in practice [61].

2.5 Quantum annealing in hardware

The core of a quantum processing unit (QPU) is a layout of qubits which are
connected via a system of couplers. The QPUs used in the research in this thesis
were from D-Wave Systems, which implement superconducting flux qubits to build
their processors [62]. While the component physics is beyond the scope of this
thesis, a technical description of the quantum processors can be found here [25]. In
the absence of logical encoding schemes, the physical layout of the qubits is fixed
in the QPU and is referred to as the hardware graph, denoted by U . This naming
convention comes from the graph-theoretical description of the QPU, where each
qubit (coupler) is represented by a node (edge) in an undirected graph. The exact
topology of the hardware graph dictates the structure of graphs and possible Hf
that can be represented natively by the qubits’ connectivity. The QPU topology is
an engineering artifact arising from the design choices for the QPU. In general,
due to engineering difficulties, connectivity between qubits comes at the cost of
the total number of qubits in the QPU. Due to various technological limitations

25

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

in manufacturing, calibration, or other anomalies, a small portion of the qubits
and couplers in the QPUs may be defective and hence not programmable. The
percentage of qubits and couplers that remain functional once fully exposed to
users is referred to as the hardware yield. For D-Wave QPUs, the qubit yield
is typically above 97% for current processors [63]. The graph representing the
functional qubits and couplers is referred to as the QPU’s working graph.

The two topologies used for studies presented in this thesis are the D-Wave 2000Q
and Advantage QPUs. The topology of the D-Wave 2000Q (and earlier generations
of QPUs) are referred to as Chimera topology. These graphs are composed of
a 2D lattice of small complete bipartite graphs (each called a tile, or unit cell).
These graphs are denoted as CX (where X is the length of one side of the square
lattice, for a total of X2 tiles), and each tile is in itself a KN,N bipartite graph
(full connectivity between left and right partitions). The D-Wave 2000Q has a
size of C16 and K4,4 tiles. Each qubit in the Chimera topology has six couplers,
where four couplers are inside the unit cell and two are to different unit cells. The
Advantage QPUs implement a novel topology, called Pegasus, which differs in two
major aspect from the Chimera graph: the graph degree is 15, and the hardware
graph is not bipartite. Instances of the Pegasus topology that contain N ×N unit
cells are referred to as PN and consist of 24N(N − 1) qubits. This results in a
significantly more complex structure, allowing for denser graph structures of Hf to
be solved by the QPUs, and hence more difficult optimization problems (a technical
description comparing Chimera and Pegasus can be found in Ref. [64]).

2.5.1 Minor-embedding for fixed topologies

Obviously not all interesting optimization problems can be defined by the hardware
graph Chimera or Pegasus directly. However, it is possible to reformulate arbitrarily-
structured Hamiltonians Hf into a new hardware-compatible H′f via the technique
of graph minor-embedding, a well-studied problem in graph theory (see, e.g. [65]).
This process produces a mapping between one graph to another such that the
relevant topological properties of the original graph are preserved. For QA, this
involves encoding logical problem variables, or nodes in a graph, as chains of
multiple physical qubits on a QPU so that they act as a single logical qubit [66, 67].
Different families of topologies may produce very different structures in hardware for
the same input graph represented by Hf . The impact of this, specifically in terms

26

2.5 Quantum annealing in hardware

of canonical problems and the various chain requirements when embedding certain
graph families in both Chimera and Pegasus graphs are explored in [64].

There exist several difficulties when using minor-embedding techniques. First,
deciding whether a graph can be minor-embedded into another is a known NP-
complete problem, and so polynomial-time heuristics (or deterministic algorithms
on constrained subspaces) are used in practice [68, 69]. Secondly, the use of
embeddings requires an additional set of constraints to be imposed on the qubits
representing a logical qubit (the magnitude of this constraint is called the chain
strength). These enforce that the minimum energy of H′f is obtained only when all
physical qubits representing a logical qubit are in the same state. It has been shown
that the magnitude of the minimum chain strength increases with the degree of the
graph of Hf [67, 70], which can create distortions in the resulting Hamiltonian H′f .
Generally, determining the best suited chain strength is a nontrivial task, and it is
one of the parameters explored in more depth in the results of this thesis.

2.5.2 Noise and mitigation strategies

Building a quantum processor inherently involves the implementation of an open
quantum system– meaning, the qubits can never be truly perfectly isolated from
their operating environment. This makes it difficult to draw universal conclusions
about the power of programmable QA [71]. However, many investigations into how
these quantum system interact with the environment (known as background noise)
have been published in the past. Dickson et al. [46] were able to demonstrate the
effects of thermal noise and diabatic transitions with D-Wave QA processors. In
this context, resilience against background noise was defined as the ability of the
quantum system to yield the correct solution with acceptable probability within a
time comparable to the closed-system adiabatic timescale. It was demonstrated
that in the limit of weak coupling to the environment (i.e., relatively low levels of
thermal noise), annealing diabatically across the minimum gap did not hinder QA,
but rather enhanced its performance. This was demonstrated by manually raising
the operating temperature of the chamber in which the QPU was operating, thus
allowing for a controllable amount of noise to perturb the system. The specific
point demonstrated was that thermal noise does not necessarily inhibit obtaining
ground states at the end of the annealing, even with small minimum gaps and
non-adiabatic conditions. However, the caveat remains that the annealing times

27

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

need to be sufficiently long, and the system must be only weakly coupled to the
environment1. Additional experimental studies of quantum annealing processors
have investigated the effects of noise and its role in computation of solutions to
optimization problems. It has been demonstrated that finding quantum speedups
may be elusive in quantum annealing hardware with fixed topologies (tested on
spin-glass instances) [72]. Furthermore, it has been shown in such tests that
classical optimization algorithms can often match and exceed the performance of
quantum annealing hardware on such test instances due to physical limitations of
the devices [73]. Nonetheless, it has also been demonstrated that small clusters
of qubits do indeed remain coherent for some duration of the quantum annealing
protocol, which can contribute to solving specific kinds of (contrived) optimization
problems [74]. The extent to which this contributes to hardware performance for
large-scale problems remains an open question.

Noise can also directly perturb problem formulations in the analog system, i.e.,
Hf . The Hamiltonian parameters are subject to noise that can be modeled
using a Gaussian distribution over the terms in the Hamiltonian. This noise
(specifically, thermal noise whose timescale is much slower than the annealing
dynamics) may cause a reshuffling of the energy levels in the problem Hamiltonian,
which results in an incorrect encoding of the logical optimization problem in
the eigenstates of the Hamiltonian. There are multiple ways to mitigate some
of the effects of noise in quantum annealing. The most common technique is
spin-reversal transforms, which are used to effectively average over the asymmetric
final Hamiltonian distortion due to noise. This is done by creating random spin
vectors S = {−1, 1}N and recalculating a new H′f subject to this shift, where
h′i = hi · S(i), and J ′ij = Jij · S(i)S(j). These transformations do not change the
distribution of ground states in the system, only the signs of a subset of terms.
This new Hamiltonian H′f is then sampled using a QPU. To recover the samples
subject to the original Hamiltonian Hf , the solutions are multiplied by the vector
S(i). Typically, many such transforms are used when solving a single Hf . While
this method is effective in reducing the error due to static noise, each new H′f
results in another programming cycle, increasing the total wall-clock time of using
QA. Furthermore, it has been shown that increasing the number of transforms has

1Due to thermal relaxation, in the worst case the time to reach equilibrium in an open
quantum system can grow orders of magnitude with respect to the time needed in a closed
system.

28

2.5 Quantum annealing in hardware

diminishing returns for a fixed number of samples [75]. However, because of the
technique’s effectiveness in averaging over the static noise, this method is often
used in practice.

2.5.3 Workflow of solving problems with QPUs

In QA, as implemented in quantum hardware by D-Wave Systems, the process of
solving a combinatorial optimization problem can be divided into discrete stages.
It is important to realize that very little in the procedure can be changed, and in
practice the freedom is in the tuning of parameters exposed to users within this
system. It is then up to the users of QA to interpret the results relative to the
problem. In the context of optimization, we can conceptually model the QPU as a
black-box optimization algorithm with very specific parameters and constraints.
The step-by-step process is as follows:

• Definition of a QUBO or Ising formulation and graph representa-
tion. QUBO problems and Ising models have become the standard input
format for quantum annealers, to which the optimization problems of interest
are converted. This problem is represented as an undirected weighted graph,
where each node represents a variable and each edge denotes the interaction
term between a pair of variables. Thus the problem statement is given as
finding the correct assignment of either {0, 1} or {−1, 1} (depending on the
choice of basis) to minimize the quadratic objective function.

• Minor-embedding. The logical interaction graph is translated to the
physical hardware graph of the QPU. It is necessary to select sets of physical
qubits to represent a single logical node and to identify the couplings between
the physical qubits to realize the correct interactions between the logical
variables. Provided the correct parameters are chosen to enforce the chains of
physical qubits, this procedure does not alter the minimum energy solution
landscape, and the QPU’s ability to optimize the embedded problem solved
the original optimization problem of interest.

• Programming and initialization. Programming the quantum annealer
requires setting the parameters that define the embedded problem to be
solved, Hf . This involves setting the weights for each qubit biases (controlling
the magnetic field acting on the qubit) and coupler strengths (the interaction
between qubits). To initialize the system, the qubits are set to a superposition

29

2. COMBINATORIAL OPTIMIZATION AND QUANTUM
ANNEALING

of the two computational basis states. This is the lowest energy configuration
of the easy-to-implement initial Hamiltonian.

• Annealing process. In this step, the Ising model is solved. The system
transitions from the initial to the final Hamiltonian according to predefined
annealing functions in an attempt to minimize the energy. The way that
the functions A(t) and B(t) are evolved (called the annealing path) through
this search space is not fully controllable, but rather the total physical time
taken is set by the user of the QA QPU.

• Readout of the solution. At the end of the annealing phase, the qubits
are measured in the computational basis, and their configuration represents
a candidate minimum of the final Hamiltonian. The individual spin values
of the final configuration are read out and stored externally representing a
candidate solution to the original problem.

• Resampling. Because quantum annealing is a heuristic, there is only ever
a non-zero probability that the computation results in a ground state of
the system. Therefore, the anneal-readout cycle is repeated many times per
problem to acquire multiple candidate solutions. The number of times this
is performed is determined by the user.

It is important to note that, as a heuristic optimization routine, the time used
by the quantum annealing algorithm must be distinguished from the time used
by the QPU. Total runtime is a combination of engineering-specific timing that
cannot be altered, user-specified parameters, and the number of independent trials.
To represent wall-clock time, twall-clock, the most general timing model can be
regarded as follows:

twall-clock = tprog +Nreads · (ta + treadout) . (2.13)

Here, tprog is the programming time required to set the initial values of the qubits
and couplers, ta is the user-specified annealing time1 (physical time of evolution
from Hi to Hf), treadout is the time to read out all the qubits’ states at the end
of the annealing cycle, and Nreads is the number of trials (i.e., the number of
samples obtained from the QPU). The importance of this model is exemplified

1This is essentially the same as τ from Sec. 2.2. However, to distinguish the theoretical
aspects of adiabatic evolution and the user-specified parameter for fixed annealing paths as
implemented in D-Wave QPUs, we use ta to refer to the annealing time in practice.

30

2.5 Quantum annealing in hardware

by the analysis of “runtime” for quantum annealing: clearly, the more samples
are taken (Nreads is increased), the higher the probability that one of the samples
is a ground state. However, the probability of the proportion of a single sample
obtained at the end of the annealing is a ground state is controlled by ta. For the
research presented in this thesis, the distinction is made clearly in the appropriate
contexts.

31

