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The underdoped cuprates are infamous for their complex electronic structure in both 
real and momentum space, such as a pseudogap, disjointed Fermi arcs and nanometer 
inhomogeneity amongst others. As the doping increases to the overdoped regime the 
complexity in momentum space decreases through the disappearance of the pseudogap 
and the restoration of a full Fermi surface, while the real space electronic structure 
remains highly complex as discussed in Chapter 3. To try to explain how these two 
distinct views on the electronic structure fit together, we probe the momentum space 
structure through quasi-particle interference, thereby staying closer to real space 
inhomogeneity observed by STS. We implement a state-of-the-art self-supervised 
machine learning algorithm to suppress the noise present in the QPI images. The 
noise suppressed images reveal a full Fermi surface with an anti-nodal band shifting 
rigidly with increased doping. They also reveal a backbending of the band due to the 
superconducting gap and features around the gap edge associated with an additional 
density wave. These findings raise new questions on how the different probes of the 
electronic structure fit together.

Quasi-particle Interference in Overdoped 
(Pb,Bi)2Sr2CuO6+δ: Application of Noise 
Suppression through Self-Supervised 
Machine Learning4

This chapter contributes to
Tromp et al. in preparation
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QPI IN OVERDOPED (Pb,Bi)2Sr2CuO6+δ4

4.1 Introduction

Of all electronic phases exhibited by the cuprate family, superconductivity in 
the overdoped regime was often assumed to be relatively straight-forward1, 
assuming it to be a d-wave BCS superconductor originating from a Fermi 
liquid normal state, supported by observations of a full Fermi surface2–4 
and quantum oscillations5 absent in the underdoped regime. Recent results 
however have shown that the overdoped cuprates are less conventional 
than this early consensus. In particular, the superconducting state has an 
anomalously low superfluid density6–8 and a large uncondensed spectral 
weight and the normal state shows residuals of strange metal phase at optimal 
doping9. Furthermore, superconductivity is not the only ordered state in the 
overdoped regime. The 4a0 charge order found in the underdoped regime10,11 
extends into the overdoped, gradually weakening as the doping is increased 
further10. Close to the edge of the superconducting dome a different charge 
order seemingly appears10,12, concomitant with ferromagnetic fluctuation13,14. 
Lastly, the breakdown of superconductivity itself is highly unconventional as 
we have seen in the previous chapter.

The disappearance of superconductivity in Bi2Sr2CuO6+δ occurs concomitantly 
with a Lifshitz transition3,15. The flat dispersion associated with this transition 
has been shown to amplify superconducting fluctuations4, and plays a major 
role in the formation of a granular superconductor16. Previous STM results 
have shown patches of charge order with a wavelength closely associated with 
the van Hove Singularity (vHS)12,17,18 accompanying the Lifshitz transition, 
although it should be pointed out that there is little signature of this in 
momentum space and RIXS study disagree on the wavevector10. The spectral 
feature of the vHS, a peak in the density of states, has been shown to be highly 
inhomogeneous, shifting in energy, and disappearing and reappearing over 
a nanometer length scale (see Chapter 3). This then poses the question how 
the real space electronic structure, featuring a highly inhomogeneous LDOS, 
unusual vHS behavior, and nanometer sized puddles of charge order and 
metallic behavior in the superconducting state, and the momentum space 
electronic structure, featuring a full single band Fermi surface, no pseudogap, 
and no Fermi surface reconstruction due to density waves, combine to form 
one consistent view.
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4.1INTRODUCTION

The ideal tool to bridge this gap between real space and momentum space is 
quasi-particle interference (QPI), being a real space nanoscale measurement 
used to extract momentum space information. QPI has a long history of 
valuable insights into the underdoped cuprates, particularly by mapping the 
gap structure19,20 and observing the transition from Fermi arcs to a full Fermi 
surface2,21. Furthermore, Fourier transform based analyses of STS data has 
yielded key results into the charge density and pair density waves11,22–25 of this 
doping regime. An advantage of QPI over other momentum space probes is 
the ability to directly access unoccupied states , even at low temperatures. This 
is especially useful when characterizing the vHS. ARPES results have shown 
the Lifshitz transition associated with the vHS3,15 but cannot map the anti-
nodal dispersion near this transition as this requires access to the unoccupied 
states. Furthermore, for momenta farther away from the anti-node or for 
doping levels further away from the Lifshitz transition the dispersion ARPES 
measures is heavily influenced by the gap, and extracting information about 
the normal state dispersion requires elevated temperatures26,27. This too can be 
circumvented by access to the unoccupied states for which QPI can measure 
the dispersion for energies high enough that the gap no longer plays a role.

In this chapter we will characterize the anti-nodal dispersion electronic 
strucute of the overdoped cuprates by performing QPI experiments on 
samples of the single layer cuprate (Pb,Bi)2Sr2CuO6+δ with Tc’s of 23K, 12K, and 
3K (labeled OD23K, OD12K, and OD3K resp.). To do so, we will implement a 
self-supervised machine learning model to suppress pixel-independent noise 
present in the QPI images. Our data reveals a full Fermi surface, consistent 
with previous reports in this doping range2,15, and a rigid shifting of the bands 
with increased doping. Furthermore, we observe a back-bending of the band 
due to the superconducting gap and shoulder-like features near the gap edge 
previously associated with a coexisting density wave27. We also note the 
discrepancies between various methods for counting the number of carriers, 
such as the Luttinger count, the Hall carrier density, or the use of universal 
doping vs. Tc relations. Finally, we point out that there is no clear candidate 
for the ordered state responsible for the features around the gap edge.
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4.2 Methods
4.2.1 QPI Measurements

We perform the STS measurements using an ultra-stable home built cryogenic 
STM setup28. All samples are cleaved at cryogenic temperatures before being 
loaded in the STM head held at a temperature of 4.2K where all experiments 
are performed. The samples show an atomically flat surface revealing the Bi-O 
plane (see Fig. 4.1a for an example). The STS measurements were taken over a 
50x50 nm2 field of view (45x45 nm2 for OD23K) using a fine grid resolving the 
atomic lattice. The real-space conductance layers (Fig. 4.1b) show nm-scale 
modulations of the LDOS consistent with previous results. All data is drift 
corrected using the Lawler-Fujita algorithm24,29,30 (known as geometric phase 
analysis in other electron microscopy communities). As in Chapter 2, we 
normalize the conductance layers with their corresponding current layers by 
taking dI/dV(r,eV)/(I(r,eV)/V) before taking the FFT to reveal the QPI patterns. 
Figs. 4c,d show the FFT of the dI/dV(r,eV) and the normalized dI/dV(r,eV)/
(I(r,eV)/V) for the OD12K sample at E = 10meV side by side. Note that the 
signal is sharper in Fig 4.1d but loses definition close to the Bragg peaks.

4.2.2 Self-supervised Machine Learning for Noise Suppression

The QPI signals shown in Fig. 4.1 show a considerable amount of noise, making 
analysis of these images more difficult. The first remedy to limit the amount 
of noise is to measure longer, take longer or more averages of the spectra that 
form the initial conductance map. The success of this approach is limited by 
the maximum measurement time, which is already pushed when taking QPI 
measurements due to the size of the FOV. An alternative would be to smooth 
the QPI average by taking a moving average over the image with some window 
shape (typically a box or Gaussian filter). This however broadens the features in 
the image, undoing the gain in sharpness by taking the dI/dV(r,eV)/(I(r,eV)/V).

To suppress the noise in the QPI images while preserving the sharpness we 
implement a machine learning algorithm for noise suppression or denoising. 
The core principle behind machine learning denoising, or image reconstruction 
in general, is that the structure of an image can be described with a number of 
parameters that is much less than the number of pixels of the image. As such, 
it should be possible to learn the underlying structure and reconstruct a noise 
free (or at least a noise suppressed) version of the image.
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A neural network can be seen as a function f with an input xi and output yi 
governed by a set of parameters θ. The quality of the output yi is given by 
the error or loss E calculated by comparing to the desired output or label ŷi 
through the loss function L: 

ba

c d

3 nm 3 nm

Figure 4.1 Bi2201 Topography and LDOS. 
a) High resolution topography of a 15x15 nm field of view of the OD12K sample. The atomic 
lattice of the Bi-O plane is clearly resolved with the Pb dopants visible as bright white dots. b) 
LDOS modulations at E = 10 meV in the same FOV as a). c,d) QPI signal of a 45x45 nm FOV 
of the OD12K sample at E = 10 meV revealed by taking the FFT of the dI/dV layer and the (dI/
dV)/(I/V) layer respectively after drift correction. The red crosses indicate the Bragg peaks from 
the atomic lattice.

(4.1)E = L(ŷi, yi) = L(ŷi, f(xi|θ)) (1)

1
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The best output yi is then the output that minimizes the error E. Typically 
this is not the case of the output yi given by the initial set of parameters θ. 
To minimize E, during each cycle or epoch the loss is calculated and the 
parameters θ adjusted to yield a lower loss in the next epoch through gradient 
descent. When the error has been minimized the network has been trained. 
When the dataset consists of multiple elements, such as multiple QPI images, 
the dataset is often split into batches. During an epoch each image within a 
batch is fed to the network and a loss over the batch is calculated, after which 
the parameters θ are updated and the next batch is used. Over the course 
of one epoch each element of the dataset has been fed to the network. It is 
common practice to split off a part of the dataset into a validation dataset. 
The loss of the network over the validation network is calculated at regular 
intervals during training, but is not used to update the network parameters. 
As such, the loss over the validation dataset, or validation loss, represents 
the performance of the network on data not used for training, and is closely 
monitored during the training process.

The most common approach is to use supervised learning31–33, i.e. using pairs 
of corrupted and clean images as inputs and labels (Fig. 4.1a). The network 
is trained by minimizing the loss between the clean example and the output 
when a noisy image is inputted. When a corrupted image without a clean 
example is then fed to the network, the output will be a noise-free version of 
the input provided the underlying structure of the input is similar enough to 
that of the images used to train the network. Recent work has shown that the 
clean images don’t have to be clean at all34. Having multiple noisy version 
of the same image can be enough to learn the structure of the image. If one 
characterizes the noise well enough to generate artificial noise similar enough 
to the noise in the original image, one can use this to generate the necessary 
training data to train the network and denoise the original data.

The issue with this approach is that it requires training data that is often not 
available in a scientific setting. Clean versions of the images are most often 
not available as scientific measurement setups are often already operating at 
their limits. Even acquiring multiple noisy copies of the same image is often 
not possible due to time constraints or changing experimental conditions. To 
work with STM data we need a self-supervised approach, i.e. one that doesn’t 
require training data. Instead, we will assume some structure of the noise to 
denoise the QPI images. The method we implement here, called Noise2Void 
or Noise2Self36,37, assumes that the noise is pixel independent, meaning that 
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Figure 4.2 Self-supervised denoised QPI images. 
a) Schematic of the traditional, supervised approach noise suppression. The network is trained 
on a pair of noisy inputs and clean targets. A different noisy image not part of the training 
data can then be denoised using the network. b) Schematic of Noise2Self. The input and targets 
now consist of a noisy image with some pixels masked and those masked pixel. The trained 
network can now be used to denoise the original image. a,b adapted from Ref. 35. c) DnCNN 
architecture used consisting of 17 layers containing each a convolutional (Conv) layer with 
64 features, batch normalization (BN, expect the first layer), and a ReLU activation function. 
These are followed by a convolutional layer generating the output. d) Example of QPI data 
before denoising (OD12K sample, E = 10 meV, same as Fig. 4.1d). e) Symmetrized version of 
d) for comparison to f). f) Denoised and symmetrized using d) as input. The noise is clearly 
suppressed with the image slightly blurred.
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the strength of the noise on one pixel will not tell anything about the strength 
of the noise on other pixels, neighbors included. For the mathematical 
reasoning behind this approach and details of the implementation we refer to 
the original papers36,37. The idea of Noise2Self (Fig. 4.2b) is to alter the value 
of some pixels during each training step (usually setting the pixel to zero or 
to the average of its neighbors). The network will then assign new values to 
those pixels and the training loss is evaluated at those pixels. Which pixels 
are altered varies during training. The network will fill in the blanks of the 
missing pixels using the underlying structure it learned, without any pixel 
independent structure as it doesn’t have access to the pixel it is trying to fill in. 
As such, the network can reconstruct a clean version of the noisy image. This 
approach to noise suppression has already found successful application in 
tomography35,38 and can also be used to optimize parameters for certain filters 
or dimension reduction techniques37.

It is important that this approach only works for pixel independent noise. 
Anything else will be interpreted as part of the structure of the image. If 
there is structured noise present in the image, for example some repeating 
pattern, Noise2Self will preserve this structure, while approaches based on 
clean training data can also suppress this type of noise36. Most notably this 
also holds for any artifact that might be introduced into the data during the 
measurement.

The network architecture we will use is a DnCNN network32 (see Fig. 4.2c), 
similar to the one used in the original Noise2Self paper37, implemented using 
Python’s TensorFlow package. We will use 17 layers, with 64 features each. The 
loss is calculated using the mean squared error, and we will use a learning rate 
of 0.01 during training. The data is layer-wise mean subtracted before taking 
the FFT and afterwards normalized to [0,1] layer-wise. The QPI data is split 
into batches of 10 images which are shuffled each training step. The network 
is trained for 100 epochs. The noise suppressed images are then symmetrized. 
An example of the data used as output and fully processed data is shown in 
Figs. 4.2d-f. The algorithm has worked as intended, with the noise in Fig. 4.2f 
suppressed compared to Fig. 4.2d,e. The reconstruction is not perfect, as the 
image is slightly blurred compared to the inputs. 
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4.3 Results
4.3.1 Fermi surface

We start by looking at the QPI signal at E = 0meV, showing the interference 
from states on the Fermi surface. In this doping range we expect a full Fermi 
surface2,21, meaning the QPI signal will trace the shape of the Fermi surface 
with q = 2kF. The E = 0meV layers shown in Fig. 4.3a-c for the OD3K, OD12K, 
and the OD23K samples indeed have a signal at q = 2kF consistent with a full 
Fermi surface of a single band. In particular there is no sign of octet model 
scattering vectors characteristic of the pseudogap in the underdoped regime. 
The horizontal and vertical line through the center in Fig. 4.3b are the result of 
an unknown artifact only present in the OD12K measurement. Note that the 
signal at the anti-node next to the Bragg peaks are very faint or absent. This 
seems to be the result of two factors: first, these scattering vectors are already 
weaker in the dI/dV QPI signals (see Fig. 4.1c) and second, these vectors 
become even weaker after normalizing to (dI/dV)/(I/V). The reason behind 
these two factors are unclear. Fainter signal at the anti-nodes can be the result 
of a combination of details of the scattering process and conditions of the STM 
tip. Why normalization weakens the signal at large q vectors is also not clear, 
though it should be noted that something similar happens in the rhodates in 
Chapter 2, as seen in Fig. 2A.1.

We trace the Fermi surfaces by fitting the peak position of the q = 2kF signal 
along the cuts indicated by the red lines in Fig. 4.3c. The result is shown in Fig. 
4.3d, where we have divided the values for the q vectors by 2 and rotated them 
to show the band from which the scattering originates in the 1st Brillouin Zone 
(BZ). We also show a tight binding fit2,27 to the Fermi surfaces. There is very 
little difference between the 3 Fermi surfaces and their fits, especially for the 
OD3K and OD12K samples. This is due to the fact that the band only moves 
very little for these doping values, especially in the nodal region, combined 
with the uncertainty of the fit when extracting the Fermi surface.

To see the shift of the band as a function of doping we plot the ε0 parameter of 
the tight binding model, which governs the band shift, as a function of doping 
in Fig. 4.4a, together with the ε0 parameters determined by He et al.2 with the 
QPI patterns of the same (Pb,Bi)2Sr2CuO6+δ compound using the same tight 
binding model. The doping levels on the x-axis are determined using the Tc 
of the samples and the Presland formula for the relation between doping and 
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Tc
39. We find lower values for ε0 and a different slope as a function of doping. 

We could fit a straight line through our point to quantify the difference in 
offset and slope. Given the number of data points however this would not 
be very reliable. Regardless, our results are not fully consistent with their 
previous results, where we point out, in addition to the earlier mentioned 
precision of our Fermi surface extraction, the values for ε0 determined by He 
et al. are obtained by ‘fitting’ the tight binding model to their data by eye. 

Figure 4.3 Bi2201 QPI Fermi surfaces. 
a-c) The QPI signal at E = 0meV for the OD3K, OD12K, and OD23K samples respectively 
after normalizing to (dI/dV)/(I/V) and denoising using the Noise2Self algorithm. The red 
crosses indicate the position of the Bragg peaks. The red lines in c) show the cuts used to extract 
the Fermi surface scattering vectors. d) The Fermi surfaces determined using the QPI pattern 
in a-c) by dividing the scattering vectors by two, rotating them and duplicating them to show 
two parts of the Fermi surface. The dashed lines show the tight binding fits to the Fermi surface 
for each sample.

a

d

b

c
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A different way to show the shifting of the band is to look at the area of the 
Fermi surface and calculate the Luttinger count. The result is shown in Fig. 
4.4b, together with the Luttinger counts determined by He et al. Similarly 
to the result for ε0 we find a discrepancy between our result and theirs, not 
surprisingly given that ε0 and Luttinger count are related. It is important 
to note that for (Pb,Bi)2Sr2CuO6+δ the Luttinger count does not match the 
doping levels from the Presland formula39, as was noticed previously for 
both single layer and double layer Bi-based cuprates (Pb,Bi)2Sr2CuO6+δ and 
Bi2Sr2CaCu2O8+δ

2,3. Still this universal formula for doping vs. Tc is useful as 
long as the relation depicted in Fig. 4.4b shows a straight line. 

4.3.2 Anti-nodal Dispersion

Next we look at the anti-nodal dispersion by taking a series of cuts perpendicular 
to the (0,0)-(2π,2π) line shown in Fig. 4.5a. The cuts are taken more towards 
the midway point between nodal and anti-nodal since the signal fades away 
moving closer to the anti-node. The cuts, examples of which are shown in 
Fig. 4.5b-d, feature both a gap around Fermi level and a band crossing EF. The 
cuts in Fig. 4.5b,c have a strongly reduced intensity directly around EF due to 
the gap but note that there are still clear QPI for the E = 0meV layer, as seen 
in Fig. 4.3a,b. The cut in Fig. 4.5d also has reduced intensity near EF, but not 

Figure 4.4 Tight binding ε0 and Luttinger count. 
a) The ε0 parameter of the tight binding fits shown in Fig. 4.3d as a function of doping in blue. 
The doping values on the x-axis are calculated using the Tc of the samples and the Presland 
formula39. The ε0 values determined previously2 for the same compound are shown in red. b) 
The Luttinger count calculated using the area of the Fermi surface as a function of doping in 
blue. Previously determined values are shown in red.

a b
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at EF. This is most likely an artifact from the noise suppression, a point we 
will get back to in section 4.4. The fact that there is still QPI associated with a 
full Fermi surface at E = 0meV for superconducting samples is a result of the 
pronounced gap filling occurring in this doping range described in Chapter 3. 

Next, we fit the peak position of momentum distribution curves (MDCs) of 
the cuts to extract the band crossing EF, shown in Fig. 4.5b-d as the blue dots 
and plotted together in Fig. 4.6a for the cut highlighted in Fig. 4.5a. For cuts 

Figure 4.5 Anti-nodal dispersion. 
a) The E = 0 meV QPI layer for the OD23K sample indicating the lines along which the cuts 
are taken used to extract the bandstructure. The green line shows the cut shown in b-d). The 
red crosses indicate the position of the Bragg peaks. b-d) The cuts along the green line in a) for 
the OD3K, OD12K, and OD23K sample respectively. The blue points show the peak position of 
the fitted MDCs, the green points show the peak position of the fitted EDCs.

a b

dc
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taken at the anti-node where the bandstructure has a saddle point (the vHS) 
the dispersion is parabolic, disregarding any possible back bending due to a 
gap. The cuts in Fig. 4.5 however are taken away from the anti-node so that 

Figure 4.6 Bandshift measurement. 
a) The anti-nodal dispersion for the OD3K, OD12K, and OD23K extracted from the cuts 
shown in Fig. 4.5b-d by fitting the MDC peak positions. The bandshifts are measured by 
finding the shift to the OD12K and OD23K dispersions that minimizes the sum of the point-
wise distances to the OD3K dispersion. The result of the shifting procedure for the data shown 
in a) is shown in b).

Figure 4.7 Bandshift doping dependence. 
a) The extracted QPI bandshifts relative to the OD3K sample for the three cuts indicated in 
Fig. 4.5a, with the cut labeled anti-nodal being closest to the Bragg peaks and the one labeled 
midway furthest. b) The average of the shifts shown in a) compared to the shifts determined by 
tight-binding fits to the QPI Fermi surface, and compared to the shifts determined by Ref. 2.

ba

ba
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the dispersion is no longer guaranteed to be parabolic. Therefore we take an 
agnostic approach to measuring the bandshift. We add a shift manually to the 
dispersion of the OD12K and OD23K and calculate the relative distance for 
points at constant q//. The true bandshift is then the shift which minimizes 
the sum of the squared distances. The shifted dispersion for the highlighted 
cut in Fig. 4.5a are shown in Fig. 4.6b. We then repeat this procedure for all 
cuts taken. The resulting bandshifts relative to the OD3K sample are shown 
in Fig. 4.7a for each cut, where the errorbars give the 95% confidence interval 
for the calculated shifts. We find that, within error, the shifts follow a straight 
line, where the caution of the number of data points again holds. The straight 
line of the shifts, or the rigidity of the bandshifts, becomes more apparent 
when we average the calculated values over the different cuts used and plot 
them against previous results2, as we have done in Fig. 4.7b. We find a good 
agreement with the slope of the ε0(p) line determined by He et al. Note that 
the data points for ε0 were shifted so that all the curves coincide at a shift of 0 
for the OD3K sample. This is done as the shift measured from movement of 
the bandstructure only gives relative values of this shift, versus more absolute 
values when calculating ε0 from tight-binding model.

Another feature of the anti-nodal electronic structure becomes apparent when 
we look at the peak positions of the energy distribution curves (EDCs, green 
points in Fig. 4.5b-d). We find shoulder features at lower q near both gap 
edges for all samples. The shoulder above the Fermi level can be attributed to 
back bending of the band due to the band, although it should be noted that 
this occurs at unusually large energies for the OD3K sample. The exact shape 
of the backbended band reveals important information on the nature of the 
gap. For a purely superconducting gap we expect a particle-hole symmetric 
bending of the band, while for other ordered states the bending does not 
necessarily have this symmetry. The data presented here however lacks the 
resolution to conclusively determine whether the bending is particle-hole 
symmetric. 

Another clue to the nature of the gap stems from the feature near the gap 
edge below the Fermi level. Here, for a superconducting gap, we expect 
band bending only to occur for momenta larger than kF (or qF in our case). 
We find that this shoulder is present in all cuts for each sample. The large 
extension in q and its lack of dispersion means it is unlikely to stem from 
purely bandstructure QPI. Such a feature has been observed before by ARPES 
in the same compound27, where it was attributed to superconductivity co-
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existing with an additional density wave. The precise nature of the density 
wave determines some of the details of the back bending, but all scenarios 
share this additional low momentum feature. There are indications of an 
additional ordered state next to superconductivity in this doping range for 
Bi2201, however their link to this feature remains to be investigated

4.4 Discussion
4.4.1 Artifacts of Noise Suppression

The observation that the shoulder feature above EF occurs at an unusually large 
energy for the OD3K sample warrants a closer examination of the denoising 
algorithm. Another unusual aspect of the OD3K data is that the gap seems to 
be asymmetric. The suppression of intensity due to the gap seems to extend 
to larger energies above EF than below. A comparison of the anti-nodal cuts 
from noise suppressed data with the (dI/dV)/(I/V) data used as input, shown 
in Fig. 4.8, shows that the asymmetry is a result of the noise suppression. 
The comparison shows that the dispersion is well-preserved by the noise 
suppression, together with the shoulder features around the gap, although 
the one above EF has moved up in energy. The comparison also shows that the 
relative intensities of the energy layers is changed quite drastically, a point 

ba

Figure 4.8 Before and after comparison anti-nodal cuts. 
a) Anti-nodal cut taken from the OD3K (dI/dV)/(I/V) data before noise suppression along the 
green line indicated in Fig 4.5a. b) The same cut after noise suppression of the full data set. The 
main features are preserved (dispersion, shoulders at the gap edge), but the relative intensities 
of the energy layers has changed drastically.
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emphasized when we plot the average value of the energy layers, shown in Fig. 
4.9a. It is clear that relative layer intensities are not preserved during the noise 
suppression. This is a result of the 2D network design used combined with an 
imperfect reconstruction of the images. Ultimately, the images are fed one by 
one to the network and shuffled between epochs. Any information about the 
relative information of the image in the 3D dataset, or any information about 
neighboring layers is lost during the denoising. As a result, the intensity of a 
layer relative to the other layers is can exhibit sharp jumps or vary more freely 
than pixel intensities within a layer, for which neighborhood information is 
provided to the network to suppress sharp jumps. The fact that there is still 
some gap structure present in the noise suppressed data is in part due to the 
normalization applied before the data is fed to the network. The data is layer-
wise normalized to the interval [0 1], which is then applied in reverse to the 
network output. The application of the reverse normalization restores some of 
the relative intensity, but not all.

The remedy for this would be to implement a 3D network, which takes the dataset 
as a whole as input. Training such a network would require unreasonably long 
computation times for anything but a very small dataset, or require running on 
a supercomputer. A good intermediate solution is a 2.5D network, as was done 
for the Noise2Self tomography implementation38. In such a network, the input 
is comprised of three images: the image to be denoised and its neighbors in the 
3D dataset. The addition of the neighboring layers to the actual input does two 
things: first it improves the overall quality of the denoising as more information 
is known to the network through the addition of extra neighbors to the masked 
pixels. Second it can add context to the input in the third dimension not present 
for a strictly 2D network. As such, a 2.5D network can suppress sharp changes 
in intensity along the third direction.

Further improvements to the network are possible. While common for image 
reconstruction tasks, the DnCNN architecture used here is but one of many. 
Other common architectures include Red3040 and U-Net41. As for the layers 
used within DnCNN there is room to optimize the number of layers used, 
the number of feature per layer, or the use of dropout. Other optimizations 
include the activation function or the loss function. The mean squared error 
used here is a default choice for image reconstruction, but given the size of the 
images, switching to loss functions which tries to capture structural similarity 
might be worthwhile.



97

1 1
2
3
4
5

2
3
4
5

2.ADISCUSSION

In the current implementation of the noise suppression the network is trained 
on each dataset separately. A possible route towards improved performance 
and more general applicability is to pool the data together and train the network 
once on the new bigger dataset. The rationale being that, the samples being 
from the same compound family, the QPI images across the samples share 
enough of a common underlying structure. For the current data this would 
require down sampling some images to ensure equal image size throughout 
the whole dataset. This approach would open the door to a more generally 
applicable network for QPI images from distinct compounds having distinct 
bandstructures through transfer learning. Transfer learning extends the range 
of applicability by training a deep network on a large dataset (e.g. a collection 
of QPI dataset from different samples and/or compound families). This 
network can then be applied to a dataset not seen before, and not necessarily 
having a structure present in the training dataset, by retraining only the top 
layer(s) of the network. The deep parts of the network then encode the general 
common elements of QPI images (e.g. common noise sources) while the top 
layers take care of dataset specific structures. This would also have the added 
benefit of speeding up the computation time for each new dataset once the 
deep network has been trained. 

Figure 4.9 Layer intensities before and after noise suppression. 
a) The average intensity of the QPI layers of the OD3K sample before and after noise suppression 
as a function of energy. While the averages for the (dI/dV)/(I/V) before denoising resembles the 
real space average, the averages after denoising have lost that resemblance. b) Comparison of 
the real space averages for the dI/dV data and the (dI/dV)/(I/V) data for the OD3K sample. 
Normalizing layer-wise by the current has made the gap much more pronounced.

ba
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As a side note, the uncharacteristically deep gap for the OD3K sample shown 
by the blue curve in Fig. 4.9a is a result of the normalization of the dI/dV 
spectra with the current layers I, as shown by the comparison of the real space 
averages of the dI/dV spectra and the (dI/dV)/(I/V) spectra shown in Fig. 4.9b. 
The current I and the bias voltage V are in principle roughly linearly related in 
the small energy window around V = 0, so that the ration I/V remains constant 
even as V and with it I approach zero. Even so, small fluctuations in the value 
for I registered by the STM hardware can lead to large differences in the 
normalized (dI/dV)/(I/V). To temper these differences we add a 10μV offset to 
the bias during normalization, to only partial success as seen by the sharpness 
of the gap in the (dI/dV)/(I/V) average depicted in Fig. 4.9b.

4.4.2 Carrier Concentration and Bandshifts

Bandshifts in overdoped cuprates have been reported before in both 
Bi2Sr2CuO6+δ 2,42 and La2-xSrxCuO4 42,43, although their doping dependence is 
not trivial. The magnitude of the shifts increase strongly past overdoping at 
p=0.16, for La2-xSrxCuO4 even becoming non-zero only then42. Interestingly, this 
occurs before the closing of the pseudogap around p* = 0.19 - 0.20 44, suggesting 
the bandshifts are decoupled from the restoration of the full Fermi surface. 
Instead, the increased magnitude of the bandshifts seems to coincide with the 
start of a gradual change in the Hall carrier density from nH = p to nH = 1+p 
45. The rigidity of the shift, behavior typical of a Fermi liquid combined with 
the gradual change of nH to nH = 1+p and the emergence of a T2 component of 
the resistivity45 suggests that these doped carriers constitute a coherent Fermi 
liquid-like normal state, coexisting with an incoherent electron fluid with 
T-linear resistivity, nH = p, and little to no shifts in the chemical potential42,45. 
This tentative relation between bandshift magnitude and nH would imply 
another change in shift magnitude at the end of the superconducting dome, 
where nH saturates to nH = 1+p. QPI investigation beyond the superconducting 
dome will test this relation in the metallic state past the Lifshitz transition. 

Future STM work can relate these two fluids to spectral features 
(superconducting or pseudogap, vHS) by identifying the real space distribution 
of these features and applying masks to the dI/dV data before taking the FFT 
to reveal the QPI patterns, a technique used previously to study charge order 
in Bi2Sr2CuO6+δ 

11,23. The machine learning techniques detailed in this chapter 
can help overcome the challenges of the additional noise introduced by such 
real space masking.
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Interestingly, there is a mismatch between the Luttinger count extracted 
from STM and ARPES and universal formulas for doping vs Tc, as was 
noted before2,42,44. Adding to the puzzle, the relation between Luttinger 
count and universal doping formulas does appear to be linear across the 
full superconducting dome2, implying that the amount of holes doped per 
dopant is constant over this part of the phase diagram. This appears at odds 
with the doping dependence of the bandshifts and Hall carrier concentration, 
which feature a sharp change at optimal doping42,45. The former discrepancy 
is especially concerning as both the Luttinger count and the bandshifts are 
typically determined by a tight-binding characterization of the Fermi surface, 
although we have shown that the bandshift still holds without the use of 
tight-binding models. A possible solution to this is by noting that the tight-
binding hopping parameters can be doping dependent, for which there is 
precedent42,43. This doping dependence seems to smooth however, rather 
than featuring a pronounced change at p = 0.16 the bandshift and nH have. 
Why the drastic increase in free carrier deduced from nH is not reflected in a 
similarly rapid change in the Fermi surface area remains an open question. 
One proposal that the Luttinger count only counts coherent carriers44 seems 
unlikely as the relation between Luttinger count and universal formulas is 
linear over a doping range larger than the one in which coherent carriers are 
added. Investigation into the non-superconducting overdoped regime will 
reveal how these relations hold when there are no incoherent carriers present. 
Alternatively, the high Luttinger count is the result of surface effects, to which 
both STM and ARPES are susceptible, versus bulk measurement on which 
nH and the universal doping formulas are based. These surface effects would 
then most likely be caused or enhanced by the physics of the cuprates, as we 
have shown in Chapter 2 that bulk and surface probes of the bandstructure 
are in agreement with each other for Fermi liquid systems. 

4.4.3 Density Waves in Overdoped Bi2Sr2CuO6+δ

The observation of the shoulder features at the gap edge (Fig. 4.5b-d) has 
been attributed to the presence of some density wave in addition to the 
backbending of the band due to superconductivity. This raises the question 
what that density wave is. There are two main candidates in overdoped 
single layer cuprates: a charge density wave (CDW) or ferromagnetic 
fluctuations (FMF). CDW order has been observed across the overdoped 
regime in both Bi2Sr2CuO6+δ 10–12 and La2-xSrCuO4 

46, albeit with markedly 
different doping dependence. In the latter compound X-ray diffraction 
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studies have found CDW order extending over the entirety of the overdoped 
superconductivity regime with a nontrivial doping dependence, but only 
disappearing concomitantly with superconductivity at the edge of the dome. 
In contrast, in Bi2Sr2CuO6+δ the overdoped CDW shows re-entrant behavior, 
being disconnected from the underdoped CDW that gradually disappears in 
the overdoped11. The re-entrant behavior only starts to show around a Tc of 
15K10,12. The fact that we observe the shoulder feature for the OD23K sample 
disqualifies the strongly overdoped CDW as the cause for all three samples. It 
could be possible that the feature in the OD23K sample is caused by remnants 
of the overdoped CDW, while for the higher doped samples it is caused by 
the re-entrant CDW. More detailed calculations investigating the difference 
in band bending between these two CDWs combined with QPI or ARPES 
measurements with high enough resolution to resolve those differences are 
needed to resolve this issue. The shoulder-like feature above EF accessible by 
QPI or high-temperature ARPES (if the appropriate temperature range exists) 
can provide additional information on the exact structure of the backbending. 
It should be noted that X-ray diffraction and STM disagree on the wavevector 
of re-entrant CDW10,12. Particularly, the STM observation can be interpreted 
as QPI resulting from anti-nodal scattering, given that a clear momentum 
space signature of this CDW is absent in the STM measurements12. Also note 
that there is a gap in the doping range in the available X-ray data, leaving 
room for an interpretation where the proposed CDW is not re-entrant, but a 
continuation of the underdoped CDW. As the observation of the shoulder-
like feature only provides indirect evidence for a CDW, the question whether 
a CDW exists across the overdoped regime in Bi2Sr2CuO6+δ remains open.

An alternative explanation involves the FMF found in overdoped La2-xSrCuO4 
13,14 and Bi2Sr2CuO6+δ 47. In the latter case the FMF appear to extend over a doping 
range compatible with the samples studied here. The FMF have not however 
been shown to form static order at higher doping or lower temperatures. How 
fluctuating order impacts the backbending remains to be investigated. 

4.5 Conclusion & Outlook
In conclusion, we have investigated the anti-nodal electronic structure of 
overdoped Bi2Sr2CuO6+δ using QPI. We have implemented a state-of-the-art 
self-supervised machine learning algorithm to suppress the noise in the QPI 
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images. Using the noise suppressed data we have shown that the anti-nodal 
band shows a rigid bandshift with overdoping. Additional studies into the 
non-superconducting regime are needed to resolve discrepancies between the 
doping dependences of the bandshifts42,43, the Luttinger count2,44, and the Hall 
carrier density45. The backbending of the band due to the superconducting 
gap features shoulder-like features near the gap edge associated with the 
presence of a density wave27, whose nature remains unknown. More detailed 
calculations, focused particularly on the types of CDW with a doping 
dependent scattering vector and weak coherence proposed by X-ray and STM 
experiments combined with higher resolution experiments are needed to reveal 
the origins of the band bending and the associated density wave. The findings 
presented here reveal a picture where QPI and ARPES appear in agreement 
over the momentum space electronic structure, but in disagreement with 
other probes such as transport and X-ray diffraction over the carrier density 
and the presence and doping dependence of an additional ordered state next 
to superconductivity. More detailed studies of the electronic structure around 
the gap from both experimental and theoretical/computational viewpoint 
over an extended doping range are needed to bridge the gap between the 
various probes.
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