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Glossary

T Universal Turing machine.

Q Universal quantum Turing machine.

R The field of real numbers.

B The domain of Boolean values, {0, 1}.

ψ Wave function of a single qubit.

|0〉,|1〉 Qubit computational basis states in bra-ket notation.

σx, σy, σz The 2× 2 Pauli-x, -y, and -z spin operators.

H Generic Hamiltonian operator.

Hi Initial Hamiltonian operator for Adiabatic Quantum Computing and
quantum annealing.

Hf Final Hamiltonian operator for Adiabatic Quantum Computing and
quantum annealing.

τ Timescale of evolution for a time-dependent Hamiltonian.

x Vector of N binary variables, xi ∈ {0, 1}.

Q N ×N QUBO matrix for binary variables.

s Spin variable si ∈ {−1, 1}.

hi Linear weight for spin variable si (also known as bias).

Jij Quadratic interaction term for spin variables si and sj (coupling
strength).

U(a, b) The uniform random distribution between given points a and b.
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N (0, I) The standard multivariate normal distribution.

log Natural logarithm.

log2 Natural logarithm (base 2).

nCk Binomial coefficient, “n choose k”.
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Introduction

“[. . . ] Nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

- Leonhard Euler

The field of mathematical optimization has a long and storied history spanning
multiple centuries. Dating back to the 1700s, famous mathematicians such as
Newton, Fermat, and Lagrange each contributed significantly to the early develop-
ment of mathematical analysis in finding optima of functions. In recent decades,
pioneering works by physicists and mathematicians such as Richard Feynman,
David Deutsch, Hidetoshi Nishimori, and Edward Farhi have created exciting new
related fields of research: quantum computing and quantum optimization. Here we
give a brief history and introduction to the core concepts in these fields, how they
relate to combinatorial optimization, and the motivation for the research presented
in this thesis.

Now known as “The Seven Bridges of Königsberg”, this problem has become
synonymous with the birth of the field of graph theory, and is stated as follows: is
it possible to traverse the city of Königsberg so that each of the seven bridges is
crossed once, and only once? Through trial and error, it is easy to demonstrate that
such a walk is not possible for the city of Königsberg and its bridges, Fig. 1.1 (a).
However, it was a peculiar curiosity from Leonhard Euler about this problem that
spawned completely new branches of mathematics: graph theory and combinatorics.
Euler’s insight was that there were some innate topological features about the
structure and connectivity of the land masses in the city which made such a walk
impossible. The notion of a graph was invented: each land mass in the city can
be represented by a node, and the bridges connecting them using edges, with the
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1. INTRODUCTION

(a) (b)

Figure 1.1: (a) Depiction of the city of Königsberg in Euler’s time with its
original seven bridges, circa 1700. Image is public domain, taken from Wikipedia
Commons [3]. (b) Graph representation of the city of Königsberg, with land masses
as nodes and bridges as edges.

number of edges connected to each node being its degree. Thus, it was possible to
study the features of these graphical structure in an abstract way, rather than any
one particular city (shown in Fig. 1.1 (b)). For Königsberg, the solution is that
in order to have a walk that crosses each bridge only once, it may only have two
odd-degree nodes; one for the start of the walk, and the other for its end. However,
as shown in Fig. 1.1 (b), all four nodes in the graph have odd degree, and therefore
no valid walk is possible [1]. Euler generalized this notion (later proven rigorously
by Carl Hierholzer [2]), asserting that all graphs that have only even degree nodes
have such a walk, and that in order for these walks to exist, there must be exactly
zero or two nodes of odd degree in the graph. These are now named Eulerian paths
in his honor.

While relevant historically for its role in graph theory, “The Seven Bridges of
Königsberg” is not particularly interesting (or difficult) computationally. For every
graph G with nodes V and edges E, Hierholzer’s algorithm can find Eulerian paths
in time O(|E|). However, the problem serves as a conceptual intersection point
between multiple disciplines that are central to this thesis. First is the connection
between graph theory and combinatorics. While finding a Eulerian path is simple,
and clearly relates to the theory of graphs and their connectivity, a simple related
task of finding all Eulerian circuits in a graph is more difficult– it now deals with
combinations and counting rather than pure graphical structure. In this thesis,

2



1.1 Foundations of quantum computing

similar such connections are presented (although undoubtedly less profound): the
results of investigating the link between structures in graphs and the ability of
quantum algorithms to solve problems based on them. Secondly, it is known that
many optimization problems are fundamentally intractable at large sizes using
classical computers, and so solving them may not be possible on practical timescales.
Quantum algorithms offer a potential path towards solving these problems more
efficiently. Analogously to the graph theory representation of bridges for Euler,
we regard quantum algorithms as tools, and the research presented here reports
on their use in the context of combinatorial optimization. The conceptual links
that need to be made between optimization problems and quantum algorithms is
why quantum optimization (and specifically quantum annealing) was investigated
in this thesis. Lastly, it is important to appreciate the context in which Euler’s
original results were reported. While the original article was published in a scientific
journal [1], the description of both the problem and solution relates to a problem
that manifests in reality: the arrangement of bridges in a city. Therefore, the
consequences of the theoretical properties proven in the paper could be observed
directly by walking through the city of Königsberg and attempting to cross all
bridges only once1. Essentially, the Königsberg bridges result could be regarded
as a real-world application of graph theory. This intersection between theory and
reality is also a cornerstone of the work in this thesis. The goal of the research that
will be presented was to gain insight into how algorithms in quantum optimization
may be used in practice, and therefore the motivation for many of the results are
grounded in the application of these methods for real-world problems.

1.1 Foundations of quantum computing

The theory behind quantum computing (QC) dates to the early 1980s, devel-
oped independently by scientists Yuri Manin [4], Paul Benioff [5, 6] and Richard
Feynman [7]. Together, these works spawned the fields of modern-day quantum
computing and quantum information science. Yuri Manin was the first to envision
such a paradigm as a more powerful computation model. In the works by Benioff,
the focus was on the representation of a reversible universal Turing machine de-
scribed by the evolution of a quantum system. The contribution from Feynman was

1Some of the original bridges have since been destroyed; today only two of the original seven
remain [3]
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1. INTRODUCTION

concerned with the ability of classical computing machines to simulate quantum
physics, a computationally intractable task. It was therefore proposed that one
could design a programmable quantum system to perform computation. In [8],
David Deutsch formalized the notion of a fully quantum model of computation,
and specifies the theoretical concepts required to realize a universal quantum
computer, Q, the quantum Turing machine. These machines use the quantum
equivalent of bits, referred to as quantum bits, or qubits. As with classical bits,
these can be in either of the binary states 0 or 1. However, as quantum mechanical
objects, qubits can also be in states which are combinations of both 0 and 1
simultaneously until measured (or observed). The states of observation are referred
to as the computational basis states. Computational operations are defined via
the use of unitary operators acting on these qubits (in discrete time steps) in
order to construct quantum circuits, representing quantum algorithms (or quantum
simulations).

In practice, the power of qubits (and therefore quantum computers) exploits three
fundamental principles of quantum mechanics.

• Coherence: Each of the individual qubits in the quantum system cannot
be described via classical physics, but can only be described by the time-
dependent Schrödinger wave equation. Thus, the evolution of qubits in a
quantum computer is described via quantum mechanical wave dynamics and
unitary operations.

• Entanglement: The individual components of the quantum system are
inseparable; meaning, they cannot be described independently. Only a single
physical description of the ensemble of elements (e.g., the whole entangled
system) is possible. Consequentially, any operation applied to a qubit in a
quantum computer affects all other qubits that are entangled with it.

• Superposition: Each qubit in the quantum computer may be in multiple
states at the same time. Observing the qubits’ states results in the measure-
ment of a single configuration based on the states’ individual probabilities.
Furthermore, the observation (or collapsing) of the qubits results in the
destruction of the other states not measured.

Using these concepts, quantum algorithms have been developed and discovered over
the years, some of which significantly outperforming their classical counterparts.
In [9], the first such algorithm was presented, now known as the Deutsch-Jozsa
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1.2 Definitions and notation

algorithm. Other famous examples include Shor’s algorithm for factoring prime
numbers [10], and Grover’s algorithm for unstructured search [11].

Despite the theoretical algorithmic promises presented above, the field of quantum
hardware for computation, however, has been slow to progress at the same pace.
The first examples of experimental qubits involved NMR technology, where small
qubit systems were built to execute simple quantum algorithms [12, 13, 14]. These
prototypes were followed by similar experiments with trapped ion qubits [15], and
soon after in superconducting flux qubits [16]. Since then, many other possible qubit
technologies have been demonstrated for quantum computing, such as diamond
cavities [17], quantum dots in silicon [18], cold atoms [19, 20, 21], and photonic
quantum computing [22]. However, of these, currently superconducting qubits
have proven to be the most scalable architecture choice, with companies such as
Google [23], IBM [24], and D-Wave Systems [25, 26] building publicly-accessible
platforms to access their quantum processing units (QPUs). These processors
have been described as representative of the noisy intermediate-scale quantum
(NISQ) era [27], describing larger, albeit still noisy (non-error-corrected) qubit
systems. Each of these QPUs require different considerations specific to the design
and implementation choices made during manufacturing, making them potentially
more or less useful under certain conditions. However, they all use the same
mathematical formulation and notation in order to execute quantum algorithms.
The mathematical representation of the optimization problems presented in this
thesis and the quantum algorithms used to solve them are presented next and will
remain consistent for the remainder of this thesis.

1.2 Definitions and notation

1.2.1 Problem complexity

Combinatorial optimization is defined as selecting an optimal subset from a finite
set of elements, usually subject to some objective. The work presented in this
thesis is mainly focused on the tasks of solving such optimization problems using
quantum optimization algorithms, in particular the quantum annealing algorithm.
Conventionally, optimization problems are defined by their problem class (i.e.,
the type of problem) within a complexity class (i.e., complexity of the problems).
These complexity classes are defined by evaluating the efficiency of solving specific

5



1. INTRODUCTION

problems using Turing machines (typically denoted using the symbol T ). For
example, the aforementioned problem of finding a Eulerian path is solvable by
a Turing machine in time polynomial in the graph size. However, a simply-
stated related problem, the task of visiting every vertex exactly once in a given
undirected graph, rather than its edges, currently does not have such a polynomial-
time algorithm. Clearly, it is evident that by examining the efficiency of Turing
machines in solving different combinatorial optimization problems (and related
graph problems), different classes of problem complexity arise, and the field of
studying the classification of problem using them is known as “complexity theory”.
A diagram with common classes based on Turing machines and their conjectured
relations are shown in Fig. 1.2. The most pertinent complexity classes are defined
briefly here:

• P. This problem class is defined as all decision problems which are solvable
by deterministic Turing machines with resources (runtime) that scale poly-
nomially with the size of the instance being solved. Typically, problems in
this class are referred to as having “efficient” algorithms to solve them, and
so efficiency is often equated to polynomial-time algorithms (also known as
tractable problems).

• NP. The class of decision problems in which the verification of the correctness
of a solution to a decision problem can be performed in polynomial time
by a Turing machine. Equivalently, this problem class can be defined as
the set of all decision problems which are solvable in polynomial time by
non-deterministic Turing machines. Problems which can be used to represent
all other problems in this class (with at most polynomial overhead) form
a related class, known as NP-hard. Furthermore, problems which are
NP-hard and themselves are in NP are referred to as NP-complete. It is
important to note that this is not restricted to decision problems, and so
many NP-complete decision problems have optimization versions which are
NP-hard.

• APX. This class is defined as the set of NP optimization problems which
have a polynomial-time approximation algorithm with bounded constant
error. This is not to be confused with the set of optimization problems which
have polynomial-time approximation schemes (PTAS), which is defined
as optimization problems with polynomial-time approximation algorithms
for every constant error bound (and thus are all contained within APX).

6



1.2 Definitions and notation

Furthermore, as in NP, there are APX-hard and APX-complete classes,
defined as all problems that have approximation-preserving reductions, and
problems which are both APX-hard and in APX, respectively.

Although Turing machines have been traditionally used because they are equivalent
to every other model of computation, this does not necessary imply anything in
regards to the efficiency of all models of computation. More recently, with the
discovery of quantum algorithms and the invention of quantum computation, other
problem classes have been developed, defined by the efficiency of quantum algo-
rithms in solving them. These are defined by considering the existence of quantum
Turing machines, quantum mechanical extensions of the original Turing machines.
A diagram depicting the relationships between the quantum problem classes is in
Fig. 1.2. The relevant quantum complexity classes are defined here:

• BQP. This class is defined as the set of decision problems which can be solved
in polynomial time by a quantum Turing machine with an error probability
bounded by 1/3. Since every classical circuit can be simulated with quantum
circuits (and can be constructed efficiently), P is contained within this class.

• QMA. This is the class of problems which have a polynomial-time quantum
circuit that can verify a given polynomial-size quantum state (or proof)
with bounded error. As with NP, the set of problems to which all QMA
problems are reducible to are known as QMA-hard, and those that are
both QMA-hard and in QMA themselves are known as QMA-complete.

The relationships between many of the complexity classes defined above, both
classical and quantum, are still unknown. For example, the question of whether
NP is contained in P (referred to as P ?= NP) is an open fundamental question
in computer science (first introduced in [28]), the consequences of which would
collapse several of the sets shown in Fig. 1.2. Furthermore, the relations between
the quantum complexity classes to the classical ones are also not fully known. For
instance, although P is contained in BQP, there are problems solvable by BQP
which are conjectured to not be in P. The most well-known example of this is
the problem of finding prime factors, which is in NP and has a polynomial-time
quantum algorithm (known as Shor’s factoring algorithm [10]). Thus, there are still
exciting and potentially ground-breaking theoretical results to be discovered.

The ultimate goal of the work presented in this thesis is not to settle these funda-
mental (and important) theoretical questions. Rather, the context of the research
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NP

NP‐hard

BQP

QMA

QMA‐hard

APX‐
complete

PAPX

NP‐
complete

APX‐
hard

Figure 1.2: A diagram of complexity classes and their relationships, as explained
in the text. Classical complexity classes are in rounded squares, and quantum
complexity classes are in dashed ellipses.

was to assess the practical relevance of a specific class of quantum optimization
algorithms (quantum annealing) implemented on state-of-the-art quantum hard-
ware. The complexity classes defined above were used as a guide in order to better
understand what conditions need to be fulfilled, and which problems need to be
investigated, to meet such usefulness criteria.

1.2.2 Qubits and operators

The basic elements with which quantum algorithms are built are qubits and their
respective unitary operators. The two qubit states which are used to define the
vector space of operations are:

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (1.1)

8



1.2 Definitions and notation

These two states together form an orthonormal basis, called the computational
basis states. In Dirac notation1, the single qubit state (typically denoted as the
wavefunction ψ) is represented using a linear combinations of the basis states:

|ψ〉 = α |0〉+ β |1〉 . (1.2)

Here, α and β, which are complex numbers, are the respective amplitudes of
each basis state. Consistent with the theory of quantum mechanics, one can only
observe each state with a finite probability. As such, the values of the amplitudes
are constrained by:

|α|2 + |β|2 = 1. (1.3)

Analogous to classical computation, these qubits are manipulated through the
use of operators (or gates). In quantum mechanics, unitary operators are used,
represented as matrices operating on the vector space of qubits. The central
operators for quantum annealing algorithms are the Pauli spin matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.4)

In quantum annealing, the Pauli operators are applied to sets of qubits in the
quantum system in order to encode the optimization problem, and their magnitudes
are varied throughout the computation to perform minimization.

1.2.3 Ising models and QUBO problems

Depending on the specific problems being solved, it is convenient to specify different
bases for the target optimization problem. Some problems may use variables
s ∈ {−1, 1} called spins, while others may use binary variables x ∈ {0, 1}. These
two are equivalent via a simple change of basis variables, s = 2x− 1. Objective
functions with spin variables are represented as Ising spin-glass systems (also
known as Ising models):

H(s) =
∑
i

hisi +
∑
i<j

Jijsisj , (1.5)

1Dirac notation (also known as bra–ket notation) is a method to describe the linear algebra
governing quantum mechanics. The derivation and background of this notation is beyond the
scope of this thesis, but an introduction to the topic can be found in [29]
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1. INTRODUCTION

where hi is the linear weight (also known as bias) of each spin variable si, and Jij
is the quadratic interaction term (also known as coupling strength) for each spin
pair. Equivalently, one could specify the objective function using binary variables
as a quadratic unconstrained binary optimization (QUBO) problem:

Obj(x,Q) = xT ·Q · x. (1.6)

Here, x is a vector of N binary variables, and Q is an N ×N symmetric interaction
matrix. Using the property xi · xi = x2

i = 1 for binary variables, the QUBO
objective can be re-written in the same form as the Ising model, with the diagonal
elements of Q being the linear terms, and the off-diagonal elements being the
quadratic terms1. The task performed by the quantum optimization algorithm is
to minimize the objective functions above.

1.3 Families of combinatorial optimization algo-
rithms

Given the complexity of many hard combinatorial optimization problems, various
algorithms have been developed in an attempt to solve them, both to optimality
and approximately. In this thesis we are concerned with specific kinds of algorithms
in order to both test quantum annealing directly and to contextualize the results
via comparisons to other algorithms. We briefly define and explain the different
families of algorithms below.

Exact algorithms. Algorithms which have deterministic endpoints that are
guaranteed to provide optimal solutions to problems are known as exact algorithms.
Because of the open question of P vs. NP, currently all exact algorithms for NP-
complete and NP-hard optimization have exponential runtime in the worst case.
Nonetheless, a variety of exact algorithms are used for real-world combinatorial
optimization problems, such as CPLEX [30] and Gurobi [31], among others.

Classical (meta)heuristics. Algorithms implemented on classical computers
which exploit probabilistic (or non-deterministic) routines within them to solve
specific problems are referred to as heuristics. More general algorithms which use
generic (and often parameterized) routines to solve arbitrary optimization problems

1Describing the matrix Q as an upper- or lower-triangular matrix is also common, since all
terms xi · xj = 0 if either xi or xj are 0.

10



1.4 Outline

are known as metaheuristics. Since (meta)heuristics can solve some instances of
problems in NP, they are often used as benchmarks in comparative analyses.
Examples of well-known metaheuristics are genetic/evolutionary algorithms [32],
simulated thermal annealing [33], particle swarm optimization [34], and many
more.

Quantum (meta)heuristics. Equivalently, one can define heuristics and meta-
heuristic algorithms for quantum computers, which in turn implement probabilistic
routines in quantum circuits or Hamiltonians. The quantum annealing algorithm is
one such metaheuristic for quantum optimization [35]. The quantum approximate
optimization algorithm (QAOA) is a similar quantum optimization metaheuristic
for gate-model quantum computers [36].

Hybrid quantum-classical algorithms. Specifically in the near-term era for
quantum hardware, the limiting factor in implementing quantum algorithms is
often the number of available qubits. As a consequence, the concept of hybrid
algorithms has been developed, in which quantum algorithms are used as an inner
loop to perform a specific task set by a classical algorithm acting as an outer loop.
There are many possible ways to construct such quantum (meta)heuristics, both
for quantum annealers and gate-model quantum computers [37, 38, 36, 39]. In the
context of this thesis, we refer to any classical algorithm which offloads a sub-task
to an adaptive quantum inner-loop as a hybrid algorithm, to distinguish from more
traditional parameter-tuning techniques.

1.4 Outline

We now outline the remainder of the work in this thesis. Each of the chapters below
represents a summary of one or more individual projects addressing the respective
research question motivating the research. To address the overall goal of applying
quantum annealing to industrial combinatorial optimization problems, we break the
topic down into a series of main research questions, each motivating and expanding
upon a different aspect in the topic. The chapters are built upon peer-reviewed
publications, listed at the end of the description of each chapter.

Q1. How are combinatorial optimization problems expressed for quan-
tum annealers?

11



1. INTRODUCTION

Quantum annealers are special-purpose quantum hardware which implement the
quantum annealing algorithm to perform optimization, and share some similarities
to classical metaheuristic optimization algorithms. However, the process required
to perform optimization using quantum annealing has multiple steps which have
no analogy in classical optimization. The impact of these steps on the hardware’s
ability to solve problems is not obvious. To answer Q1, Chapter 2 presents the
theoretical motivation for the quantum annealing algorithm, and the particularities
of its manifestation in hardware. Then, the steps required in order to formulate and
submit optimization problems to quantum annealers in practice are reviewed.

[1] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt (2022). Quantum
Annealing for Industry Applications: Introduction and Review. Rep. Prog.
Phys. 85 104001.

Q2. What is the impact of hyperparameters, tuning, and physical lim-
itations of quantum hardware on algorithmic performance?

Using a representative canonical NP-hard problem (the maximum independent set
problem), Chapter 3 explores the setting and tuning of QPU parameters. The trade-
off between algorithmic runtime and performance with respect to this parameter
tuning process is investigated. To answer Q2, best practices and algorithms
developed to tune these parameters are implemented and tested on a D-Wave 2000Q
QPU. Where relevant, the physics governing the QA algorithm are used to motivate
the appropriate schemes for choosing and tuning parameters. The ability to solve
optimization problems in practice using these methods is demonstrated. The
results from the analysis allow general guidelines and conclusions to be drawn in
regards to combinatorial optimization using QA.

[1] S. Yarkoni, T. Bäck, and A. Plaat (2018). First results solving arbitrarily
structured Maximum Independent Set problems using quantum annealing.
In Proceedings of the 2018 IEEE Congress on Evolutionary Computation,
CEC ’18, Rio de Janeiro, Brazil, pp. 1–6.

[2] S. Yarkoni, H. Wang, A. Plaat, T. Bäck (2019). Boosting Quantum
Annealing Performance Using Evolution Strategies for Annealing Offsets
Tuning. In: Feld S., Linnhoff-Popien C. (eds) Quantum Technology and
Optimization Problems, QTOP ’19. Lecture Notes in Computer Science,
vol 11413. Springer, Cham, pp. 157–168.

12



1.4 Outline

Q3. How are real-world problems different from academic problems,
and how does this affect the performance of quantum annealing?

Real-world optimization problems often require mixtures of either variable types,
constraints, or other such terms which make them more difficult to represent relative
to the canonical problems presented thus far. Chapter 4 introduces methods to
formulate such combinatorial optimization problems for quantum annealing, with
special consideration towards mathematical modeling of problems. This includes
the addition of constraint-based optimization, and the impact such problems
have on performance is investigated. The potential and limitations of quantum
annealing for solving real-world optimization problems are explored using a variety
of use-cases and datasets.

[1] Sheir Yarkoni, Andrii Kleshchonok, Yury Dzerin, Florian Neukart, Marc
Hilbert (2021). Semi-supervised time series classification method for
quantum computing. Quantum Machine Intelligence 3, 12.

[2] Sheir Yarkoni, Andreas Huck, Hanno Schulldorf, Benjamin Speitkamp,
Marc Shakory Tabrizi, Martin Leib, Thomas Bäck, and Florian Neukart
(2021). Solving the Shipment Rerouting Problem with Quantum Opti-
mization Techniques. In: International Conference on Computational
Logistics (ICCL 2021): Computational Logistics, pp. 502-517.

Q4. Can we use hybrid quantum-classical to overcome some of the
deficiencies of current quantum hardware?

Limited sizes of currently-available quantum hardware is a bottleneck in many
application areas. Therefore, Chapter 5 utilizes the previously presented work, and
introduces the concept of hybrid quantum-classical algorithms. Various techniques
and methods for hybrid algorithms are both reviewed and implemented, developing
the necessary functionality to build end-to-end applications with quantum annealing.
These algorithms are testing using real-world data and live applications are built
using quantum annealers and hybrid algorithms. The capabilities of quantum
annealers and hybrid algorithms to solve industrial optimization problems are
explored and presented.

[1] Sheir Yarkoni, Florian Neukart, Eliane Moreno Gomez Tagle, Nicole
Magiera, Bharat Mehta, Kunal Hire, Swapnil Narkhede, Martin Hofmann.
(2020). Quantum Shuttle: Traffic Navigation with Quantum Computing.
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In: Proceedings of the 1st ACM SIGSOFT International Workshop on
Architectures and Paradigms for Engineering Quantum Software (22-30).

[2] Sheir Yarkoni, Alex Alekseyenko, Michael Streif, David Von Dollen, Flo-
rian Neukart, and Thomas Bäck (2021). Multi-car paint shop optimization
with quantum annealing. In: 2021 IEEE International Conference on
Quantum Computing and Engineering (QCE): 35-41.

Finally, Chapter 6 discusses the future of quantum annealing for optimization, draws
conclusions, and examines the lessons learned from the work presented.
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2
Combinatorial optimization and quantum an-
nealing

Metaheuristic algorithms are often used in practice to solve a variety of traditionally
difficult optimization problems. Their power derives from the tunability of their
parameter sets, often providing practitioners with trade-offs between global search
space exploration and local optimization. Annealing algorithms in particular
are popular due to their strong theoretical motivation from physical processes
and relative ease of implementation [33]. In this chapter we introduce the basic
concepts of the quantum annealing algorithm, from both the theoretical and
practical aspects, and present the methodology with which optimization problems
are solved using quantum annealing hardware.

2.1 Adiabatic quantum computing and the adia-
batic theorem

The Adiabatic Quantum Computing (AQC) model1 is a computational model
for quantum computing which exploits the adiabatic theorem: given a quantum
system in its ground (minimum) energy state, if the governing Hamiltonian is
changed “sufficiently slowly”, then the quantum system remains in its instantaneous
ground state. It has been shown that, given a register of qubits, this adiabatic
theorem can be used in order to simulate quantum Hamiltonians and perform
algorithmic computation [40]. Furthermore, it has been shown that this AQC

1This model of computation is also known as the Adiabatic Quantum Optimization model,
abbreviated AQO.
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model is polynomially equivalent to the gate-model of quantum computing, by
showing how quantum Hamiltonians can be constructed to simulate arbitrary
quantum circuits [41]. However, the ability of AQC to solve (or simulate) arbitrary
problems is not perfectly understood. The notion of “sufficiently slowly” depends
on the both the specific Hamiltonian and the conditions of evolution, and can be
difficult to compute. A generic time-dependent Hamiltonian for adiabatic evolution
is given by:

H(t) = A(t)Hi +B(t)Hf . (2.1)

Here, Hi is the Hamiltonian in which the system is intialized (referred to as
the initial or driver Hamiltonian), and Hf is the Hamiltonian at the end of the
evolution (referred to as the final or target Hamiltonian). The boundary conditions
on the relative magnitudes of each Hamiltonian are given by B(t = 0) = 0 and
A(t = τ) = 0, for an evolution on timescale τ . Thus, one could construct Hf to
represent a quantum circuit and use Eq. (2.1) to perform AQC. A visualization of
the transition in magnitudes is shown in Fig. 2.1.

The theoretical motivations for AQC can also be used in the context of optimization.
Instead of settingHf to represent a quantum circuit, it can be used as a Hamiltonian
representation of an optimization problem. Thus, successfully evolving to a
ground state of Hf can solve complex combinatorial optimization problem with
Hamiltonian representations. In realizable quantum hardware it is not always
possible to evolve adiabatically (as any physical system is always coupled to its
environment), but it is known that even in the absence of perfect adiabaticity, a
quantum system that is evolved “sufficiently slowly” maintains proximity to its
ground state [42]. Here we consider only models in which time evolution dependence
can be parameterized by a single variable t ∈ [0, τ ]. This parameter is also
sometimes normalized by τ , and referred to as normalized time, s = t/τ ∈ [0, 1].
Generally, it is known that the magnitude of τ required to remain near the grounds
state is related to the difference between the two lowest energy states, E0 and E1.
This point at which this energy difference occurs is called the avoided crossing or
minimum gap, and is visualized in Fig. 2.2. The timescale of evolution is typically
expressed via the approximation:

max
ti≤t≤tf

〈Hf (t)| dH(t)
dt |Hi(t)〉

|E1(t)− E0(t)|2 � τ. (2.2)
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Figure 2.1: Generic evolution of a Hamiltonian as dictated by A(t) and B(t) in the
AQC model. In software (meaning, when simulating quantum annealing), the shape
of these functions can be programmed and controlled. In hardware, the shapes are
hard-coded via the control electronics of the quantum processor and its calibration.
To allow for full manipulation of these curves would require controls which are
beyond the current capabilities of the technology.

Thus, if the final Hamiltonian Hf represents a target optimization problem, then an
evolution on timescale τ can be used to solve it. However, in practice, calculating
|E0(t)− E1(t)| requires knowledge of the entire eigenspectrum of the Hamiltonian
H (in the worst case), and is therefore NP-hard in itself.

2.2 Theory of quantum annealing

Originally described as a metaheurstic in classical software used to solve combinato-
rial optimization problems, quantum annealing (QA) is closely related to AQC [35].
Analogous to classical simulated thermal annealing, quantum fluctuations are used
in order to tunnel through energy barriers in a combinatorial landscape, as opposed
to thermally-assisted hops in simulated annealing. In quantum annealing, these
fluctuations induce quantum tunneling effects, where the wavefunction is split
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across energy barriers to different energy minima. At the end of the evolution
(ideally) the wavefunction is concentrated at global optima of the energy landscape.
However, instead of initializing the algorithm with random initial configurations
(like in thermal annealing) the QA algorithm is initialized by setting qubits’ states
to a simple ground state (generally a superposition over all states), and is evolved
over time to target a final Hamiltonian Hf . Quantum annealing can be viewed as
a subclass of AQC, where the Hamiltonian type used for Hf is fixed, and adia-
baticity is not guaranteed. Thus, the result is a heuristic quantum optimization
algorithm that has a non-zero probability of returning a candidate solution to
an optimization problem, rather than a deterministic quantum simulation. In its
simplest form, quantum annealing is implemented using the transverse-field Ising
Hamiltonian:

H(t) = A(t)Hi+B(t)Hf = A(t)
[∑

i

σxi

]
+B(t)

∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j

 , (2.3)
where σxi and σzi are the Pauli-X and -Z spin matrices applied to the ith qubit,
and hi and Jij are used to define the spin-glass representation of the optimization
problem. Here, as in Eq. (2.1), A(t) and B(t) are time-dependent functions that
dictate the magnitudes of each term in the Hamiltonian. Since it is known that
finding the ground state of the 2D Ising spin-glass problem is NP-hard [43], this
Hamiltonian definition is sufficient to address many interesting combinatorial
optimization problems. However, as with AQC, the probability of obtaining (or
remaining close to) a ground state at the end of the computation is bound by
the evolution timescale τ and the smallest energy difference between the ground
state and first excited state in Eq. (2.2). As this evolution time is a parameter
to the quantum annealing algorithm, it is typically referred to as the annealing
time, ta. The dependence of QA’s performance on time is a known problem in
quantum optimization. Particularly, how optimal (minimal) ta scales as a function
of problem size for different problem classes is generally regarded as the true scaling
of the algorithm, as the goal is to relate the evolution time of QA to observing the
ground state of the system.

Many interesting experiments have been performed to assess the conditions of
scaling for quantum annealing, both in simulation and in hardware. Early work with
quantum Monte Carlo simulations showed the ability of QA to solve combinatorial
optimization problem in some limits [44]. Additional work (in quantum Monte
Carlo simulations) investigated the correlation between exponentially small energy
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Figure 2.2: (a) Schematic of the evolution of the energy landscape for a combi-
natorial optimization problem. On the left, all states are minima, representing the
equal superposition of the two basis states for Hi(t = 0). The red circle represents
a single state in this space. On the right, a visualization of a Hf (t = τ), where
there are well-defined minima at the end of the evolution. The red circle represents
a state corresponding to an optimum, having tunneled through an energy barrier
from a higher-energy state. (b) Here, a diagram of the minimum gap shows the
difference between the two lowest energy levels in the quantum system (as a function
of evolution time), which defines the adiabatic condition of evolution.
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gaps and the probability of observing ground states using maximum independent
set instances [45]. A similar experiment testing the scaling of annealing time in
the presence of thermal excitations was performed using QA hardware in [46]. For
a complete assessment of state-of-the-art theory and a thorough discussion of the
scaling of QA in general, see [42].

2.3 Binary and combinatorial optimization

We now focus on the representation of general optimization problems in either of
the admissible binary forms so they can be solved using quantum annealing. The
first model is the classical Ising spin-glass model:

Hf =
∑
i

hisi +
∑
i<j

Jijsisj , (2.4)

where si ∈ {−1, 1} are the individual spin variables, hi are the real-valued linear
weights, and Jij are the so-called quadratic interaction terms. Alternatively, for
binary variables xi ∈ {0, 1} the quadratic unconstrained binary optimization
(QUBO) form is used:

Obj(Q, x) = xT ·Q · x, (2.5)

where x = (x0, x1, . . . , xN−1) is a vector of N binary variables, and Q is an N ×N
real-valued matrix of interaction terms (diagonal elements are the variable weights,
and off-diagonal elements are the quadratic interactions). Many canonical examples
of combinatorial optimization have been studied extensively in literature using both
of these forms, and often for research in computer science and quantum computing:
the traveling salesperson problem (and related vehicle routing problem) [47], max-
cut [36], satisfiability [48], graph coloring [49] and more. In general, all of these
analyses in combinatorial optimization exploit binary programming, also known
as 0− 1 binary programming, or binary optimization (and in some cases pseudo-
Boolean optimization). The task is to assign the optimal value for each binary
variable in a set such that a particular objective function is minimized. Originally,
as one of Karp’s 21 NP-complete problems, the objective function was represented
as binary integer problem [50]. Formally, we are interested in a more general
formulation, namely pseudo-Boolean objective functions. We define these as a
family of functions whose domain is the set of N binary variables, which are then
mapped to a real number:
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f : BN → R. (2.6)

As an NP-hard problem itself, Boolean optimization can be used to represent all
other NP-hard problems, and therefore is sufficient to describe these canonical
combinatorial optimization problems (not just binary optimization problems), with
some polynomial overhead. Therefore, the initial step for using QA in practice
is that of problem definition: the objective function of the optimization problem
must be represented entirely with binary variables.

It is both common and useful in the context of quantum annealing (and quan-
tum computing in general) to study combinatorial optimization from a graph
representation perspective. Every Ising/QUBO problem can be represented as an
undirected weighted graph, with every variable represented by a vertex vi ∈ V
and pairwise interaction term represented by an edge eij ∈ E between nodes vi
and vj . In the Ising (QUBO) model, each hi in Eq. (2.4) (diagonal elements of Q
in Eq. (2.5)) is the corresponding weight for vi in the graph representation, and
likewise the Jij (off-diagonal elements of Q) for eij . A simple demonstration of
the equivalence between QUBO, Ising, and weighted undirected graphs is shown
in Fig. 2.3.

(a) (b) (c)

Figure 2.3: (a) A simple objective definition of a three-variable Ising model. (b)
Equivalent representation of a QUBO matrix in upper-triangular form. The terms
in the QUBO matrix which correspond to (a) can be derived using the change of
basis si = 2xi − 1. (c) A graph network representation of same system, with
variables as nodes and interaction terms as edges. The specific weights in the graph
depend on the choice of basis, (a) or (b).

Collectively, these are referred to as binary quadratic models (BQMs). To generalize
binary models to arbitrary variable types, specific mathematical techniques are
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used in practice. The relevant approaches used in the studies of this thesis (and
the related works) are introduced next.

2.4 Generalizing QUBO and Ising

Although binary optimization is NP-hard, the polynomial overhead incurred when
modeling more general problems means that certain classes of optimization are
better (or conversely, less) suited for quantum annealing. Furthermore, different
classes of real-world optimization problems require different categories of variables.
Here we review the types of variables and general terms that are often used for
quantum annealing in practice.

2.4.1 Constrained optimization

In QUBO/Ising form, the real-valued constant variable coefficients are uncon-
strained. As quantum annealing is an analog process, there is also no way to
explicitly constrain the variables during the evolution. Therefore, all equalities
(and inequalities) must be implemented in a quadratic objective form in order
to be included in the model. This means that constrained optimization cannot
be performed directly, but is instead addressed by including an additional term
scaled by a constant (known as a penalty factor) to separate feasible and infeasible
solution spaces in the optima of the optimization problems. One example of an
important constraint– the one-hot constraint, where exactly one binary variable is
1 and the rest are 0– is transformed as follows (with binary variables xi):

∑
i

xi = 1 −→
(

1−
∑
i

xi

)2

= 0. (2.7)

The left hand side of the equation above represents the equality constraint with a
simple summation over the variables. Adding these factors to a QUBO would result
in a minimum where all xi = 0, obviously violating the purpose of the one-hot
constraint. Thus, the right hand side is implemented to constrain the variable
space by expanding the square, which has only linear and quadratic terms that
can be added to the QUBO objective function. This now has the correct minimum
with one binary variable set to 1 and the rest to 0. Arbitrary linear constraints
are expressed in QUBO form as:

22



2.4 Generalizing QUBO and Ising

λ

(
b−

∑
i

aixi

)2

= 0, (2.8)

where λ, b, ai are all real-valued numbers, and xi are a subset of all binary variables
in the problem. Because the contribution of a satisfying configuration of the binary
variables is zero, the cost of violating this condition can be set by the parameter
λ. In pure constraint satisfaction problems, this isn’t strictly necessary, since (by
addition) the individual contributions of the constraints are zero, and thus the
objective function value of a satisfying solution will also be zero. When mixing
optimization terms and constraints in the objective function, it is necessary to set
λ appropriately such that it is never energetically favorable to violate a constraint
in favor of reducing the value of the objective function.

These concepts can be further extended to address inequalities as well, by introduc-
ing slack variables. In general, linear inequality constraints (on binary variables x)
are presented as: ∑

i

aixi − b ≤ 0, (2.9)

where ai, b are integer coefficients. To transform this inequality to QUBO, we
must create an degenerate objective function such that all minima satisfy the
inequality. We start by adding auxiliary variables such that the total slack is
accounted for:

λ

∑
i

aixi +
W∑
j

wjyj − b

2

= 0. (2.10)

The number of slack variables W and their coefficient wj can be derived from
the coefficients ai and b, where at most W = b slack variables are needed1. Now
the equality constraint is equivalent to the original inequality constraint, since
it can be fulfilled for all values of the binary variables xi satisfying the original
inequality by choosing some appropriate values for the slack variables, which
remain unconstrained. For values violating the original inequality constraint, the
equation can never be fulfilled regardless of the values of the slack variables. The
equality constraint written in the quadratic form is then added as a penalty term
to the QUBO cost function.

1In general, it is possible to use binary encoding schemes such that only dlog2(n)e auxiliary
qubits are needed.
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2.4.2 Discrete variables

Non-binary discrete variables can also be represented in Ising/QUBO, and have been
investigated in the context of quantum annealing in scheduling problems [51, 52]
and graph colouring [53, 54, 55], among others. Here, each discrete variable
can be encoded by using multiple qubits to represent a logical integer variable
subject to a single constraint [56, 57, 58]. Binary encoding, analogous to classical
binary encoding, is efficient in the number of qubits in the sense that one can
encode d discrete states using only dlog2(d)e qubits. However, the binary encoding
is not used much in practice for application problems, since the interactions
necessary to enforce the validity of the encoding as well as the realization of the
couplings between logical variables are rather complicated to implement with the
binary encoding. Additionally, this encoding has been investigated in previous
works and has been shown to be detrimental to the QPU’s ability to find ground
states [59, 49].

The one-hot encoding is a standard technique where a logical variable with d

possible states is represented by d qubits. Each qubit’s state corresponds to one
possible value of the discrete variable if set to |1〉, and all other qubits are |0〉. The
corresponding constraint is typically implemented as quadratic interaction terms
between all d qubits, shown in Eq. (2.7). The advantage of this technique is the
fact that the one-hot case can be trivially extended to the k−hot case, where a
subset of exactly k qubits are |1〉 and the rest |0〉– however, this requires all-to-all
connectivity between the qubits. This is expressed in the form:(

k −
∑
i

xi

)2

= 0. (2.11)

An alternative to the one-hot constraint is the domain-wall encoding, which can
encode discrete variables with one fewer qubit per variable, i.e., d− 1 qubits for d
states, and requires only a chain of couplings rather than all-to-all. It has been
shown to be more efficient in different test problems [59, 49, 60]. However, the
main drawback of this method is that it cannot extend directly to the k−hot
constraint using the same technique. Rather, k copies of the d− 1 chain must be
connected (non-trivially) to enforce the same combinatorial landscape, which is no
longer efficient in the number of qubits.
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2.4.3 Continuous variables

Representing continuous numbers using binary variables is also possible using
QUBO/Ising, although due to the binary encoding necessary it is not often used
in practice. Much like in classical computing, these numbers are represented by
binary encoding schemes. A single decimal variable x̃ with N bits of precision
would be encoded as follows (using binary values x):

x̃ =
N−1∑
i=0

2ixi. (2.12)

There are several drawbacks to using this encoding scheme. Firstly, this requires
high precision in encoding the optimization problem, which makes the solution
landscape more difficult to explore due to thermal noise in quantum hardware.
Furthermore, the individual energy levels (or local optima) are exponentially
spaced, making them more less likely to be explored. Lastly, the connectivity
between the qubits is again quadratic, increasing the density of the problem being
solved. However, expressing continuous variables is sometimes unavoidable, and
this technique has been used in practice [61].

2.5 Quantum annealing in hardware

The core of a quantum processing unit (QPU) is a layout of qubits which are
connected via a system of couplers. The QPUs used in the research in this thesis
were from D-Wave Systems, which implement superconducting flux qubits to build
their processors [62]. While the component physics is beyond the scope of this
thesis, a technical description of the quantum processors can be found here [25]. In
the absence of logical encoding schemes, the physical layout of the qubits is fixed
in the QPU and is referred to as the hardware graph, denoted by U . This naming
convention comes from the graph-theoretical description of the QPU, where each
qubit (coupler) is represented by a node (edge) in an undirected graph. The exact
topology of the hardware graph dictates the structure of graphs and possible Hf
that can be represented natively by the qubits’ connectivity. The QPU topology is
an engineering artifact arising from the design choices for the QPU. In general,
due to engineering difficulties, connectivity between qubits comes at the cost of
the total number of qubits in the QPU. Due to various technological limitations
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in manufacturing, calibration, or other anomalies, a small portion of the qubits
and couplers in the QPUs may be defective and hence not programmable. The
percentage of qubits and couplers that remain functional once fully exposed to
users is referred to as the hardware yield. For D-Wave QPUs, the qubit yield
is typically above 97% for current processors [63]. The graph representing the
functional qubits and couplers is referred to as the QPU’s working graph.

The two topologies used for studies presented in this thesis are the D-Wave 2000Q
and Advantage QPUs. The topology of the D-Wave 2000Q (and earlier generations
of QPUs) are referred to as Chimera topology. These graphs are composed of
a 2D lattice of small complete bipartite graphs (each called a tile, or unit cell).
These graphs are denoted as CX (where X is the length of one side of the square
lattice, for a total of X2 tiles), and each tile is in itself a KN,N bipartite graph
(full connectivity between left and right partitions). The D-Wave 2000Q has a
size of C16 and K4,4 tiles. Each qubit in the Chimera topology has six couplers,
where four couplers are inside the unit cell and two are to different unit cells. The
Advantage QPUs implement a novel topology, called Pegasus, which differs in two
major aspect from the Chimera graph: the graph degree is 15, and the hardware
graph is not bipartite. Instances of the Pegasus topology that contain N ×N unit
cells are referred to as PN and consist of 24N(N − 1) qubits. This results in a
significantly more complex structure, allowing for denser graph structures of Hf to
be solved by the QPUs, and hence more difficult optimization problems (a technical
description comparing Chimera and Pegasus can be found in Ref. [64]).

2.5.1 Minor-embedding for fixed topologies

Obviously not all interesting optimization problems can be defined by the hardware
graph Chimera or Pegasus directly. However, it is possible to reformulate arbitrarily-
structured Hamiltonians Hf into a new hardware-compatible H′f via the technique
of graph minor-embedding, a well-studied problem in graph theory (see, e.g. [65]).
This process produces a mapping between one graph to another such that the
relevant topological properties of the original graph are preserved. For QA, this
involves encoding logical problem variables, or nodes in a graph, as chains of
multiple physical qubits on a QPU so that they act as a single logical qubit [66, 67].
Different families of topologies may produce very different structures in hardware for
the same input graph represented by Hf . The impact of this, specifically in terms
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of canonical problems and the various chain requirements when embedding certain
graph families in both Chimera and Pegasus graphs are explored in [64].

There exist several difficulties when using minor-embedding techniques. First,
deciding whether a graph can be minor-embedded into another is a known NP-
complete problem, and so polynomial-time heuristics (or deterministic algorithms
on constrained subspaces) are used in practice [68, 69]. Secondly, the use of
embeddings requires an additional set of constraints to be imposed on the qubits
representing a logical qubit (the magnitude of this constraint is called the chain
strength). These enforce that the minimum energy of H′f is obtained only when all
physical qubits representing a logical qubit are in the same state. It has been shown
that the magnitude of the minimum chain strength increases with the degree of the
graph of Hf [67, 70], which can create distortions in the resulting Hamiltonian H′f .
Generally, determining the best suited chain strength is a nontrivial task, and it is
one of the parameters explored in more depth in the results of this thesis.

2.5.2 Noise and mitigation strategies

Building a quantum processor inherently involves the implementation of an open
quantum system– meaning, the qubits can never be truly perfectly isolated from
their operating environment. This makes it difficult to draw universal conclusions
about the power of programmable QA [71]. However, many investigations into how
these quantum system interact with the environment (known as background noise)
have been published in the past. Dickson et al. [46] were able to demonstrate the
effects of thermal noise and diabatic transitions with D-Wave QA processors. In
this context, resilience against background noise was defined as the ability of the
quantum system to yield the correct solution with acceptable probability within a
time comparable to the closed-system adiabatic timescale. It was demonstrated
that in the limit of weak coupling to the environment (i.e., relatively low levels of
thermal noise), annealing diabatically across the minimum gap did not hinder QA,
but rather enhanced its performance. This was demonstrated by manually raising
the operating temperature of the chamber in which the QPU was operating, thus
allowing for a controllable amount of noise to perturb the system. The specific
point demonstrated was that thermal noise does not necessarily inhibit obtaining
ground states at the end of the annealing, even with small minimum gaps and
non-adiabatic conditions. However, the caveat remains that the annealing times
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need to be sufficiently long, and the system must be only weakly coupled to the
environment1. Additional experimental studies of quantum annealing processors
have investigated the effects of noise and its role in computation of solutions to
optimization problems. It has been demonstrated that finding quantum speedups
may be elusive in quantum annealing hardware with fixed topologies (tested on
spin-glass instances) [72]. Furthermore, it has been shown in such tests that
classical optimization algorithms can often match and exceed the performance of
quantum annealing hardware on such test instances due to physical limitations of
the devices [73]. Nonetheless, it has also been demonstrated that small clusters
of qubits do indeed remain coherent for some duration of the quantum annealing
protocol, which can contribute to solving specific kinds of (contrived) optimization
problems [74]. The extent to which this contributes to hardware performance for
large-scale problems remains an open question.

Noise can also directly perturb problem formulations in the analog system, i.e.,
Hf . The Hamiltonian parameters are subject to noise that can be modeled
using a Gaussian distribution over the terms in the Hamiltonian. This noise
(specifically, thermal noise whose timescale is much slower than the annealing
dynamics) may cause a reshuffling of the energy levels in the problem Hamiltonian,
which results in an incorrect encoding of the logical optimization problem in
the eigenstates of the Hamiltonian. There are multiple ways to mitigate some
of the effects of noise in quantum annealing. The most common technique is
spin-reversal transforms, which are used to effectively average over the asymmetric
final Hamiltonian distortion due to noise. This is done by creating random spin
vectors S = {−1, 1}N and recalculating a new H′f subject to this shift, where
h′i = hi · S(i), and J ′ij = Jij · S(i)S(j). These transformations do not change the
distribution of ground states in the system, only the signs of a subset of terms.
This new Hamiltonian H′f is then sampled using a QPU. To recover the samples
subject to the original Hamiltonian Hf , the solutions are multiplied by the vector
S(i). Typically, many such transforms are used when solving a single Hf . While
this method is effective in reducing the error due to static noise, each new H′f
results in another programming cycle, increasing the total wall-clock time of using
QA. Furthermore, it has been shown that increasing the number of transforms has

1Due to thermal relaxation, in the worst case the time to reach equilibrium in an open
quantum system can grow orders of magnitude with respect to the time needed in a closed
system.
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diminishing returns for a fixed number of samples [75]. However, because of the
technique’s effectiveness in averaging over the static noise, this method is often
used in practice.

2.5.3 Workflow of solving problems with QPUs

In QA, as implemented in quantum hardware by D-Wave Systems, the process of
solving a combinatorial optimization problem can be divided into discrete stages.
It is important to realize that very little in the procedure can be changed, and in
practice the freedom is in the tuning of parameters exposed to users within this
system. It is then up to the users of QA to interpret the results relative to the
problem. In the context of optimization, we can conceptually model the QPU as a
black-box optimization algorithm with very specific parameters and constraints.
The step-by-step process is as follows:

• Definition of a QUBO or Ising formulation and graph representa-
tion. QUBO problems and Ising models have become the standard input
format for quantum annealers, to which the optimization problems of interest
are converted. This problem is represented as an undirected weighted graph,
where each node represents a variable and each edge denotes the interaction
term between a pair of variables. Thus the problem statement is given as
finding the correct assignment of either {0, 1} or {−1, 1} (depending on the
choice of basis) to minimize the quadratic objective function.

• Minor-embedding. The logical interaction graph is translated to the
physical hardware graph of the QPU. It is necessary to select sets of physical
qubits to represent a single logical node and to identify the couplings between
the physical qubits to realize the correct interactions between the logical
variables. Provided the correct parameters are chosen to enforce the chains of
physical qubits, this procedure does not alter the minimum energy solution
landscape, and the QPU’s ability to optimize the embedded problem solved
the original optimization problem of interest.

• Programming and initialization. Programming the quantum annealer
requires setting the parameters that define the embedded problem to be
solved, Hf . This involves setting the weights for each qubit biases (controlling
the magnetic field acting on the qubit) and coupler strengths (the interaction
between qubits). To initialize the system, the qubits are set to a superposition
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of the two computational basis states. This is the lowest energy configuration
of the easy-to-implement initial Hamiltonian.

• Annealing process. In this step, the Ising model is solved. The system
transitions from the initial to the final Hamiltonian according to predefined
annealing functions in an attempt to minimize the energy. The way that
the functions A(t) and B(t) are evolved (called the annealing path) through
this search space is not fully controllable, but rather the total physical time
taken is set by the user of the QA QPU.

• Readout of the solution. At the end of the annealing phase, the qubits
are measured in the computational basis, and their configuration represents
a candidate minimum of the final Hamiltonian. The individual spin values
of the final configuration are read out and stored externally representing a
candidate solution to the original problem.

• Resampling. Because quantum annealing is a heuristic, there is only ever
a non-zero probability that the computation results in a ground state of
the system. Therefore, the anneal-readout cycle is repeated many times per
problem to acquire multiple candidate solutions. The number of times this
is performed is determined by the user.

It is important to note that, as a heuristic optimization routine, the time used
by the quantum annealing algorithm must be distinguished from the time used
by the QPU. Total runtime is a combination of engineering-specific timing that
cannot be altered, user-specified parameters, and the number of independent trials.
To represent wall-clock time, twall-clock, the most general timing model can be
regarded as follows:

twall-clock = tprog +Nreads · (ta + treadout) . (2.13)

Here, tprog is the programming time required to set the initial values of the qubits
and couplers, ta is the user-specified annealing time1 (physical time of evolution
from Hi to Hf ), treadout is the time to read out all the qubits’ states at the end
of the annealing cycle, and Nreads is the number of trials (i.e., the number of
samples obtained from the QPU). The importance of this model is exemplified

1This is essentially the same as τ from Sec. 2.2. However, to distinguish the theoretical
aspects of adiabatic evolution and the user-specified parameter for fixed annealing paths as
implemented in D-Wave QPUs, we use ta to refer to the annealing time in practice.
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2.5 Quantum annealing in hardware

by the analysis of “runtime” for quantum annealing: clearly, the more samples
are taken (Nreads is increased), the higher the probability that one of the samples
is a ground state. However, the probability of the proportion of a single sample
obtained at the end of the annealing is a ground state is controlled by ta. For the
research presented in this thesis, the distinction is made clearly in the appropriate
contexts.
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3
Annealing control parameters and tuning

In the scope of this thesis, we are particularly interested in the applicability of
quantum annealing implemented in quantum hardware. Therefore, while some
combinatorial optimization problems may be simple to formulate conceptually,
the process of attempting to solve these problems with quantum hardware is not
straightforward. To understand this, we selected one representative class of NP-
hard problems with a known simple QUBO formulation to study, the unweighted
maximum independent set (MIS) problem. We start by solving these problems
using standard techniques for QA, and compare the results to standard classical
competition algorithms. Then, we attempt to improve the performance of the
QPU by analyzing a subset of control parameters designed to mitigate some of
the bottlenecks in QA. Thus, we use MIS to highlight the properties of the QPU
in a targeted way, and deeply explore the role of parameter tuning in QA in
general.

3.1 Combinatorial optimization on a quantum an-
nealing processor

The advantage of choosing the MIS problem for an initial investigative analysis is
multifold. First, the problem is APX-complete. Meaning that, since no (classical)
PTAS exists, quantum algorithms may be a candidate for speedup on this problem
class. Furthermore, the QUBO representation of this problem is constraintless.
This significantly simplifies the tasks needed to solve these problems with QA in a
number of ways. Since there is no way to directly constrain the search space in
quantum annealing hardware, constraints are expressed by adding penalty terms to
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3.1 Combinatorial optimization on a quantum annealing processor

the objective function, as discussed in Sec. 2.4.1. Constraints have the detrimental
effect of added complexity to the problem formulation, both in terms of increased
number of terms in the problem (which in turn increases the connectivity of
the problem), as well as the precision required to encode it, a known issue with
quantum annealing hardware [70, 76, 74]. Constraintless problems also mean that
there are no infeasible candidate solutions, which allow for direct examination
of QA’s ability to explore the solution space. Lastly, MIS is a particularly good
starting point for the investigation of combinatorial optimization: every graph
has a (sometimes trivial) MIS. Thus it is trivial to formulate MIS instances using
random graphs, allowing tunable difficulty for the problems investigated. It allows
us to generate test bed instances without relying on other data sources.

3.1.1 The maximum independent set problem

The formal definition of the unweighted MIS problem is as follows: given an
unweighted undirected graph G with vertices V and edges E, find the largest
subset of vertices V ′ ⊆ V for which no two edges in V ′ have an edge in E. A
straightforward QUBO formulation of this problem is given in [77], with the
following objective function:

H = −B
∑
i

xi +A
∑
ij∈E

xixj . (3.1)

Here, xi are binary variables, and A and B are constants. In order to ensure that
the minimum of H solves the MIS problem, it is required to set B < A [77]. In
our experiments, we used B = 1 and A = 2. We briefly demonstrate that this is
sufficient: for each vertex vi that is added to the candidate independent set V ′, we
add −1 to the objective function value. Adding a node vj that has an edge eij ∈ E
raises the objective function value by 1 and is therefore not favorable. Thus, the
minimum of H represents the maximal set of unconnected nodes vi ∈ V ′, which is
the definition of solving the MIS problem.

To create a suitable instances of the MIS problem, we used the Erdős-Rényi model
to generate a family of random graphs, typically denoted as G(n, p)1. Here, a

1The Python package NetworkX has built-in functionality to generate such graphs given
the appropriate parameters. More information about this package can be found here: https:
//networkx.org/.
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graph G is generated with n vertices, with each pair of edges having a probability
p of being connected. Since the purpose of this investigation is to understand the
QPU’s ability to solve a canonical NP-hard problem, we attempt to generate graphs
with properties that probe the limits of quantum annealing performance. The goal
is to identify the maximum point of difficult empirically in a self-consistent manner:
by exploiting the edge probability p to tune the density of the random graphs, it is
possible to control some aspects of the difficulty for the QA algorithm as a function
of problem size n. The point p at which the QPU has the lowest probability of
finding the putative optimum (largest independent set for these graphs) therefore
corresponds to the maximum point of difficulty. For this initial experiment, we
generated random graphs of n = 40 at different edge probabilities p ∈ [0.05, 0.425]
in steps of 0.025, with 50 random graphs at each point of p. These problems were
then solved using a D-Wave 2000Q processor, with 100,000 samples (candidate
solutions) collected for each problem. The results of this experiment are shown in
Fig. 3.1. Qualitatively, the QPU behaves roughly as expected: for small p, random
graphs are sparse, and therefore have easy-to-find independent sets. As p increases,
the graphs become denser, and the MIS becomes harder to find. However, as p
continues to increase, the graphs slowly approach being a fully-connected graph
(clique), at which point the MIS sizes decrease substantially (for a clique, the MIS
size is 1), which is again easy to find. Therefore the maximum point of hardness is
expected to lie at some point in the middle. Quantitatively, the observed point
of hardness for the QPU was at p = 0.2, which is also consistent with previous
studies of MIS with random graphs [78]. Therefore, this edge probability was used
for the remainder of the MIS experiments.

3.1.2 Minor-embedding and parameter settings

A crucial step in solving arbitrarily-structured graphs using a QPU is the process
of minor-embedding. As explained in Sec. 2.5, each QPU has a fixed topology
defining the connectivity between qubits. Therefore, in order to map arbitrary
graphs to the connectivity of the QPU, each node in the source graph must be
represented as a chain of connected physical qubits in the QPU. While in principle
this incurs only a polynomial overhead in the number of variables (qubits) used to
describe a problem for quantum annealing, it has been previously observed that
D-Wave QPUs have a lower probability of finding global optima for problems which
require embedding [70]. Thus, most interesting and difficult problems must be
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3.1 Combinatorial optimization on a quantum annealing processor

Figure 3.1: Distribution of success probabilities of the tested D-Wave 2000Q QPU
as a function of edge probability p for randomly generated graphs (50 graphs at each
point of p). The maximum point of difficulty (e.g., lowest mean success probability)
was observed at p = 0.2. Error bars are bootstrapped 95% confidence intervals.
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minor-embedded to match the QPUs topology1. In order to understand this effect
more concretely, we performed another initial experiment: 50 random graphs were
generated at n = 50 and p = 0.2, and the minorminer Python package was used
to generate 25 different embeddings for each problem. Each of these embeddings
was used and submitted to the QPU, and the respective sizes of the independent
sets for each problem (and embedding) were recorded. To analyze the effect of
embedding on the performance of the QPU, we performed linear regression to
check the correlation between embedding size (total number of qubits used in the
embeddings) and the quality of the results (distance of each independent set from
the putative optimum). The slopes of these linear regressions are the major point
in this analysis, as it shows the marginal degradation of the results as a function
of additional qubits used in the embedding. The distribution of the slopes for
each problem is shown in Fig. 3.2. Since the vast majority of the points shown
are above zero, we can conclude that larger embeddings are on average worse
for such combinatorial optimization problems, which is consistent with results
from literature. Thus, we allocate some pre-processing time to generate a number
of candidate embeddings, and select the one which uses the smallest number of
qubits.

The last step in solving embedded problems using a QPU is deciding on the
optimal chain strength which will be used to encode each logical qubit. While
there are some rough rules of thumb and bounds [67, 79], the chain strength is
a tunable free parameter of the embedded problem. In practice, chains act as
additional constraints on the problem being solved, with the chain strength being
the magnitude of the constraint. It is therefore necessary to set a chain strength
such that all qubits in the chain act as a single logical qubit, so that it is never
energetically favorable to have oppositely valued qubits within a single chain in
order to reduce the overall value of the objective function (such a result is referred
to as a broken chain). Unfortunately, this value is not always known a priori, and
may change from one problem to the next. Furthermore, using a chain strength
which has too large a value has the effect of compressing the logical problem being
solved, which leads to a degradation in performance of the QPU. Thus, an optimal
trade-off must made such that the smallest possible chain strength which correctly
encodes the problem is used. In the MIS case, we performed a sweep over many

1D-Wave Systems provides an open-source Python package which can be used to find minor-
embeddings as per the algorithm presented in [68]. The Python package can be found here:
https://github.com/dwavesystems/minorminer.
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3.1 Combinatorial optimization on a quantum annealing processor

Figure 3.2: Boxplot showing the distribution of linear regression slopes of 50 MIS
problems at n = 50 and p = 0.2 (25 embeddings used for each point), all solved
using a D-Wave 2000Q QPU. The majority of the points lie above zero, indicating
the larger embeddings cause the QPU to find worse optima.
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Figure 3.3: The probability of the D-Wave 2000Q QPU finding the putative
optimum of each problem for different chain strengths. The black line shown is the
envelope of optimal chain strengths at each problem size n. As n increased, larger
magnitude chain strengths were optimal.

such chain strengths, solving each problem at different chain strengths to observe
the effects of this parameter. In these experiments, we generated 50 random graphs
at n ∈ [20, 60] in steps of 5 (all at p = 0.2). We solved each of the 50 problems at
every size using a variety of different chain strengths ∈ [2, 3, . . . , 10], and measured
the QPU’s performance for each. The results of this experiment are shown in
Figure 3.3. As expected, larger problems required stronger chain strengths in order
to correctly encode the problem. This is due to the average node connectivity
(or degree) in the logical graph as n increases, which in turn requires additional
qubits to be coupled in a single chain. Interestingly, Fig. 3.3 also demonstrates the
consequences of exceedingly large chain strengths for the smaller problem sizes: the
stronger chain strengths (for example, 10) caused up to two orders of magnitude
degradation in performance at n = 40, further demonstrating the importance of
correctly tuning this parameter.

While these results are only useful for this specific test bed (MIS problems with
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p = 0.2), we can use the black line in Fig. 3.3 as a guide for the remaining
experiments involving the MIS problems. The QPU is therefore considered to be
optimally tuned in regards to chain strength for each of the problem sizes which
will be tested.

3.1.3 Benchmarking quantum annealers against classical al-
gorithms

For the main MIS experiments, we generated a new set of Erdős-Rényi graphs
at edge probability p = 0.2 and n ∈ [20, 60] in steps of 5 (50 instances at each
n). Each problem was embedded using the methodology in the previous section,
and solved using a D-Wave 2000Q QPU. A total of 100,000 samples (candidate
solutions) were collected for each problem instance. A standard noise-mitigation
strategy, spin-reversal transforms, was used. These spin-reversals involve using
random vectors of spin states {−1, 1}N (N is the length of the vector) to reverse
the signs of terms in the problem being submitted to the QPU, but leaves the
underlying structure of the problem intact. It has been shown that this technique
averages over the systematic noise present in the QPU, overall enhancing the
results [75]. In these experiments, we used a total of 100 spin-reversals per problem
(1 spin reversal per 100 samples), as it has been shown that more reversals has
diminishing returns [75]. The annealing time for each sample was set to the default
minimum, ta = 20 µs. Since the objective of this analysis is to understand the raw
performance of the QPU given the embedded MIS problem, we define the amount
of time taken by the QPU to solve each problem as the raw computation time
(tcompute) needed to obtain the putative optimum:

tcompute = Nreads · ta, (3.2)

where Nreads is the total number of samples. Thus, the maximum possible tcompute

per problem was 0.2 s. All other parameters of the QPU whose values are not
mentioned here were set to their default values.

Two classical competition algorithms were chosen to compare against the QPU
results. The first is a well-known heuristic optimization algorithm, simulated ther-
mal annealing (SA). D-Wave Systems has an open-source Python implementation
of SA which was used for these experiments1. The SA algorithm was originally

1The Python package can be found here: https://github.com/dwavesystems/dwave-neal.
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inspired by the annealing process of metals [33], and has been used extensively for
quantum annealing benchmarking studies in the past [72, 73, 76]. The algorithm
starts in a random binary string configuration (corresponding to infinite tempera-
ture), and is manipulated through a “cooling” schedule until a candidate solution
is reached in a user-specified number of steps, Nsweeps. In these experiments,
Nsweeps ∈ {10, 100, 1000} were tested, and it was found that Nsweeps = 10 was
sufficient for all problem sizes. At every step of the algorithm, a possible bit-flip is
proposed, and accepted with a probability P , defined as:

P = max {1, exp (−β∆E)} . (3.3)

Here, β = 1/T is the inverse temperature parameter and ∆E is the energy
(objective value) difference between the two system states before and after the
flip. The “cooling” of the system is reflected in the way in which the β parameter
is slowly increased, effectively lowering the probability of accepting energetically
unfavorable bit-flips1; choosing such a scheme is known as a schedule. In our
experiments, we used the schedule β ∈ [0.01, 3], interpolated geometrically with
Nsweeps points.

The other algorithm is a polynomial-time approximation to the MIS problem
provided by the Python package NetworkX, based on the algorithm presented in [80].
This algorithm provides a solution with quality bounded by O

(
|V |/ log

(
|V 2|

))
in the worst case. The purpose of this approximation is to examine the average
hardness of the test bed instances in the “native” domain of MIS instances (meaning,
without going through the translation to QUBO).

The goal of the comparison was to identify the ability of the QA algorithm (as
implemented on a D-Wave QPU) to solve a canonical NP-hard optimization
problem relative to classical optimization algorithms. In general, heuristics are
always in tension with respect to three different criteria: solution quality, runtime,
and problem size. Ideally, a powerful heuristic is able to provide good solutions
to an optimization problem quickly, and for a large range of problem sizes. In
practice, a compromise between these must be made. For example, longer runtimes
may be permissible in favor of higher-quality solutions. Thus, to make the trade-off

1Moves that improves the candidate solution are always accepted. As the algorithm progresses,
however, these are exponentially unlikely and thus unfavorable moves may be beneficial in finding
new subspaces to explore.
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between the different solvers more apparent in our experiments, we consider the
quality of solution and runtime of the algorithms separately, in Fig. 3.4 (a) and
(b), respectively. Because verifying that the putative optima are global minima
is NP-hard in the worst case, we evaluate each of the solvers based on their
performance in a self-consistent method. After running all solvers on all instances,
we consider the largest independent set found among any of the solvers as the
putative (or “record”) optimum for each instance. Thus, we can consider how well
each solver performed by considering how close each solver was (on average) to the
putative optima, shown in Fig. 3.4 (a). For all problem sizes tested, SA was always
able to find the putative optimum. The D-Wave 2000Q QPU was only able to
consistently find the same solutions for the smallest problem sizes tested (20− 25).
However, in the mid-range (30− 40), the QPU was not able to find global optima
for all problem. At the largest sizes (45− 60), the QPU’s performance degrades
significantly, and the independent sets found are consistently smaller than both SA
and the approximation algorithm. These results can be explained by examining
the polynomial approximation’s performance: at small graph sizes, the problem
is sparse, and so the MIS is easier to find for SA (single variable flips are more
common) and the QPU (smaller embeddings are sufficient). As the problems reach
intermediate sizes, the polynomial approximation degrades, as is expected for such
an algorithm. However, at the largest problem sizes, the density of the graph grows,
which makes the MIS problems easier to approximate. From the QPU perspective,
the density also increases the size of embeddings (and correspondingly, the chain
lengths and strengths) needed to execute the QA algorithm. With increasing
embedding sizes and chain strengths, it has been observed that the dynamics of the
qubits “freeze” earlier in the annealing schedule, which results in settling in local
rather than global minima since the chains stop reacting to the evolving problem
Hamiltonian [81]. Thus, even though the MIS problems are “easier” classically,
this does not translate to improved QPU performance due to the overhead required
to solve the problems in hardware.

In Fig. 3.4 (b), the time required by each solver to find its record solution is
compared. As expected, all the algorithms tested were observed to have increasing
runtime with increasing problem size. However, at the two smallest problem sizes
(20− 25) the QPU had the fastest time to record. This is likely due to the fact
that these instances were classically easy, but also in a regime where the hardware
and embedding effects were not too prominent for the QPU. As the problem sizes
increased, these effects became more prominent, resulting in unfavorable time
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(a)

(b)

Figure 3.4: (a) The performance of each algorithm represented as difference
between best solution found and putative optima, relative to increasing (logical)
problem size. (b) Mean runtimes for each algorithm tested, in seconds. In both,
error bars are bootstrapped 95% confidence intervals.
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scaling for the QPU relative to the classical algorithms. It is important to note

that these results are not reflective of the scaling of the QA algorithm in theory

(e.g., the optimal annealing time ta required to solve these instances, as discussed

in Sec. 1.1), but simply the scaling of the routine as set by the parameters discussed

above.

By selecting MIS as a representative NP-hard problem class, several conclusions

can be drawn from the analysis that apply to combinatorial optimization with

QA in general. This was done by constructing QUBO instances that were entirely

constraintless, allowing the examination of the QPU’s ability to perform heuristic

optimization directly. The task of minor-embedding and setting the individual

parameters of the QPU by hand allowed thorough testing of the performance

of QA with respect to the basic necessary steps required to pose problems to

the quantum annealer. Based on the results presented, it is evident that the

difficulties encountered by the QPU in finding global optima are different from

those of classical algorithms. The process of transforming a canonical NP-hard

problem so that it can be solved with QA necessarily involves steps that result

in different manifestations of computational bottlenecks (embedding, precision,

noise, etc.). When evaluating QA, it is important to identify which of these

potential bottlenecks are impacting performance in order to correctly understand

the implication of the results. This is evidenced by the observation that the

QPU was the best-performing algorithm in both runtime and solution quality

for the smallest MIS instances (20− 25 nodes), but at the largest problem sizes

was the worst performing algorithm. Furthermore, it is apparent that wall-clock

time plays a unique role in QA. The basic annealing time (ta) determines some

aspects of the underlying physics of quantum annealing and therefore affects the

ground state probability. However, much like some classical metaheuristics, in

practice attempting to solve problems (even simple constructions such as MIS

problems) requires many candidate solutions to be obtained, regardless of the

relative simplicity or complexity of the optimization problem. Therefore, the onus

is on the user of QA to find the optimal trade-offs between tuning QPU parameters

and executing the algorithm in order to gain some practical use.
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3.2 Advanced annealing controls

As observed in the results from the previous section, implementing QA in pro-
grammable hardware has obvious limitations when applied to combinatorial opti-
mization problems. The rigid topology of qubits in the layout of a QPU necessitates
the process of minor-embedding in order to solve arbitrarily-connected graph struc-
tures, which result in a multitude of consequences in practice. To address this, there
are a set of control features which have been developed and implemented in succes-
sive generations of D-Wave QPUs processors which have been specifically designed
to mitigate some of these issues. While full annealing path programmability is
still impossible, it is possible to manipulate some elements which contribute to the
annealing path using these controls. Here we review a subset of such controls, along
with existing known methods on tuning them (and where applicable, their known
physical effects on performance). The impact of annealing offsets, in particular,
on the QPU performance is tested explicitly with small toy problems. Then, new
algorithms using these controls are developed and tested with D-Wave QPUs. We
show how to tune and use these controls in practice to solve maximum independent
set problems, expanding upon the previous work and improving the overall QPU
performance.

3.2.1 Tunable annealing control parameters

We briefly review the set of features which were tunable in the D-Wave 2000Q
generation of QPUs used in the MIS experiments. Where applicable, the relevant
physical effects are explained and related to practical applications of QA.

Reverse annealing. As opposed to standard (forward) annealing, where all qubits
are initialized in a simple ground system of equal superposition, reverse annealing
(RA) implemented in D-Wave QPUs performs a fundamentally different task. Each
qubit in the system is initialized in a computation basis state, the ensemble of
which represents a classical state, in effect seeding the heuristic optimization with a
starting point. Then, the annealing process proceeds in reverse, and the magnitude
of the initial Hamiltonian (also known as the transverse field) is slowly raised. The
transverse field, as in forward annealing, still enables tunneling between qubit states.
The strength of the transverse field (or equivalently, the point in the annealing
process where the reverse annealing is stopped) is a parameter to this protocol,
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and dictates the degree of “locality” in which the QPU is able to explore [82]. A
schematic diagram of this annealing protocol is shown in Fig. 3.5 (a). Because
this feature initializes at the end of the forward annealing schedule, the reverse
evolution of the Hamiltonian may result in following different annealing paths than
in strictly forward annealing, which may aid in finding optima to optimization
problems [83].

This RA protocol was the first implemented in D-Wave QPUs that expanded upon
standard forward annealing, and as such has been investigated thoroughly since
its construction. Reverse annealing was first used to conceptualize a mutation
operator in a quantum-assisted genetic algorithm [84], which was then subsequently
implemented and demonstrated to be effective [38]. It has also been demonstrated
that this protocol can be used as a Markov chain operator to sample from mixed
quantum states in frustrated lattices [85]. In the context of optimization prob-
lems, reverse annealing has been used to benchmark portfolio optimization in
financial models [86, 87], scheduling optimization problems [88], and for the inner
optimization routine in non-binary matrix factorization [89, 61].

Anneal pause. It has been well-established that thermal noise in quantum
annealers exhibit certain signatures [90] which can be measured experimentally [46,
91]. Specifically, it has been shown that under open quantum system conditions,
qubit states can be driven to a higher eigenstate due to coupling to the environment
(known as excitation) before returning to a lower energy state (known as relaxation).
This effect is typically observed when the timescale of dynamics during the quantum
annealing evolution is much longer than the timescale of thermal fluctuation in the
system, known as the relaxation time. To investigate this effect, the novel control
parameter of anneal pause was introduced, which allows the modification of the
annealing schedule by adding a constant amount of physical time (tpause) to each
annealing cycle where the evolution is stopped. The schematic of anneal pause in
the annealing schedule is also shown in Fig. 3.5 (a). Experimental investigations
have shown that pausing can increase the probability of finding optima by orders
of magnitude (under the correct conditions) in ways that strictly increasing the
annealing time can not [92].

Annealing offsets. One further attempt at implementing qubit-specific control
features is the annealing offset parameter. This feature is theoretically motivated
by the qubit freeze-out dynamics, where the qubits’ dynamics stop responding to
the evolving energy landscape [25]. With annealing offsets, the shape (or path)
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of the anneal scheduling is not modified, but only shifted in time by a constant

amount, ∆si (in normalized time units) for qubit qi. Because this time shift can

be applied to each qubit in the QPU independently, this has the effect of shifting

the freeze-out point of individual qubits relative to each other. This is particularly

useful in embedded problems (such as MIS), since chains of different lengths and

strengths may freeze at different points in the schedule. A diagram exemplifying

annealing offsets on a two qubit example is shown in Fig. 3.5 (b).

As with other performance-enhancing protocols, finding optimal such offsets depend

on the specific Hamiltonian being solved, which therefore poses a difficult problem

in general. There has been some experimental demonstration of effective offset

tuning using a variety of methods. Analysis based on perturbation of the driver

Hamiltonian was shown to increase probability of finding optima through iterative

evaluation of an objective function [26]. In applications, a grid-search technique

was used to boost performance of an integer factoring routing using a D-Wave

QPU [93, 94]. Depending on the instances being studied, it was shown that the

probability of finding the ground state could increase by up to multiple orders of

magnitude.
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Figure 3.5: (a) Diagram of a simple reverse annealing protocol (with duration
trev in reverse and ta forward) with a pause (of duration tpause) in the middle.
(b) Diagram of possible annealing schedules using an anneal offset of maximum
magnitude |∆ti|.
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3.3 Heuristic tuning of QPU controls

A major drawback in the optimization of QPU control parameters is the complex
nature of the optimization task in itself. Whether exhaustive or iterative schemes
are used (such as those presented in previous sections), significant resources are
often devoted to finding optimal schedule shifts to improve QA performance. In
practice, this leads to significant bottlenecks in the time devoted to tuning the
QA parameters. Therefore, we now introduce methods to attempt to improve QA
performance using some of these advanced controls without causing additional
bottlenecks in computation. We employ the use of a black-box evolutionary
algorithm in order to tune the anneal offsets in a D-Wave 200Q QPU. We develop
these methods particularly to solve embedded instances of the MIS problems, again
as a representative class of canonically hard optimization problems. This is then
used to draw comparative conclusions regarding the resources needed to tune QA
in a more general context.

3.3.1 Covariance Matrix Adaptation Evolution Strategy for
offset tuning

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [95] is a stochas-
tic optimization algorithm for continuous black-box optimization. To tune the
annealing offsets, we adopt the so-called (1 + 1)-CMA-ES variant [96], which
generates only one candidate search point in each iteration. The (1 + 1)-CMA-ES
algorithm exhibits both fast convergence and global search ability. The choice of
the optimization algorithm is made based on the following considerations: firstly,
QPU time is considered an expensive resource, and we wish to spend as little
QPU time for the tuning as possible. Secondly, the QPU is an analog device,
meaning that problems (one candidate set of annealing offset parameters in this
case) can only be tested sequentially. Therefore, search strategies that generate
multiple candidate points are not advantageous as it is not possible to parallelize
those points in our case. For the experiments reported in this paper, we run the
(1 + 1)-CMA-ES with its default parameter settings, since it is well known that
such a setting shows quite robust behaviors across many benchmark functions [97].
Pseudocode outlining the algorithm used to tune the offsets is shown in Alg. 1
and the appropriate terms (along with the values used in our experiments, when
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applicable) are defined in Tab. 3.1. Essentially, the proposed algorithm optimizes
the annealing offsets using the so-called mutation operation (Line 10 and 11), where
the current annealing offset candidate x is perturbed by a Gaussian random vector
σAz (which is transformed and rescaled from the standard normal vector z, Line
10). The resulting mutation x′ is evaluated with the QPU (Line 12) and is passed
onto the next iteration if its objective value f(x′) is better than f(x) (Line 14 and
15). In addition, two procedures, update-step-size and update-cholesky are
adopted to control the step-size σ and the matrix A. The details of those two
procedures are presented in [96].

Recall that in the case of MIS problems, to solve them directly with the QPU,
minor-embedding is necessary for each graph. Therefore, the objective of the
(1+1)-CMA-ES is to tune the annealing offsets of each qubit chain collectively, thus
attempting to mitigate the freeze-out effect of the quantum system by mitigating
each chain independently. To calculate the offsets for each chain, we must then
consider the collective minimum and maximum offset ranges that can be used for
the chain to act as a single logical qubit. We therefore find the highest minimum
and lowest maximum shared value between all qubits in every chain, and use those
as the boundary for each logical qubit (chain). Every qubit within every chain is
then advanced/delayed by the same amount, resulting in a singular collective shift
of the entire qubit chain.

In our implementation of (1+1)-CMA-ES, we considered two starting points for
the evolution strategy: uniform and null. The random uniform initialization was
selected due to its known performance advantages by allowing a fair exploration
of the search space within the offset bounds of each chain. The initial points
are selected uniformly for each chain ci from the range of feasible values [li, ui]
(common lowest/upper bound for each chain). The fair exploration is particularly
important in this model due to the non-convex nature of the problem, where we
have a high-dimensional search space and each point is possible optimum. The
alternative approach (null), is set by selecting all zeros for each initial offset value.
This is equivalent to starting with a standard quantum annealing protocol as a
seed to the CMA-ES. We consider this a “not bad” starting point (essentially a
local optimum in the search space) and attempt to improve upon it. This is also
the default value for standard forward annealing.

At the core of the (1+1)-CMA-ES tuning routine is a necessary step of evaluating
a fitness function, testing the current quality (fitness) at every iteration of the
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procedure. The fitness (objective) function function used in this case was the
mean energy of the samples returned from the QPU at every iteration, with a
sampling rate of 100 samples per iteration. Thus, the goal was to drive the
CMA-ES search towards lower mean energies of the problem Hamiltonians in an
attempt to find larger MIS solutions. In theory, other objective functions could be
used; in preliminary experiments 25% percentile energies and minimum energies
or candidate solutions were tested, but mean energy proved to be the most stable
metric, and was the best performing fitness function. In Fig. 3.6 we present one
example of tuning the offsets for a 40 node graph.
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Algorithm 1 Pseudocode for the routine used to tune the annealing offsets
parameters using (1 + 1)-CMA-ES.
1: procedure tune-offset(l,u, B, StepCost)
2: Initialize: σ ← max{u− l}/4, C = I, c← 0
3: if InitialOffsets = 0 then
4: x← 0 . offset: zero initialization
5: else
6: x← U(li, ui) . offset: uniform initialization
7: end if
8: f(x)← call-qpu(x, StepCost)
9: AA> ← C . Cholesky decomposition
10: while c < B do
11: z←N (0, I) . standard normal distribution
12: x′ ← x + σAz
13: f(x′)← call-qpu(x′, StepCost)
14: σ ← update-step-size(σ)
15: if f(x′) < f(x) then
16: x← x′

17: A← update-cholesky(A, z)
18: end if
19: c← c+ StepCost
20: end while
21: return x
22: end procedure
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B

Total budget (amount of resources) for tuning QPU an-
nealing offsets (in units of total number of samples drawn
from the QPU; In total, 10,000 samples are used in our
experiment per instance.).

InitialOffsets
The initial value for each offset of qubits in the problem;
we test either all set to 0 or uniformly between their
min/max range.

StepCost
The cost of each step of the fitness evaluation of the
offsets (in number of samples from the QPU; we used 100
samples per call).

x The current annealing offsets.

f(x)
Fitness value of the current offsets, measured in units of
mean energy of the samples returned by the QPU.

c
Counter for the budget (measured in number of samples
from the QPU).

call-qpu
The objective function that calls the QPU, takes x and
StepCost as arguments.

σ The step-size that scales the mutation of offsets.

C
The matrix of covariances between the annealing offset
values

A The Cholesky decomposition of C

update-step-size
The procedure to control the step-size σ. Please see [96]
for the detail.

update-cholesky
The procedure to adapt the Cholesky decomposition A
of the covariance matrix C. Please see [96] for details.

U(a, b) Uniform random distribution in [a, b].
N (0, I) Standard multivariate normal distribution.

Table 3.1: Table explaining the variables and procedure used in Alg. 1.
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3.3.2 Solving optimization problems with parameter tun-
ing

The problem instances used for these experiments were from the same problem
class as those in the last section, MIS problems of random graphs (20-60 nodes,
edge probability p = 0.2). To test the efficacy of the (1+1)-CMA-ES procedure,
we allocate an initial budget of resources B (number of samples queried from
the QPU) with which we tune the offsets. Then, we sample another B samples
with the terminal annealing offset values x, and record the best solution found
in this second part of the procedure. The goal is to allocate a sufficient amount
of resources for calibration, and then solve the MIS problems with the remaining
QPU time. In these experiments, we used B = 10, 000 samples, for a total of
20,000 QPU samples per instance. For each problem size tested, 50 problems were
generated. A D-Wave 2000Q was used to sample each MIS problem with three sets
of conditions: (i) uniform initial offsets tuned with (1+1)-CMA-ES, (ii) null initial
offsets tuned with (1+1)-CMA-ES, (iii) no offsets used (default). The no offsets
setting is used here as a baseline for comparison. For the minor-embedding, as in
the previous section, several embeddings were mined, and the smallest embedding
was used to solve the problems. For setting the chain strengths, Fig. 3.3 was used
as a reference guide.

We present the results from the QPU in Fig. 3.7. In Fig. 3.7 (a), we show the
probability of finding the minimum. However, to fairly compare the effects of tuning
the offsets, we show the mean of these probabilities only for the instances where the
configuration was able to find the putative optimum1. As expected, the probability
of the ground states decrease with increasing problem sizes. Furthermore, it is
evident that for the instances where the QPU found the putative optimum, both
offset tuning strategies provided a higher probability of ground states.

1In the cases where the QPU was not able to find the optimum, the null probability would
heavily skew the mean, especially at the larger problem sizes.
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In Fig. 3.7 (b), we show the number of instances where each tuning setting could
not find the putative optimum. As expected, the no offsets strategy was the worst-
performing setting at the largest problem sizes, with over half of the instances
remaining unsolved. At the two largest sizes (n = 55, 60), both the null and
uniform initial offsets solved more instances than no offsets. This means that for
some instances, the largest independent sets found by the tuned offsets were larger
than those found by the default settings of the QPU. At the smaller instance sizes,
surprisingly, there were a few instances that remained unsolved after tuning for
each problem size. On average, the null initial offsets outperformed the uniform
setting. This can be explained by the fact that the null configuration represents
a “not bad” starting point; the uniform initial offsets, by contrast, have no such
guarantee. It is therefore possible that a random initial offset value was “bad”,
and the amount of samples budgeted to the tuning algorithm was insufficient to
overcome this.

In order to quantify the degree of improvement due to the tuning, we take the
ratio between the probabilities of finding the ground states (of each of the two
strategies) relative to the baseline of no offsets. This is shown in Fig. 3.8. The
improvement obtained by using the two configurations is qualitatively similar, and
peaks at problem size 45 for both: 12.4 improvement for null initial offsets, and
8.2 times improvement for the uniform initial offsets. The improvement gained by
tuning the annealing offsets steadily increases with problem size, until reaching
its peak, after which the gains mostly disappear. This behavior indicates that at
small problem sizes there is little to be gained from tuning, but at larger problem
sizes the annealing offsets can have a significant impact on performance. The
decay observed in success probability in problem sizes larger than 45 implies that
insufficient resources were allocated to the tuning procedure, and more than 10,000
samples are needed to tune the offsets. Given the results from the previous section
(where the QPU was able to outperform even SA for small problems), it is evident
that the need for tuning the anneal offsets is particularly pronounced at the larger
problem size.

In practice, exhaustive tuning of hyperparameters is prohibitive when using meta-
heuristics. Typically rules-of-thumb are used, or only basic optimization is per-
formed. Furthermore, it is important to consider the amount of resources necessary
to perform the tuning, relative to the cost of running the metaheuristic itself.
Therefore, we devise a figure of merit in order to adequately compare the CMA-ES
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tuning method explored here with other techniques used in the past. The figure of
merit (FoM) is defined as the number of samples needed by the QPU divided by
the improvement in probability of ground states. Essentially, this figure represents
a sort of resource efficiency, where the goal is to minimize this number, so that a
minimum number of samples are needed to maximally improve the probabilities.
We present a comparison with some previous literature (and calculate the FoM
for those techniques) in Table 3.2. For completeness, we calculate our FoM for
both initial offsets configurations for CMA-ES. By comparing the FoMs for each
of the tuning methods, it is evident that improving the probability of ground
states is not sufficient to judge the applicability of each method. For example, the
grid search technique produced an improvement of 103 in probability of ground
state, but required millions of samples in order to find. Thus, while theoretically
demonstrable as proof that annealing offsets can be used to improve performance,
it would be unrealistic to use such techniques in application to problems larger
than toy instances. Under these conditions, we find that the CMA-ES method
developed here is the most efficient technique (with FoMs of 806 and 1219 for the
null and uniform settings, respectively). Since both cases used the same number of
samples to tune (104), the only difference between them was that the null starting
offsets resulted in larger improvements (factor of 12.4 as opposed to 8.2).

Method Samples Improvement Figure of Merit
D-Wave (perturb.) [26] 3.15 · 105 1.37 2.3 · 104

D-Wave (grid) [93] 2.5 · 106 1000 2500
CMA-ES (uniform) 104 8.2 1219
CMA-ES (null) 104 12.4 806

Table 3.2: Table comparing the different methods used to exploit the annealing
offsets. Stated are the the number of samples used to tune the annealing offsets,
the success probability improvement ratio, and the figure of merit, calculated by
dividing the first two columns for each method. The lowest figure of merit (and
hence most resource-efficient method) was the CMA-ES routine with null offsets, in
bold in the table.

Considering the results presented in Fig. 3.7, we conclude that annealing offsets may
provide some benefit to solving combinatorial optimization problems using direct
embedding approaches in quantum annealing hardware. In particular, using an
evolutionary strategy such as (1+1)-CMA-ES, which is well-suited for continuous
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parameter black-box optimization, we were able to improve the performance of
the D-Wave 2000Q QPU tested for these MIS experiments by over an order of
magnitude in probability of obtaining ground states. Furthermore, we demonstrated
that by allocating a pre-defined budget of samples, the tuning procedure can (on
average) allow the QPU to access better solutions than without tuning, and more
efficiently than with other methods used for annealing offsets in the past. The
figure of merit used to calculate resource efficiency was the lowest for the null
initial offsets, which implies that the default configuration is both a local optimum
for the annealing offsets search space, and also a good starting point for tuning
procedures in general. However, the methods developed in this section are not
guaranteed to improve performance across all problem sizes, and seem best suited
for combinatorial optimization problems under the following two conditions: (i)
problems that can be expressed via simple QUBOs (like MIS), and (ii) problems
which require long chains. In practice, real-world combinatorial optimization
problems are not as simple to express as the MIS case (which we show in detail in
the next chapter), and so other mitigation techniques must be used to improve
QPU performance.

55



3. ANNEALING CONTROL PARAMETERS AND TUNING

0 20 40 60 80 100
CMA-ES iteration number

−11

−10

−9

−8

−7

−6

M
ea

n
en

er
gy

Fitness function
Optimal fitness

(a)

0 20 40 60 80 100
CMA-ES iteration number

−0.10

−0.05

0.00

0.05

0.10

0.15

An
ne
al

off
se
tv

alu
e

∆
s

Optimal offset values

(b)

Figure 3.6: (a) A demonstration of the fitness function evolution for one 40 node
MIS problem (100 samples taken per iteration). The red line is the fitness function
value at every iteration of the CMA-ES algorithm, whereas the blue line is the
cumulative minimum and represents the (presumably) best-known configuration.
(b) The evolution of the offsets for each chain in the same 40 node MIS problem,
updated every time a new minimum is found in the objective function.
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Figure 3.7: (a) Probability of the QPU returning the ground state using B samples
for each tuning setting, after the tuning procedure was completed (2B samples used
for the no offsets case). Means are calculated only for instances where the QPU was
able to find the putative optima using that setting. Error bars are bootstrapped
95% confidence intervals. (b) The number of instances that remained unsolved (i.e.,
best solution found by the QPU was worse than the putative optimum).
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Figure 3.8: Ratio of mean success probabilities, before and after tuning, for each
of the two strategies. All points are above 100, and indicate an improvement in
probability. The peak is observed at n = 45 for both initial settings, with an
improvement of 12.4 for the null configuration and 8.2 for the uniform configuration.
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Real-world combinatorial optimization

There are many differences between real-world optimization problems and canonical
problems in NP. While the former may build on the latter, in many cases real-world
problems convolve multiple problem classes, or add additional constraints and
terms required to take into account real-world scenarios. For example, the Vehicle
Routing Problem is a well-known NP-hard optimization problem, which in its
canonical presentation requires only a given set of locations and a number of
agents to describe completely. However, in real-world applications, road networks,
scheduling time windows, and availability times all must be taken into account to
correctly represent the problem in practice. These real-world conditions may impose
additional constraints on the search space, yet often result in equally complex
problems. For instance, the Capacitated Vehicle Routing problem with Time
Windows, a more realistic representation of the problem where vehicle capacities
and delivery time windows are included, is still NP-hard. Thus, to address solving
such combinatorial optimization problems with QUBO/Ising formulations and
quantum annealing, we must introduce methods to incorporate such real-world
conditions in our modeling.

In this chapter we investigate two such techniques of solving real-world problems
with quantum annealing methods, each of which are fundamentally different. The
first involves deriving a QUBO from a real-life optimization problem in logistics (the
less-than-truckload problem). We introduce generic methods to model the various
constraints and optimization terms in QUBO form to accurately capture the real-
world nature of the problem. The specific limitations imposed by using quantum
annealing as a method to solve these QUBOs is addressed, and techniques are
proposed, implemented, and tested in this context. The (sometimes unfavorable)
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scaling requirements of the problem description as a limiting factor is discussed in
detail.

The second method takes an opposite approach to solving real-world optimization
problems. Instead of deriving a QUBO to model the optimization problem directly,
we utilize a canonical NP-complete problem– the set cover problem, which has a
well-known QUBO form– as an oracle for a semi-supervised classification algorithm.
We consider a variety of open source datasets of different types, and utilize various
techniques to transform the data so that the task of data reconstruction (from a
reference database) can be performed by the set cover QUBO. We show how the
QUBO size and connectivity used to perform this task scale, and how these affect
the performance of our method. Finally, we show how to use this reconstruction
method to classify our data, and compare this to similar traditional classification
algorithms.

4.1 Combinatorial optimization with real-world
constraints

4.1.1 The shipment rerouting problem (SRP)

In order to introduce the idea of real-world applications of QUBO/Ising problems
and quantum annealing methods, we derive a QUBO formulation of a real-world
optimization problem as a case-study. We focus on a well-known problem in
logistics: the less-than-truckload network service design. The term less-than-
truckload (LTL) denotes shipments not exceeding a maximum weight significantly
below a full truck load. This application is a common problem in the logistics
industry, where complex delivery networks must be serviced regularly; for example,
a country-wide mail delivery service is a kind of problem in this class. The
transport of a single shipment in these scenarios can be described as a three step
process: (a) a collecting truck run (where shipments are picked up from service
locations), followed by (b) one or several linehaul truck runs (where shipments
are passed through a network of connecting distribution locations) and ending
with (c) a distributing truck run (a delivery to the shipments’ final destination
locations from a service hub). The work presented here focuses on the design of
the linehaul network, or step (b). The linehaul network for LTL is made up by
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the set of terminals and timetable based truck runs, connecting the terminals and
thereby producing the long-hauls of all the shipments entering the network. Taking
limitations on transport times into account, the forwarding of the shipments is
meant to be as cost efficient as possible, measured here as the total distance each
shipment must travel from origin to destination. One key factor for cost efficiency is
the consolidation of multiple shipments in jointly utilized trucks, at least regarding
parts of their individual linehaul paths through the network. Meaning, it may
be favorable to merge multiple partially-filled trucks which service similar routes,
to reduce the total distance being traveled in the network. This saving measure
is represented by an increase in truck utilization. However, the consolidation of
multiple shipments with different origins and destinations in jointly utilized trucks
requires detours of shipments, thereby possibly increasing the distance traveled for
any individual shipment in the network. As detours come at a cost, the network
design problem searches for an optimal trade-off between detour costs and the
benefit of increased truck utilization. We focus on this central trade-off decision and
call this problem (the middle step in the process) the shipment rerouting problem
(SRP). We provide an illustrative example with two shipments in Fig. 4.1.

The input to our description of the SRP includes a set of terminals, their distances
between each other, and a maximum number of available trucks between any
two terminals. We have a set of shipments, each with a set of possible routes of
intermediate terminals throughout the network. These possible routes already
comply with constraints like maximum transport time or maximum detour factor,
and we consider the (weighted) graph network they represent as a fixed input to
the problem. These candidate routes include the direct route from the origin to the
destination of the shipment, which are also used as the default for all shipments.
Other candidate routes for rerouting are constructed in a pre-processing step based
on the graphical structure of the terminals and the distances between them. Thus,
a subset of shipments may be rerouted through alternate routes in order to reduce
the overall distance all trucks travel to deliver the shipments. Each shipment has a
size metric (volume, weight, etc.), and each truck has a corresponding capacity, i.e.
an upper bound for the total shipment size that can be loaded. For our purposes,
we denote the shipment sizes and truck capacities with respect to volume, and
refer to them as such throughout the rest of this chapter. We note that the
mathematical formulations we use to derive the final QUBO equally admit other
quantities.
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Figure 4.1: An example of the SRP with two shipments. The default routing
(Trucks 1 and 2 carrying their respective shipments at 50% capacity each) is optimized
by replacing Trucks 1 and 2 with a single truck (Truck 3) which can be fully utilized.
The cost of rerouting each shipment to the route serviced by Truck 3 is offset by the
removal of Trucks 1 and 2, thereby reducing the overall distance travelled to deliver
the shipments.

In our case, a single shipment cannot be split across different routes. However, for
transporting a shipment between two terminals, we may split it to distribute it on
multiple trucks along the same route (this is necessary especially for shipments
with large volume). Given the input to the problem, the optimization task is to
decide on a route for each of the given shipments, which may include partial (or
entire) overlaps between shipments. Consequently, the result includes the number
of required trucks in the network, and which terminals are connected by truck runs
in which frequency. Conceptually, this is similar to [98], where it was shown how
to form a QUBO representation of a simple traffic flow combinatorial optimization
problem. In that work, individual vehicles are given multiple candidate routes
whose intersection needs to be minimized. This route-generation procedure is used
here as well, but with opposite intent: our objective is to consolidate as many
routes as possible. The SRP application we consider here is different from other
QUBO formulations found in literature as not only the selection of routes for each
shipment is variable, but also the number of trucks used on each edge along the
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path is selected by the optimization. Typically, such parameters are inputs to
the QUBO construction which are then used to construct the appropriate QUBO.
Our formulation thus incorporates elements from both scheduling (route selection
in [98]) and packing problems (canonical problems in NP [77]).

4.1.2 Constructing a MIP for the SRP

Representing the SRP as a mixed-integer program (MIP) is straightforward, as we
can use multiple kinds of variables (binary, integer, real) and constrain both the
search space and solutions explicitly. Therefore, we start with a MIP representation
which we then later will transform to a QUBO.

First, we represent the connectivity of the terminals as a weighted directed graph G
where the vertices V are the terminals and the edges E between them represent
the ability to transport shipments from any single terminal to another; in other
words, we have an edge e ∈ E from a terminal a to a terminal b if there are trucks
available to drive from a to b. These trucks are called the trucks on e and the
maximum available number of trucks is denoted by tmax(e). The weight of e is the
distance from a to b and is denoted by d(e). For each shipment s, v(s) denotes
its volume and R(s) denotes the set of all routes that can be used to transport s
(candidate routes of s). For each edge e, R(e) denotes the set of all candidate
routes which pass through e. A shipment s is scheduled on some edge e if s is
transported using an associated candidate route r containing e.

In our scenarios, we assume all trucks have the same volume capacity, which we
denote by cvol. Moreover, all shipments have different origin-destination pairs so
that no two different shipments have common candidate routes (however, their
candidate routes may overlap). Therefore, for each candidate route r, we have
a unique shipment s(r) that can be transported using r. These choices simplify
our scenario, but result in no less of a general mathematical representation of the
problem.

Our objective is to transport each shipment entered in the network along an
associated candidate route such that the total distance of all used trucks in the
network is minimized. To represent this problem by a MIP, we introduce a binary
decision variable yr for each candidate route r that is 1 if r is used to transport s(r),
and 0 otherwise. For each edge e, we introduce a non-negative integer variable te
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with maximal value tmax(e) representing the number of used trucks on e. Thus,
we represent the problem by the following MIP:

Objective: Minimize the total truck distance∑
e∈E

d(e) · te (4.1)

with respect to the following constraints:

Route-shipment constraints: For each shipment s, exactly one associated
candidate route is used: ∑

r∈R(s)

yr = 1. (4.2)

Capacity constraints: For each edge e, the total volume of all shipments
scheduled on e does not exceed the total volume capacity of the used trucks
on e: ∑

r∈R(e)

v(s(r)) · yr ≤ cvol · te. (4.3)

The capacity constraints ensure that on each edge e, enough trucks are used to
transport all shipments scheduled on e because we can split shipments to optimally
exploit the truck capacities. Note that in an optimal solution, each truck number
te is as small as possible, namely

⌈∑
r∈R(e) v(s(r)) · yr/cvol

⌉
. In that case, for each

edge e, we can completely fill all used trucks on e except possibly one truck that is
partially filled.

4.1.3 From MIP to QUBO

As discussed thoroughly in Sec. 2.4, contrary to a MIP, a QUBO contains only binary
variables and an objective function to be minimized without explicit constraints.
Thus, additional variables and constraints must be modeled with penalty factors.
Here, we show how to derive such factors to emulate the MIP constraints.

Our QUBO formulation also uses the binary variables yr for the candidate routes r.
In replacement of the integer variables te for the edges e, we use modified binary
representations of their values in the QUBO based on a concept in [77]: for each
edge e, we define T (e) to be the set of all powers of two less than or equal tmax(e),
and for each n ∈ T (e), we introduce a binary variable te,n to represent the number
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4.1 Combinatorial optimization with real-world constraints

of used trucks on e by
∑
n∈T (e) n · te,n. In this way, we can represent at least

each number up to tmax(e), i.e. each allowed truck number. However, the highest
number that can represented is 2nmax−1 where nmax is the maximal value in T (e).
Therefore, to avoid representations of numbers greater than tmax(e), we reduce the
coefficient nmax in

∑
n∈T (e) n · te,n by the surplus s := 2nmax − 1− tmax(e). The

new expression is denoted by ∑
n∈T (e)

n · te,n, (4.4)

i.e. we have nmax = nmax − s = 1 + tmax(e)− nmax and n = n for each n 6= nmax.
Now we can still represent each number up to tmax(e) but no other numbers. In
our QUBO, we reformulate the total truck distance (4.1) as∑

e∈E
d(e) ·

∑
n∈T (e)

n · te,n. (4.5)

To encode the route-shipment constraints (4.2), since that they are linear equalities,
they can be added directly as λ · (A−B)2 where λ is a large penalty factor ensuring
that the constraint is fulfilled at least in all optimal solutions of our QUBO. The
capacity constraints (4.3), however, cannot be implemented in the same way (after
reformulation using the representations (4.4)) because they are inequalities of
the form A ≤ B. However, as discussed in Sec. 2.4.1, such a constraint can be
transformed into an equality A+ ` = B by using a slack variable `. In the context
of the SRP, this slack of the capacity constraint for each edge e represents the
wasted volume in the used trucks on e (volume capacity slack on e). However,
determining the number of slack variables required must be determined from the
other coefficients in the inequality. Here we consider the “packing” constraint in the
QUBO formulation for the knapsack problem with integer weights in [77]:

H = A

(
W∑
n=1

nyn −
∑
α

wαxα

)2

. (4.6)

Here, wα is the weight of item α, with associated decision variable xα. The yn
variables function as unconstrained slack variables, allowing the total weight of
the knapsack to be any integer less than or equal to W , as required by definition.
Notice, however, that because integers are used for both the item weights and the
slack variables, then all partial sums of item weights are represented by the slack

65



4. REAL-WORLD COMBINATORIAL OPTIMIZATION

variables. In the SRP problem, the volume v(s(r)) is not restricted to integers,
and therefore needs more consideration. A naive attempt to use the standard
inequality constraint would require us to consider all partial sums of shipments
through every edge e in the graph network:|R(e)|∑

n=1

v(s(r))Cn∑
m=0

yn,m

− cvol
∑

n∈T (e)

n̄ · te,n

2

= 0. (4.7)

Here, yn,m would be a slack variable representing m possible sub-summations of
n shipments (with v(s(r))Cn being the binomial coefficient). Clearly, this is not
tractable and would result in significantly more QUBO variables than intended1.
To overcome this problem, we discretize the shipment volumes into bins: We divide
the capacity of each truck into the same number cbin of equally sized bins. We call
this cbin the bin capacity of the trucks. Each bin can only be used for transporting
one shipment and has the volume capacity cvol/cbin. Hence, for each shipment s,
the number b(s) of bins needed to transport s is given by b(s) = dv(s) · cbin/cvole.
Instead of the volume capacity slacks, we now have to represent the bin capacity
slack on each edge e, i.e. the number of unused bins in the used trucks on e. These
slacks are more tractable because they are integers that can be assumed to be less
than cbin.

On the other hand, we must consider the case where cbin is too small, and the bin
volume capacity cvol/cbin is large so that we may obtain several partially filled bins
in the trucks, especially if shipments exist that are smaller than the bin volume
capacity. Hence, we may not optimally exploit the truck capacities any more
which may increase the number of used trucks. We can improve the situation by
subdividing each bin into the same number of smaller bins.2 Therefore, cbin is a
crucial parameter for the QUBO construction: more bins may lead to a better
exploitation of the truck capacities, but at the cost of larger bin capacity slacks to
be represented. In our experiments, we used the bin capacity 10, which was an
empirically-determined compromise.

1Even considering duplicates in the partial sums, this is still factorially many terms in the
worst case for every edge in the graph.

2Simply increasing the bin capacity may worsen the situation. For instance, suppose that
v(s) = cvol/2 for each shipment s so that b(s) = dcbin/2e . If cbin = 2, then b(s) = 1 so that we
can put two shipments into a truck. But if cbin = 3, then b(s) = 2 so that we can put only one
shipment into a truck.
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For each edge e, we introduce a non-negative integer variable `e representing the
bin capacity slack on e. Each bin capacity slack `e is less than cbin so that we can
represent these values in the QUBO by using a binary encoding scheme, introduced
in Sec. 2.4.3. We define L to be the set of all powers of two less than cbin, and for
each edge e and for each m ∈ L, we introduce a binary variable `e,m such that the
bin capacity slack of e is ∑

m∈L
m · `e,m. (4.8)

In this way, we can represent at least each number less than cbin, i.e. each relevant
bin capacity slack. Finally, we can reformulate the capacity constraints as follows:

Capacity constraints: For each edge e, we have∑
r∈R(e)

b(s(r)) · yr +
∑
m∈L

m · `e,m = cbin ·
∑

n∈T (e)

n · te,n. (4.9)

Similar to the route-shipment constraints, these capacity constraints are imple-
mented in the standard way, by introducing them as a large penalty term of the
form λ · (A − B)2. Putting all components together, we obtain the following
formulation of the QUBO:

Obj =
∑
e∈E

d(e) ·
∑

n∈T (e)

n · te,n + λ ·
∑
s∈S

 ∑
r∈R(s)

yr − 1

2

+ λ ·
∑
e∈E

 ∑
r∈R(e)

b(s(r)) · yr +
∑
m∈L

m · `e,m − cbin ·
∑

n∈T (e)

n · te,n

2

. (4.10)

Here, all variables are as before, and S is the set of all shipments in the problem.
We must now choose a penalty factor λ to ensure that only feasible solutions
are present in the global optimum of the QUBO objective, so that it is never
energetically favorable to violate one of the constraints in favor of minimizing
the total truck distance. In general, we may choose any λ greater than the total
truck distance d(feas) of any known feasible solution feas (for instance, the solution
transporting each shipment on its direct route). To see the correctness of this choice,
consider an optimal solution opt and suppose that opt violates a constraint. Then
the opt-value of the QUBO objective is at least λ and thus greater than d(feas).
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But since feas is feasible, d(feas) is also the feas-value of the QUBO objective,
contradicting the optimality of opt.

The resulting QUBO representation now contains all the necessary terms to
correctly model the SRP problem. However, it requires many more variables
than the MIP in Section 4.1.2. This makes the problem more difficult to solve,
both in sense of increasing the search space (in terms of number of variables)
as well as the possibility of obfuscating optima via the choice in discretiza-
tion (meaning, we may accidentally cause over/under filling in the trucks due
to discretization). For each truck number variable te in the MIP, we have
|T (e)| = dlog2(tmax(e) + 1)e variables te,n. Additionally, we have |L| · |E| =
dlog2 cbine · |E| variables `e,m to represent the bin capacity slacks. Thus, we can
already see the overhead associated with conversion of a real-world optimization
problem to QUBO form.

4.2 Solving real-world QUBO models

4.2.1 Generating SRP QUBOs from data

The inputs used in this work were generated from a real-world network of delivery
hubs in Europe. The specific locations and distances between hubs were abstracted
to comply with data protection laws, but are nonetheless representative of the
original real-world network. Connections between hubs correspond to serviced
routes between hubs. We used one graphical model to represent the entire hub
network, and generated multiple inputs based on different numbers of shipments:
30, 50, 80, and 100 shipments. In all inputs, every shipment sij travels from
one hub (vi) to another (vj). The direct route, vi → vj along eij , is always
the first candidate route for sij . The other candidate routes are generated by
a staggered k-shortest path approach: shipments are categorized by their origin-
destination distance, and for each category the k shortest paths are calculated
where k increases with respect to the origin-destination distance of the category.
For example, shipments up to 200 km have one alternative route while shipments
over 1000 km have up to 10 routes. The volume of the shipments is randomly
generated using an adapted exponential distribution, resulting in many smaller
shipments and few larger shipments. We show in Table 4.1 the number of QUBO
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variables and the number of total terms in the QUBO for each of the problems we
generated.

Shipments Routes QUBO variables QUBO terms
30 223 787 4856
50 428 1526 16315
80 752 2305 40594
100 925 3318 59014

Table 4.1: Number of QUBO variables and terms needed to describe the SRP
instances.

4.2.2 Comparing QUBO and MIP solvers for the SRP

To understand the impact of our choices in modeling the SRP as a QUBO, we
employed the use of multiple other solvers. Here we provide a brief introduction and
motivation for each solver. It is important to note that in our inputs, all shipments
have different origin-destination pairs. Therefore, two different shipments cannot
have common candidate routes. However, candidate routes of different shipments
may overlap in some edges.

Direct shipments. We consider the “direct shipment” solution to the SRP as a
simple baseline for the other solvers to beat. The direct solution is computed by
routing every shipment (sij) along its most direct path (eij). Since every shipment
origin/destination is unique in our instances, this equates to using one truck per
edge for every shipment.
Simulated thermal annealing. We use the same simulated thermal annealing
algorithm used for experiments in Ch. 2 for the MIS instances. The specific imple-
mentation of simulated annealing in this analysis was from the D-Wave Python
package here [99].
Tabu search. This algorithm is another metaheuristic for combinatorial optimiza-
tion, operating on the principle that searching already-discovered solutions should
be actively discouraged (a “tabu list”). Individual variables’ states are flipped
based on their likelihood of importance in the global optimum [100]. Solutions
which worsen the objective function value may be explored by the search if no
other variable flip is possible, which allows for both global and local refinement of
solutions. The Python package used for Tabu can be found here [99].
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Gurobi. Optimal solutions and optimality bounds were produced by solving the
MIP in Section 4.1.2 using Gurobi, an exact branch-and-bound solver. The benefit
of using Gurobi is that a bound on the optimality of the solutions is provided.
Given that the objective function units are the same for all solvers, this optimality
gap can be used for all solvers in this analysis. The runtime allocated to Gurobi
was 24 hours per input to obtain good bounds for each instance.
D-Wave Hybrid Solver. As mentioned in Sec. 1.3, it is possible to construct
algorithms which use QPUs in their inner loop, thus leveraging both classical and
quantum resources. The smallest instance in our test set required 787 QUBO
variables. While small for the SRP application, this is larger than could be solved
on D-Wave QPUs at the time of experiments, which therefore necessitates the use
of a hybrid algorithm in order to be solved with quantum annealing. We used a
proprietary hybrid quantum-classical algorithm offered by D-Wave Systems, called
the Hybrid Solver Service (HSS), which admits QUBOs with up to 10k binary
variables. The HSS uses a QPU to optimize clusters of variables, allowing one
to leverage the use of a quantum processor without the overhead of embedding.
However, this hybrid algorithm does not allow direct access to control the QPU
in its inner loop. Therefore, we consider the HSS as a black-box optimizer, and
measure the performance as a function of the timeout parameter, similar to Gurobi
and other black-box solvers.

We present the timing information allocated to each solver in Table 4.2, and the
corresponding parameters in Table 4.3. For the D-Wave HSS, we limit the 30 and
50 shipment instances to only 5 minutes of runtime. We note that these 5 minutes
were sufficient for the problems tested. Because we could not control the usage of
the QPU in the D-Wave HSS, we report the QPU runtime in the timing results
rather than a parameter. All software solvers were executed using single-threaded
programs. To attempt a fair comparison, each QUBO solver was given roughly the
same amount of time per test instance. However, the specific parameter choices
corresponding to such times were found and set by hand.

We present the consolidated results from all solvers in Figure 4.2. While the total
runtime of Gurobi was set to a 24 hour timeout (to obtain good lower bounds),
good solutions with an optimality gap of less than 10 percent were already found
after a few minutes for all instances. For the 30 and 50 shipment instances, we also
obtained provably optimal solutions within the first few minutes of optimization.
The solutions from Gurobi were significantly better than those obtained by solving
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Instance Simulated Annealing Tabu HSS
30 1 hr 1 hr 5 min (QPU: 3.0s)
50 1 hr 1 hr 5 min (QPU: 1.4s)
80 1 hr 1 hr 1 hr (QPU: 3.61s)
100 1 hr 1 hr 1 hr (QPU: 4.34s)

Table 4.2: Table of runtime allocated to each solver in the experimental setup.

Instance Simulated Annealing Tabu HSS

30 2500 samples,
50000 sweeps

1 hr timeout 5 min timeout,
use_qpu = True

50 1600 samples,
50000 sweeps

1 hr timeout 5 min timeout,
use_qpu = True

80 1000 samples,
50000 sweeps

1 hr timeout 1 hr timeout,
use_qpu = True

100 500 samples,
50000 sweeps

1 hr timeout 1 hr timeout,
use_qpu = True

Table 4.3: Parameter sets used for each solver. Parameters not mentioned were
set to default values.

the QUBO formulation. However, this is possibly due to both the fact that Gurobi
is an exact solver and the way in which the MIP is discretized to form the QUBO,
as explained in Section 4.1.3. The lack of discretization for Gurobi may result in
more efficient packing of shipments along each edge, which would result in fewer
trucks, and therefore a lower objective function value (truck km). Tabu search
was able to find a near-optimal solution for the 30 shipment instance, but was
unable to find even feasible solutions for any of the other instances. Simulated
annealing was able to find feasible solutions, but only in the largest case of 100
shipments was the solution better than the direct shipment approach. The D-Wave
HSS was able to find better-than-direct solutions for the 30, 50, and 80 shipment
instances.

Throughout our initial experiments, we found that increasing the number of possible
routes for each shipment does not directly correlate with improved solutions to
the original problem (lower total truck km). This is due to the fact that each
additional route creates more minima and a more rugged landscape. It is important
to note that given the way we construct the QUBO– no trucks along an edge is a
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Figure 4.2: Performance of all solvers used in the experiments. We display the
results in units of truck kilometers for ease of comparison. Simulated annealing
(SA), Tabu, and the D-Wave HSS are QUBO solvers, Gurobi is a MIP solver, and
the direct solutions are the simple baseline of one truck per shipment.

valid solution– increasing the number of possible routes can only create additional
minima, not remove minima that have already been created. Furthermore, given
that all constraints are implemented as penalty factors in the QUBO, this created
an increased difficulty for the QUBO solvers to find optima. Given this insight,
it is even more important to consider the number of QUBO terms (in Table 4.1)
when modeling combinatorial optimization problems as QUBOs.

In general, both the SRP (in its original form) and the QUBO model the distance
minimization of a simple objective function– total number of truck kilometers used
to send shipments between nodes in a graph. The majority of our work focused on
deriving methods to translate the MIP representation of SRP to a QUBO using both
simple minimization objectives (truck kilometers as weights on decision variables),
and hard constraints (packing constraints on edges in the graph) to test both
quantum and classical optimization algorithms. In reality, it is evident that there
is a significant amount of work required to find such valid QUBO representations
for complex optimization problems inspired by real-world constraints. Despite
the relatively straightforward description of the problem, correctly modeling the
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solution landscape requires a more subtle approach, and required multiple iterations
of derivations, as explained throughout the text. Of the algorithms tested, Gurobi
performed the best despite being an exact branch-and-bound algorithm. Of the
heuristics, we found that the D-Wave HSS was able to find better than greedy
solutions for the smaller problem sizes tested. We stress that given our small test
bed we cannot conclude any one solver being the best relative to the others, nor was
this the intention. The context of the work presented was to assess the work that
was required to transform a real-world optimization problem to a clearly-defined
QUBO equivalent. We found that the bar defined as “acceptable” (finding solutions
that are better than direct shipments) was surprisingly difficult for the heuristics
to beat. This is important to note since simulated annealing was able to find valid
solutions for all the problem sizes, but better-than-direct for only one problem (the
largest). Furthermore, long runtimes were required to find these better-than-direct
solutions, and yet were still far from optimality. The significance of this result
is that despite QUBO being an NP-hard problem, the overhead in transforming
any single optimization problem to QUBO may be detrimental to the performance
of optimization algorithms which then solve the QUBO, and therefore it is not
always worth the effort of the transformation. Furthermore, throughout the studies
conducted in this section we found that naive and straightforward transformations
to QUBO using known techniques is sometimes impractical. In particular, the
inequality constraints required to correctly pack the shipment volumes in the truck
capacities required such an increase in the number of variables, that additional data
transformation was required to encode the constraint in the QUBO (discretization
of the capacities).

4.3 Adapting real-world optimization problems to
known QUBOs

We now turn our attention to a different approach to solving optimization problems.
Here we perform the task of data reconstruction and classification using a QUBO
model. Given some set of time series (TS) data, and a reference database, the task
of reconstructing the candidate time series from features in the database is a hard
problem. In our approach, we use a combinatorial optimization “oracle” in the form
of a QUBO problem to model the task of the time series reconstruction, thus solving
the underlying problem. In particular, we use the QUBO representation of the set
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cover problem as the oracle performing this task. In contrast to the previous section,
where the majority of the work was in deriving a valid QUBO, here we instead
focus our work on finding methods to transform the data so that it can be solved
effectively by the set cover problem without oversimplifying the original data. This
is also in contrast to other quantum machine learning techniques, where it has been
shown how to reformulate parts of classical classification algorithms as quantum
subroutines that can be executed on error-corrected gate-model QPUs [101, 102,
103, 104]. In quantum annealing, similar numerical approaches have been shown in
which the objective function of the classification task (minimizing distance metrics
between high-dimensional vectors) has been directly translated to a QUBO, with
each vector’s possible assignment represented via one-hot encoding to physical
qubits [105, 106].

By reformulating the critical task in our classification algorithm as a set cover
problem, we introduce two novel ideas to quantum classification algorithms: (i) we
avoid representing single vectors with polynomial numbers of qubits, instead
representing the features within the data as the qubits, and (ii) we perform
the classification task by transferring the core concepts of classification (and
reconstruction) to the quantum algorithm for set cover, as opposed to a direct
translation of a distance-based minimization procedure. This results in an algorithm
that avoids a classical “learning” procedure, therefore requiring significantly fewer
computational resources compared to other classical and quantum methods.

4.3.1 The set cover problem

The set cover problem is defined as follows: given a set of symbols (called a

universe) U = {1, ..., n}, and a set of subsets Vi, such that U =
N⋃
i=1

Vi, Vi ⊆ U , find

the smallest number of subsets Vi whose union is U . This is a well-known NP-hard
optimization problem, and is one of Karp’s original 21 NP-complete problems [50].
There is a known QUBO formulation for the set cover problem provided in [77].
We start by defining the following binary variables:

xi =
{

1, if set Vi is included,
0, otherwise. (4.11)
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We let α ∈ U denote an element of the universe set, and m signify if element α
appears in m subsets. Then, we have binary variables:

xα,m =
{

1, if the number of Vi which include α is m,
0, otherwise. (4.12)

We consider the full QUBO as a sum of two components:

HA = A

n∑
α=1

(
1−

N∑
m=1

xα,m

)2

+A

n∑
α=1

(
N∑
m=1

mxα,m −
∑
i:α∈Vi

xi

)2

, (4.13)

and

HB = B

N∑
i=1

xi. (4.14)

The complete QUBO is given by H = HA + HB. The first summation in HA

imposes that exactly one of xα,m must be selected in the minimum via a one-hot
encoding. The second summation in HA represents the number of times α is
selected, and that this is equal to the number of selected subsets α appears in
(m, as only one xα,m can be 1 in the minimum). This is similar to the packing
constraint from the previous section. The final term, HB, serves to minimize
the number of Vi needed to cover the universe U . The total number of variables
required is N + n(1 +M), where M is the maximal number of sets that contain
given element of U . The limiting case where each element of Vi included covers
only one element of U constrains the coefficient of HA and HB to 0 < B < A. The
closer the coefficients B and A, the more weight is given to (4.14), minimizing the
number of elements selected from V .

4.3.2 Time series reconstruction as a QUBO

Classification techniques generally require specific data representation, similarity
measure definitions, and algorithm selection. Similarly, in our QUBO approach,
we represent the time series data as encoded strings from which we formulate
semi-supervised classification and optimal reconstruction as a set cover problem,
and provide metrics based on solutions to the set cover problem. While different
than classical approaches [107, 108, 109, 110], we do not attempt to simplify the
complexity of the problem, and introduce a method that is based on latent features
within the data. The only assumptions we make about the time series data is that
it is separated into two categories: a training set and a test set. The training set

75



4. REAL-WORLD COMBINATORIAL OPTIMIZATION

we assume is labeled and is used as a reference database with which each time
series in the test set is reconstructed from.

In order to reconstruct given time series data, we start by discretizing both the
training and test data, and compare the encoded strings to generate the elements
of our universe to form the set cover. This technique is crucial to allow feature-wise
comparison of the data, as well as arbitrary reconstruction using existing (or
training) data. There are many ways to discretize time series data, and exploring
the trade-offs between the various methods is beyond the scope of this thesis. For
our purposes, we use the symbolic Fourier approximation (SFA) method [111],
as it provides differentiation between separate time series classes and features in
high-dimensional data sets, allowing us to use these representative symbols for our
set cover problem. Nevertheless, the exact discretization is data-dependent, with
various hyperparameters (such as number of letters in the alphabet, length of each
encoded string, etc.) present in the method. We therefore assume, under simple
conditions, that we can treat the SFA method as a black-box that takes time
series data as an input and returns symbolic strings encoding the data features as
output.

Given the encoded strings, we introduce a pair-wise method to compare the time
series features using what we call a “pulling procedure”, illustrated in Figure 4.3.
This pair-wise comparison is considered a pre-processing step necessary to for-
mulate our set cover problem. Starting with one fixed string (red in the figure),
we consider each encoded character as an independent element in the universe
set1 (U = {0, 1, 2, 3, 4} in the figure). A second string (green in the figure) is
compared element-wise by successively moving the second string along the first,
as illustrated. At every iteration, all character matches between the two strings
are recorded as a new set. In the example from Figure 4.3, the set of sets is
V = {{0} , {∅} , {0, 2} , {∅} , {1, 2, 3} , {∅} , {∅} , {3} , {∅}}.

The procedure is repeated for the rest of the encoded training tie series to form
the set of sets V . In this setup, the SFA routine needs to be performed only once
per time series, and that the pair-wise comparison is then performed in O(n2)
time. The set which is a union of all subsets obtained via the pulling technique
now represents the all features in common between the target (or test) time series

1It is important to note that by using the same encoding scheme for all time series data, we
ensure that all string characters belong to the same alphabet.
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Figure 4.3: Schematic illustration of time series encoding and pulling procedure
to produce subsets of set V = {{0} , {∅} , {0, 2} , {∅} , {1, 2, 3} , {∅} , {∅} , {3} , {∅}}.
The optimal selection to cover U = {0, 1, 2, 3, 4} in this case would be underlined
subsets V = {{0} , {1, 2, 3}} with item numbers 0 and 4.

candidate and all other time series in the reference data set. Given this aggregate
set, the goal is now to select the minimal subset that most closely reconstructs
the universe, which is the NP-hard set cover problem. In other words, the task
is to select the features in the reference database which correctly reconstruct the
given test time series. In the case illustrated in Figure 4.3, the optimal selection
of subsets is underlined in red. In principle, solutions of this set cover problem
do not preserve order of elements, and allow the use of the same element multiple
times. This feature is useful for time series comparison, as elements of the time
series data can be permuted and duplicated without affecting our reconstruction
method.

The final size of the set cover QUBO is heavily dependent on our choices dur-
ing discretization. For example, the number of binary variables is equal to
Ntrain TS (2L− 1) (L+ 1), where Ntrain TS is the number of time series in the
training set used for reconstruction, and L is the length of string that encodes the
time series. Increasing the string length to encode each time series changes the size
of the universe U . Allowing longer encoded strings to represent the data creates
more subsets Vi. Therefore, there exists a trade-off between the granularity of the
encoded strings and the ability to solve the set cover representation of the problem.
Including more characters in our alphabet for discretization changes the non-empty
sets Vi, which the number of quadratic elements in the QUBO depends on. The
general trend is, however, that the number of the quadratic element decreases
with the increase of the characters used in our alphabet. This is explained by
the properties of the pulling procedure described above, since a smaller alphabet
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produces more non-empty elements Vi which could be used for reconstruction of
the universe U . In Figure 4.4 we show how varying these hyperparameters of the
discretization affects the size of the QUBO problem, based on 20 test samples from
one of our data sets used in experiments [112].

Figure 4.4: (a) The number of quadratic terms in millions as a function of string
and alphabet length. (b) Quadratic elements as a function of alphabet length, with
string length being fixed to 6. (c) Quadratic terms as function of string length, with
alphabet length being fixed to 6. The corresponding isolines (b) and (c) are shown
with dashed line on surface plot (a). Analysis was performed using 20 test samples
from the BeetleFly data set [112].

4.4 Using QUBOs to perform classification

We can now combine the methods described in the previous sections– constructing
the sets U, V from discretized data and the QUBO representation of the set cover
problem– to perform semi-supervised classification from reconstructed data sets.
In our case we use training data sets with known labels, and the task we solve is
to use the labeled data to assign labels to the test set, given a valid reconstruction.
Normally, the training set with labeled data is significantly smaller than unlabeled
test set, which we exploit in our method.

We encode both the training and test data sets into strings using the pulling
method described previously. We then perform the reconstruction procedure for
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every time series in our test set using the entire training set. Each time series from
the test set is assumed to individually form a universe U , and is to be reconstructed
using the sets Vi, obtained via the pulling procedure. Explicitly, using Figure 4.3,
the red string is the time series from the test data set, and all strings in the training
set are pulled through (green strings) to obtain the Vi’s. This allows us to compare
every test time series to the full training set in one-versus-all manner. Then, using
the universe U and Vi’s from the pulling procedure, we formulate the set cover
problem outlined in Section 4.3.1. Thus, a single solution to that set cover problem
(even sub-optimal in the worst case) allows us to reconstruct each time series from
the test set using a set of discretized features obtained from all elements which
appear in the training set. Furthermore, since we employ metaheuristics to solve
the set cover QUBO, various optima could yield different ways to reconstruct the
test time series using the training set. Due to this, it is therefore the users’ task to
use these reconstructed strings to associate each test time series with a label from
the training set.

To classify the reconstructed test time series data we evaluated three different
similarity metrics using set cover solutions: largest common subset Vi, highest
number of common subsets Vi, and largest sum of common elements in selected Vi.
We briefly explain how each metric is calculated, and discuss the performance of
each.

• Largest common subset. Given a candidate solution to the set cover
problem, the label corresponding to the Vi which contains the most elements
is selected. The label is then assigned to the test time series. This metric
captures the longest continuous set of features from the training time series
data, and assumes that is sufficient to determine the label.

• Number of common subsets. Frequently, multiple Vi’s from the same
training time series are used to reconstruct a test time series. In this metric,
we count the number of Vi subsets used to cover the universe. The test label
is assigned the same label as the training time series which appears most
frequently in the set cover solution.

• Largest sum of subsets. This metric is a combination of the previous two.
For every training time series that is used to reconstruct a test set, the total
number of elements used by each is counted (summed over all Vi’s). The
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label which corresponds to the training time series with the largest sum is
assigned to the test time series.

These metrics allow us to quantify the accuracy of our semi-supervised classification
method. The first two metrics, being based on large sets of common features
between the time series, performed the best (experiments and results shown in the
next subsection). There was no significant difference between the two metrics, and
the superiority of one metric over the other varied between data sets. The third
metric, which was a combination of the first two, performed worse than either of
the first metrics in the majority of the cases tested. While unexpected to begin
with, this observation could be explained by the fact that because the third metric
admits matches with many small subsets Vi that are selected in the set cover, this
metric could miss significant signatures present in the time series data. Therefore,
the largest common subset metric was selected for the experiments presented in
the next section. It should also be noted that the use of labeled training data is
not designed to not reach the accuracy of supervised learning methods. Moreover,
there are modifications that could be made to the methods presented to improve
the accuracy, for example increasing the word length and/or using a larger train
set. Both are constrained in our use-case to prohibit excessively large QUBOs
from being constructed. The goal of this method is to allow for relatively high
accuracy using small sets of training data.

4.4.1 Classifying real-world time series data

We validate our method by using the set cover QUBO to reconstruct and classify a
variety of open-source, real-world time series data. The benchmarking experiments
performed here used labeled time series data available publicly [113, 114]. These
data sets were used as-is in the experiments presented below. Validation was
performed by measuring the classification rates of each methods on the labeled
test data. We restricted the analysis to univariate time series data with two classes
and small training set size. However, this method of semi-supervised classification
can be used with any number of classes, at the cost of QUBO size. Since both the
number of time series in the training data and the word length used to encode
the data contribute to the number of variables in the QUBO, we select data sets
that have small numbers of time series in the training set. The test and training
sets used in these experiments are already determined and labeled by the source,

80



4.4 Using QUBOs to perform classification

allowing us to easily calculate the classification rate of our method and avoid the
step of selecting a training set. To benchmark the performance of our classification
method, we compared the accuracy of our labeling method to semi-supervised and
unsupervised classical classification methods. The results of these experiments
for the various data sets are summarized in Table 4.5. To test the robustness of
our method we collected a variety of data sources of different types. We briefly
review each source and provide a literature reference for further details. We note
that in the data sources’ accompanying cited works, higher classification rates
than our methods are reported using supervised algorithms. In this analysis we
do not consider supervised classification algorithms, and instead compare our
semi-supervised quantum-based approach to similar classical algorithms.

SonyAIBORobotSurface1 [115] data is sensor data collected from a small,
dog-shaped, quadruped robot. It is equipped with multiple sensors, including a
tri-axial accelerometer. In the experiments we classify between roll accelerometer
measurements on two classes of surfaces: soft carpet and hard cement.

GunPoint [116] data includes motion tracking of actors’ hands during gun-drawing
and gun-pointing actions. For both classes the X-component of the actor’s right
hand centroid is tracked and used to distinguish between the two classes.

TwoLeadECG [117] and ECG200 [117] are electrocardiogram data sets available
at the PhysioNet database [118]. The first includes long-term measurements
from the same patient using two different leads. The classification task aims to
differentiate between each lead signal. In contrast, the second ECG200 set contains
electrical activity recorded during one heartbeat. The two classes are the normal
heartbeat and a Myocardial Infarction records.

BeetleFly [112] time-series data is generated from binary images developed for
the testing of shape descriptors. The external contour of these images is extracted
and mapped into the distance to the image center. The two image classes are
contours of beetles and flies.

Chinatown [119] data is collected by an automated pedestrian counting system
in the city of Melbourne, Australia. The classes are based on weekday or weekend
traffic.

The QUBOs generated by our methods were too large to be embedded and opti-
mized using the largest available QPUs (D-Wave 2000Q at the time of experiments).
The exact sizes of the QUBOs for each data set are shown in Figure 4.5. To solve
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the QUBOs we used the simulated thermal annealing metaheuristic which was
used for previous experiments in this thesis. The specific implementation of SA
was from the D-Wave Python package for classical QUBO optimizers [99]. We
found that 20,000 samples and 1000 SA sweeps (with geometric interpolation of
the inverse temperature) were sufficient to ensure that low-energy local minima
were sampled within reasonable times per QUBO. We use the default SA settings
in the package for initial and terminal inverse temperature selection (for more
information about the implementation of SA we refer the reader to [99]).

The specific parameters used for the time series encoding to generate the QUBOs
are shown in Table 4.4. In general, the longer the time series are and the fewer
time series are in the training set, the finer the discretization method required to
accurately classify the test data. In all data sets we were able to reconstruct each
test time series with elements from the training set, as explained in Section 4.3.1.
The distributions of the number of variables in each QUBO for all data sets is
shown in Figure 4.5.

We provide an illustrative example of our QUBO-based reconstruction and clas-
sification in Figure 4.6 using the BeetleFly data set. The task is to reconstruct
the data in Figure 4.6 (a) using (b) and (c). For this example, an alphabet of size
5 was used for encoding, color-coded in the figure. The results of the set cover
problem, formulated using the methods explained in previous sections, are three
sets, shown as v1, v2, and v3 in Figure 4.6. Meaning, each box (representing a fifth
of the time series data per box) that appears in one of the subsets forming the
solution is designated as such. Specifically, v1 = [‘A’, ‘E’], v2 = [‘E’, ‘B’], and
v3 = [‘C’]. Therefore, the union v1

⋃
v2
⋃
v3 = U , where U =‘ACEEB’, the test

time series data to reconstruct. For classifying the reconstructed sample, we refer
to the classes of the training data used for the reconstruction, and note that the
training samples in Figure 4.6 (b) and (c) belong to two different classes. Using
the similarity metrics defined above, it is easy to determine that v1 and v2 both
originate from the time series (b), whereas only v3 (which contains only a single
element) is obtained from (c). Therefore, (a) is assigned the same label as (b). This
example is representative of the majority of cases encountered during classification,
with components of the reconstructed time series varying across multiple training
samples, and often also across multiple classes.
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Figure 4.5: Distribution of number of QUBO variables for all data sets in Table
4.4.

4.4.2 Classification benchmarking

For the purposes of evaluating our QUBO-based classification method quantita-
tively, two classical time series classification algorithms were compared based on
dynamical time wrapping (DTW) [120] measures: k-means classification and a
classical analogue of the semi-supervised method described above. The motivation
for using these specifically is that both are based on pair-wise similarity metrics as
in the approach presented here. DTW applied to temporal sequences aligns the pair
series in a non-linear way to minimize differences and calculate Euclidean distance
afterwards. The DTW measure could be applied directly in unsupervised k-means
classification or similarly to the method described here in the semi-supervised
fashion. We use k-means classification with pairwise DTW metrics calculated
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Figure 4.6: An illustrative example of reconstruction and classification from the
BeetleFly data set. (a) A test time series sample (encoded as ‘ACEEB’) reconstructed
from two training TS. Each box in the sub-figure is encoded as a single letter in a
string, as per the color bar. The subsets vi obtained from the pulling procedure and
used to reconstruct this data are shown both in the reconstructed (test) time series
and in the training time series. (b) The first training data used for reconstruction and
classification (encoded as ‘EABBE’). (c) A second time series used for reconstruction
(encoded as ‘CCEAB’).

on the original TS (before encoding), with the labels being assigned based on
belonging to one of two clusters. The second method assigns the test TS labels
are by the DTW metric directly, calculated pairwise between each training and
test TS (without encoding). We use these two methods to calculate classification
rates for all data sources in the experiments.

As expected, the semi-supervised QUBO-based method outperforms classical
unsupervised methods. We note however, that the QUBO-based method operates
on a reduced dimensionality in contrast to the classical methods which use the
original TS, where full information is preserved. Even under this consideration the
accuracy of QUBO-based method is comparable with the semi-supervised DTW
methods, and could be improved still by enriching the set V , i.e. by augmenting
the training set or increasing the discretization granularity. The worst performance
of the QUBO-based algorithm is observed on the TwoLeadECG data set. This
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Data set Data type Train/Test Time series Word/Alphabet
size length length

SonyAIBORobotSurface1 Sensor 10/601 70 8/8
GunPoint Motion 30/150 150 5/5

TwoLeadECG ECG 20/1139 82 5/5
ECG200 ECG 20/100 96 5/5
BeetleFly Image 20/20 512 5/5
Chinatown Traffic 20/345 24 5/5

Table 4.4: Table with data set description, number of time series in training and
test sets, length of time series, and length of each encoded string and number of
different letters used to encode data set.

could be explained by the nature of our method, as well as the sensitivity of the
ECG data. By using the set cover problem, we allow for permutations of subsets
of TS data in the reconstruction of the test TS. It is likely that this permutation
of TS segments, and similar representation in Fourier space of the signals from
the two leads in the ECG measurements, makes our method not suitable for this
kind of data. The highest accuracy is obtained using the BeetleFly and Chinatown
data sets. In the first case, many permutations of the training set to construct
the test set are permissible, which our method takes advantage of. The accuracy
of our method is additionally improved by the relative size of the training set,
further augmenting the combinatorial space of permutations. This robustness can
also be explained by the dimensionality reduction technique for this data set: the
2D BeetleFly images (with different orientations) were mapped to 1D series of
distances to the image centre, which again is beneficial for permutation-based
methods. The Chinatown data set, for comparison, contained significantly shorter
TS than BeetleFly. Encoding the Chinatown TS data with the same word length
as BeetleFly resulted in higher granularity representations, and ultimately higher
accuracy. This provides additional evidence that the accuracy of our method can
be improved by increasing the granularity of the encoding.

Among the advantages of our method is the utilization of significantly less data with
respect to conventional classical methods, as well as a one-versus-all comparison
that allows the selection of segments of data from multiple sources to reconstruct
a single time series. This provides an additional robustness in the method with
respect to permutations of time series segments during the reconstruction. In order
to formulate this problem as a QUBO we apply time series dimensionality reduction
by encoding each time series as a separate string. This encoding procedure and
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Data set QUBO method k-means DTW
c1/c2/weighted c1/c2/weighted c1/c2/weighted

SonyAIBORobotSurface1 0.7/0.9/0.78 0.85/0.97/0.92 0.97/0.63/0.83
GunPoint 0.76/0.79/0.78∗ 0.53/0.51/0.52 0.82/0.77/0.79∗

TwoLeadECG 0.6/0.62/0.61 0.65/0.7/0.68 0.86/0.94/0.9
ECG200 0.61/0.82/0.75 0.62/0.8/0.79 0.87/0.51/0.64
BeetleFly 0.85/0.89/0.87 0.64/0.83/0.73 0.62/1.0/0.82
Chinatown 0.72/0.91/0.86 0.37/0.78/0.67 0.89/0.98/0.94

Table 4.5: The classification accuracy measured on two classes and weighted
average reported for QUBO-based and classical DTW-based methods. Bold text
signifies the most effective classification method (based on the weighted average of
the two classes) for each data set tested. Asterisk denotes a tie between the methods
within statistical variance.

selection of comparison metrics define the hyperparameter space of the problem.
The QUBO-based classification method performed the best on image and traffic
data, which is consistent with our method’s inherit ability to utilize permutations
of features/data within the time series to perform reconstruction.

Time series reconstruction and classification has a wide variety of useful applications,
such as: management of energy systems, factory process control, sensor systems,
and many more. The methods introduced in this section show how to reformulate
the tasks of reconstruction and classification of real-world data so they can be
solved as QUBOs. This is a fundamental departure from the traditional methods
used in solving optimization problems with QUBOs, and so we consider this a
novel contribution to the field of optimization of real-world problems which can be
built on in the future.
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5
Hybrid quantum algorithms for real-world op-
timization

While the potential benefits of quantum computing and quantum annealing are well-

motivated, it is clear from the previous sections that there are several limitations

when trying to solve optimization problems directly in current-generation QPUs.

In recent years, classical software development has complemented the quantum

hardware in an attempt to bridge the gap between the restrictive quantum hardware

and more real-world applications of quantum annealing. One of the proposed ways

to use quantum annealing in practice is the concept of hybrid quantum-classical

algorithms. With these, algorithms are constructed so that the quantum annealing

QPU is used in some way by an inner loop (as a sub-solver/sampler, a mutation

step in a genetic algorithm, etc.), thus offloading some difficult critical task to the

QPU. These kinds of algorithms have been used in the past to tackle arbitrarily-

structured optimization problems, in an attempt to solve larger and more realistic

combinatorial optimization problems [37, 38, 39]. To support the development

of these algorithms, D-Wave Systems released a Python package dedicated to

constructing such hybrid algorithms, called dwave-hybrid [99]. In this chapter we

investigate the construction and use of hybrid algorithms using these tools, as well

as the black-box hybrid optimization algorithm provided by D-Wave System. We

motivate and contextualize their use through real-world combinatorial optimization

problems, and build custom optimization routines to solve QUBO/Ising problems

in real-time.
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5.1 Motivating a real-world traffic optimization
use-case

One of the first real-world applications demonstrated for quantum annealing in
practice was traffic flow optimization [98]. This was motivated by the increased
focus on autonomous driving, smart cities/infrastructure, and the need for cutting-
edge computational resources to handle the complex task. In order to test this in
practice, a pilot project was conducted in which the QUBO outlined in [98] was
solved in real-time to navigate a fleet of buses, providing a turn-by-turn navigation
service for the Web Summit 2019 conference in Lisbon, Portugal. The motivation
for this project comes from observations in the automotive industry, that as cities
around the world continue to grow in both size and population, traffic congestion
becomes an increasingly prevalent problem [121]. This is especially apparent
during events that congregate large numbers of people for specific periods of time.
For example, conferences, sporting events, and festivals can cause temporary but
significant disruption to the cities’ transportation systems, resulting in delays for
the residents of those cities [122, 123]. A key issue is that permanent transportation
infrastructure, such as rail lines or roads, are costly and slow to modify given
the temporary nature of these events. In light of this, the advent of smart
traffic management systems offers possible improvements to existing transportation
systems with minimal overhead in regards to implementation. Some requirements
for such systems include the management of the mobility flows in real- or near to
real-time using flexible and modular software components. The goal of this project
was therefore meant to address two very specific questions related to applying
quantum annealing in a real-world scenario:

1. How do we design customized bus routes to avoid traffic congestion during
big events?

2. How would one build a real-time production application using a quantum
processor to manage such a traffic system?

In order to address both of these questions, we separate the work into two separate
phases: the first is concerned with understanding the input required for such
a live navigation service to run in practice, and the second phase presents the
construction of hybrid optimization service that complies with the demands of the
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first. Concretely, the goal is to adapt the model presented in [98] to a live setting,
and test the assumption that using quantum annealing to avoid overlaps between
vehicle routes reduces traffic congestion. Thus, we are able to construct meaningful
optimization problems in an application setting, and address the application needs
using hybrid quantum techniques.

To answer the first question, we needed to consider real-world road networks and
movement data as input to our navigation service. This required us to find and
fix (possibly multiple) start and endpoints of a custom bus service, where each
bus had its individual route customized by considering all other buses in the fleet
in real-time, as described in detail in [98]. By analyzing origin/destination (OD)
matrices of peoples’ movement data, detailing the volume of movement streams
from the Web Summit conference venue (Altice arena) to different zones of the
city of Lisbon on an hourly basis, we were able to identify locations of interest
for our navigation service. The results showed a total of 225 OD matrices in a
study area of 93 zones throughout Lisbon, shown in Figure 5.1. This data included
demographic census data, mobility behavior from surveys, Lisbon traffic counts,
floating car data, mode of choice and network models from the city, for both dates
within and outside the Web Summit time frame.

Three express bus lines were proposed to serve the demand from the selected zones
to the Web Summit: a red, green, and blue line, with a total of 23 bus stops. One
express line was dedicated for the return traffic from the conference venue to the
city center (the black line). The red and green bus lines operated only during the
morning period, whereas the black and blue lines operated both in the morning
and evening. Bus departures were scheduled every 30 minutes for all lines. For the
morning, two lines (red and green) covered the demand in the northern part of
the city center, picking up visitors along 7 dedicated bus stops and meeting at the
farthest point of the line at the Saldahna roundabout. From this point to Web
Summit, the visitors were no longer picked up and the bus was navigated solely
using the quantum navigation service. For the black and blue lines, the portion of
the routes between the Web Summit and Alameda station were navigated using
the quantum navigation service.

To determine the schedules of the fleet, we identified the peak traffic demand in the
selected zones was from 09:00-10:00 and 10:00-11:00, with 6314 trips towards Web
Summit. For the evening demand (the return trips to the city center), peak hours
were from 16:00-17:00 and 17:00-18:00 with 7600 trips leaving the Web Summit.
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Figure 5.1: Left: Origin-destination matrices from the Web Summit conference
to the city center. Right: Selected OD matrices for hotel- and room rental-related
trips. Visualization provided by PTV Visum software.

The results also highlighted that the zone with the lowest public transport usage

was zone 75 (Santa Maria Maior-Castelo), with 45% of total trips being public

transit. This indicated that the modal split in this zone can be heavily improved

relative to other zones with higher average public transit usage (65% and above).

Given the performed analysis for each of the four selected zones, and considering the

estimated demand in both the morning and evening, a total of 9 buses was proposed

to Carris as a recommendation for the Quantum Shuttle fleet volume.

5.2 Building a quantum optimization service

Building a functioning web service that uses a quantum processor while providing

meaningful navigation optimization imposes a specific set of both conditions and

constraints. By setting the goal of navigating buses in real-time, we require that a

live connection between three different services be consolidated simultaneously– the

navigation app (run on an Android tablet), the traffic data, and the hybrid quantum

optimization. We briefly describe the content and scope of each component, then

explain how they were combined in the final optimization service, which we call

the Quantum Web Service (QWS).
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5.2.1 Bus navigation Android app

Development of the Android app was divided into two parts: the front-end (visual-
ization for the bus drivers) and the back-end (server-side communication to the
QWS). We explain separately how the two parts were implemented, then consoli-
dated, to satisfy the demands of the navigation service. The front-end development
was outsourced to an external supplier, while the back-end optimization (including
the API to access it and database management) was developed and implemented
internally.

Front-end. The front-end of the bus navigation comprised of an Android appli-
cation, visualizing the turn-by-turn navigation, operated on an Android tablet.
The main role of the app was to plot the custom routes provided by the QWS and
initiate turn-by-turn navigation with voice instructions. Additional functionality
was built into the app to allow bus drivers to start/stop the current and next trips
they were meant to follow, as well as to track the current location of the buses in
the fleet to allow for the optimization of the route selection. Trips were also ended
automatically once a vehicle was within 15 meters of its defined destination. The
visualization portion of the app was built using the Mapbox SDK1 to render the
custom routes obtained by the QWS.

Back-end. The back-end of the navigation app acted as an interface between the
Android app and the QWS. The back-end was used to send the collected data
of all the vehicles in the fleet at fixed time intervals to the QWS over HTTP.
Responses from the QWS were also distributed by the back-end to their respective
vehicles.

The most important role of the back-end was to keep the data flow in sync between
the vehicles and the QWS, as both synchronous and asynchronous communication
protocols were used. This was necessary in order to properly construct correct
traffic-flow QUBOs which represented the live navigation conditions. The QWS
was designed in such a way that it accepted a single consolidated request consisting
of the location information for all the vehicles, both live and projected. It was the
role of the back-end software to consolidate all the locations it received from all the
vehicle devices at different frequencies, and send it to the QWS. This meant that
the back-end maintained an index of each vehicle’s request and response. Because of

1https://www.mapbox.com/
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the different requirements of the live location tracking and the projected locations,
the requests submitted by the back-end to the QWS were separated between two
destinations on the QWS: /update and /optimize. The /update request submitted
the live location of each Quantum Shuttle vehicle to the QWS on a 30 second
interval, while the projected location (and in return the customized route returned)
was submitted to the /optimize URL at an interval of 120 seconds. The necessity of
splitting the requests to separate URLs and their respective timing was discovered
during the testing phase, explained in Section 5.3. Lastly, the back-end was also
responsible for determining the difference between two subsequent optimized routes
for the same vehicle.

5.2.2 Constructing live traffic-flow QUBOs from data

The approach used for custom navigation of the vehicles followed an approach based
on [98]. At the start of every trip and at regular time intervals until completion of
each trip, multiple candidate routes needed to be generated between the current
location of each bus in the system to its assigned destination. These routes also
needed to be traffic-aware to reflect the current conditions of the city road network.
To accomplish this, we used a live traffic services provider, HERE Technologies 1.
Using their routing API 2, we were able to generate between 3-5 traffic-aware
candidate routes per vehicle at every optimization step with minimal overhead. It is
important to note that since the vehicles were operated in parallel in different parts
of Lisbon, different routes were likely to be suggested for each vehicle in the system
at every optimization step. Often, however, subsets of these suggested routes
overlapped, necessitating the optimization of the routes’ selection to minimize
congestion. In this scenario, identical GPS points were returned from the HERE
API describing the shape of the overlapping portion of the routes. Therefore, the
GPS points were used directly to form the optimization problem, instead of the
road segments as in [98]. The QUBO formulation of the objective function is
then:

Obj =
∑
p∈P

cost(p) + λ
∑
i

∑
j

qij − 1

2

, (5.1)

1https://www.here.com/
2https://developer.here.com/
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where qij are the binary decision variables associated with vehicle i taking route j,
P is the set of all GPS points that overlap in the suggested routes, λ is a scaling
factor ensuring only one route is selected per vehicle in the QUBO minimum, and
cost(p) is the cost function associated with each GPS point p in P :

cost(p) =

 ∑
qij∈B(p)

qij

2

. (5.2)

Here, qij is as before, and B(p) is the set of all binary variables that contain the
GPS point p. Thus, the final selection of routes in the optimum of the QUBO
represent the routes that minimally overlap with all other selected routes.

5.2.3 Solving the traffic-flow QUBOs with quantum anneal-
ing

For live traffic navigation, our quantum optimization service needed to meet specific
conditions. Because of the time-sensitive nature of traffic navigation, our solution
needed to respond with valid solutions to the optimization problem quickly. The
algorithm also needed to handle varying sizes and complexity of the traffic-flow
optimization problem, as it needed to optimize the route selections of the vehicles
automatically at regular intervals. We used the D-Wave 2000Q QPU and its
respective software stack to deploy our solution on quantum hardware. Three
different methods of using quantum annealing was tested to solve the traffic flow
optimization QUBOs. We briefly explain each method, how it was implemented,
and evaluate them based on our navigation application.

Direct embedding. The most straightforward approach to solving the QUBOs
is by minor embedding the graph directly to the topology of the QPU. The
benefit of this approach is speed– even with the overhead of transforming the
traffic-flow problem to a QPU-compatible graph, using the QPU at the fastest
annealing time (1µs to obtain a single sample) still returned valid solutions to the
problem. The minor-embedding process can be performed on the order of tens or
hundreds of milliseconds for small-sized problems. However, the drawbacks of this
approach have already been explored and presented in detail in Ch. 2. During the
development phase of the Web Summit project we tested various configurations of
the direct embedding approach, and found that this method was suitable for up to
10 cars with 5 routes each.
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Custom hybrid algorithms. One of the primary goals of this project was
to assess whether hybrid quantum algorithms could assist in solving QUBOs in
practice. The advantage of this approach is that the use of the QPU in the
algorithm can be tailored to the QPU’s strength, making better use of a limited
resource. However, run-time is sacrificed in waiting for the QPU’s response to
continue the iterative classical procedure. The original traffic-flow work in [98]
employed a hybrid algorithm that used a 64 variable fully-connected graph as the
inner loop for the QPU to optimize sub-problems [37]. However, as mentioned
previously, minor-embedding dense problems significantly degrades the QPUs
performance, which in this case still came at the cost of waiting for the QPU
responses. Furthermore, new embeddings needed to be generated for each problem
being submitted. In light of this, we developed a custom hybrid algorithm to make
better use of the QPU in a timely manner. Our algorithm performed the same
Tabu search in the outer classical loop as in [37], but instead of using a single
64 variable sub-problem, we found natural sub-graphs within the TFO problem
that were already Chimera structured, thus circumventing the embedding issue.
We were able to deploy a hybrid algorithm similar to [39] but without employing
chains in the sub-problem. Our method allowed us to increase the throughput of
sub-problems to the QPU. However, due to time constraints, we were not able
to parallelize the implementation so that it could continually run independent
of the request/response portion of the QWS. Therefore, the hybrid algorithm
was restarted every time a new route optimization was requested. This incurred
significant overhead time, delaying the response to an unacceptable level for live
use.

Hybrid Solver Service. As part of D-Wave’s online cloud service, in addition to
direct QPU access, a state-of-the-art hybrid algorithm is also offered. This service,
named the Hybrid Solver Service (HSS), is tailored to solve large, arbitrarily
structured QUBOs with up to 10,000 variables. The disadvantage of this method
is that we cannot control the exact method with which the QPU is used, instead
we use the HSS as an optimization black-box. Access to the HSS was provided
through the same API as the D-Wave QPU, which allowed us to integrate it in to
the QWS in a modular way. By offloading the overhead associated with starting
the hybrid algorithm to the D-Wave remote server, we were able to reduce the
response time significantly compared to the other approaches. That the HSS can
solve problems significantly larger than the QPU also allows us to seamlessly scale
up our QWS to handle hundreds of vehicles with tens of route options for future
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applications. The HSS provided the best compromise of speed, accessibility, and
performance, and was used for the live navigation service during the Web Summit
conference.

5.2.4 Creating the live navigation service

We now present an overview of the navigation service as a whole, detailing the var-
ious components comprising of the system and how they communicate, for review
and clarity. A diagram of the system is presented in Figure 5.2. The components
are color-coded according to their roles in the service: blue components relate to
data-processing steps, which can be considered as input to the hybrid optimization
routine. Gray components comprise the core of the QUBO construction and opti-
mization to solve the traffic-flow problem. The white components are black-boxes
provided by external parties.

Quantum Web Service
(3)

HERE API
(6)

QPU
(7)

QUBO
construction

(4)

MongoDB
database

(5)
Bus

Android app
(1)

App
back-end

(2)

Figure 5.2: Diagram detailing the QWS and its interactions with the other
components in the hybrid navigation system, as per the text.

Blue components.

• Component (1), the front-end Android tablet application, provided visual
turn-by-turn navigation with vocal instructions to the Quantum Shuttle bus
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fleet and their drivers. The bus locations were sent every 30 seconds to
Component (2).

• Component (2) was the Android app back-end, and submitted the POST
requests to the QWS, Component (3). Component (2) consolidated the
locations of the vehicles and submitted them to (3) via the /update URL
every 30 seconds; this component also formed the POST request to the
Component (3) /optimize URL for the route optimization, interpreted the
response, and sent the new routes back to (1).

Gray components.

• Component (3) is the framework hosted on AWS (exposed using Flask1) and
served as the central consolidation point of the other components. In the event
of an /update POST request from (2), the QWS updated Component (5),
the MongoDB database used to store the data. In the event of an /optimize
POST request from Component (2), Component (6) was accessed to request
the suggest routes, and that data was passed to Component (4) to construct
the traffic flow optimization QUBO problem, then stored in the database
using (5). The QUBO was submitted to the D-Wave HSS, Component (7).
Component (3) then interpreted the results of the optimization, stored them
via (5), and pushed the selected routes back to (2). The API used to
communicate with the QWS was custom-built for this application.

• Component (4) is the Python module that implemented the traffic flow
optimization QUBO formulation described in Section 5.2.2.

• Component (5) is the Python module wrapped around the MongoDB database;
accessing and writing data from the QWS to the database was performed by
this component.

White components.

• Component (6) is the HERE Technologies traffic/routing API.

• Component (7) is the D-Wave HSS (or other QPU-based services), accessible
via HTTPS.

1Flask is a minimalist Python framework for making web-apps, and can be found at:
https://www.palletsprojects.com/p/flask/.
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5.3 Deploying a quantum optimization service

In preparation for the Web Summit conference, multiple trial runs were performed
in both Wolfsburg, Germany (Volkswagen AG headquarters) and Lisbon, Portugal.
In this section we describe the two different test scenarios and the lessons learned
from each.

5.3.1 Initial tests: Wolfsburg

The first testing phase occurred in Wolfsburg in August 2019, where a small
number of cars (1-3) were driven between various origin/destination pairs using the
Android app. The goal of this testing phase was to ensure the proper integration of
the Android navigation app, QWS API, and the MongoDB database used to keep
track of active trips and record results. During testing, several key observations
were made, which were used to modify the system.

Location tracking. As mentioned in Section 5.2, it was necessary to both track
the live positions of the vehicles, as well as specify a new “origin” per vehicle
for every optimization request. In order to ensure that the locations used for
optimization didn’t result in infeasible or unrealistic route selections, a projected
location was used for each vehicle. Specifically, given a route in the form of a
sequence of GPS coordinates, a GPS point further along along the route was passed
as the origin for the next optimization step. During the initial testing phase, this
position was also used to track the locations of the vehicles. However, this proved
to be problematic, since the update frequency was faster than the change in the
projected location, making it impossible to track the locations of the vehicles. To
solve this, the live location and the location used to determine the new routes
were separated: location updates were sent to a different URL independently from
the optimization requests every 30 seconds, with the live locations now stored
server-side after every update.

Optimization interval. Before testing, the route optimization occurred every 60
seconds. During testing it was observed that this frequency was too fast, resulting
in different routes being assigned to the vehicles every time an optimization
problem was solved. Furthermore it was observed that, given a new route A
after the optimization, a different new route B would sometimes be suggested
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while navigating to route A. This would have made navigating buses with real
passengers impractical. It was discovered that this phenomenon occurred due to
two main reasons: firstly, quantum annealing and other such hybrid algorithms are
metaheuristic optimization algorithms, meaning they are not guaranteed to return
the same solution every time they are queried. In the event that multiple minimal
solutions to the optimization problem have equal cost, the QPU may return any
of the solutions [75]. Secondly, because of the frequent optimization requests, the
vehicles’ projected positions often stayed the same between optimization requests,
causing the same QUBO problem to be formulated in successive requests, which is
not particularly useful. After testing various optimization intervals (both faster
and slower), 120 seconds between optimization requests resolved the issue, allowing
for sufficient time to change the projected locations of the vehicles.

5.3.2 Final tests: Lisbon

The second testing phase occurred during September 2019, with a small number of
buses and drivers in Lisbon. The final bus route start and end points as selected
in Section 5.1 were tested using the Android navigation app and the quantum
web service, including the changes implemented after the initial testing phase in
Wolfsburg. The significantly different conditions in Lisbon allowed us to further
tune our navigation system, explained below.

Street exclusions. The road network of Lisbon is significantly different from
that of Wolfsburg. Apart from the major roads and highways in Lisbon, many
of the local streets are narrow and one-way, making them not well suited for
public transit. Additionally, many roads have steep inclines, which are difficult
for buses to climb. Neither of these two conditions were present in Wolfsburg,
which lead to multiple unacceptable scenarios when testing the buses in Lisbon.
More than once, routes were suggested that utilized these small streets through
which the buses could not fit, causing them to either turn back (adding delay to
the travel time), or even worse, forcing them to stop completely. For example,
between Saldanha roundabout and Alameda station there is a network of highly
connected one-way streets. Suggested routes using these roads could be useful
for cars, but were completely undesirable for the buses in the Quantum Shuttle
fleet. Similarly, a network of narrow one-way streets exists near the Web Summit
conference center, which also needed to be avoided. To accomplish this, whenever
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routes were suggested that utilized roads in these networks, the GPS locations
were recorded, added to a list stored on the QWS server. This list (in the form of
bounding boxes of areas to avoid on a map) was submitted as part of the HERE
routing API request, which returned only routes that avoided those areas. This
list of forbidden areas was actively updated throughout the successive tests in
Lisbon based on feedback from the bus drivers, resulting in only valid routes being
generated by the end of the final testing phase. This list of excluded regions was
then used for the live run during the Web Summit.

Time filtering. The number of candidate routes that can be requested from
the HERE routing API per vehicle is an unconstrained parameter client-side. By
default, 3 candidate routes per vehicle were requested, to keep consistent with the
work in [98]. However, it was observed that in some cases one or more of the routes
suggested were significantly slower than the fastest route suggested, resulting in
extremely slow routes sometimes being suggested. The reason for these slow routes
being selected was due to the way the cost functions are formulated in the QUBO
problem. The goal is to reduce the amount of congestion caused by the vehicles,
defined by the number of streets/GPS points shared between candidate routes
across all vehicles. The slower routes suggested by the HERE routing API were
often significantly longer than the fastest suggested route, and thus had lower
overlap with the faster routes, causing some of the vehicles to be assigned to the
slower routes. To circumvent this, a time filter was implemented to assure only
reasonably fast routes were considered as valid candidates. After testing various
values for the time filter, a value of 2 minutes provided the best trade-off between
the number of routes selected and the routes’ relative expected travel times. By
allowing the slowest suggested route to be at most two minutes slower than the
fastest route suggested, we were able to maintain three valid candidates per vehicle
for the majority of the trips.

5.3.3 Web Summit 2019: Live run

For the launch of the event at the Web Summit conference, this project was
presented under the name “Quantum Shuttle”. The service was active from
November 4-7, 2019, and was operational for public use from November 5, 8:00 in
the morning Lisbon time, to 18:00 in the evening on November 7, 2019. A total of
185 trips were recorded during the 4 day period with a total fleet size of 9 buses.
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However, a small number of trips were erroneously recorded, due to manual driver
cancellation or restart of the trip. Such trips were identified in two ways: either a
small number of vehicle locations recorded in the database (fewer than 5), or one
of the origin/destination points being far from the expected location (more than 1
km). Of the 185 trips, 162 (87.6%) were valid trips corresponding to the expected
“Quantum Shuttle” service. The exact counts per day and line of the service are
presented in Table 5.1. As per Section 5.1, two of the lines operated from the city
center of Lisbon to the Web Summit: Alameda station to Web Summit (blue line)
and Saldanha roundabout to the Web Summit (red line1). The third line (black)
ran from the Web Summit to Alameda station.

Black line Blue line Red line
Conference total 53 56 53

8:00-12:00 17 21 47
12:00-18:00 36 35 6

Table 5.1: The 162 trips taken by Carris buses operating the Quantum Shuttle,
separated by time of day and line.

All three lines had roughly equal number of trips throughout the conference.
The route frequency matches the expected demand in Lisbon– the red line from
Saldanha was the popular choice during the morning, whereas the blue line from
Alameda was used more in the afternoon. Likewise, the only line from the Web
Summit back to Lisbon city center (black line) had double the trip frequency in
the afternoon compared to the morning, again matching the demand of conference
attendees returning to their accommodations after the conference ended each day.
The duration of each trip was recorded together with the location history of each
vehicle in the fleet throughout the conference. The corresponding average trip
times are shown in Table 5.2. The trip times are recorded from the moment a
driver presses the start button, until either the trip is manually ended or the bus
is within 50 meters of its destination.

One of the key design goals in our traffic navigation system was making sure it
could operate continually without manual intervention. As a consequence, there
was significant variation in the complexity of the optimization problems being
solved throughout the conference, depending on the number of active vehicles in

1Since the quantum navigation of the green and red lines have identical origin and destination,
we combine them and refer to them together as the red line.
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Black line Blue line Red line
Conference total 23 min 41 s 23 min 18 s 26 min 34 s

8:00-12:00 25 min 36 s 22 min 43 s 27 min 36 s
12:00-18:00 22 min 46 s 23 min 38 s 18 min 19 s

Table 5.2: Average trip times for the Quantum Shuttle, separated by time of day
and line.

the fleet. A total of 1275 optimization problems were solved by the QWS for the
162 trips, with an average response time of 4.69 seconds. Of those, 728 problems
(57.1%) involved more than one route per vehicle in the system, with an average
response time of 6.78 seconds. We consider the optimization problems for which
there is more than one route per vehicle as the “harder” version of the traffic flow
problem, since otherwise the route selection is trivial. It is important to note
that the ability to navigate the fleet buses strongly depended on creating and
solving the optimization problems in a timely manner. Since we cannot anticipate
in advance whether the vehicles have one or more possible routes (depending on
the traffic conditions), our system needed to operate uninterrupted in all cases.
Additionally, while there was a fallback mechanism in place stored locally on
each device, 100% of the calls to the D-Wave HSS completed successfully, thus
maintaining our automated navigation system’s integrity for the duration of the
conference, regardless of the complexity of the problem being solved1.

The goal of this project was to evaluate the use of solving the QUBO formulation
of the traffic-flow optimization problem in a live setting to perform turn-by-turn
navigation. Therefore, we now focus on interpreting the data and results of the
project in this application context. The distribution of all the Quantum Shuttle
trip data is shown on a map of Lisbon in Fig. 5.3. The trips are colored based on
the lines to which they belong, as described above. The red, blue, and black circles
correspond the the origins of their respective lines. The black circle is the Web
Summit conference location, and is therefore also the destination for the red and
blue lines. It is important to note that none of the three lines used the same route
for all trips throughout the Web Summit, showing that our QWS navigation system
provided flexible traffic-aware routing. The three highways that connect between

1The largest QUBO that was solved consisted of 12 variables, with 5 buses being navigated
concurrently. This occurred on November 5, 9:11 Lisbon time, which was the busiest period
during the conference.
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Figure 5.3: Distribution of all recorded Quantum Shuttle trips. The trips are
color-coded based on the line they correspond to. The circles represent the origins
and destinations of the respective lines [124].

the city center and the conference center were used extensively (although not
exclusively), and at different times by the different lines. That these highways were
prominent in the route selections is attributed to two design choices: time filtering
and excluded streets. Highways are typically the fastest method of driving medium-
and long-range distances, making them likely candidates for selection. Furthermore,
the regions that were excluded from the route selection as per Section 5.3.2 removed
fast route suggestions that avoided highways. It is reasonable to assume that in
the case of navigating cars, as opposed to buses, Figure 5.3 would show increased
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distribution over the smaller city streets as well.

To quantify the customization of the routes used by the vehicles, we measure
the dissimilarity between them. Specifically, we measure the overlap between the
location histories of vehicles being navigated concurrently by our system. The
overlap is defined as the fraction of GPS points in a vehicle’s location history
that coincided with another vehicle’s route (that was being navigated at the same
time), within a distance of 50 meters1. The overlap metric is therefore defined
to lie between [0, 1]. Distance (d) between GPS points was calculated using the
haversine formula:

d = 2r arcsin
(√

sin2
(
φ2 − φ1

2

)
+ cosφ1 cosφ2 sin2

(
λ2 − λ1

2

))
, (5.3)

where φ1, φ2 are latitudes, λ1, λ2 are longitudes, and r = 6, 371, 009 meters is the
Earth’s radius.

Because the navigation system re-optimized the distribution of routes at most every
120 seconds, each vehicle’s recorded trip is a sum of successive routes suggested by
the optimization. It is important to note that the suggested routes, as obtained
via the HERE API, are traffic-aware, and therefore already circumvent the existing
traffic congestion in the city. Thus, by minimizing the overlap between the fleet
vehicles, we minimized the additional traffic congestion caused by our fleet. In
Figure 5.4 we show the overlap between pairs of buses, grouped by the lines the
buses are following. There are six possible ways to compare the buses this way:
three within the same line (red-red, blue-blue, black-black), and three between the
lines (red-blue, red-black, and blue-black).

To contextualize the results in Figure 5.4, we also calculate the overlap between the
most direct (i.e., fastest) routes suggested by the HERE API for each line without
the traffic-aware component. This therefore simulates our navigation system in an
“offline” mode– public buses typically have pre-defined routes that are not deviated
from even in the presence of traffic congestion. Using these static routes, we obtain
the following overlaps: 0.70 for red-blue, 0.01 for red-black, and 0.16 for blue-black
(intra-line overlaps are trivially 1, since the same routes would be used for every
vehicle in that line). The red-black and blue-black overlaps are similar in offline

1This definition differs from the one in Section 5.2.2, since the recorded location histories
were irregular, as opposed to the points used to construct the traffic-flow optimization problem.
The location histories were interpolated using the HERE API for consistency.
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Figure 5.4: Box plot showing the fractional overlap of routes being navigated
simultaneously in the Quantum Shuttle fleet. Boxes are grouped by the line colors.
The number of observations are in parentheses below the boxes.

and online mode, however the expected time for the offline mode would be higher
due to the lack of traffic-aware routing. For the red-blue overlap (as well as the
intra-route overlaps), our online method significantly reduces the overlap between
the routes. It is also worth noting that in all categories in Figure 5.4, the mean
and median overlaps were below 0.5, meaning that the majority of every route
was different from every other vehicle in the fleet. By using the QWS we were
therefore able to both circumvent existing congestion as well as avoid creating new
congestion.

From a technological perspective, the Quantum Web Service’s modular implemen-
tation allowed us to communicate with a live QPU in a timely fashion, making
it suitable for our traffic optimization use-case. The test runs in Wolfsburg and
Lisbon were particularly instrumental, allowing us to fine-tune the connections
between the components of the QWS given the constraints of the application.
Due to this, the final implementation of the Quantum Web Service can handle
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live optimization of other, non-traffic related processes provided modifications to
the QUBO construction and live data components. Many production processes
have similar constraints to the those present in the Quantum Shuttle, making
our work adaptable to other scenarios. However, we stress that the problem sizes
investigated here were small (no more than 30 variables in all cases), well within
the range of problem sizes addressable by classical algorithms. Therefore, while
the application ran adequately in a live environment for a demonstration, further
research is necessary to fully understand how well the problem can be solved by
quantum annealing at scale.

5.4 Motivating a better real-world optimization
use-case

We now explore another real-world optimization problem from the automotive
industry. The paint shop problem refers to a set of combinatorial optimization
problems where the objective is to color a (fixed) sequence of cars with a fixed
number of colors such that the total number of color switches is minimized, given
a set of customer orders. This simple problem poses interesting scientific questions,
which in turn have real impact for solving such problems in practice. The paint
shop problem was originally posed by Epping et. al [125] as a form of coloring
problem. Some clarification on nomenclature: the given car sequence can also be
referred to as a word, where each car is denoted by a character. In [125], it was
shown that the paint shop problem is NP-complete in both the number of colors
and cars in the sequence. Furthermore, results show that, for bounded numbers
of colors and unique cars, there exists a polynomial-time dynamic programming
solution to these instances. Subsequent work [126] extended these results, proving
that even the simplest coloring version, with only two colors, is both NP-complete
and APX-hard. Additional results show that a subset of problems meeting specific
conditions can be solved in polynomial time. Therefore, this class of problems are
good candidates for quantum optimization algorithms, and initial such studies have
been conducted on a restricted definition of the problem [127] (different sub-classes
are distinguished shortly).
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5.4.1 The paint shop optimization problem

One of the steps in car production at Volkswagen is painting the car body before
assembly. In general, this can be viewed as a queue of car bodies that enter
the paint shop, undergo the painting procedure, and exit the paint shop. It is
important to note that the area of the factory immediately proceeding the paint
shop is typically assembly, where car components are assembled into the car bodies.
Because of the many different models and configurations being produced, designing
a sequence of cars to be assembled that is optimal (also known as the car sequencing
problem) is a known NP-hard problem in itself [128]. In practice it is imperative to
solve the sequencing problem because of worker safety and regulatory issues, and
we therefore treat the sequence of cars entering the paint shop as a fixed queue.
However, the colors assigned to the cars within a given sequence are still randomly
distributed, and thus we can focus on optimizing them. An example with three
different car groups is shown in Fig. 5.5 (top).

Each car body entering the paint shop is painted independently in two steps: the
first layer is called the filler, which covers the car body with an initial coat of
paint, and the final color layer is the base coat, which is painted on top of the filler.
The base coat is the color that matches the final customer order: blue, green, etc.
However, the filler has only two possible colors: white for the lighter base coats
colors, and black for darker colors. We define a customer order as the number of
cars of each configuration to be painted one of the color choices. We associate each
coating step (filler or base coat) with a unique class of paint shop problems, each
of which are NP-complete [125, 126]. A simple version of the filler optimization
is when there are only two cars of each unique configuration in the sequence and
each needs to be painted a different color; this is referred to as the binary paint
shop problem (BPSP) [127]. More generally, the filler optimization is referred to as
the multi-car paint shop problem, where the cardinality of each set of unique cars
in the sequence is unconstrained, but the cardinality of the color set is restricted
to two (e.g., black or white). The base coat optimization is therefore an extension
of the MCPS problem, where the cardinality of the color set is also unconstrained–
we call this version of the problem the multi-car multi-color paint shop problem.
In our work we focus on the filler optimization, the MCPS problem, which can
be formulated natively as a binary optimization problem. We formally define the
problem as follows:
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Given: a word w defining the fixed sequence of N cars (wi denotes
the ith character in w),

set of C = {C1, . . . , CM} unique configuration groups,

binary choice of colors {W,B},

function k(Ci) which defines the number of wi to be pain-
ted B in w,

function f(w) to count the number of color switches in w,

such that: #wi|B = k(Ci), ∀Ci ∈ C,
minimize: f(w).

In practice (i.e., in the real paint shop), the information required to formulate
this optimization problem is always available, as it is a necessary part of fulfilling
customer orders. Therefore, this MCPS problem representation above corresponds
exactly to the industrial use-case of paint shop optimization on the filler line. This
provides a more tangible use-case to solve using the hybrid quantum optimization
methods developed in the previous sections. In Fig. 5.5 we show a simple example
of the MCPS problem with three car groups.

Figure 5.5: Simple example of a multi-car paint shop problem with three car
groups (C1, C2, C3). The three corresponding orders are k(C1) = 3, k(C2) = 2, and
k(C3) = 3. Top: The fixed sequence of cars in the paint shop queue. Middle:
Sub-optimal solution to the problem with 3 color switches. Bottom: Optimal
solution to the problem with 2 color switches.

Despite the focus of our work on the filler, we briefly address the optimization
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of the base coat. Although the filler and base coat are painted independently in
separate locations, computationally the two problems are not separable. Abstractly,
optimizing the base coat line (i.e., solving the multi-car multi-color paint shop
problem) is a straightforward generalization of the MCPS problem: we can extend
the binary color variables to discrete color variables, where k(Ci) denotes the
number of times each color appears in a car group. In practice, it is useful to
consider solving the multi-color problem after solving the MCPS problem. Due to
the aforementioned one-to-one mapping between base coat and filler color, it is still
possible to permute the order of base coat colors within a contiguous sequence of
filler colors to reduce the base coat color switches. Although discrete optimization
problems can be represented as binary optimization problems, we do not solve the
multi-color version of the problem and leave this work for future studies.

5.4.2 Ising model representation of MCPS

In principle, the formulation of the MCPS as an Ising model is straightforward: we
start by representing every car in the sequence w (wi) with a single spin variable
(si). The spin up state denotes if the car is painted black, and the spin down
state denotes if it is white. The Ising model which represents our problem can be
divided into a hard constraint component and an optimization component. The
optimization component is a simple Ising ferromagnet with J = −1 couplings
between adjacent cars in the sequence:

HA = −
N−2∑
i=0

sisi+1. (5.4)

This incentivizes adjacent cars to have the same color. The second component
of our Ising model is the hard constraint, ensuring that the correct number of
cars are colored white/black per customer orders. This is encoded in a second
energy function, as a sum over independent k-hot constraint for each group of cars
Ci:

HB(Ci) = (#Ci − 2k(Ci))
∑
i

si +
∑
i<j

sisj . (5.5)
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Therefore, the final Ising model is the sum of the two components:

HMCPS = −
N−2∑
i=0

sisi+1

+ λ
∑
Ci∈C

(#Ci − 2k(Ci))
∑
i

si +
∑
i<j

sisj

 , (5.6)

with terms as previously defined in the MCPS problem statement. In order to
ensure only valid configurations of spins are encoded in the ground state, it is
necessary to scale HB by the factor λ. The value of λ is chosen to be large enough
such that it is never energetically favorable to violate a constraint to reduce the
energy of the system. In our study we set λ = N , the total number of cars in our
sequence, which guarantees this condition.

5.5 Creating Ising models from paint shop data

5.5.1 Data sources

The MCPS problem instances we used were generated from real data taken from a
Volkswagen paint shop in Wolfsburg, Germany. The reason for this is two-fold:
firstly, the main goal of this work is to test the viability of quantum annealing
methods in solving industrial optimization problems. It is our goal to accurately
capture the complexity of the industrial use-case without relying on simplifications
or randomly-generated problem instances. Secondly, the paint shop currently
operates on a first-come-first-served basis, where customer orders are entered into
the queue as soon as they arrive. This guarantees a certain amount of randomness
(although not uniformity) in the problem instances we solve: different car models,
configurations, and base coat colors appear throughout the sequences in ways we
do not control. Therefore, these conditions are suitable for our analysis.

A total of 104,334 cars were used in this study. To reproduce real-world conditions
as faithfully as possible, the car sequences used are multiple independent sets of
car sequences, each representing one week of continuous production, which are
stitched together as one continuous block. The data is collected over a period
of one year, roughly once every six weeks, to avoid seasonal biases in customer
order preferences. There are 121 unique car configurations in the data set. Of
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those, 13 of the configurations appeared only once in the data set, and therefore
do not need optimization at all. Typically this indicates that either a custom
configuration was built that cannot normally be ordered, or a prototype assembled
for testing purposes. Rather than exclude these from the study, we include them in
the optimization, because fixing a color at one location in the sequence influences
the adjacent cars (and consequently the total number of color switches) in a
non-trivial way. We do, however, eliminate the spin variable from the Ising model
by conditioning on the color.

5.5.2 MCPS problem sizes

To generate a variety of input sizes from the full data set, we partition the data into
different sized sequences without permuting the car order. This is motivated by
the amount of cars that need to be optimized for different purposes. For example,
the paint shop used as a basis for this analysis has a queue capacity of roughly
300 cars. This is not the total capacity of the paint shop, but rather the maximum
number of cars that can be physically inside the paint shop queue before they are
painted. We consider this a rough lower bound on the problem size for industrially-
relevant problem instances. An upper bound is more difficult to establish. From a
theoretical point of view, there is merit in investigating the behavior of quantum
systems in the infinite size limit, as in [127]. From an industrial perspective, car
orders can be placed weeks to months in advance, which would yield problem
sizes of 103 − 105 variables. In reality, real-time and last-minute adjustments
(due to manufacturing problems, supply chain issues, or imperfections in painting)
can happen on a daily basis. We limit the analysis to problems of up to 3000
variables, which roughly corresponds to a few days worth of production. The data
partitioning is performed by dividing the entire data set into equal chunks for
each problem size N . Each partition is considered a candidate instance, yielding a
total of b 104,344

Ncars
c partitions per problem size. We then mine these partitions and

select suitable partitions to generate problem instances from. This is due to the
fact that there could be little frustration within some partitions. For example,
it is possible that all cars of any one configuration (Ci) all need to be painted
either black or white. While in general this is an accurate reflection of production,
for experimental analyses this scenario is not useful. Therefore we deem a data
partition to be a usable MCPS instance if the total number of non-fixed cars is at
least 70% of the cars in the partition. Meaning that, in a 10-car data partition,
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at least 7 of the cars must have the freedom of being painted either color. We
show the total number of partitions for the various problem sizes and how many
partitions were valid problem instances in Table 5.3. For our experiments we
randomly selected 50 valid instances to test at each N , except for the largest
problem size of which we use all 34 valid instances.

Table 5.3: Problem sizes and number of problem instances generated from the
data set partitions.

Problem size Num. partitions Num. instances
(cars) (% of partitions)
10 10,433 172 (1.6%)
30 3,477 418 (12.0%)
100 1,043 756 (72.5%)
300 347 341 (98.3%)
1000 104 102 (98.1%)
3000 34 34 (100%)

5.5.3 Classical, quantum, and hybrid solvers

To evaluate the efficacy of quantum (and hybrid) algorithms in both the small-scale
and industrially-relevant limit, we validate our methods using multiple algorithms.
The goal of this analysis is to provide a fair but thorough comparison of results
across different regimes of the MCPS problem, from small toy problems to large-
scale instances, and represent real-world optimization conditions as closely as
possible.
Random. Without optimization, we consider any assignment of colors to cars in
a sequence where the orders are fulfilled to be a valid, but not necessarily optimal,
solution to the problem. Thus, we can trivially generate random sets of valid
solutions by uniformly assigning the color black to k(Ci) cars for each car group
Ci. While far from optimal, this solution to the MCPS problem may be preferable
if other steps in the car manufacturing process are valued over the painting step.
This was indeed the case for the data obtained from the paint shop in Wolfsburg,
and thus random valid solutions serves as the baseline the competition algorithms
are tasked with beating. For our study, we generate 2Ncars random valid solutions
at each problem size to estimate the number of color switches that would occur
naturally in the paint shop.

111



5. HYBRID QUANTUM ALGORITHMS FOR REAL-WORLD
OPTIMIZATION

Black-first. This is the simplest algorithm that is used to solve the MCPS
problem. Starting at the beginning of the sequence, we greedily assign the color
black to every car until a white color must be assigned to the next car. In greedily
obtained solutions the number of color switches grows linearly with the number of
cars and is sub-optimal except for a minority of cases [126, 127]. Nonetheless, it
serves as a good benchmark for more sophisticated optimization algorithms, as the
improvement over random assignments grows with the problem size.
Simulated annealing. The simulated annealing metaheuristic used here is the
same as those in the previous analyses in this thesis [99].
Tabu search. The Tabu metaheuristic here is also the same as in the previous
chapters, and the same implementation is used [99].
D-Wave 2000Q. One of two different D-Wave QPUs used in this study, this
QPU was the older-generation Chimera architecture with maximum degree 6. The
processor used in this study had 2041 functional qubits.
D-Wave Advantage. The newest-generation QPU provided by D-Wave with a
different topology and a significantly higher qubit count than its predecessor. The
new topology, Pegasus, had a maximum degree of 15, and the QPU used in our
study contained 5436 functional qubits. For further information regarding the
D-Wave QPU topologies and the differences between them, we refer the reader
to [64].
D-Wave Hybrid Solver. At large instance sizes (300 cars and higher) it was no
longer possible to embed problems directly onto both D-Wave QPUs. Therefore
we employed the hybrid quantum-classical algorithm used previously, the Hybrid
Solver Service (HSS). As before, the QPU it uses cannot be programmed fully
directly by the user, and thus we treat this algorithm as an optimization black-box
with a single timeout parameter.

5.6 Benchmarking solvers in the industrial limit

We interpret our results relative to two different regimes: small-scale (10-100 cars)
and industrial (300-3000 cars). Each solver used in these experiments was tuned in
good-faith, but not necessarily optimally. Meaning, considerable effort was made
to ensure solvers were being used to their strengths, but fully optimizing over all
sets of hyperparameters for the solvers was deemed out of scope. We compared
all solvers’ performance in terms of their “improvement” over the random solver,
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defined as the difference in f(w) between the best solution obtained by each solver
and the random solver. This metric is representative of the real-world expected
improvement using each of the solvers. In Table. 5.4 we report the median for each
solver. We quote the median to be less susceptible to tails of the distribution. The
results therefore represent the typical MCPS case at each problem size, rather than
the expected value of each solver’s overlap with the ground states. The solutions
obtained from all solvers were post-processed (if needed) to ensure that the k(Ci)
constraint was satisfied in each problem. We show how often this occurred in
Table 5.4 as well. We consider this necessary in order to interpret the solutions
relative to the application, since it is trivial to reduce the number of color switches
by ignoring the customer order constraint. In Fig. 5.6 we highlight the empirical
scaling of our results in the industrial limit.

Solving problems directly with both QPUs was only possible for problem sizes
10-100. Embeddings were generated using the standard D-Wave embedding tool
Python package, the same that used in previous experiments in this thesis [68].
The chain strengths required by each QPU was different depending on the length
of the chains in the embeddings. We calculated the algebraic chain strength
chaini = |hi| +

∑
j∈adj(i) |Jij | for every spin in the Ising model, and introduce

an additional scaling parameter s = [0.1, 0.2, . . . , 1]. Thus, the chain strength is
defined as s ·max(chaini), where s was optimized per problem size using a subset
of the instances (10 per size), and 50 · N samples per instance. Optimal s was
defined as the value which yielded the highest frequency of valid solutions relative
to the constraints of the MCPS problem in Eq. 5.6 (not chain breaks). We found
that the D-Wave Advantage QPU had optimal s = 0.3, whereas the D-Wave 2000Q
QPU had optimal s = 0.45. This is consistent with the fact that the Advantage
QPU required shorter chains to embed the same Ising models as the 2000Q. Each
QPU was then sampled for 500 ·N samples per problem size N , with annealing
time ta = 1µs. We used N spin-reversal transforms for each sample set, as it
has been shown that there are diminishing returns between 100-1000 samples per
transform [75].

We found that for the 10 car instances both QPUs matched the consensus best
results between all solvers (median of f(w) = 2), and for the 30 car instances very
near the best results (f(w) = 5 as opposed to SA’s and HSS’s 4). For the 100 car
instances, with 50,000 samples per problem, the 2000Q QPU found valid solutions
for 22/50 instances, as opposed to 37/50 for the Advantage QPU. From this we
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conclude that 50,000 samples is insufficient for the QPUs, but due to limited time
availability we could not take more samples. We note that it was also possible to
embed 47/50 of the 300 car instances onto the Advantage QPU. However, due to
the poor performance on smaller sizes with limited resources, we did not evaluate
those problems. Furthermore, due to the limited problem sizes that could be
solved with the QPUs and the quality of results, we do not include these results in
Fig. 5.6.
The Tabu solver was given bN/3c seconds per problem as its timeout parameter,
and all other parameters were set to their default value. This solver struggled to
find valid solutions past the 10 car instances. Due to the post-processing technique,
which greedily corrected each sample to satisfy order k(Ci), the Tabu results were
essentially a worse version of the greedy algorithm at all problem sizes but the
smallest.
Simulated annealing (SA) has many tunable hyperparameters: number of sweeps
(Nsweeps), number of samples (Nsamples), and (inverse) temperature (β) schedule. In
our experiments we fixed the schedule to β = [0.01, 10], interpolated geometrically
using Nsweeps. We set Nsweeps = 10 · N and Nsamples = 20 · N , where N is the
number of cars. The solutions obtained by SA (shown in Fig. 5.6) were consistently
better than the greedy algorithm. Using the given parameters SA was able to
provide valid solutions for 50/50, 49/50, and 44/50 for the 30, 50, and 100 car
instances. However, the timescales necessary to obtain results were prohibitive
from extending the experiments: 300 variable problems were terminated after
running for 24 hours without returning a solution. We include the SA results
in Fig. 5.6 due to their high quality at small sizes. Using a single-threaded SA
implementation, run-time of the algorithm was on the order of seconds to minutes
for the 10 and 30 car instances, and between 1-3 hours for the 100 car instances.
We note that SA was the only solver which was allotted quadratically scaling
computing resources: both sweeps and samples scaled with N . This is necessary
for SA to be competitive, and exemplifies the trade-off between results quality and
algorithmic run-time when using heuristics.
The D-Wave HSS was given equal time to the Tabu solver, given its only parameter
is the timeout: bN/3c seconds per problem. The HSS was the only solver to
consistently provide better solutions than the greedy algorithm for all problem
sizes. The improvement continued to grow with increasing problem size, shown
in Fig. 5.6. However, the gap between the HSS and the greedy algorithm shrank

114



5.6 Benchmarking solvers in the industrial limit

with increasing problem size, performing only slightly better than greedy for the
3000 car instances.

Figure 5.6: Number of color switches within the sequence shown as improvement
over random configurations of orders.

Despite the simplicity of the Ising model representation of the MCPS problem,
almost all solvers exhibited difficulty in finding valid solutions. This is particularly
evident in the performance of the two different models of QPUs tested. The results
degrading rapidly from 30 to 100 cars indicate that the problem became more
difficult to solve disproportionately to the increase in system size. The SA and
Tabu solvers exhibited similar trends, despite the increase in resources allotted
to them. While the HSS was the best-performing algorithm, it also missed valid
solutions for some problems of intermediate size (100 and 300 car instances). We
identify two possible issues: first is the connectivity of the problem graph. Each
order k(Ci) requires a separate k-hot constraint which is represented using a
fully-connected graph. This yields sub-cliques within each problem that increase
with the problem size. In QPUs, denser problems create longer chains and higher
chain strengths. For classical solvers, these sub-cliques create rugged landscapes
which make single-flip optimization algorithms significantly less useful. Therefore,
that the maximum sub-clique of the MCPS problem graph increases as a function
of the number of cars is a bottleneck for performance. Secondly, the normalization
terms necessary to encode the MCPS problem as an Ising model also scale with
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problem size. In Eq. 5.6, we set λ = N to ensure the constraints are valid in
the ground state of the Ising problem. Therefore, we observe that the numerical
precision necessary to formulate the MCPS problem scales as 1/N . This effect
compresses the gaps between the local (and global) minima, making it harder
to differentiate between them. Using a direct embedding approach for QPUs
requires even higher precision due to chains: the chain strengths scale with N ,
and therefore the encoding precision as 1/N2. This may be prohibitively low in
large-scale problems and analog devices due to finite control errors.
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6
Conclusions and outlook

The work presented in this thesis centered around the applicability of a quantum
optimization algorithm, the quantum annealing (QA) algorithm, in a variety of
settings, as motivated in Ch. 1. We started by motivating QA through the adia-
batic theorem, and the approximations which result in this metaheuristic quantum
optimization algorithm. We further presented the specific implementation of QA
in quantum hardware, specifically the quantum processing units (QPUs) produced
by D-Wave Systems. We showcased the special conditions required to interact with
the quantum hardware in order to formulate meaningful optimization problems.
We presented the various limitations and boundaries of these conditions, and
investigated the work required to use such algorithms in practice. The impact
of individual QPU parameters, problem formulation, tunability, and algorithmic
execution were studied using both canonical NP-hard optimization problems and
real-world problems derived from data. We introduced different methods to ac-
complish this, and demonstrated the efficacy of each. Comparisons were made to
classical (meta)heuristics in order to identify both the potential and bottlenecks
of QA. In this chapter we summarize the main contributions of the paper, and
contextualize the results presented in two main categories, the first focused on
algorithmic advancement of quantum annealing, and the second on the implementa-
tion of the methods developed in this paper in practice to solve real-world problems.

Combinatorial optimization with quantum annealing hardware. There
has been significant development of quantum hardware since the field’s inception,
particularly in recent years. The rise of scalable quantum architectures have allowed
the implementation of the quantum annealing algorithm in programmable hardware,
and many studies in literature have performed initial investigations into the type
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of problems that can be addressed with this algorithm. In Ch. 3, we presented the
various ways in which quantum annealing QPUs require special conditions in order
to formulate optimization problems: the types of variables, objective functions,
hardware topologies, and open quantum system conditions all must be taken into
account and unified in order to understand the QPUs’ performance. To this end, we
motivated the use of a canonical NP-hard problem– the maximum independent set
(MIS) problem– to test the affects of these considerations in hardware performance
directly in Ch. 3. We were able to demonstrate that quantum annealing shows
potential as a heuristic optimization algorithm, in the sense that the QPU is
able to solve small MIS problems, even when compared to classical competition
algorithms. However, we also demonstrated the ways in which the workflow of
using a QPU may hinder its performance in ways which have no parallel in classical
metaheuristic algorithms. The QPU’s performance in these experiments was highly
dependent on the minor-embedding procedure required to map arbitrary graph
structures to the fixed topology of the qubits in the QPU. We found how larger
embeddings required higher degrees of precision to encode the problem, which in
turn led to higher levels of noise in the logical space of the MIS problems. Because
the MIS instances are constraintless in their QUBO formulation, we found these
to be a qualitative bound on performance of the QPU in solving combinatorial
optimization problems.

To investigate the interplay between graph structure and embedded problems in the
QPU, we introduced an evolutionary algorithm– the (1+1)-CMA-ES algorithm– to
tune one of the physical control parameters of the QPU, the annealing offsets. We
shifted in time (adding an advance or delay) the point at which each logical graph
variable started its annealing procedure (represented as a set of connected qubits).
By allocating a budget of resources as a pre-processing tuning step, we were able
to improve the QPUs ability in finding optima of the MIS problem. Furthermore,
we showed that the rate at which such MIS optima were found increased as well.
The results in Ch. 3 indicate that in order to solve combinatorial optimization
problems in general with direct QPU embedding, it is vital to mitigate some of
the open quantum system effects that arise when using quantum hardware. This
supports other works in the field of QA where hardware parameters have been
exploited to enhance QPU performance. The novel contribution of this thesis was
the demonstration that a black-box evolutionary strategy can be used to enhance
QPU performance on arbitrarily structured graph problems. In general, however,
we found that this tuning strategy adds significant time and complexity when
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solving MIS problems in practice, and so other algorithmic solutions may be needed.

Real-world use-cases for quantum and hybrid algorithms. The link be-
tween canonical NP-hard problems and real-world combinatorial optimization is not
always obvious. The necessity of real-world modeling inherently requires additional
factors which are not present in most basic optimization problems, regardless of
complexity. In the context of quantum annealing, this requires developing methods
to map different variable types, constraints, and data pre-processing techniques
to forms which are admissible to quantum hardware. In Ch. 4 we develop two
such paradigms to model real-world optimization problems. The first derives a
complete QUBO formulation for a logistics optimization problem (the shipment
rerouting problem, the middle step of the less-than-truckload problem) directly
from data. The constraints required to encode this problem convolve multiple
techniques, modeling capacity constraints as packing constraints (as in packing
and knapsack problems), distance minimization objectives (as in traveling sales-
person), and a data pre-processing technique of suggesting alternative routes as in
traffic-flow optimization. This process is typical, and highlights the key differences
between real-world and canonical combinatorial optimization. Interestingly, while
the complexity of the problem class may not be affected, the ability of certain
metaheuristics may suffer due to this transformation. This is indeed what was
observed in Ch. 4: while the feasible search space of the shipment rerouting
problem was modeled correctly using adaptations of known problems in NP, this
step made it much harder for quantum annealing (and similar) algorithms to find
solutions. Therefore, a second method was demonstrated in Ch. 4 in which a
known problem in NP (the set cover problem) was used as an oracle to solve the
problem of classifying real-world time series data. We were able to demonstrate
how discretizing continuous time series data was sufficient to encode this problem
as a QUBO, which we were then able to solve to reconstruct and classify various
kinds of open-source time series data.

When solving such combinatorial optimization problems in practice, it was impera-
tive to consider the ability to use the techniques derived in the previous chapters
to solve real-world problems in practice. To overcome some of the difficulties in
using QA hardware directly, Ch. 5 introduced the idea of hybrid quantum-classical
algorithms as possible solutions. A traffic flow optimization use-case was explored
in which a turn-by-turn navigation service was build for a small fleet of buses
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during the Web Summit 2019 conference. The custom navigation service was built
from scratch in order to appropriately use quantum optimization algorithms in a
live real-world setting. As with other examples, multiple techniques were used in
order to construct the QUBO. However, due to the on-the-fly nature of navigation,
external services were required to be integrated into the QUBO formulation (e.g.,
live traffic data) in order to solve the problem. Therefore, multiple hybrid quantum
optimization algorithms were tested, including building a custom hybrid algorithm.
In the end, it was evident that robust hybrid quantum algorithms need to be
used in order to both mitigate the QPU deficiencies (in the direct embedding),
as well as handle the changing conditions of the QUBO given the live traffic
conditions.

The second half of Ch. 5 motivated another use-case for quantum optimization in
the realm of production optimization, and represents the aggregate of the various
connected concepts developed in this thesis. We presented and solved the multi-car
paint shop optimization problem (MCPS), in which car bodies are assigned colors
with the goal of minimizing the number of color switches in the sequence. We
derived a new Ising model to represent the MCPS problem by introducing a simple
optimization objective (anti-ferromagnetic couplings between adjacent spins) and a
well-known constraint (k-hot constraints). Thus, we were able to both use existing
modeling techniques and new techniques to create the Ising model. Furthermore,
by making the decision variables (individual spins) each car in the sequence, we
were able to map real-world data from the paint shop in Wolfsburg, Germany,
directly to the Ising model, and thus solve the real-world application directly
without any further modification. We compared direct QPU embedding (using two
different generations of D-Wave QPUs), a hybrid quantum-classical algorithm, a
simple greedy algorithm, and classical metaheuristics in solving these Ising models
derived from data, thus providing a thorough benchmarking analysis based on
techniques from previous chapters. By adapting a simple Ising model to represent
this real-world combinatorial optimization problem, we were able to evaluate the
efficacy of quantum optimization in solving these problems in practice. Based on
the results in Ch. 5, we concluded that hybrid algorithms were still necessary
given the number of available qubits in existing QPUs. Furthermore, while the
hybrid algorithm was the best algorithm of those we tested, the performance at
the largest problem sizes approached that of a simple greedy algorithm, further
illustrating that the difficulty of solving real-world problems may affect quantum
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algorithms differently than classical ones.

It is evident that quantum algorithms hold significant potential in solving combina-
torial optimization problems. The implementation of scalable quantum annealing
hardware in particular has enabled the testing of a wide variety of both academic
and real-world problems. The thorough study of the conditions necessary to both
operate (and tune) these annealing QPUs, as well as model problems in suitable
forms for QA, as presented in the body of work in this thesis, has highlighted
that specific paradigms must be adopted when developing applications around
quantum optimization and quantum annealing in particular. The continued growth
of quantum annealing processors in number of qubits and density of connectivity
will surely aid the development of more real-world applications. To complement
this quantum hardware, additional methods such as those presented in the chapters
of this thesis must also be continuously developed. It can be expected that many
of the core concepts derived in this thesis will need to be incorporated in order to
truly utilize quantum algorithms in real-world settings in the future.
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Summary

In this thesis we explore the use of quantum annealing in solving real-world combi-
natorial optimization in a variety of settings. With the continuous development of
quantum hardware and software, the potential of quantum algorithms is slowly
being unlocked. However, some of the peculiarities of quantum hardware have no
exact parallel in classical computing, and so the work in this thesis develops new
methods to address quantum annealing for combinatorial optimization. We start
by describing the quantum annealing (QA) paradigm in Chapter 2. The underlying
theory of the algorithm as a metaheuristic quantum optimization algorithm is
discussed. We outlined the basics concerning the quantum processing units (QPUs)
produced by D-Wave Systems which use the transverse-field Ising Hamiltonian
to implement QA. The mathematical description of the objective functions and
models admissible to QA QPUs is presented, which sets the context for general
combinatorial optimization using these QPUs.

In Chapter 3 we take a deeper dive into solving problems directly using qubits
in QA by studying the maximum independent set (MIS) problem, a well-known
NP-hard problem. We find how minor-embedding arbitrarily-structured graphs to
fixed QPU topologies affects performance, and what parameters are involved in
doing so. We then further attempt to mitigate the performance issues encountered
by embedding procedures by tuning a control parameter of the QPU, the annealing
offsets. We use the (1+1)-CMA-ES algorithm to tune these offsets as a pre-
processing step. We find that the tuning procedure improves the QPU performance
on average, and the CMA-ES routine is more efficient in doing so compared to
other tuning routines. The trade-off between using the tuning routine and not is
explored. We then transition to solving real-world problems, as opposed to simple
known models, in Chapter 4. We introduce two methods of solving combinatorial
optimization problems: (i) deriving a new QUBO/Ising model from real-world data,
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and (ii) processing real-world data and optimizing it using a well-known QUBO
formulation. The former strategy is used to solve a real-world logistics combinatorial
optimization problem, the shipment rerouting problem, an intermediate task of
the more general less-than-truckload problem. The introduction of a mix of hard
constraints (truck capacity) and simple optimization (reducing truck distances)
into a combined QUBO results in a overhead in transformation which is not
mitigated by the QUBO solvers tested. In the latter case of (ii), we use known
discretization techniques to transform continuous time series data to a string of
characters, which are then used to perform data reconstruction (from a known
database). This is accomplished by formulating the reconstruction task as a set
cover problem (another well-known NP-hard problem) which has a simple known
QUBO formulation. We show how this set cover QUBO correctly reconstructs
the original strings from fragments within the database, thus solving the original
time series problem. We further show how to extend this to perform classification,
which results in a semi-supervised classification algorithm.

In order to use quantum annealing in practice, we must overcome the QUBO/Ising
modeling difficulties as well as the hardware limitations. To this end, we explore the
use of hybrid quantum-classical algorithms in Chapter 5. We start by motivating a
real-world traffic optimization problem: navigation a fleet of buses between known
distances. A fully-automated hybrid optimization service is built and launched
as part of a pilot project with a fleet of nine buses for the Web Summit 2019
conference. The connections between live traffic data used to build the traffic flow
QUBO and accessing hybrid algorithms are constructed and deployed in practice.
We find that while the service built results in stable navigation, the system is only
able to handle small fleets. Therefore, in the second half of Chapter 5, we motivate
another use-case for real-world optimization, the paint shop problem: painting a
sequence of car bodies in a factory to minimize the number of color switches. We
show how to construct an Ising model that directly represents the paint shop data
with minimal overhead. By doing so, we include multiple techniques presented in
the previous chapters of this thesis, and solve real-world problems directly on two
different generations of D-Wave QPUs, as well as classical and hybrid algorithms.
We are able to explore these Ising models at relatively large scales, where the
problem sizes approach those of industrial relevance. While the performance of
the hybrid algorithm tested showed the most utility, at the largest problem sizes a
simple greedy algorithm was nearly as effective. We conclude on the work of this
thesis in Chapter 6. The efficacy of the various methods used in this thesis are
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discussed, and the future development work necessary to apply quantum annealing
(and similar) algorithms in practice is explored.
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In dit proefschrift onderzoeken we het gebruik van quantum annealing bij het
oplossen van praktische combinatorische optimalisatie in verschillende situaties.
Met de continue ontwikkeling van quantum hardware en -software wordt het poten-
tieel van quantum algoritmes langzaam werkelijkheid. Sommige eigenaardigheden
van quantum hardware hebben echter geen exacte parallel in klassieke informatica,
en daarom ontwikkelt het werk in dit proefschrift nieuwe methoden om quan-
tum annealing voor combinatorische optimalisatie te gebruiken. We beginnen
met het beschrijven van het quantum annealing (QA) paradigma in Hoofdstuk 2.
De onderliggende theorie van het algoritme als een metaheuristisch quantum
optimalisatie-algoritme wordt besproken. We schetsten de basis met betrekking
tot de quantum processing units (QPU’s) geproduceerd door D-Wave Systems die
de transversal field Ising Hamiltonian gebruiken om QA te implementeren. De
wiskundige beschrijving van de te optimaliseren functies en modellen die toelaat-
baar zijn voor QA QPU’s wordt ook gepresenteerd, hetgeen de context vormt voor
algemene combinatorische optimalisatie met behulp van deze QPU’s.

In Hoofdstuk 3 gaan we dieper in op het rechtstreeks oplossen van problemen
met behulp van qubits in QA door het probleem van de “maximum independent
set” (MIS) te bestuderen, een bekend NP-hard probleem. We ontdekken hoe het
insluiten van willekeurig gestructureerde grafieken in vaste QPU-topologieën de
prestaties beïnvloedt, en welke parameters daarbij betrokken zijn. Vervolgens
proberen we de prestatieproblemen die we tegenkomen bij het inbedden van proce-
dures te verminderen door een controleparameter van de QPU, de annealing offsets,
af te stemmen. We gebruiken het (1+1)-CMA-ES-algoritme om deze offsets af te
stemmen als een voorbewerkingsstap. We vinden dat de afstemmingsprocedure de
QPU-prestaties gemiddeld verbetert, en de CMA-ES-routine is hierin efficiënter
in vergelijking met andere afstemmingsroutines. De afweging tussen het wel en
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niet gebruiken van de afstemmingsroutine wordt onderzocht. We gaan hierna in
Hoofdstuk 4 over op het oplossen van problemen uit de echte wereld, in tegen-
stelling tot eenvoudige bekende modellen. We introduceren twee methoden voor
het oplossen van combinatorische optimalisatieproblemen: (i) het afleiden van een
nieuw QUBO/Ising-model uit praktijk data, en (ii) het verwerken van praktijk data
en het optimaliseren ervan met behulp van een bekende QUBO-formulering. De
eerste strategie wordt gebruikt om een praktische logistiek combinatorisch optimal-
isatieprobleem op te lossen, het shipment rerouting-probleem, een tussenliggende
taak van het meer welbekende “less-than-truckload” probleem. De introductie
van een mix van harde beperkingen (vrachtwagencapaciteit) en eenvoudige opti-
malisatie (verkleining van vrachtwagenafstanden) in een gecombineerde QUBO
resulteert in een overhead in transformatie die niet wordt overkomen door de
geteste QUBO-solvers. In het laatste geval van (ii), gebruiken we bekende discreti-
satietechnieken om continue tijdreeksgegevens om te zetten in een reeks karakters,
die vervolgens worden gebruikt om gegevensreconstructie uit te voeren (uit een
bekende database). Dit wordt bereikt door de reconstructietaak te formuleren als
een set-cover-probleem (een ander bekend NP-hard probleem) dat een eenvoudige
bekende QUBO-formulering heeft. We laten zien hoe deze “set cover QUBO”
de originele strings correct reconstrueert uit fragmenten in de database, en zo
het originele tijdreeksprobleem oplost. We laten verder zien hoe dit kan worden
uitgebreid om classificatie uit te voeren, wat resulteert in een semi-supervised
classificatie-algoritme.

Om quantum annealing in de praktijk te gebruiken, moeten we de QUBO/Ising-
modelleringsproblemen en de hardwarebeperkingen overwinnen. Hiertoe onder-
zoeken we het gebruik van hybride kwantum-klassieke algoritmen in Hoofdstuk 5.
We beginnen met het motiveren van een reëel verkeersoptimalisatieprobleem: het
navigeren van een vloot bussen tussen bekende afstanden. Een volledig geautoma-
tiseerde hybride optimalisatieservice wordt gebouwd en gelanceerd als onderdeel
van een proefproject met een vloot van negen bussen voor de Web Summit 2019-
conferentie. De verbindingen tussen live verkeersgegevens die worden gebruikt
om de verkeersstroom QUBO op te bouwen en toegang te krijgen tot hybride
algoritmen, worden in de praktijk gebouwd en ingezet. We merken dat hoewel de
ingebouwde service resulteert in een stabiele navigatie, het systeem alleen kleine
vloten aankan. Daarom motiveren we in de tweede helft van Hoofdstuk 5 een
andere use-case voor real-world optimalisatie, het lakwinkelprobleem: het schilderen
van een reeks autocarrosserieën in een fabriek met zo min mogelijk kleur wisselingen.

144



Samenvatting

We laten zien hoe u een Ising-model construeert dat direct de gegevens van de
spuiterij weergeeft met minimale overhead. Door dit te doen, nemen we meerdere
technieken op die in de vorige hoofdstukken van dit proefschrift zijn gepresenteerd,
en lossen we problemen uit de echte wereld rechtstreeks op op twee verschillende
generaties D-Wave QPU’s, evenals klassieke en hybride algoritmen. We zijn in
staat om deze Ising-modellen op relatief grote schaal te onderzoeken, waarbij we
de probleemgrootte van industriële relevantie benaderen. Hoewel de prestaties
van het geteste hybride algoritme het meeste nut vertoonden, was een eenvoudig
hebzuchtig algoritme bijna net zo effectief bij de grootste probleemgroottes. We
concluderen het een en ander over het werk van dit proefschrift in Hoofdstuk 6.
De nuttigheid van de verschillende methodes uit deze thesis worden gediscussierd,
en het toekomstige werk dat nodig is om quantum annealing (en vergelijkbare)
algoritmes in praktijk toe te passen wordt uitgelicht.
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