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In sufficiently strongly interacting and clean electron systems transport phenomena 
are determined by hydrodynamic effects in contrast to diffusion dominated transport 
due to disorder. Successful efforts in showing these hydrodynamic effects relied 
primarily on clean systems with extremely large disorder length scales1–3. Here we take 
the opposite approach by focusing our attention on a system with a short interaction 
length scale, i.e. a strongly interacting system, which is still clean enough to show 
hydrodynamic transport. Built on a previous result2 we propose an experiment to 
observe nanoscale vortices in the strongly interacting superconductor Sr2RuO4, 
spurred on by its cleanliness of both the bulk crystal and structured mesoscopic devices. 
Our calculations indicate the existence of a crossover from diffusive to hydrodynamic 
transport in Sr2RuO4. The crossover exists over a wide range of disorder levels, and is 
robust against boundary effects. These results suggest a new probe into the strongly 
interacting normal stat of Sr2RuO4. Implementing the calculations for a cuprate 
strange metal system, proposed to be hydrodynamic through holography4, shows no 
hydrodynamic effects for realistic disorder levels, pointing towards the importance of 
disorder in strange metal systems.

Hydrodynamic Transport Description 
of the Strongly Correlated Electron System 
Sr2RuO45
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5.1 Introduction
The emergence of complex electronic behavior is tied to the number of 
electrons and the strength of their mutual interactions5. It is therefore 
reasonable to expect that transport in mesoscopic devices is a prime candidate 
to observe such complex behavior due to large number of electrons in such a 
device while still being on the small length scales at which complexity often 
arises (see for example the emergence of superconducting puddles in Chapter 
3). One telltale sign of complex or collective behavior in mesoscopic devices 
is the observation of hydrodynamic transport phenomena1,3,6–8, as these 
phenomena rely on a conserved momentum of all electrons involved. Such 
behavior however is quickly drowned out by interactions which destroy this 
collective momentum, such as phonon interactions or impurity scattering, 
reducing transport physics to single particle physics.

Transport phenomena are thus split into several regimes, based on which 
of the above interactions are dominant. When impurity scattering, phonon 
scattering, or some other momentum non-conserving interaction dominates, 
transport is said to be in the diffusive or Ohmic regime (Fig. 5.1a). In this case a 
sense of collective electron momentum is destroyed over length- or time scales 
smaller than the system being probed. A lack of conserved momentum is also 
the case for the second transport regime, the ballistic regime (Fig. 5.1b). In this 
regime there are no interactions present, in the sense that the time it takes for 
an electron to engage in any interaction (either momentum conserving or non-
conserving) is larger than the time it takes for an electron to cross the system. 
As such, while there are no interactions to destroy the conserved momentum, 
there are also no interactions to establish a collective momentum. This only 
happens in the last regime, the hydrodynamic regime (Fig. 5.1c). Here electron-
electron interactions dominate, conserving the total momentum of the electron 
fluid, while momentum non-conserving processes are largely absent within 
the system. The fact that the total momentum is conserved allows for more 
complex transport behavior to exist, with phenomena often associated with 
everyday fluid dynamics such as laminar flow, vortex formation, and possibly 
even the onset of turbulence.

Examining which transport regime is relevant is most conveniently done by 
estimating the relevant length scales involved. These fall into three categories. 
First there is the size of the system or device, typically denoted L. Second, there 
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Figure 5.1: Transport regimes. 
Schematics of the transport regime which are determined by the relative sizes of the length 
scales involved. a) When the system size L is the smallest length scale, transport is ballistic: 
electrons can cross the system without scattering. b) When the length scale for momentum 
conserving scattering lmc is smallest, and the length scale for momentum diffusion lmc is largest 
the electron fluid as a whole carries a single conserved momentum and transport is governed 
by hydrodynamics. c) When lmd becomes smaller than L the momentum of the electron fluid can 
diffuse away during transport, losing its conserved nature. Transport is now diffusive.
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is the length scale over which momentum of the electron fluid is lost to the 
lattice (or some other subsystem). This momentum diffusion length lmd bundles 
scattering events such as impurity scattering and electron-phonon scattering 
(although there are exceptions to the latter3,8). Lastly, the momentum conserving 
length lmc characterizes the processes conserving the electron momentum fluid, 
typically electron-electron interactions. The system size L is under control of 
the experimentalists, while lmd and lmc depend on the materials involved and 
external factors such as temperature and applied pressure.

Observing hydrodynamic electron flow is no easy feat, primarily because the 
required combination of length scale is difficult to achieve. For hydrodynamic 
flow to occur lmc needs to be the smallest length scale, while L needs to be at 
least on the order of lmd, if not smaller: 

This way the electron fluid momentum can equilibrate within the device and 
without being disrupted by momentum diffusion.

First attempts and successes of observing hydrodynamic flow were achieved 
using semiconducting systems, such as GaAs and graphene1,2,9. The main 
advantage of these systems is that lmd can be made quite large (several microns). 
This way, lmc < lmd is easier to guarantee even with very little electron-electron 
interactions, as is the case for these semiconducting systems. Furthermore, 
with modern lithography tools it is possible to make devices of the right shape 
and dimensions out of these materials to show signatures of hydrodynamic 
flow. Indeed, in such devices scientists have observed a unique temperature 
dependence of the resistivity called the Gurzhi effect10, the formation of 
backflow vortices2,11,12, Poiseuille flow8,13,14, and distinct effects of the device 
geometry on transport15–17. 

More recently, the hunt for hydrodynamic electron behavior has shifted to more 
complex (semi-)metallic systems, such as PdCoO2, WP2, and WTe2

3,6,8. Their 
mean free paths, while still remarkably long, are significantly shorter than 
those of the semiconducting systems mentioned above. Instead, their stronger 
electron-electron interactions, and therefore shorter lmc, enable hydrodynamic 
flow. In the case of PdCoO2, being an oxide system, an additional challenge is 
to structure the devices while preserving their lmd. Nevertheless, observations 
of hydrodynamic flow have offered interesting windows into these systems, 
in particular the observation of phonon drag in WTe2

8.

(5.1)lmc < L < lmd (1)

ρ(T ) =
2π�δ
e2

1∑
i kF,ivF,iτi(T )

(2)

τ(T ) =
2π�δ
e2

1

ρ(T )
∑

i kF,ivF,i
(3)

l(T ) = vF τ(T ) (4)

ρ(T ) = ρ0 +AT 2 (5)

τ

ne
(J · ∇)J+

ne2τ

m∗ ∇Φ− ντ∇2J+ J = 0 (6)

∇ · J = 0 (7)

ν =
1

4
vF lmc (8)

Dν =
√
ντ =

1

2

√
lmclmd (9)

RE =
uL

ν
(10)

ea
∂2u

∂t
+ da

∂u

∂t
+∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f (11)

ea = da = α = γ = f = 0

a =



0 0 0
0 1 0
0 0 1




c =



0 0 0
0 ντ 0
0 0 ντ




β =




(
0
0

) (
1
0

) (
0
1

)

(
1
0

)
τ
ne

(
u2
u3

) (
0
0

)

(
0
1

) (
0
0

)
τ
ne

(
u2
u3

)




J⊥ = 0

J‖ = Lslipn · ∇J‖

η

s
= A

�
kbT

(12)

1



109

1 1
2
3
4
5

2
3
4
5

5.1INTRODUCTION

The endpoint for the move towards increasingly strongly correlated systems 
is transport in strange metal systems. In these systems it is widely believed 
that the quasi-particles that would otherwise constitute electrical flow are no 
longer present due to the exceedingly large electron-electron interactions18–20. 
As such, any definitive theory on the nature of these systems, and transport 
therein, is still lacking. One proposal inspired by string theory called AdS/
CFT posits on general grounds that transport is of hydrodynamic nature with 
an extremely low viscosity4,21. Observing such flow would present a major 
step forwards in understanding strange metal systems.

In this chapter we present a stepping stone towards hydrodynamic experiments 
in strange metal systems by proposing and examining experiments in the 
normal state Fermi liquid of Sr2RuO4. We believe that hydrodynamic flow is 
observable in this state due to a unique combination of lengthscales. Firstly, 
the normal state, albeit a Fermi liquid, is a strongly correlated one. This is 
evidenced by transport properties such as the strongly enhanced effective 
mass22–24 or the recently observed nematic behavior25. Secondly, the mean free 
path lmd can reach up to 1μm, remarkably long for an oxide superconductor. 
We will examine several device designs which can give clear evidence 
of hydrodynamic flow, and we will calculate the expected signatures in 
experiments. Finally, we will take a closer look at what such an experiment 
would look like for a strange metal system.

5.2	 Sr2RuO4 as a Hydrodynamic
	 System: the Relevant Length Scales
Sr2RuO4 is perhaps best known for its highly unconventional superconducting 
state emerging below a Tc of 1.5K. While we focus mainly on the normal state 
rather than the superconducting state (reviews into the superconductivity 
of Sr2RuO4 can be found here26–28), one aspect is worth pointing out. The 
superconducting state is highly sensitive to disorder due to its unusual 
pairing symmetry (the exact pairing symmetry is still an ongoing debate28). 
This mainly shows as a reduction of Tc for more disordered crystals. In fact, 
there is a clear relation between Tc and the residual resistivity ρ0, which serves 
as a proxy for the amount of disorder. The Tc is thus a useful diagnostic tool 
to determine sample quality. Samples with a Tc around 1.5K have a mean 



110

5

1 1
2
3
4
5

2
3
4
5

HYDRODYNAMIC TRANSPORT DESCRIPTION Sr2RuO4

free path (extracted from ρ0) of around 1μm. It is this extremely long mean 
free path which motivates the choice of Sr2RuO4 as a candidate for showing 
hydrodynamic transport behavior.

The first of the relevant length scales, or time scales which appear more 
naturally in the Navier-Stokes equations, are most easily calculated from the 
resistivity ρ(T). As Sr2RuO4 is a quasi-2D system, with resistivity anisotropies 
ranging from 102 to 103 24,26,29, we can use the following relation between the 
residual resistivity and a scattering time from Boltzmann transport29: 

Where δ is the distance between the RuO planes and e is the electron charge. 
Sr2RuO4 is a multiband system, with three bands called the α,β, and γ bands, 
so the summation runs over the Fermi vector kF and Fermi velocity vF of 
each of the bands, and in principle we also need to take into account that the 
scattering time can differ between the bands. For the latter, we will assume 
that the scattering time is independent of the band index, and treat this as an 
effective scattering time for the whole system: 

The Fermi vectors and velocities are readily available from literature22,23,30, as 
is the interplanar distance31. It turns out that the Fermi velocities of the three 
bands are roughly similar, so we can calculate a length from the scattering 
time by simply using an average Fermi velocity: 

To get a sense of the size of the device needed to observe hydrodynamic 
transport, we look at two different scattering processes: impurity scattering 
and electron-electron scattering. These two are the only relevant ones, as the 
low temperature resistivity behavior is purely quadratic in T 29: 

At low enough temperatures impurity scattering dominates the resistivity, 
as this is the only process which is temperature independent. As such, the 
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impurity length scale lmd is calculated using the residual resistivity ρ0 by 
extrapolating the resistivity to T = 0K. High quality Sr2RuO4 crystals can have 
a ρ0 as low as 0.1μΩ cm 24,32, which using the formulas above yield a length 
scale of lmd = 960nm.

The electron-electron scattering length lmc is extracted from the T2 term of the 
total resistivity by simply plugging in AT2 into equation 5.3. Using a value for 
A of 7.3 nΩ cm/K2 33 we find an electron-electron scattering length of lmc = 60 
nm at a temperature of 15K (see Fig. 5.2a). Note that this length scale has a T-2 
temperature dependence, meaning this length diverges towards T=0. In order 
to observe hydrodynamic effects not only is it needed that L < lmd, but also 
lmc < L. The former will be the main reason behind the size of the geometry, 
while the latter will determine the temperature window of the experiment. 
For a size of a few hundred nm, a temperature of around 15K will satisfy both 
conditions. 

Figure 5.2 Electron-electron length scale. 
a)The temperature dependence of the electron-electron scattering length scale associated with 
momentum conservation, calculated using the T2 coefficient and Fermi momenta and velocities 
given in the main text. The red dashed lines indicates the device width of 300nm. When lmc 
exceeds the device width, which occurs at 6.7K here, transport crosses over to the ballistic 
regime. b) The resistance data used for a FIB-structured Sr2RuO4 device used in this chapter to 
estimate the total scattering time τ. The resistance in normalized to the room temperature value 
R300. Source: Remko Fermin, private communication. 

a b
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5.3	 Hydrodynamic Transport
	 Simulations
5.3.1 Momentum Diffusion in the Navier-Stokes Equation

A more precise value for both these quantities, the geometry size and the 
appropriate temperature window, can be given first by examining the Navier-
Stokes equations appropriate for electron flow, and solving the numerically 
for the envisioned device geometry. As we will see, the earlier estimates turn 
out to be fairly accurate.

In general, the transport behavior will be some combination of hydrodynamic 
effects and regular Ohmic flow. As such, the Navier-Stokes equations dealing 
with hydrodynamic flow are modified in the following way2,12,17: 

Where n is the carrier density, e the electron charge, m* the effective mass, ν the 
kinematic viscosity, and τ the total scattering time. The variables to solve the 
equations for are the current density J(x,y) and the electrical potential Φ(x,y), 
where we use the quasi-2D nature of Sr2RuO4 to approximate as being fully 
2D. The addition of the final term encodes the Ohmic behavior in our system. 
Furthermore, we are looking for steady-state solutions which reduces the 
continuity equation to: 

The carrier density is calculated by using 4 electrons per unit cell22,34 and the 
volume of said unit cell31, yielding a density of n = 2.1*1028 m-3. For the effective 
mass m* we will use an average of the effective mass of each band of 8.5 me. 
The viscosity ν is related to the length scale lmc through2,12,17: 

Where we again use the averaged Fermi velocity vF. At a temperature of 15K, 
ν is roughly 0.005m2s-1. This quantity, together with the total scattering time, 
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is temperature dependent, and the relative sizes of the two will determine 
the type of electron flow in the device. The scattering time τ we will estimate 
from the total resistivity at the temperature of interest. For this we will use the 
resistance data below (see Fig. 5.2b). Note that we will use the full resistivity. 
The scattering time in equation 5.6 is introduced through the inclusion of 
resistivity via the Ohmic term. As such, this scattering time includes any 
process which contributes to the resistivity. Also it is interesting to note that 
for the resistivity the exponent of the temperature dependence goes down at 
higher temperatures29,34. This is unusual as in regular metals electron-phonon 
coupling sets in at higher temperatures which as a T5 dependence (below 
the Debye temperature which is above 400K for Sr2RuO4 35). The drop of the 
exponent is associated with the presence of a Van Hove singularity close to EF 
in the γ band, which enhances scattering rates36. How this enhancement fits 
into the momentum conserving versus momentum diffusing framework is 
unclear. Therefore we opt to overestimate the amount of momentum diffusion 
and use the total resistivity for the scattering time.

The data we use to calculate the total scattering time τ is resistance data, not 
resistivity data. We convert between the two by assuming a value for the 
residual resistivity ρ0 and scale the finite resistivity according to the resistance 
data. This also means that ρ0 is a free parameter of the simulations. We will use 
this to get a sense of the influence of disorder on the backflow.

Equation 5.6 features a new length scale as the coefficient of the Laplacian 
term: 

This length scale determines the size of the hydrodynamic effects. The size of 
the geometry needs to be large enough to accommodate this, while the size of 
the probes (the contacts used to measure the hydrodynamic effects) needs to 
be small enough to be sensitive to this size. For the estimates given in section 
5.2 Dν is 120nm. This is thankfully compatible with the earlier estimate for the 
geometry size. 

For the device geometry we propose to use the vicinity geometry, which was 
originally proposed and used to demonstrate the presence of hydrodynamic 
effects in graphene2. In this setup the current is injected into the device through 
a small opening (see Fig. 5.3a). When the flow follows solely Ohm’s law the 
current follows the edges of the device (Fig. 5.3b). When hydrodynamic effects 
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are present, a negative pressure directly next to the point of injection causes 
the formation of a backflow or whirlpool (Fig. 5.3c). As such, the current flows 
in a different direction depending on the transport regime, and the voltage 
across two contacts where the backflow can occur will have the opposite 
sign. The change of sign is the signature of crossing over from purely Ohmic 
behavior to hydrodynamic behavior.

Important in considering which geometry to use is considering what type of 
hydrodynamic flow is expected, codified in the Reynolds number: 

For low Reynolds numbers (<1) the flow will be laminar, while for high 
Reynolds number (>1000) the flow will be dominated by turbulent effects, 
with a crossover or pre-turbulent regime for intermediate values. The fluid 
velocity is given by the drift velocity u = J/ne, on the order of 10ms-1 for a 
total current of 1mA in mesoscopic devices. The typical length scale is order 
100nm, and using a viscosity of ν = 0.005m2s-1 gives a Reynolds number of 
RE = 2*10-4. This means the flow will be deep in the laminar regime. As such, 
many effects associated with hydrodynamics will not occur in Sr2RuO4. In 
particular, experiments relying on the merging several flow paths will not 
show the desired effects, as we demonstrate in Appendix 5A.

The geometry we use in our simulation has a main channel with a length 
L and a width H of 1μm and 300nm respectively. The current injector has a 
width W of 50nm, same for the voltage contacts used to measure the backflow 
voltage. Devices of Sr2RuO4 of such sizes can be fabricated using state-of-the-
art techniques, by first exfoliating a bulk crystal into film flakes and then by 
creating the structure with focused ion beam milling (FIB), which has been 
shown to preserve the sample quality as measured by ratio of low temperature 
and high temperature resistance37. Using thin flakes for the device, a necessity 
for using FIB, has the added benefit of increasing the current densities, which 
enhances the voltage signal. We will assume a flake thickness of 500nm for the 
conversion between current density and total current.

5.3.2 COMSOL Implementation

We numerically solve equation 5.6 for this geometry using the COMSOL 
Coefficient Form PDE interface. This package solves a general PDE of the 
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W

L

win

Iin

Iout

Vtop

Vb

b

a

c

Figure 5.3 The vicinity geometry. 
a) The geometry of the device as used in the COMSOL simulations. The current enters the 
main device of width W and length L through the contact Iin of width win and flows out of the 
device at Iout. The backflow voltage is measured between the contacts Vtop and Vbot. The sign of 
this voltage depends of the flow regime. In the diffusive or Ohmic regime shown schematically 
b) this voltage is positive as the current flows from Vtop to Vbot. In the hydrodynamic regime 
depicted in c) the sign reverses as the backflow reverses direction due to the formation of 
negative pressure immediately next to Iin.
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following form for a user defined geometry: 

Where u = (u1,u2,u3) is the vector containing the independent variables, 
(σΦ,Jx, Jy) in our case. This equation maps onto equations 5.6 and 5.7 by setting 
the coefficients as follows: 

The boundary conditions are set so that no current flows through the edges of 
the sample, and that the flow along the edges is allowed to slip, encoded via 
a slip-length: 

Where is the current perpendicular to the boundary, the current along the 
boundary, and n the vector normal to the boundary. The slip-length Lslip 
captures the interaction between the boundary and the fluid. Using a slip-
length allows us to interpolate between two commonly used boundary 
conditions in fluid mechanics: no-slip condition (Lslip = 0) and no-stress 
condition (Lslip to infinity). This does come at the cost of another parameter 
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whose value is initially unknown. An estimate for Lslip can be given through 
the following argument38: The slip-length should encode interactions with the 
boundary. Therefore for distances to the boundary smaller than the slip-length 
electrons are more likely to scatter off the boundary than off anything else 
(including other electrons). The estimate for the slip-length is then the smallest 
of the scattering length scales of the system, in our case the electron-electron 
scattering length. In our simulations we will use a temperature independent 
slip-length of Lslip = 50nm. At the current inlet and outlet we fix the potential, 
being 1mV at the inlet and 0mV at the outlet. Fixing the potential drop over 
the device turns out to give the least artifacts at the current inlet and outlet, 
though in principle it is also possible to fix the total current through the device 
and measure the potential drop between inlet and outlet.

The temperature dependence of the backflow voltage is solely determined by 
the temperature dependence of the viscosity ν and the scattering time τ. The 
temperature dependence of the former is T-2 via equations 5.4 & 5.8, and the 
temperature dependence of the latter is given by the resistance data used to 
extract the scattering time. For each temperature point we calculate these two 
quantities and use them to simulate the flow profile of the vicinity geometry. 
From this we calculate the backflow voltage between the two voltage contacts. 
Finally we express the result as a backflow resistance by dividing the backflow 
voltage by the total current injected. The reason to do this is that by fixing the 
voltage drop between the current contacts via the boundary conditions the 
total current can in principle vary as a function of temperature. This effect 
is separated out by using the backflow resistance as the final result. Then 
we repeat the simulations for various values of ρ0 to examine the effects of 
disorder on the result.

5.4	 Hydrodynamic Transport in
	 Sr2RuO4

5.4.1 Negative Backflow Resistance

The results of the Sr2RuO4 simulations are shown in Fig. 5.4 and Fig. 5.5. In 
Fig. 5.4a we show current distributions typical for the high temperature (Fig. 
5.4a) and the low temperature (Fig 5.4b) transport behaviour in the backflow 
section of the device. The distributions are qualitatively different, having 
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Figure 5.4 Sr2RuO4 Flow Profiles .
a,b) The flow profiles in the backflow section of the device at high temperature (T=25K) and low 
temperature (T=5K) resp. for ρ0 = 0.25μΩcm. The appearance of a whirlpool at low temperature 
marks a qualitative difference between the two transport behaviors. c) The flow profiles for Jy 
across the main channel of the device as a function of temperature for the same ρ0. At low 
temperature the flow follows a roughly parabolic profile which flattens out as the temperature 
increases. The red line in the inset shows the line on the geometry along which Jy is measured.

a b c

a b c

a b c
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an opposite flow direction in the two different regimes. The emergence of a 
whirlpool at low temperature is a sign of hydrodynamic dominated transport. 
The crossover between these two regimes is also apparent from the current 
distribution across the main channel of the device in Fig 5.4c. The high 
temperature calculation shows a nearly flat distribution, dropping near the 
edges of the device. As the temperature is lowered the distribution smoothly 
deforms towards the parabolic Poiseuille flow typical for hydrodynamic 
transport. The finite current at the boundaries is a result of the finite Lslip used in 
the simulations. The smooth evolution of the current distributions emphasizes 
that in general the transport is a mixture of both Ohmic and hydrodynamic 
effects, and any calculation needs to address them simultaneously.

The crossover from Ohmic to hydrodynamic transport, and the influence 
of disorder on the crossover, is apparent in both the forward and backflow 
resistances of the device shown in Fig. 5.5. In Fig. 5.5a we show the total or 
forward resistance of the device, calculated by measuring the total injected 
current and dividing by the 1mV potential drop fixed as boundary conditions. 
At low temperatures the resistance shows an upturn with decreasing 
temperature, departing from more usual metallic behavior at higher 
temperatures. This upturn is reminiscent of the Gurzhi effect10, one of the 
signs of hydrodynamic behavior.

Figure 5.5 Sr2RuO4 Backflow resistance. 
a) The total resistance of the device as a function of temperature for multiple values of ρ0, using 
the current flowing through the red lines shown in the inset. The upturn in the resistance is a 
sign of hydrodynamic effects10.  b) The backflow resistance for the Sr2RuO4 vicinity geometry 
for various values of the residual resistance ρ0. A positive resistance is indicative of the diffusive 
regime, a negative resistance of hydrodynamic regime (see Fig. 5.3). The red line indicates the 
temperature below which ballistic effects set in2,39 (see Fig. 5.2a). The inset shows the vicinity 
geometry, with the red lines showing where the voltage is measured. 

a b
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The crossover is perhaps most evident when looking at the backflow resistance 
shown in Fig. 5.5b. At higher temperature we find a positive backflow 
resistance, consistent with Ohmic transport. As the temperature drops, the 
backflow resistance eventually drops below zero, indicating a crossover into 
the hydrodynamic regime. The temperature at which the zero crossing occurs 
depends on the level of disorder in the device, encoded in ρ0. For clean samples 
(ρ0 = 0.1 μΩ cm) the crossover occurs at T=19K, a temperature which drops to 
T=9K for ρ0 = 1μΩ cm. This is a surprisingly broad range of disorder levels at 
which the crossover should still be observable. While this wide margin seems 
to offer some leniency for the fabrication processes of the samples, some care 
should be taken with this result. At the top of this range (ρ0 = 1μΩ cm) the Tc 
of bulk Sr2RuO4 has dropped to zero due to disorder26. This dramatic change 
due to disorder warrants a more careful look into the appropriate transport 
description when lmc roughly equals lmd. 

When the temperature drops even further, the geometry size becomes the 
smallest length scale of the system. The flow becomes predominantly ballistic 
characterized by an upturn in the backflow resistance as the temperature 
is reduced2,39. While the backflow resistance remains negative during this 
upturn, the system is in a quasi-ballistic regime where interaction still play a 
role39. Fully ballistic transport sets in when the backflow resistance becomes 
positive. The physics of the crossover between hydrodynamic and ballistic, 
governed by the Knudsen number Kn = lmc/L, is not captured in our transport 
description., though we can estimate when it occurs: lmc = L occurs at roughly 
6.5K, marked by the red dashed line in Fig. 5.5b.

5.4.2 Boundary Effects: the Slip-length

There is still one free parameter left unexamined: the slip-length Lslip. To study 
its effect on the backflow voltage we fix the total scattering time to τ = 1*10-10 
s and the temperature to T=15K so that we are in the hydrodynamic regime 
where we expect Lslip to have the largest effect. We then vary Lslip over a range 
of 1nm to 1μm. Fig. 5.6a,b show the backflow patterns for both Lslip = 1nm 
and Lslip = 1μm. We find that while the exact size and shape of the whirlpool 
does change with the slip length, its presence is remarkably stable against a 
changing Lslip. Over a range of at least 3 orders of magnitude we still expect a 
negative backflow resistance. To check that the slip length is indeed properly 
incorporated we show the flow distributions across the main channel in Fig. 
5.6c and find that indeed the curvature of the distribution flattens and the 
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Figure 5.6 Lslip dependent Flow Profiles.
a,b) The flow patterns in the backflow section of the device for Lslip = 1nm and Lslip = 1μm 
respectively. Despite the large difference in Lslip the flow direction remains stable. c) The flow 
profile across the main channel of the device for several values of Lslip. The flattening of the 
profile and the increasingly large current along the boundaries are consistent with a gradual 
change from no-slip conditions to no-stress conditions.

a b c

a b c

a b c
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current at the boundary increases for larger Lslip, consistent with a change from 
no-slip boundary conditions (Lslip = 0) towards no-stress boundary conditions 
(Lslip towards infinity). The changes in the current distribution due to the slip 
length imply that the forward resistance does not have a similar stability as 
the backflow resistance seems to have.

These two predictions about the forward and backflow resistances are 
confirmed in Fig. 5.7 where we show the effect of Lslip on the forward and 
backflow resistance. The total resistance shows a strong dependence of the slip 
length, as we expected from Fig. 5.6c. The drop in resistance as Lslip increases 
can be attributed to the decreased curvature of the flow profile, as the friction 
between adjacent fluid layers decreases when their relative velocity decreases. 
As anticipated from Fig. 5.6a,b the backflow resistance indeed remains negative 
over the full range of slip lengths. Not only that, its magnitude also remains 
nearly unchanged. The remarkable stability of the backflow resistance against 
the slip length improves the feasibility of a vicinity geometry experiment. 
Determining the slip length experimentally is quite difficult, especially when 
the flow profile cannot be directly measured. The fact that Lslip does not 
influence not only the sign but also the magnitude of the backflow resistance 
eliminates the need for an accurate determination of Lslip. 

These result together indicate that hydrodynamic effects on the low temperature 
transport of Sr2RuO4 are not only possible in principle, but also fall within the 
technical abilities of modern experimental techniques. The approach we use 

Figure 5.7 Lslip dependent resistances. 
a) The total resistance of the device as a function of slip length. The resistance shows a strong 
dependence resulting from the changing current distribution as the slip length changes. b) The 
backflow resistance as a function of slip length. Remarkably, the backflow resistance remains 
nearly constant over a wide range of values for Lslip, despite the changes in the total resistance. 

a b
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to calculate the backflow resistance also offer a degree of internal consistency 
with future experiments, as most important input parameters (such as the 
residual resistivity ρ0 and the T2 coefficient) can be extracted from a simple 
R-T curve of the crystal the device is created from. The use of COMSOL 
allows for more realistic simulations as the exact device geometry is more 
easily incorporated in the simulations. Since the existence of hydrodynamic 
effects rely heavily on the presence and the strength of electron correlations 
the observation of the effects described above offer a novel window into the 
correlated physics of Sr2RuO4. It would also represent a step forwards for the 
use of hydrodynamics in the description and probing of correlated electron 
systems, for which other transport frameworks may fall short. 

5.5	 Towards Strange Metal
	 Hydrodynamics
5.5.1 Transport Parameters

One example of such a system, and an extreme example of a correlated 
system, is a strange metal. This metallic phase, characterized by a linear-in-T 
resistivity for all temperatures, is most well known as the normal state of 
cuprate superconductors at optimal doping19,40, although it is also found in 
other strongly correlated superconductors41–43. One important aspect of the 
linear-in-T resistivity is that it violated the Mott-Ioffe-Regel limit, defined as 
the resistivity at which the mean free path is on the same order as the lattice 
constant44. This violation seems to imply that the current is not carried by 
the quasi-particles we have come to expect from a Fermi liquid. This striking 
hypothesis is supported by ARPES experiments which find a clear lack of 
quasi-particles18,20. How to deal with this absence of quasi-particles and how 
to describe the (transport) properties of such a system is one of the most 
profound mysteries of correlated electron physics.

One proposal makes use of the AdS/CFT correspondence4,21. This 
mathematical machinery creates a bridge between certain models in general 
relativity (Anti-de Sitter spaces, the AdS part) and certain quantum theories 
(conformal field theories, the CFT part). The idea being that a hard problem 
on one side of the bridge translates to a more tractable problem on the other 
side. Then after solving the more tractable problem, the solution is translated 
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back. In particular, one can create metallic systems with this construction with 
properties reminiscent of strange metal behavior, particularly the linear-in-T 
resistivity. Additionally, transport in these systems is governed by the laws 
of hydrodynamics. In what follows we sketch what an experiment using the 
vicinity geometry would look like for a strange metal system with properties 
deriving from the AdS/CFT correspondence. We will follow the review ref4 
when determining the relevant hydrodynamic system parameters.

A core concept of the AdS/CFT strange metal is minimal viscosity. Metals in 
this phase have a very particular relation between their dynamic viscosity η 
and their entropy density s: 

Where A is some numerical prefactor, equal to 1/4π in the AdS/CFT setting, 
although real system have a value closer to 1. The entropy density takes a 
Sommerfeld like form of 

with n the number density, and μ the chemical potential. This leads to the 
following expression for the kinematic viscosity ν which we will use in our 
simulations: 

Where we used the mass density ρ = nme to convert the dynamic viscosity η to 
the kinematic viscosity ν. Plugging in the numbers, we find a viscosity of ν = 
2*10-7m2s-1, using μ = 1eV appropriate for optimally doped cuprates45, 4 orders 
of magnitude lower than the Sr2RuO4 case! This also means that the Reynolds 
number RE is 4 orders of magnitude larger, meaning it is on the order of 1. 
This means that pre-turbulent phenomena might be an possibility.

There is a scattering time associated with the minimal viscosity under the 
name of Planckian dissipation: 
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However, even a strange metal system is not immune to disorder scattering. 
In fact, the cuprates, perhaps the most well-known example of a strange metal 
system, is notorious for its high levels of disorder. The highest quality cuprate 
samples have a residual resistance of ρ0 = 1.5μΩcm in the case of La2-xSrxCuO4 46. 
This is remarkably low for a cuprate, but still an order of magnitude worse than 
Sr2RuO4. Translating this to a scattering time, this corresponds to τ = 1.8*10-12s.

5.5.2 Absence of Whirlpool Formation

In our simulations for the strange metal system, we will use the same geometry 
size as the Sr2RuO4 case, as this size is already pushing the limitations of 
modern FIB techniques. Unlike the Sr2RuO4 we will assume a temperature 
independent scattering time given by the residual resistivity ρ0, representing a 
more optimistic scenario compared to including Planckian dissipation into τ. 
Also unlike the previous simulations we no longer fix the potential drop over 
the device. Instead we fix the total current flowing through the device. As such 
we have better control over the Reynolds number during the simulations, 
and we can avoid accidentally entering the turbulent regime as a result of a 
sudden increase in the current due to a drop in the forward resistance when 
hydrodynamic effects take over. The drawback is that fixing the current 
through the device is more susceptible to artifacts in the current distribution, 
as can be seen in Fig 5.8a, where the flow through the main channel of the 
device is skewed to one side of the channel.

Using a value of ν = 1*10-7m2s-1, τ = 1.8*10-12s, and Lslip = 50nm, our simulation 
yields the flow distribution shown in Fig. 5.8a. This flow profile is consistent 
with Ohmic transport, meaning the higher levels of disorder has drowned out 
the effects of the minimal viscosity. To observe a sign of the minimal viscosity, 
we show the flow profile for τ = 1.8*10-10s and τ = 1.8*10-9s in Fig. 5.8b,c. In the 
former case the first signs of a whirlpool emerge, but it fails to encompass the 
entirety of the backflow section, meaning the backflow resistance is most likely 
still positive in this case. Only when the scattering time is increased higher 
does the whirlpool cover the full width of the geometry, and do we expect 
a negative backflow resistance. It is also only for these values of τ that we 
see the effects of minimal viscosity. The higher Reynolds numbers associated 
with this flow shows itself through the emergence of additional whirlpools 
on the left of the current injector. In this case it is worth considering adding 
additional voltage contacts on the left of the current injector to check whether 
these additional whirlpools indeed appear.
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a

b

c

Figure 5.8 Minimal Viscosity Flow Profiles.
Flow profiles in the vicinity geometry using minimal viscosity and a scattering time of τ = 
1.8*10-12s, 1.8*10-9s, and 1.8*10-8s (a,b,c respectively). The extremely low viscosity requires 
large scattering times for hydrodynamic effects to appear.
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The difficulty of observing hydrodynamic flow for a minimal viscosity 
system is summarized in Fig 5.9, where we show the backflow resistance as 
a function of scattering time for the above simulations. A negative backflow 
resistance would require extremely large scattering times, unrealistic not only 
for cuprate systems but for any system. These difficulties can be traced back to 
the length scale Dν over which hydrodynamic effects can be seen. For systems 
much larger than this, Ohmic effects dominate. For ν = 1*10-7m2s-1 and τ = 
1.8*10-12s, realistic values for a cuprate system, Dν = 5Å, barely two unit cells! 
Only when τ increases by several orders of magnitude does this length scale 
approach the system size. It turns out that the extremely low viscosity might 
actually be a drawback in a system that also includes disorder. The linear 
temperature dependence of ν is too slow to make much of a difference, even 
when ignoring any detrimental temperature dependence of τ.

Figure 5.9 Minimal Viscosity Backflow Resistance. 
The backflow resistance as a function of scattering time using a viscosity ν = 1*10-7m2s-1 in 
line with minimal viscosity. The inset shows the backflow resistance for the highest values of τ, 
where the resistance changes sign.
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These results stress the importance of disorder in strange metal systems. Taking 
a straight forward approach to the role of disorder, similar to the approach for 
Fermi liquid systems, we find that hydrodynamic effects get washed out by 
disorder for a strange metal system. A more detailed examination of disorder 
in holography or other strange metal descriptions will need to determine 
whether such a straight-forward approach is warranted. Despite this negative 
result, we still believe it is worth performing such an experiment for a strange 
metal system. Given how little is known for certain about these system, 
any new information is valuable even if it is the absence of hydrodynamic 
transport. We also remark that this result is a consequence of the proposed 
minimal viscosity. In the hypothetical case that the viscosity of a strange metal 
is more in line with that of a Fermi liquid (such as Sr2RuO4) hydrodynamic 
transport would become more likely. 

5A	 Appendix
The low Reynolds number for a Fermi liquid (RE ~ 1*10-4, see Chapter 5.3) 
limits the design space for experiments attempting to show hydrodynamic 
transport. An illustrative example is the Tesla valve47(Fig. 5A.1), a one-way 
valve without any moving parts. The operating principle relies on splitting off 
the flow into a main channel and an arced section, and merging again the two 
parts of the flow. How much flow is split off and how the two flows merge is 
fully controlled by the exact design. When properly designed, the Tesla valve 
has an easy axis, where only a small part is split off and the flow resistance 
is low (Fig. 5A.1a), and a hard axis, where more flow is split off and the flow 
resistance is higher (Fig. 5A.1b). However as we demonstrate this design is 
unsuitable for the demonstration of hydrodynamic transport in Fermi liquids, 
as it relies on higher Reynolds numbers.

To do so we will simulate the liquid flow through a nm sized Tesla valve. 
We will use a viscosity typical of ν = 0.005m2s-1 typical for Sr2RuO4 and vary 
the Reynolds number by varying the flow velocity. We will only simulate 
hydrodynamic behavior, meaning we will omit the last term of eq. 5.6 from 
the simulations. This allows us to use the standard COMSOL hydrodynamics 
package, speeding up the calculation drastically. We will pick the size of 
the Telsa valve such that inequality 5.1 is still satisfied, despite momentum 
diffusion being absent from the simulation. The width of the Tesla valve we 
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Easy Direction Hard Direction
a b

Figure 5A.1 Tesla Valve Geometry. 
Sketch of the Tesla valve geometry and the flow along the easy (a) and the hard (b) flow 
direction. The difference in split and subsequent merger of flow between the two directions 
result in a different resistance between the two.

Easy Direction Hard Direction

Low 
Reynolds 
Number

High 
Reynolds 
Number

a b

c d

Figure 5A.2 Tesla Valve Flow Profiles. 
Flow profiles through the Tesla valve for the easy (a,c) and hard (b,d) directions for RE = 1*10-4 
(a,b) and RE = 316 (c,d). Only for the higher RE does the proposed diode function occur.
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set to be 100nm. The length of the loop arm is 200nm, and the loop itself has 
an inner radius of 50nm. The flow velocity will range from roughly u = 10ms-1 
(RE ~1*10-4) to u = 1*107ms-1 (RE ~1*102).

In Fig. 5A.2 we show the results for these simulations for flow in the easy and 
hard direction for both low Reynolds number (RE = 1*10-4, Fig. 5A.2 a,b) and 
high Reynolds number (RE = 316, Fig. 5A.2 c,d). We find that in the low RE 
case the flow profiles in the easy and hard direction look very similar, meaning 
that their associated flow resistances are also very similar. This implies that in 
this case the Tesla valve does not act as a diode as it was designed to do. The 
case of high RE is quite different. Here, the flow profiles show large differences 
between the two flow directions. This can be attributed to the formation of 
whirlpools at the points where the flow is split off and merged. The size of the 
whirlpools depend significantly on the overall flow direction. As such we can 
expect the Tesla valve to function as a diode in this regime.

We can put the expectations about diode function on more solid ground by 
quantifying the flow resistance for each calculated flow profile. This can be 
done by using17 

Where ν is the kinematic viscosity, ρ the fluid mass density, d the device 
thickness, and I the total current flowing through the device. The dependence 
of the exact flow profile is captured by taking the integral running over the 
full geometry of the derivatives of the fluid velocity vx,y with respect to the 
spatial coordinates x,y. We can use this expression to define a measure of how 
well the Tesla valve acts as a diode, the diodicity: 

This quantity solely depends on the shape of the fluid profiles, as all the 
prefactors to the integral in eq 5A.1 cancel out (the total current we keep the 
same when switching between easy and hard flow axis). A diodicity of D 
= 1 means there is no difference between the flow directions, and the valve 
does not work, while D > 1 means the Tesla valve works as intended. For 
each Reynold number we simulate we calculate the diodicity D, and track 
its evolution as a function of Reynolds number. The results are shown in Fig. 
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5A.3. We find that at low Reynolds numbers D = 1, as we anticipated from Fig. 
5A.2 a,b. Only at roughly RE = 20 does the diodicity deviate from 1, reaching 
a value of 2.14 for Re = 316, the flow shown in Fig. 5A.2 c,d.

From this we conclude that the Tesla valve only works for moderate Reynolds 
number >10. The space to change the Reynolds number for a Fermi liquid 
system is only limited, meaning this geometry design is unsuitable for Sr2RuO4 
systems. The limited space is a result of all three components of the Reynolds 
number being subject to limitations. The system size L is limited by having to 
satisfy inequality 5.1, typically meaning there is at most 1 order of magnitude 
design space. The fluid viscosity ν is a system property whose temperature 
dependence is of little help as there is only a limited temperature range over 
which hydrodynamic flow is present. This leaves the fluid velocity v, given by 
the current through the device. A fluid velocity of roughly 10ms-1 (RE ~ 1*10-4) 

Figure 5A.3 Diodicity. 
Diodicity D of the Tesla valve as a function of the Reynolds number RE. The onset of diode 
functionality (D>1) only occurs around RE=20, much larger than the RE=10-4 typical for flow 
in a Fermi liquid system.
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corresponds to a total current of roughly 1mA. This would have to increase 
by 4 order of magnitude to 10A to start seeing some sort of diode function, a 
current which a mesoscopic device will typically not survive.

This is exemplary for the limited design space for hydrodynamic experiments 
for Fermi liquid systems caused by an extremely low Reynolds number and 
little room to increase it. Hydrodynamic flow is most pronounced when 
whirlpools start to form, an effect unique to the hydrodynamic regime. These 
only start to appear generically at moderate Reynolds numbers. Deep in 
the laminar regime the geometry has to be design specifically to allow for a 
whirlpool to form. The vicinity geometry achieves this by forcing the fluid to 
flow through a very narrow constriction, whereas the Tesla valve solely relies 
on the Reynolds number for whirlpool formation.

Interestingly, the minimal viscosity proposed for strange metals opens more 
design space at first glance. The extremely low viscosity means that the 
Reynolds number is automatically higher, already having RE ~1 for v ~10ms-1, 
a velocity at which a Fermi liquid is still deep within the laminar flow regime. 
The effects of this comparatively high Reynolds number on the formation 
of whirlpools is clear by comparing Fig. 5.4b and Fig 5.8c This is however 
discounting the limits placed by the presence of momentum diffusion 
discussed in Chapter 5.4. 
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