
Applications of quantum annealing in combinatorial
optimization
Yarkoni, S.

Citation
Yarkoni, S. (2022, December 20). Applications of quantum annealing in
combinatorial optimization. Retrieved from
https://hdl.handle.net/1887/3503567

Version: Not Applicable (or Unknown)

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3503567

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3503567

ch
ap

te
r

1
Introduction

“[. . .] Nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

- Leonhard Euler

The field of mathematical optimization has a long and storied history spanning
multiple centuries. Dating back to the 1700s, famous mathematicians such as
Newton, Fermat, and Lagrange each contributed significantly to the early develop-
ment of mathematical analysis in finding optima of functions. In recent decades,
pioneering works by physicists and mathematicians such as Richard Feynman,
David Deutsch, Hidetoshi Nishimori, and Edward Farhi have created exciting new
related fields of research: quantum computing and quantum optimization. Here we
give a brief history and introduction to the core concepts in these fields, how they
relate to combinatorial optimization, and the motivation for the research presented
in this thesis.

Now known as “The Seven Bridges of Königsberg”, this problem has become
synonymous with the birth of the field of graph theory, and is stated as follows: is
it possible to traverse the city of Königsberg so that each of the seven bridges is
crossed once, and only once? Through trial and error, it is easy to demonstrate that
such a walk is not possible for the city of Königsberg and its bridges, Fig. 1.1 (a).
However, it was a peculiar curiosity from Leonhard Euler about this problem that
spawned completely new branches of mathematics: graph theory and combinatorics.
Euler’s insight was that there were some innate topological features about the
structure and connectivity of the land masses in the city which made such a walk
impossible. The notion of a graph was invented: each land mass in the city can
be represented by a node, and the bridges connecting them using edges, with the

1

1. INTRODUCTION

(a) (b)

Figure 1.1: (a) Depiction of the city of Königsberg in Euler’s time with its
original seven bridges, circa 1700. Image is public domain, taken from Wikipedia
Commons [3]. (b) Graph representation of the city of Königsberg, with land masses
as nodes and bridges as edges.

number of edges connected to each node being its degree. Thus, it was possible to
study the features of these graphical structure in an abstract way, rather than any
one particular city (shown in Fig. 1.1 (b)). For Königsberg, the solution is that
in order to have a walk that crosses each bridge only once, it may only have two
odd-degree nodes; one for the start of the walk, and the other for its end. However,
as shown in Fig. 1.1 (b), all four nodes in the graph have odd degree, and therefore
no valid walk is possible [1]. Euler generalized this notion (later proven rigorously
by Carl Hierholzer [2]), asserting that all graphs that have only even degree nodes
have such a walk, and that in order for these walks to exist, there must be exactly
zero or two nodes of odd degree in the graph. These are now named Eulerian paths
in his honor.

While relevant historically for its role in graph theory, “The Seven Bridges of
Königsberg” is not particularly interesting (or difficult) computationally. For every
graph G with nodes V and edges E, Hierholzer’s algorithm can find Eulerian paths
in time O(|E|). However, the problem serves as a conceptual intersection point
between multiple disciplines that are central to this thesis. First is the connection
between graph theory and combinatorics. While finding a Eulerian path is simple,
and clearly relates to the theory of graphs and their connectivity, a simple related
task of finding all Eulerian circuits in a graph is more difficult– it now deals with
combinations and counting rather than pure graphical structure. In this thesis,

2

1.1 Foundations of quantum computing

similar such connections are presented (although undoubtedly less profound): the
results of investigating the link between structures in graphs and the ability of
quantum algorithms to solve problems based on them. Secondly, it is known that
many optimization problems are fundamentally intractable at large sizes using
classical computers, and so solving them may not be possible on practical timescales.
Quantum algorithms offer a potential path towards solving these problems more
efficiently. Analogously to the graph theory representation of bridges for Euler,
we regard quantum algorithms as tools, and the research presented here reports
on their use in the context of combinatorial optimization. The conceptual links
that need to be made between optimization problems and quantum algorithms is
why quantum optimization (and specifically quantum annealing) was investigated
in this thesis. Lastly, it is important to appreciate the context in which Euler’s
original results were reported. While the original article was published in a scientific
journal [1], the description of both the problem and solution relates to a problem
that manifests in reality: the arrangement of bridges in a city. Therefore, the
consequences of the theoretical properties proven in the paper could be observed
directly by walking through the city of Königsberg and attempting to cross all
bridges only once1. Essentially, the Königsberg bridges result could be regarded
as a real-world application of graph theory. This intersection between theory and
reality is also a cornerstone of the work in this thesis. The goal of the research that
will be presented was to gain insight into how algorithms in quantum optimization
may be used in practice, and therefore the motivation for many of the results are
grounded in the application of these methods for real-world problems.

1.1 Foundations of quantum computing

The theory behind quantum computing (QC) dates to the early 1980s, devel-
oped independently by scientists Yuri Manin [4], Paul Benioff [5, 6] and Richard
Feynman [7]. Together, these works spawned the fields of modern-day quantum
computing and quantum information science. Yuri Manin was the first to envision
such a paradigm as a more powerful computation model. In the works by Benioff,
the focus was on the representation of a reversible universal Turing machine de-
scribed by the evolution of a quantum system. The contribution from Feynman was

1Some of the original bridges have since been destroyed; today only two of the original seven
remain [3]

3

1. INTRODUCTION

concerned with the ability of classical computing machines to simulate quantum
physics, a computationally intractable task. It was therefore proposed that one
could design a programmable quantum system to perform computation. In [8],
David Deutsch formalized the notion of a fully quantum model of computation,
and specifies the theoretical concepts required to realize a universal quantum
computer, Q, the quantum Turing machine. These machines use the quantum
equivalent of bits, referred to as quantum bits, or qubits. As with classical bits,
these can be in either of the binary states 0 or 1. However, as quantum mechanical
objects, qubits can also be in states which are combinations of both 0 and 1
simultaneously until measured (or observed). The states of observation are referred
to as the computational basis states. Computational operations are defined via
the use of unitary operators acting on these qubits (in discrete time steps) in
order to construct quantum circuits, representing quantum algorithms (or quantum
simulations).

In practice, the power of qubits (and therefore quantum computers) exploits three
fundamental principles of quantum mechanics.

• Coherence: Each of the individual qubits in the quantum system cannot
be described via classical physics, but can only be described by the time-
dependent Schrödinger wave equation. Thus, the evolution of qubits in a
quantum computer is described via quantum mechanical wave dynamics and
unitary operations.

• Entanglement: The individual components of the quantum system are
inseparable; meaning, they cannot be described independently. Only a single
physical description of the ensemble of elements (e.g., the whole entangled
system) is possible. Consequentially, any operation applied to a qubit in a
quantum computer affects all other qubits that are entangled with it.

• Superposition: Each qubit in the quantum computer may be in multiple
states at the same time. Observing the qubits’ states results in the measure-
ment of a single configuration based on the states’ individual probabilities.
Furthermore, the observation (or collapsing) of the qubits results in the
destruction of the other states not measured.

Using these concepts, quantum algorithms have been developed and discovered over
the years, some of which significantly outperforming their classical counterparts.
In [9], the first such algorithm was presented, now known as the Deutsch-Jozsa

4

1.2 Definitions and notation

algorithm. Other famous examples include Shor’s algorithm for factoring prime
numbers [10], and Grover’s algorithm for unstructured search [11].

Despite the theoretical algorithmic promises presented above, the field of quantum
hardware for computation, however, has been slow to progress at the same pace.
The first examples of experimental qubits involved NMR technology, where small
qubit systems were built to execute simple quantum algorithms [12, 13, 14]. These
prototypes were followed by similar experiments with trapped ion qubits [15], and
soon after in superconducting flux qubits [16]. Since then, many other possible qubit
technologies have been demonstrated for quantum computing, such as diamond
cavities [17], quantum dots in silicon [18], cold atoms [19, 20, 21], and photonic
quantum computing [22]. However, of these, currently superconducting qubits
have proven to be the most scalable architecture choice, with companies such as
Google [23], IBM [24], and D-Wave Systems [25, 26] building publicly-accessible
platforms to access their quantum processing units (QPUs). These processors
have been described as representative of the noisy intermediate-scale quantum
(NISQ) era [27], describing larger, albeit still noisy (non-error-corrected) qubit
systems. Each of these QPUs require different considerations specific to the design
and implementation choices made during manufacturing, making them potentially
more or less useful under certain conditions. However, they all use the same
mathematical formulation and notation in order to execute quantum algorithms.
The mathematical representation of the optimization problems presented in this
thesis and the quantum algorithms used to solve them are presented next and will
remain consistent for the remainder of this thesis.

1.2 Definitions and notation

1.2.1 Problem complexity

Combinatorial optimization is defined as selecting an optimal subset from a finite
set of elements, usually subject to some objective. The work presented in this
thesis is mainly focused on the tasks of solving such optimization problems using
quantum optimization algorithms, in particular the quantum annealing algorithm.
Conventionally, optimization problems are defined by their problem class (i.e.,
the type of problem) within a complexity class (i.e., complexity of the problems).
These complexity classes are defined by evaluating the efficiency of solving specific

5

1. INTRODUCTION

problems using Turing machines (typically denoted using the symbol T). For
example, the aforementioned problem of finding a Eulerian path is solvable by
a Turing machine in time polynomial in the graph size. However, a simply-
stated related problem, the task of visiting every vertex exactly once in a given
undirected graph, rather than its edges, currently does not have such a polynomial-
time algorithm. Clearly, it is evident that by examining the efficiency of Turing
machines in solving different combinatorial optimization problems (and related
graph problems), different classes of problem complexity arise, and the field of
studying the classification of problem using them is known as “complexity theory”.
A diagram with common classes based on Turing machines and their conjectured
relations are shown in Fig. 1.2. The most pertinent complexity classes are defined
briefly here:

• P. This problem class is defined as all decision problems which are solvable
by deterministic Turing machines with resources (runtime) that scale poly-
nomially with the size of the instance being solved. Typically, problems in
this class are referred to as having “efficient” algorithms to solve them, and
so efficiency is often equated to polynomial-time algorithms (also known as
tractable problems).

• NP. The class of decision problems in which the verification of the correctness
of a solution to a decision problem can be performed in polynomial time
by a Turing machine. Equivalently, this problem class can be defined as
the set of all decision problems which are solvable in polynomial time by
non-deterministic Turing machines. Problems which can be used to represent
all other problems in this class (with at most polynomial overhead) form
a related class, known as NP-hard. Furthermore, problems which are
NP-hard and themselves are in NP are referred to as NP-complete. It is
important to note that this is not restricted to decision problems, and so
many NP-complete decision problems have optimization versions which are
NP-hard.

• APX. This class is defined as the set of NP optimization problems which
have a polynomial-time approximation algorithm with bounded constant
error. This is not to be confused with the set of optimization problems which
have polynomial-time approximation schemes (PTAS), which is defined
as optimization problems with polynomial-time approximation algorithms
for every constant error bound (and thus are all contained within APX).

6

1.2 Definitions and notation

Furthermore, as in NP, there are APX-hard and APX-complete classes,
defined as all problems that have approximation-preserving reductions, and
problems which are both APX-hard and in APX, respectively.

Although Turing machines have been traditionally used because they are equivalent
to every other model of computation, this does not necessary imply anything in
regards to the efficiency of all models of computation. More recently, with the
discovery of quantum algorithms and the invention of quantum computation, other
problem classes have been developed, defined by the efficiency of quantum algo-
rithms in solving them. These are defined by considering the existence of quantum
Turing machines, quantum mechanical extensions of the original Turing machines.
A diagram depicting the relationships between the quantum problem classes is in
Fig. 1.2. The relevant quantum complexity classes are defined here:

• BQP. This class is defined as the set of decision problems which can be solved
in polynomial time by a quantum Turing machine with an error probability
bounded by 1/3. Since every classical circuit can be simulated with quantum
circuits (and can be constructed efficiently), P is contained within this class.

• QMA. This is the class of problems which have a polynomial-time quantum
circuit that can verify a given polynomial-size quantum state (or proof)
with bounded error. As with NP, the set of problems to which all QMA
problems are reducible to are known as QMA-hard, and those that are
both QMA-hard and in QMA themselves are known as QMA-complete.

The relationships between many of the complexity classes defined above, both
classical and quantum, are still unknown. For example, the question of whether
NP is contained in P (referred to as P ?= NP) is an open fundamental question
in computer science (first introduced in [28]), the consequences of which would
collapse several of the sets shown in Fig. 1.2. Furthermore, the relations between
the quantum complexity classes to the classical ones are also not fully known. For
instance, although P is contained in BQP, there are problems solvable by BQP
which are conjectured to not be in P. The most well-known example of this is
the problem of finding prime factors, which is in NP and has a polynomial-time
quantum algorithm (known as Shor’s factoring algorithm [10]). Thus, there are still
exciting and potentially ground-breaking theoretical results to be discovered.

The ultimate goal of the work presented in this thesis is not to settle these funda-
mental (and important) theoretical questions. Rather, the context of the research

7

1. INTRODUCTION

NP

NP‐hard

BQP

QMA

QMA‐hard

APX‐
complete

PAPX

NP‐
complete

APX‐
hard

Figure 1.2: A diagram of complexity classes and their relationships, as explained
in the text. Classical complexity classes are in rounded squares, and quantum
complexity classes are in dashed ellipses.

was to assess the practical relevance of a specific class of quantum optimization
algorithms (quantum annealing) implemented on state-of-the-art quantum hard-
ware. The complexity classes defined above were used as a guide in order to better
understand what conditions need to be fulfilled, and which problems need to be
investigated, to meet such usefulness criteria.

1.2.2 Qubits and operators

The basic elements with which quantum algorithms are built are qubits and their
respective unitary operators. The two qubit states which are used to define the
vector space of operations are:

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (1.1)

8

1.2 Definitions and notation

These two states together form an orthonormal basis, called the computational
basis states. In Dirac notation1, the single qubit state (typically denoted as the
wavefunction ψ) is represented using a linear combinations of the basis states:

|ψ〉 = α |0〉+ β |1〉 . (1.2)

Here, α and β, which are complex numbers, are the respective amplitudes of
each basis state. Consistent with the theory of quantum mechanics, one can only
observe each state with a finite probability. As such, the values of the amplitudes
are constrained by:

|α|2 + |β|2 = 1. (1.3)

Analogous to classical computation, these qubits are manipulated through the
use of operators (or gates). In quantum mechanics, unitary operators are used,
represented as matrices operating on the vector space of qubits. The central
operators for quantum annealing algorithms are the Pauli spin matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.4)

In quantum annealing, the Pauli operators are applied to sets of qubits in the
quantum system in order to encode the optimization problem, and their magnitudes
are varied throughout the computation to perform minimization.

1.2.3 Ising models and QUBO problems

Depending on the specific problems being solved, it is convenient to specify different
bases for the target optimization problem. Some problems may use variables
s ∈ {−1, 1} called spins, while others may use binary variables x ∈ {0, 1}. These
two are equivalent via a simple change of basis variables, s = 2x− 1. Objective
functions with spin variables are represented as Ising spin-glass systems (also
known as Ising models):

H(s) =
∑
i

hisi +
∑
i<j

Jijsisj , (1.5)

1Dirac notation (also known as bra–ket notation) is a method to describe the linear algebra
governing quantum mechanics. The derivation and background of this notation is beyond the
scope of this thesis, but an introduction to the topic can be found in [29]

9

1. INTRODUCTION

where hi is the linear weight (also known as bias) of each spin variable si, and Jij
is the quadratic interaction term (also known as coupling strength) for each spin
pair. Equivalently, one could specify the objective function using binary variables
as a quadratic unconstrained binary optimization (QUBO) problem:

Obj(x,Q) = xT ·Q · x. (1.6)

Here, x is a vector of N binary variables, and Q is an N ×N symmetric interaction
matrix. Using the property xi · xi = x2

i = 1 for binary variables, the QUBO
objective can be re-written in the same form as the Ising model, with the diagonal
elements of Q being the linear terms, and the off-diagonal elements being the
quadratic terms1. The task performed by the quantum optimization algorithm is
to minimize the objective functions above.

1.3 Families of combinatorial optimization algo-
rithms

Given the complexity of many hard combinatorial optimization problems, various
algorithms have been developed in an attempt to solve them, both to optimality
and approximately. In this thesis we are concerned with specific kinds of algorithms
in order to both test quantum annealing directly and to contextualize the results
via comparisons to other algorithms. We briefly define and explain the different
families of algorithms below.

Exact algorithms. Algorithms which have deterministic endpoints that are
guaranteed to provide optimal solutions to problems are known as exact algorithms.
Because of the open question of P vs. NP, currently all exact algorithms for NP-
complete and NP-hard optimization have exponential runtime in the worst case.
Nonetheless, a variety of exact algorithms are used for real-world combinatorial
optimization problems, such as CPLEX [30] and Gurobi [31], among others.

Classical (meta)heuristics. Algorithms implemented on classical computers
which exploit probabilistic (or non-deterministic) routines within them to solve
specific problems are referred to as heuristics. More general algorithms which use
generic (and often parameterized) routines to solve arbitrary optimization problems

1Describing the matrix Q as an upper- or lower-triangular matrix is also common, since all
terms xi · xj = 0 if either xi or xj are 0.

10

1.4 Outline

are known as metaheuristics. Since (meta)heuristics can solve some instances of
problems in NP, they are often used as benchmarks in comparative analyses.
Examples of well-known metaheuristics are genetic/evolutionary algorithms [32],
simulated thermal annealing [33], particle swarm optimization [34], and many
more.

Quantum (meta)heuristics. Equivalently, one can define heuristics and meta-
heuristic algorithms for quantum computers, which in turn implement probabilistic
routines in quantum circuits or Hamiltonians. The quantum annealing algorithm is
one such metaheuristic for quantum optimization [35]. The quantum approximate
optimization algorithm (QAOA) is a similar quantum optimization metaheuristic
for gate-model quantum computers [36].

Hybrid quantum-classical algorithms. Specifically in the near-term era for
quantum hardware, the limiting factor in implementing quantum algorithms is
often the number of available qubits. As a consequence, the concept of hybrid
algorithms has been developed, in which quantum algorithms are used as an inner
loop to perform a specific task set by a classical algorithm acting as an outer loop.
There are many possible ways to construct such quantum (meta)heuristics, both
for quantum annealers and gate-model quantum computers [37, 38, 36, 39]. In the
context of this thesis, we refer to any classical algorithm which offloads a sub-task
to an adaptive quantum inner-loop as a hybrid algorithm, to distinguish from more
traditional parameter-tuning techniques.

1.4 Outline

We now outline the remainder of the work in this thesis. Each of the chapters below
represents a summary of one or more individual projects addressing the respective
research question motivating the research. To address the overall goal of applying
quantum annealing to industrial combinatorial optimization problems, we break the
topic down into a series of main research questions, each motivating and expanding
upon a different aspect in the topic. The chapters are built upon peer-reviewed
publications, listed at the end of the description of each chapter.

Q1. How are combinatorial optimization problems expressed for quan-
tum annealers?

11

1. INTRODUCTION

Quantum annealers are special-purpose quantum hardware which implement the
quantum annealing algorithm to perform optimization, and share some similarities
to classical metaheuristic optimization algorithms. However, the process required
to perform optimization using quantum annealing has multiple steps which have
no analogy in classical optimization. The impact of these steps on the hardware’s
ability to solve problems is not obvious. To answer Q1, Chapter 2 presents the
theoretical motivation for the quantum annealing algorithm, and the particularities
of its manifestation in hardware. Then, the steps required in order to formulate and
submit optimization problems to quantum annealers in practice are reviewed.

[1] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt (2022). Quantum
Annealing for Industry Applications: Introduction and Review. Rep. Prog.
Phys. 85 104001.

Q2. What is the impact of hyperparameters, tuning, and physical lim-
itations of quantum hardware on algorithmic performance?

Using a representative canonical NP-hard problem (the maximum independent set
problem), Chapter 3 explores the setting and tuning of QPU parameters. The trade-
off between algorithmic runtime and performance with respect to this parameter
tuning process is investigated. To answer Q2, best practices and algorithms
developed to tune these parameters are implemented and tested on a D-Wave 2000Q
QPU. Where relevant, the physics governing the QA algorithm are used to motivate
the appropriate schemes for choosing and tuning parameters. The ability to solve
optimization problems in practice using these methods is demonstrated. The
results from the analysis allow general guidelines and conclusions to be drawn in
regards to combinatorial optimization using QA.

[1] S. Yarkoni, T. Bäck, and A. Plaat (2018). First results solving arbitrarily
structured Maximum Independent Set problems using quantum annealing.
In Proceedings of the 2018 IEEE Congress on Evolutionary Computation,
CEC ’18, Rio de Janeiro, Brazil, pp. 1–6.

[2] S. Yarkoni, H. Wang, A. Plaat, T. Bäck (2019). Boosting Quantum
Annealing Performance Using Evolution Strategies for Annealing Offsets
Tuning. In: Feld S., Linnhoff-Popien C. (eds) Quantum Technology and
Optimization Problems, QTOP ’19. Lecture Notes in Computer Science,
vol 11413. Springer, Cham, pp. 157–168.

12

1.4 Outline

Q3. How are real-world problems different from academic problems,
and how does this affect the performance of quantum annealing?

Real-world optimization problems often require mixtures of either variable types,
constraints, or other such terms which make them more difficult to represent relative
to the canonical problems presented thus far. Chapter 4 introduces methods to
formulate such combinatorial optimization problems for quantum annealing, with
special consideration towards mathematical modeling of problems. This includes
the addition of constraint-based optimization, and the impact such problems
have on performance is investigated. The potential and limitations of quantum
annealing for solving real-world optimization problems are explored using a variety
of use-cases and datasets.

[1] Sheir Yarkoni, Andrii Kleshchonok, Yury Dzerin, Florian Neukart, Marc
Hilbert (2021). Semi-supervised time series classification method for
quantum computing. Quantum Machine Intelligence 3, 12.

[2] Sheir Yarkoni, Andreas Huck, Hanno Schulldorf, Benjamin Speitkamp,
Marc Shakory Tabrizi, Martin Leib, Thomas Bäck, and Florian Neukart
(2021). Solving the Shipment Rerouting Problem with Quantum Opti-
mization Techniques. In: International Conference on Computational
Logistics (ICCL 2021): Computational Logistics, pp. 502-517.

Q4. Can we use hybrid quantum-classical to overcome some of the
deficiencies of current quantum hardware?

Limited sizes of currently-available quantum hardware is a bottleneck in many
application areas. Therefore, Chapter 5 utilizes the previously presented work, and
introduces the concept of hybrid quantum-classical algorithms. Various techniques
and methods for hybrid algorithms are both reviewed and implemented, developing
the necessary functionality to build end-to-end applications with quantum annealing.
These algorithms are testing using real-world data and live applications are built
using quantum annealers and hybrid algorithms. The capabilities of quantum
annealers and hybrid algorithms to solve industrial optimization problems are
explored and presented.

[1] Sheir Yarkoni, Florian Neukart, Eliane Moreno Gomez Tagle, Nicole
Magiera, Bharat Mehta, Kunal Hire, Swapnil Narkhede, Martin Hofmann.
(2020). Quantum Shuttle: Traffic Navigation with Quantum Computing.

13

1. INTRODUCTION

In: Proceedings of the 1st ACM SIGSOFT International Workshop on
Architectures and Paradigms for Engineering Quantum Software (22-30).

[2] Sheir Yarkoni, Alex Alekseyenko, Michael Streif, David Von Dollen, Flo-
rian Neukart, and Thomas Bäck (2021). Multi-car paint shop optimization
with quantum annealing. In: 2021 IEEE International Conference on
Quantum Computing and Engineering (QCE): 35-41.

Finally, Chapter 6 discusses the future of quantum annealing for optimization, draws
conclusions, and examines the lessons learned from the work presented.

14

