
Nano-scale electronic structure of strongly correlated
electron systems
Tromp, W.O.

Citation
Tromp, W. O. (2022, December 20). Nano-scale electronic structure of strongly
correlated electron systems. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/3503554
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/3503554
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3503554


45

Puddle Formation, Persistent Gaps, and non-
mean-field Breakdown of Superconductivity 
in Overdoped (Pb,Bi)2Sr2CuO6+δ 3

The cuprate high-temperature superconductors exhibit many unexplained electronic 
phases, but it was often thought that the superconductivity at sufficiently high doping 
is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory1. 
However, a series of measurements show that the number of paired electrons (the 
superfluid density) vanishes when the transition temperature Tc goes to zero2-4, in 
contradiction to expectation from BCS theory. The origin of this anomalous vanishing 
is unknown. Our scanning tunneling spectroscopy measurements in the overdoped 
regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that it is due 
to the emergence of puddled superconductivity, featuring nanoscale superconducting 
islands in a metallic matrix5-7. Our measurements further reveal that this puddling 
is driven by gap filling, while the gap itself persists beyond the breakdown of 
superconductivity. The important implication is that it is not a diminishing pairing 
interaction that causes the breakdown of superconductivity. Unexpectedly, the 
measured gap-to-filling correlation also reveals that pair-breaking by disorder does 
not play a dominant role and that the mechanism of superconductivity in overdoped 
cuprate superconductors is qualitatively different from conventional mean-field 
theory.

This chapter has been accepted as 
Tromp et al. in Nature Materials 
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PUDDLE FORMATION AND PERSISTENT GAPS IN (Pb,Bi)2Sr2CuO6+δ3

3.1 Introduction
The essence of high-temperature superconductivity in the cuprates revolves 
around doping a Mott insulator. Superconductivity emerges when hole-doping 
is greater than 5% per lattice site; Tc initially increases through the underdoped 
(UD) region of the phase diagram, before it decreases again in the overdoped 
(OD) region1. Superconductivity breaks down completely at roughly 27% 
doping. For the strongly overdoped region (SOD), it is often assumed that 
screening sufficiently reduces electron-electron correlations for a Fermi liquid to 
appear8-10. The superconducting state is then of the Bardeen-Cooper-Schrieffer 
(BCS) type, and the suppression of superconductivity is a consequence of a 
diminishing pairing interaction. Evidence for such conventional behavior in 
the OD regime comes from photoemission experiments, which suggest the 
existence of a full Fermi surface with superconductivity, as indicated by an 
energy gap that opens up in a BCS fashion below Tc

11,12. As a caveat, very 
recent magneto-transport experiments indicate that even at high doping the 
normal state has strange metal features13.

The first surprise in this regard was the discovery that the superfluid density 
decreases linearly to zero with doping beyond optimal doping2-4,14,15, contrary 
to the BCS expectation that it should be of the order of the total carrier 
density and hence proportional to the doping level1,2. Additionally, optical 
conductivity measurements revealed a large density of metallic carriers below 
Tc

14, suggesting a filling of the superconducting gap due to pair breaking. 
One possible explanation for these observations involves potential disorder, 
reducing the electron mean free path, at length scales comparable to the small 
coherence length that is typical for the cuprates5-7,16. According to Bogoliubov-
de-Gennes (BdG) theory (i.e. BCS in spatially heterogeneous systems), disorder 
at these length scales leads to emergent granular superconductivity6,17–23, i.e. 
puddles of well-developed superconductivity with a size set by the coherence 
length, separated by regions where the gap is suppressed. The resulting weak-
link superconductor will show a low superfluid density. 

We investigate these issues using scanning tunneling spectroscopy which 
yields the spatial distribution of the electron density of states with atomic-
scale precision. Our measurements show that in (Pb,Bi)2Sr2CuO6+δ (Bi2201) 
which has one CuO2 layer per unit cell and is known to have a high residual 
resistivity13, such a “puddled” superconductor does indeed develop at high 
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3.2RESULTS & DISCUSSIONS

doping (Figs. 3.1,3.2). The typical spatial extent of the puddles is a few 
nanometers, of the order of the small coherence length in this system (Fig. 3.3). 
Our measurements additionally reveal that the superconducting gap persists 
beyond the dome, and that instead the heterogeneity is driven by gap filling 
(Fig. 3.4). This strongly suggests that the breakdown of superconductivity 
is not a result of a vanishing pairing interaction. A comparison with BdG 
simulations suggests that this filling is likely due to the decay of the Cooper 
pairs in surrounding metallic areas, which in turn explains the observation 
of a large density of metallic carriers. Unexpectedly, we also find a striking 
violation of a basic BdG rule. Within BdG theory, pair breaking goes hand-in-
hand with gap closing, because depletion of the number of Cooper pairs in a 
superconductor leads to a diminishment of the gap magnitude ∆ as well:

where V is the attractive interaction and the c+’s are electron field operators. 
Instead, our data show that the puddles characterized by the largest gap 
magnitudes exhibit also the largest gap filling (Fig. 3.4c), and that the average 
gap magnitudes are barely depending on doping (Fig. 3.4a). We therefore 
conclude that the physics governing the superconducting transition is of a 
different, non-mean-field kind. 

3.2 Results & Discussion 
To arrive at these findings, we study a series of Bi2201 samples with eight 
different doping levels, from underdoped to beyond the superconductor-metal 
transition, with an emphasis on the strongly overdoped regime. We chose 
Bi2201 because it has only one CuO2 plane per unit cell, and has a rather large 
residual resistivity24, suggesting that disorder is exceptionally important. On 
each sample, we measure the atomic-scale-resolved differential conductance 
g(E,r) as a function of bias energy E and location r, which is proportional to the 
Bogoliubov quasiparticle density of states. 

We first consider the spatially averaged g(E) spectra obtained at 4.2 K (Fig. 
3.1a). Consistent with earlier reports25–28, crossing into the overdoped regime, 
the spectra acquire an increasingly large non-zero Bogoliubov quasiparticle 

(3.1)∆ = V
∑
k
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∆k = ∆(cos kx − cos ky)/2 (2)
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density of states at the Fermi level. This is remarkable as this quantity should 
go to zero for a standard d-wave BCS superconductor, but it is consistent 
with results from optical conductivity measurements14. It remains to be seen 
whether ARPES, if performed in SOD regions with such small gaps, would 
observe a similar phenomenology both in Bi2201 and Bi2212. We investigate 
this phenomenology using individual spectra, as in a heterogeneous situation 
like this, the average spectra do not represent the phenomenology adequately 
(Figs. 3.1b-d). 

3.2.1 Gap Closure vs. Gap Filling

Next, we use a phenomenological model to fit all spectra over the whole 
doping range to extract the superconducting gap and gap filling of each 
individual spectrum. We calculate the spectral weight on each point k = (kx, 
ky) on the Fermi surface using a Dynes formula with superconducting gap

 where ∆ is the maximal gap, and then average over the Fermi surface27. We use 
the Dynes formula30–32 as a mere phenomenological description constructed to 
reveal characteristic scales for the observed gap size and the gap filling, and 
discuss interpretational concerns after the presentation of the data. Our model 
yields the following function for the modeled differential conductance:

where <>FS indicates the average over the Fermi surface, P(E) is a third-degree 
polynomial function to account for background variation, and Dynes(E, ∆k, Γ) 
is the Dynes function with the pair-breaking parameter Γ. For this study, we 
concentrate on the superconducting gap and thus restrict ourselves to a ±15 
meV range (in the underdoped and optimally doped range, which are not the 
focus of this paper, a pseudogap exists at a larger energy scale, as indicated 
by the red arrows in Fig. 3.1a). Lastly, we convolute g(E) with a Gaussian 
function to account for spectrum broadening due to a finite temperature and 
the lock-in modulation.
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Figure 3.1 Heterogeneous gap filling in Bi2201. 
a) The average spectra of eight different doping levels, labeled by their Tc. The shaded areas 
indicate the energy range used in the fitting procedure. The blue arrows show the average 
extracted gap magnitude. For the UD25K and OPT35K samples, the red arrows indicate the 
pseudogap as determined by He et al.27. The inset in the top spectrum indicates the position of 
the samples on the superconducting dome. b-d) Spectra along 3 nm linecut for the OD23K, 
OD12K, and OD3K samples respectively. These raw, unprocessed spectra indicate the high 
degree of electronic inhomogeneity in these samples. e) A linecut of spectra from a self-
consistent BdG simulation from the center of a superconducting puddle (r = 0) to the metallic 
environment which shows the van Hove singularity modeled to be close to the Fermi level (see 
Chapter 3A.4 for details). The boundary of the puddle is indicated by the red spectrum. The 
pairing interaction is nonzero inside the puddle (i.e., inside the red line) and is zero outside it. 
The energy unit is relative to the hopping parameter t1, and the length unit is relative to the 
coherence length ξ (see Chapter 3A.4). f) Typical topography measured on the OD12K sample 
on the same length scale as Figs. 3.1b-d.
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We define the filling parameter F as the ratio g(E = 0,T -> 0)/P(E = 0), which 
can be expressed in terms of our fitting parameters as:

Figs. 3.2a,b illustrate how the model differentiates between gap closure, 
controlled by ∆, and gap filling, controlled by Γ or F. Fig. 3.2c shows some 
typical spectra and fits from various locations. It is clear that, when compared 
to the scenarios presented in Figs. 3.2a,b, the measured spectra look more 
similar to the filling scenario as opposed to the closing scenario. We then 
fit roughly 105 spectra from 8 different doping levels with this model, and 
display the extracted gap size and gap filling in Fig. 3.3. We note that for the 
strongly overdoped samples, high signal-to-noise is key for successful fits; 
the traces shown in Figs. 3.1b-d and Fig. 3.2c are raw spectra without any 
averaging. A further challenge is that at higher doping, a significant fraction 
of spectra exhibit completely gapless regions. We identify such spectra after 
fitting and exclude them from subsequent analysis. In the appendix 3A, we 
provide details (see Chapter 3A.2 and Fig. 3A.4) and demonstrate that our key 
results are independent of these choices. We also provide a modified version 
of the model with an alternative definition of the gap filling, and show that 
our results are independent of the precise definition of gap filling.

3.2.2 Persistent Superconducting Gap & Gap Filling

We start our discussion with the spatial maps of the gap size ∆(r) as a function 
of doping (Figs. 3.3b-d). Strikingly, while more spectra are fully filled at 
higher doping, the average gap size remains roughly constant on the strongly 
overdoped side (Fig. 3.3a). Initially, the gap size increases when moving 
from underdoped to optimally doped. Beyond optimal doping, the gap size 
barely decreases anymore when going through the OD and SOD side, and 
instead remains roughly constant – even beyond the superconductor-to-metal 
transition. In particular, throughout the SOD region, we observe an almost 
constant average gap amplitude even though Tc is rapidly decreasing. Our 
study thus excludes a homogenously diminishing pairing interaction as the 
cause of the superconductor-to-metal transition.

Given a constant gap, what drives the changes in spectra on the overdoped 
side? Our analysis indicates that it is the gap filling. We extract the gap filling, 
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F, using Eq. (2), for each measured sample, and present the distribution of 
the gap fillings in Figs. 3.3f-h, and their histograms in Fig. 3.3e. Remarkably, 
the mean gap filling changes considerably over the doping range. In the 
OP region, the spectra have a filling close to zero, i.e. they are fully gapped. 
Crossing into the OD regime, a subset of spectra starts to develop a finite 
gap filling. This subset grows with further doping, with all spectra having a 

a b

c

Figure 3.2 Gap filling versus gap closure.
Difference between gap closure (a) and gap filling (b) by presenting a sweep of the gap magnitude 
parameter Δ for constant Γ, and a sweep of the scattering rate parameter Γ for constant Δ, 
respectively. c) Example fits from our model applied to our raw data for the OD23K, OD12K, 
and OD3K data. The zeros of the spectra are offset for better visibility, as indicated by the red 
marks. The black marks indicate the gap width as determined by the model.
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finite filling in the SOD regime. The values of F shift markedly in this doping 
regime from nearly fully gapped (F = 0) near optimal doping to almost fully 
filled (F = 1) towards the SOD regime and extending into the metallic regime. 
The trends in gap closing and gap filling are summarized in Fig. 3.4a,b: as 
the doping is increased into the overdoped regime, the gap size remains 
roughly constant; in contrast, the gap filling increases rapidly. Thus, a first key 
result of this paper is that it is not a decaying gap width Δ, but an increasing 
gap filling F that is responsible for the diminishing superconductivity and 
eventually drives the superconductor-to-metal transition. We also note that 
the persistence of the superconducting gap we observe is remarkably similar 
to the persistent spin gap observed in a similar doping range33. 

Notably, the gap filling is highly heterogenous, as can be seen from the 
width of the distributions in Figs. 3.3e and in the spatial maps in Fig. 3.3f-
h. We observe areas both with and without a gap, each existing at a length 
scale consistent with the coherence length (~ 1.5 nm). Some spectra exhibit 
a peak that can be associated with a van Hove singularity (vHS) as reported 
previously25,26; but we note that it is a highly anomalous one: both the energy 
and the amplitude of the peak vary in space on length-scales that are not 
consistent with the spatially averaged anti-nodal signature observed in 
photoemission34,35. Further, we only find this peak in the SOD regime, whereas 
ARPES measurements suggest that the vHS should be observable in lower 
doped samples as well, at energies still easily measurable by STM. The 
question of the vHS in STM data remains open. Notwithstanding the vHS, 
our observations indicate that the breakdown of superconductivity in the 
overdoped regime of the single-layer bismuth cuprate is likely caused by an 
emergent strongly inhomogeneous superconductivity, leading to an effective 
weak-link physics that explains the diminishing superfluid density. Hence, 
at first glance, our data suggest that theoretical models involving disorder-
driven breakdown of superconductivity in the BdG framework5-7,16-19,22,23 are 
a good description of the physics of strongly overdoped Bi2201, with the 
additional information that it is the gap filling that drives the formation of the 
superconducting puddles.

Figure 3.3 Doping dependence of the spatially resolved gap filling and gap magnitude. 
a) Gap magnitude histogram for each doping concentration. b-d) The spatial distributions of 
the gap magnitude for the OD23K, OD12K, and OD3K samples. The spectra that are omitted 
from the histograms (see Chapter 3A.2) are indicated by the white areas in Figs. 3.3b-d. e) 
Gap filling histogram for each doping level. f-h) Spatial distribution of the gap filling for the 
OD23K, OD12K, and OD3K samples respectively.
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Next, we focus on the origin of the gap filling. According to BdG theory, 
the excitations that fill the gap are quasiparticles of the Fermi-liquid normal 
state that are released by breaking up Cooper pairs. Well-known causes for 
pair breaking are potential disorder5-7,16 (for a d-wave superconductor) and 
thermal phase fluctuations35-38. However, if potential disorder were the only 
culprit, the areas where the pair breaking is smallest (where superconductivity 
survives best) should have the largest gaps, which is not what we observe. We 
demonstrate this in Fig. 3.4c, where we show the local relationship between 
the gap size Δ and the pair breaking Γ, and find a clear positive correlation 
between the two. Further, we can exclude thermal phase fluctuations based on 
our temperature dependent measurements, up to 20 K for the OD9K sample. 
Thermal phase fluctuations should lead to a strongly temperature-dependent 
filling, in contrast to our observations (see Chapter 3A.3). 

3.2.3 Cooper Pair Decay in a Metallic Matrix

We therefore consider an alternative candidate for pair breaking: the decay of 
Cooper pairs into smaller gap or metallic regions, as previously suggested39-41. 
This can be seen as akin to an inverse proximity effect42. We are not aware 
of self-consistent simulations for this scenario in the literature, but they are 
possible with state-of-the-art numerical methods. We start with a large real-
space supercell implementing a realistic tight-binding band structure. We 
then introduce the superconducting puddles by switching on a local pairing 
interaction characterized by a linear dimension L that is approaching the (bulk) 
coherence length. The BdG equations are then solved self-consistently (see 
Chapter 3A.4 for further details) and typical outcomes are shown in Fig. 3.1e. 
The simulated spectra are surprisingly similar to the experimental ones, and 
one might wonder whether this gap-filling dominated physics is connected 
to certain disordered superconductors21,22,43,44 and interface superconductors45 
with a local density of states phenomenology that is not dissimilar from what 
we observe here. 
However, there is one aspect of our data that is markedly inconsistent with 
the BdG description of granular superconductors. Our data shows that the 
largest gaps also exhibit the strongest gap filling (Fig. 3.4c), while within 
BdG, gap filling should always go hand-in-hand with a decrease of the gap 
magnitude. Our self-consistent simulations confirm that this is indeed also 
valid for the heterogeneous case: upon application of our fitting model to 
the calculated spectra shown in Fig. 3.1e, we find that the regions with the 
largest gaps show the least amount of pair breaking as shown in Fig. 3.4d. We 
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a b

dc
Data

OD12K
Simulation

Figure 3.4 Gap filling driven breakdown of superconductivity and the contradiction 
to BdG. 
a,b) The mean (circles) and median (diamonds) of the gap magnitude and the gap filling, 
respectively. The shaded areas represent the local variations in the gap magnitudes and fillings 
by depicting the histograms. The green dashed lines in Fig. 3.4a show the expectation of a gap 
size proportional to Tc, with a proportionality constant either chosen to match the OPT35K data 
point, or determined by weakly coupled d-wave BCS theory. The doping levels were calculated 
using the Presland formula for the superconducting samples, and using the anti-nodal band 
shift measured by photoemission for the OD0K sample (see Chapter 3A.5). c) 2D histogram of 
the measured local relation between gap magnitude Δ and pair-breaking parameter Γ for the 
OD12K sample. The positive correlation between the two is indicated by the red line. d) The 
relation between the gap magnitude and pair-breaking parameter extracted from self-consistent 
BdG simulations (Fig. 3.1e) using the same fitting model. In contrast to Fig. 3.4c we find a 
clear negative correlation. The error bars indicate the uncertainty in the obtained values due to 
the fitting process.
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note that self-consistency in the calculations is necessary here; fixing the gap 
magnitude artificially would obscure any effect from pair breaking on the gap 
magnitude. The comparison between Fig. 3.4c and Fig. 3.4d shows a striking 
inconsistency between the experiment and BdG expectation. 

3.3 Conclusion & Outlook
In summary, our real-space imaging reveals a strongly heterogeneous 
superconductivity consisting of superconducting puddles with a size 
set by the coherence length immersed in a metallic matrix. This explains 
the diminishing superfluid density2-4 and the origin of the large fraction 
of metallic carriers14: it stems from the filling of the gap. Our data further 
demonstrate that superconductivity does not, as it is often assumed, become 
conventional in the SOD regime. The breakdown of superconductivity is 
not the consequence of a vanishing pairing interaction and does not follow 
the BdG description. Furthermore, the gap filling is entirely different from 
simple quasiparticles populating the gap and counting the number of broken 
BCS Cooper pairs. Instead, what fills the gap might be related to the strange 
normal state13, e.g. collective excitations of an unknown kind rooted in the 
“strange metal” physics, which at present cannot be calculated, or to electrons 
from a different sector, but not by means of simple pair-breaking. Last but not 
least, this unconventional physics may not be limited to the low-temperature, 
overdoped regime. STM studies at optimal doping of Bi2212 showed a rather 
similar puddling effect upon approaching the superconducting transition 
temperature40,46. This may imply that the physics of the thermal transition – 
the “high Tc” problem itself – is governed by unknown physics. It would be 
interesting to revisit this high-temperature regime to make this more precise.



57

1 1
2
3
4
5

2
3
4
5

3.ARESULTS & DISCUSSIONS

3A Appendix
3A.1 Experimental Methods

We performed a systematic study on a series of (Pb,Bi)2Sr2CuO6+δ samples 
with 8 distinct doping levels, covering the range from underdoped (UD25K) 
to strongly overdoped (OD0K) side. Single crystal samples were grown by the 
conventional floating-zone technique13,27. The UD25K, OP35K, and OD15K 
samples contain La doping, i.e. (Pb,Bi)2(La,Sr)2CuO6+δ, while the rest of the 
samples are without La doping. The doping levels, transition temperatures Tc, 
and measurement temperatures are listed in Table S1. The doping levels of the 
superconducting samples are determined using the Presland formula, while 
the doping level of the OD0K sample is extracted from the rigid band shift 
measured by ARPES (see Chapter 3A.5). All samples were cleaved in situ in a 
cryogenic environment and inserted immediately into the STM. The data were 
acquired using different home-built cryogenic STMs among three groups.

Name Doping Tc 
(K)

Measure-
ment
T (K)

Data 
acquired 
by

Samples 
fabricated
by

Vsetup (mV)/
Isetup (pA)/
Lock-in 
Amplitude 
(mV)

Effective 
Energy 
Resolution 
(FWHM, 
meV)

UD25K 0.101 25 5.7 Hudson 
group

Kondo 
group

-100/400/1 2.7 

OP35K 0.160 35 5.7 Hudson 
group

Kondo 
group

-100/400/1 2.7

OD23K 0.224 23 4.2 Allan 
group

UvA 
group

-150/150/1.5 2.58

OD15K 0.243 15 6 Hoffman 
group

Kondo 
group

-100/100 /2 3.5

OD12K 0.249 12 4.2 Allan 
group

UvA 
group

-200/170/1.5 2.58

OD9K 0.255 9 4.2 – 20 Allan 
group

UvA 
group

-150/200/1.5 2.58 – 6.42

OD7K 0.258 7 2.2 Allan 
group

UvA 
group

-20/600/1.5 2.50

OD3K 0.265 3 4.2 Allan 
group

UvA 
group

-200/170/1.5 2.58

OD0K 0.274 4.2 Allan 
group

UvA 
group

-25/200/1.5 2.58

Table 3A.1: Samples and their measurement conditions in this study.
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3A.2 The Phenomenological Model to fit Spectra

3A.2.1 The d-wave Gap Model
The d-wave gap is here modeled as a mean of multiple s-wave gaps, one for 
each point along the Fermi Surface. For each s-wave gap, the gap size is given 
by . The points are found using the Fermi Surface of the tight-binding model 
for the OD15K sample27 although the final shape of the spectrum varies a lot 
with the exact points in k-space used. Each s-wave gap is generated by using 
the Dynes formula

where the same Γ is used for all s-wave gaps. The resulting d-wave gap is 
the mean of all s-wave gaps. To account for the normal-state density of states 
(DOS), the d-wave gap function is multiplied with a polynomial function, 
typically of the 3rd order. The resulting spectrum is then convoluted with a 
Gaussian function with a full width at half maximum (FWHM) given in the 
table above, in order to emulate the effect of finite temperature and the lock-in 
modulation have on the shape of the measured spectrum.

The points in momentum space are calculated only once before the fitting 
process to reduce computation time. The fitting parameters characterizing the 
gap are only Δ and Γ. To calculate the filling for the d-wave gap we calculate 
the mean of the filling for each individual s-wave gap using Eq. 3.4.

3A.2.2 Statistical Analysis with and without the Excluded Spectra
In the main text we “white out” certain spectra (white areas in Figs. 3.3b-d), 
and exclude them for the statistical analysis when either of the two conditions 
is met in the fit results: 1) Γ > 20 meV; 2) Δ > 15 meV. Our interpretation is that 
these spectra are fully filled, for the following reason: the spectra that meet 
the first criterion have so much broadening that there is no well-defined gap. 
Similarly, for the spectra that meet the second criterion, the large “gap” is a 
reflection of background modulations. Such spectra are thus counted as fully 
filled. Still, we show here that including these spectra in the analysis does not 
alter our main conclusions. 

Fig. 3A.1 shows, from left to right, the spatial distributions of: Δ, including 
“whited-out” (1st column) and excluding “whited-out” (2nd column) spectra, 
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Figure 3A.1 Spatial variations of the gap size Δ with and without exclusions, parameter Γ 
with and without exclusions, and the calculated filling for all samples. See 3A.2 for details.
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Γ, with (3rd column) and without (4th column) “whited-out” spectra, and F, 
the filling (5th column) for all samples. The images are ordered top to bottom, 
from lowest to highest doping, respectively. Following the argumentation 
in the preceding paragraph, the filling for “whited-out” spectra is set to 1, 
when they are included in the statistics. Fig. 3A.2 shows the histograms for Δ 
including “whited-out” spectra, and the histograms of Γ, both with and without 
“whited-out” spectra. The remaining histograms of Δ excluding the “whited-

a b c

Figure 3A.2 Histograms of the gap size Δ without any spectra that are whited out (a). 
Histograms for Γ including (b) and excluding whited-out spectra (c). See 3A.2 for details.

a b c

Figure 3A.3 The results for Δ without excluding any spectra, and for Γ including and 
excluding “whited-out” spectra are summarized(a, b, c respectively). The circles indicate the 
mean Δ, Γ for each sample, with the diamonds indicating the medians. The shaded areas in 
the background represent the spread in values these parameters have. The green dashed lines 
in the left figure indicate the behavior expected for Δ proportional to Tc. The value of 2Δ/Tc 
corresponds to the dirty d-wave BCS limit, while 2Δ/Tc is chosen such that it matches the 
OPT35K data point.
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out” spectra and of the filling can be found in the main text. The histograms in 
Fig. 3A.2 are summarized in Fig. 3A.3 in a similar fashion to Fig. 3.4.

From the spatial distributions and histograms of Δ and Γ in Figs. 3A.1-3, we 
conclude that even when the “whited-out” spectra are considered: 1) the gap 
size still deviates from the behavior in the OD regime; 2) gapped spectra can 
still be found in the non-SC sample in significant quantities.

The spatial averages of the “whited-out” spectra and of the rest spectra are 
shown in Fig. 3A.4 for each sample. We find that after whiting out all samples, 
even the non-SC sample, show a gap in their average spectrum. We note that the 
spatially-averaged “whited-out” spectra in the OD regime are fully filled, i.e. 
they no longer have a gap, and often show a peak near Fermi level. This further 
justifies our choice to assign all these spectra a filling of 1. For the UD25K and 
OPT35K samples, the “whited-out” spectra are made up of spectra for which 
the fit has failed due to limited signal-to-noise. Even though these spectra 
appear as gapped, we attribute this to the presence of a pseudogap. We find 
that the assignment of F = 1 to these spectra does not alter the main conclusion 
either, given the relatively small portions of “whited-out” spectra in these 
samples (see Fig. 3A.4). The increase of the area of “whited out spectra” in the 
OD as shown in Fig. 3A.4 reaffirms the increased gap filling in these samples.

3A.2.3 Fit Parameters Fig. 3.2c’
In Table 3A.2, we present the values of Δ and Γ as determined by our model 
for the examples shown in Fig. 3.2c of the main text. Also indicated are the 
95% confidence intervals for those values. All confidence intervals are below 
the effective energy resolution of the experiment (see Table 3A.1), with one 

Figure 3A.4. a) The spatially-averaged spectra after the “whited-out” spectra have been 
removed. b) Spatial averages of the “whited-out” spectra for each doping level. c) The 
proportions of “whited-out” spectra that make up each sample as a function of doping.

a b c
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exception. Spectrum number 1 of the OD12K sample does not show a gap, 
and therefore the values for Δ and Γ are ill-determined, as expressed by the 
confidence interval. This spectrum however also meets our conditions defined 
in Chapter 3A.2. As such, the poorly determined values for Δ and Γ are a clear 
indication that we in those cases we are dealing with spectra for which those 
parameters have no physical meaning. 

3A.2.4 Energy Range for Fitting and Approximations for the Normal Density of States
The spectra in the UD and OPT samples show clear pseudogap (PG) features, 
with PG sizes ranging from 20 meV to over 60 meV (see Fig. 3.1a). Furthermore, 
in the OD regime, the normal-state DOS shows a peak near the Fermi level. 
These additional features next to the superconducting gap complicate the 
accurate fitting of the superconducting gap. We circumvent this complication 
by limiting our analysis to a small window Ewin around the Fermi level. In this 
reduced energy window, the additional features are only partly visible, and 
can be sufficiently approximated by a polynomial DOS. The choices of Ewin and 
the order of the polynomial background are arbitrary but necessary choices 

Sample Spectrum Δ (meV) Γ (meV)
OD23K 1 6.3 ± 1.3 1.6 ± 0.7

2 5.4 ± 1.3 2.1 ± 0.9
3 6.7 ± 0.8 1.1 ± 0.4
4 6.3 ± 0.5 0.9 ± 0.3
5 9.9 ± 1.9 2.0 ± 0.5

OD12K 1 0.8 ± 2E5* 47 ± 5E6*
2 6.9 ± 2.0 3.0 ± 1.0
3 3.4 ± 0.8 1.1 ± 0.8
4 2.7 ± 0.7 0.9 ± 0.7
5 4.2 ± 1.7 2.9 ± 1.6

OD3K 1 6.7 ± 1.7 3.1 ± 0.9
2 4.7 ± 1.1 2.9 ± 0.9
3 5.9 ± 1.4 3.2 ± 0.9
4 4.9 ± 2.7 3.2 ± 2.1
5 5.4 ± 1.4 2.6 ± 0.9

* Spectra that do not show a gap and therefore have ill-defined gap parameters.

Table 3A.2 Fitted values of Δ and Γ for the example spectra shown in fig 2c of the main text, 
together with the 95% confidence interval for those values. The spectra are numbered from 
bottom to top.



63

1 1
2
3
4
5

2
3
4
5

3.AAPPENDIX

made before the fitting procedure. Here we show the influence the particular 
choices have on the superconducting gap size and filling in the OD samples.

In the main text, we use Ewin = ±15 meV, which is a choice made before the fitting 
procedure. Altering this choice does not affect the main conclusions of our 
analysis, as shown in Fig. 3A.5. We repeat the analysis using different energy 
windows and find that the qualitative behavior does not change: Δ remains 
constant while F sharply increases in the SOD regime. Further increasing Ewin 
beyond 20 meV, the highly inhomogeneous normal-state DOS becomes more 
significant, defeating the aim of focusing on the superconducting gap through 
an energy window. With an energy window smaller than 10 meV, we find 
that too little of a spectrum is left to characterize the superconducting gap 
accurately.

Another possible influential choice in the fitting procedure is the order of the 
background polynomial used to model the normal-state DOS. Fig. 3A.6 shows 
the mean gap size and filling for the OD23K, OD12K, and OD3K samples 
for different orders of polynomial ranging from 1st to 4th order. The overall 
behavior of nearly constant gap size and increasing filling is present for all 
polynomial orders. We opt to use a 3rd order polynomial in the main text as it 
offers the best balance between underfitting and overfitting.

3A.2.5 An Alternative Model
Here we introduce an alternative approach to determining the gap filling, and 
show that the conclusions are the same using this model. We use a model 
which explicitly includes the filling F as a fitting parameter, in contrast to 
extracting F using fit parameters ∆ and Γ in the main text:

where P(E) and Dynes(Δ,Γ) are defined the same as those in the main text. 
The gap filling is now explicitly parametrized by the parameter F, with F = 0 
corresponding to fully gapped and F = 1 to fully filled. To prevent overfitting 
and to limit built-in correlations between fit parameters we fix the value of Γ. 
Fig. 3A.8 shows the average gap size and gap filling from the fit results using 
this model, analogous to Fig. 3.4 in the main text. For this alternative model, 
we exclude spectra with a) Δ close to 0 (Δ < 1 meV), and b) F close to 1 (F > 
0.95) from further analysis. In case a) the gap sizes become smaller than our 
thermally limited energy resolution, preventing an accurate determination of 
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Δ. In case b) F becomes ill-defined as F can be absorbed into when the gap 
is barely present. Fitting our data with this model, we find that the gap size 
remains constant in the OD regime, while the gap filling increases rapidly. 
Confirmation by an alternative model further strengthens the conclusions of 
the main text. 

A B

Figure 3A.5 Dependence of our conclusion on the choice of the energy window. The 
dependencies on the fitting energy window for the average Δ and filling (a, b respectively) for 
the overdoped samples OD23K, OD12K, and OD3K. While the absolute values of the averages 
vary slightly with the cutoff energy, the overall behavior of a constant gap size and increasing 
filling factor is independent of the cutoff.

a b

Figure 3A.6 Dependence of our conclusion on the choice of the polynomial normal-state DOS. 
The average gap size and filling (a, b) for the overdoped samples OD23K, OD12K, and OD3K 
as the order of the polynomial normal-state DOS is varied. While the absolute values of the 
averages vary a bit among the various polynomials, the overall qualitative behavior of a barely 
varying gap size and the drastic increasing filling is present in all cases.
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Figure 3A.7 Topography of the OD12K, together with the spatial distributions of the polynomial 
background terms used in the fits in the main text. The correlation coefficients of the 3rd, 2nd, 
and 1st order terms with the topography are 0.08, -0.11, and -0.13 respectively, meaning they do 
not correlate with the topography. The 0th order term (i.e. the constant term) does correlate with 
the topography (coefficient of 0.37). The underlying relation of this is that they both relate to 
the same quantity, the average LDOS of that spectrum. If this is low the constant background 
term will go down. A low average DOS also means there are less states to tunnel into with 
our STM tip, meaning that the tip will move closer to the sample to maintain the same setup 
current. Hence, this location will register as a suppression of the surface. This is clearly visible 
when comparing the topography with the spatial distribution of the constant background term. 
Darker regions of the topography are also visible as darker regions of the constant term.



66

PUDDLE FORMATION AND PERSISTENT GAPS IN (Pb,Bi)2Sr2CuO6+δ3

1 1
2
3
4
5

2
3
4
5

3A.3 Temperature Dependence

In Fig. 3A.9a, we show the temperature evolution of the average spectrum 
measured in the same field of view on the OD9K sample. Furthermore, we 
show the median values for the gap and filling parameters as a function of 
temperature in the same field of view in Figs. 3A.9b,c respectively. We find 
that a gap is still present up to 20K for the OD9K sample, even when the 
temperature-limited and lock-in broadened energy resolution is taken into 
account. With increasing temperature, we see that the gap magnitude and gap 
filling remain fairly constant up to 20K.

3A.4 Intrinsic Metal-Induced Pair-Breaking Effects Within a Superconducting 
Puddle Embedded in a Metallic Matrix

In this section, we consider the case of a small d-wave superconducting 
puddle whose size is of the order of the superconducting coherence length ξ0, 
embedded in a metallic matrix. This is a particularly relevant model for the 
strongly overdoped regime. Our treatment of this system is entirely mean-field; 
we employ large-scale numerical simulations of the Bogoliubov-de Gennes 
Hamiltonian to uncover interesting aspects of this system. To our knowledge, 

a b

Figure 3A.8 Gap magnitude and filling versus doping using the alternative model. 
The gap size (a) and the gap filling (b) as determined by the application of the alternative 
model described above. The shaded areas indicate the histograms of the parameters at each 
doping level. The average gap sizes and average filling are indicated by the circles. The median 
(diamonds) is shown to better reflect highly asymmetric distributions as is the case for the gap 
filling. The robustness of the qualitative trends against the use of different models reinforces 
the main conclusions. 
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such calculations have not previously been performed in the literature; similar 
calculations (but for a superconducting puddle in a superconducting matrix) 
have been reported by Fang et al.40 and Nunner et al47.

We show here that one striking effect of the surrounding metallic matrix is to 
significantly weaken d-wave superconductivity, such that the resulting d-wave 
order parameter within the puddle is less than that of a bulk homogeneous 
system with the same pairing interaction. Decreasing the size of the puddle has 
the effect of decreasing the average d-wave order parameter within the puddle. 
We additionally find a concurrent increase in the average local density of states 

0 5 10 15 20
Temperature (K)

0

0.5

1

Fi
llin

g

-10 0 10
E - EF (meV)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

C
on

du
ct

an
ce

 (n
S)

4 K
6 K
9 K
12 K
16 K
20 K

a b

c

Figure 3A.9 Temperature evolution of the gap width and gap filling. a) Average spectra 
measured in the same field of view on the OD9K sample (V = -150 mV, I = -200 pA). b) Median 
values for the gap magnitude in the same field of view of a, as a function of temperature. The 
shaded areas indicate the histograms of the gap at each temperature. c) Median values for the 
Filling parameter in the same field of view of a, as a function of temperature. The shaded areas 
indicate the histograms of the Filling at each temperature. 
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(LDOS) at zero energy within the puddle when the puddle size is decreased. 
The behavior of the puddle as its size is decreased is vastly reminiscent of the 
effect of increasing disorder on bulk d-wave superconductivity, and originates 
entirely from the mixing of the superconducting states within the puddle 
with the metallic states of the surrounding matrix. Thus, the surrounding 
metal induces pair-breaking within the puddle, very similar to the effect of 
disorder48-50. Importantly, our calculations confirm that the negative correlation 
between gap size and filling expected in the mean-field theory also holds for 
the heterogeneous case (see Fig. 3.4d).

In our simulations, we assume that the d-wave superconducting puddles are 
square patches of size l × l. We self-consistently calculate the order parameter 
from:

The pairing interaction Vrr’ is nonzero only for nearest-neighbor bonds 
attached to sites within the l × l patch, and otherwise vanishes. To compute 
Δrr’ and the LDOS ρ(r, ω), we employ an exact real-space Green’s function 
method particularly suited for very large inhomogeneous systems51,52. For 
the calculations reported here, the system size is 100 × 200, which is larger 
compared to what more traditional exact-diagonalization methods can access. 
We iterate the calculation until the order parameter is converged, and we 
assume that we are at T = 0. We take the normal-state dispersion (up to next-
nearest-neighbor hopping) to be given by the following parameters: t1 = 1, t2 = 
-0.33, and μ = -1.22 (from this point on we express all energies in units where 
t1 = 1). The spatially resolved site-centered d-wave order parameter plotted 
throughout this section is obtained by adding the order parameter on all four 
bonds connected to a single site but assuming a sign difference between the 
order parameter on bonds along the x-direction and that on bonds along the 
y-direction.

We are interested in determining whether d-wave superconductivity in 
puddles behaves differently compared to the bulk case due to the abundance 
of low-energy states in the nearby metal, and we will tune the size of the 
puddles (from 5 × 5 to 17 × 17) in particular to isolate the effect of the nearby 
metal. One expects that the smaller the puddle, the stronger the effect of the 
metal, since a larger fraction of the puddle is in close proximity to the metal-
superconductor boundary. We take the nearest-neighbor pairing interaction 
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strength to be V0 = 1.0 inside the superconducting puddle and V0 = 0 outside it. 
To provide a baseline for comparisons, we perform the same calculation for a 
bulk d-wave superconductor as well, with the same nearest-neighbor pairing 
interaction V0 = 1.0 present throughout the entire system. We will frequently 
express the puddle size in terms of l/ξ0, where ξ0 is the coherence length of 
the superconducting condensate within the puddle; this is to make clearer the 
effects of miniaturizing the superconducting puddle to dimensions of the order 
of ξ0 itself. Note that we have suppressed here the explicit l-dependence of ξ0, 
since as it turns out the magnitude of the superconducting order parameter 
within the puddle, and consequently ξ0 itself, depends sensitively on l.

Our results are collected together in Fig. 3A.10. In Fig. 3A.10a, we compare 
the spectral gap (here rather roughly defined as half the peak-to-peak distance 
in energy, measured from the LDOS) to the d-wave order parameter, with both 
quantities averaged within the puddle. It can be seen that the spectral gap tracks 
the d-wave order parameter closely for the bulk system and for larger puddles 
(7 × 7 up to 17 × 17, all corresponding to 2 < l/ξ0 < 10), although for puddles 
the spectral gap slightly overestimates the d-wave order parameter. However, 
once the puddle size is small enough such that l/ξ0 ≈ 1 (as is the case for the 5 
× 5 puddle), a gap is no longer visible in the spectrum, even though a nonzero 
superconducting order parameter remains within the puddle. The strong 
pair-breaking effects of the surrounding metal are most easily seen in Fig. 
3A.10b. Here we plot the average d-wave order parameter within the puddle 
as a function of l/ξ0 The average order parameter within all seven puddles 
considered is considerably less than that of the bulk system, and decreases 
in magnitude as l/ξ0 is made smaller. Note that when the puddle is made 
smaller and smaller, the mixing of metallic states into the superconducting 
puddle increases since more of the puddle becomes in closer proximity with 
the superconductor-metal boundary, and hence there is more pair-breaking. 
Fig. 3A.10c shows the average zero-energy LDOS for seven different puddle 
sizes. Notice that the zero-energy LDOS of all puddles is much bigger than 
that of the bulk system, and that it increases as the puddle size is decreased. 
As with the d-wave order parameter, the large zero-energy LDOS is an effect 
of the mixing of the metallic states into the superconducting puddle, giving 
the latter a much larger number of low-energy states than one would expect a 
bulk d-wave superconductor to have. The overall trend is succinctly captured 
by Fig. 3A.10d, which plots together with the d-wave order parameter and 
the zero-energy LDOS both averaged within the puddle, with the variations 
in both quantities due solely to the puddle size. It can be seen that these two 
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Figure 3A.10 Results for clean superconducting puddles within a metallic matrix of varying 
size, with V0 = 1.0. a) plot of the average spectral gap versus the average d-wave order 
parameter, both averaged within the superconducting puddle, with the dashed line indicating 
where the two quantities are equal. It can be seen that for puddles, the spectral gap is a good 
indicator of the d-wave order parameter (although overestimating it, lying above the dashed 
line) right until the puddle becomes sufficiently small and l/ξ0 ≈ 1 (e.g., 5 × 5), at which point 
no gap can be seen even though a nonzero superconducting order parameter is present. b) plot 
of the average of the d-wave order parameter within the superconducting puddle versus the 
puddle size l/ξ0, with the value for the bulk system shown as a dashed line. c) plot of the zero-
energy LDOS averaged within the superconducting puddle versus the puddle size l/ξ0, again 
with the value for the bulk system shown as a dashed line. d) plot of the LDOS at E = 0 versus 
the d-wave order parameter, both averaged inside the superconducting puddle. Evidently, the 
effect of reducing the puddle size on the superconducting condensate within the puddle is the 
same as that of increasing the amount of disorder: the d-wave order parameter becomes smaller, 
while the zero-energy LDOS increases.
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Figure 3A.11 Plots of the LDOS as a function of energy for a d-wave superconducting puddle 
inside a metallic matrix with decreasing puddle size, with V0 = 1.0. The puddle sizes are 9 × 9, 7 
× 7, and 5 × 5 (a-c), corresponding to l/ξ0 approximately equal to 3.6, 2.4, and 1.2, respectively. 
Shown are LDOS averages within the puddle (blue) and outside it (black). Also shown for 
comparison is the average LDOS for a bulk d-wave superconductor with the same pairing 
interaction V0 = 1.0 (d). The dashed blue lines indicate the average d-wave order parameter 
within the superconducting puddle. Note that as the puddle size becomes smaller, the zero-
energy LDOS inside the patch becomes larger, the coherence peaks become smeared out and 
move to lower energies, and the gap becomes less discernible.
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quantities are inversely proportional to each other, with a large d-wave order 
parameter corresponding to a small zero-energy LDOS and vice versa. This is 
behavior very similar to that expected from disorder acting on a bulk d-wave 
superconductor; one cannot escape the conclusion that the metallic matrix 
induces pair-breaking effects within the superconducting puddle very similar 
to that of disorder.

All of these findings are more explicitly demonstrated in Fig. 3A.11, wherein 
we show plots of the LDOS vs. energy for three puddle sizes (5 × 5, 7 × 7, 
and 9 × 9, whose l/ξ0 values are given approximately by 1.2, 2.4, and 3.6, 
respectively), in addition to the bulk d-wave case. We note first that for 
superconducting puddles, a striking feature of the LDOS is its very large 
value at E = 0 compared to that of the bulk system. One can also notice that for 
larger puddles, a gap is easily discerned in the spectrum, and coherence peaks 
are visible but are broader, less well-defined, and shorter in height compared 
to those of a bulk system. These features become progressively broader as 
the puddle is shrunk, and more spectral weight accumulates near the Fermi 
energy, a result of the fact that the average d-wave order parameter becomes 
smaller the tinier the puddles get. However, when the puddle is made 
sufficiently small such that l/ξ0 ≈ 1, such as the 5 × 5 case here, the gap ceases 
to be visible in the quasiparticle spectrum, and the LDOS resembles that of a 
normal metal. Nevertheless, there is still a nonzero d-wave order parameter 
present within the puddle. 

Figure 3A.12. a) Waterfall plot of the spectra calculated for the 9x9 puddle (the same data as 
presented in Fig. 3.1f), showing a clear correlation between the gap size going to zero and the 
coherence peaks disappearing. b) Spectra of the OD12K sample binned and averaged according 
to their gap size Δ, as determined by our model. The visibility of the coherence peaks here has 
no clear relation to the size of the gap. The spectra in a,b) have been shifted with respect to 
eachother for clarity.

a b
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In sum, we have shown here some of the surprising effects of embedding 
a d-wave superconducting puddle within a metallic matrix. We have 
demonstrated that the surrounding metallic matrix has a pair-breaking effect 
on the superconductivity within the puddle, akin to that of disorder, that fills 
the gap, including at the Fermi level. We have also shown that the smallness of 
the puddle has a nontrivial effect on the LDOS, with the quasiparticle spectrum 
within the puddle showing broad signatures of a gap that progressively 
becomes filled up and washed out the smaller the puddle becomes. The 
similarity of the pair-breaking effects of the metallic matrix to disorder points 
to the difficulty of attributing the effects seen in the experiment and detailed 
in the main text to purely mean-field effects. 

Our calculations show that within a mean-field picture, pair-breaking, whether 
it be due to disorder or the effect of metallic states on a superconducting 
puddle, naturally leads to an anticorrelation between these two quantities. 
Such a scenario points to the necessity of “beyond-mean-field” physics in 
resolving the conundrum posed by the experimental results discussed in the 
main text.

3A.5 Rigid Band Shift in Overdoped Bi2201

The doping levels of the superconducting samples are determined using the 
Presland formula, while the doping level of the OD0K sample is extracted 
from the rigid band shift measured by ARPES. Below, we describe this 
procedure more detail.

ARPES measurements on SOD samples show a rigid band shift of the 
anti-nodal band bottom when the doping is increased (Fig. 3A.13). ARPES 
measurements were performed using the He1α line at 21.2 eV with linear 
polarization. The sample temperature for all samples was 50K, and the total 
experimental resolution was set to 6 meV. The k-space cut was along the face 
of the Brillouin zone (a line spanning the direction (π,π)-(π,0)-(π,-π), indicated 
in the inset of Fig. 3A.13a).

Shown in Fig. 3A.13a as “+” symbols are the positions of the peak maxima 
of the Energy Distribution Curves (EDC’s), extracted after dividing out the 
resolution broadened Fermi-Dirac distribution from the raw data. The energy 
position of the band bottom as shown in Fig. 3A.13b is extracted by taking 
the average of the EDC maxima positions within a small momentum window 
(indicated in Fig 3A.13a by the two vertical red lines). Using these doping-
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dependent band bottom energy values, we can determine the doping level of 
the OD0K crystal by fitting the positions of the superconducting samples and 
extrapolating the result. We find that the OD0K sample has a doping level of 
p=0.274±0.008.

3A.6 Gap Filling and DOS from other Experiments

Fig. 3A.14 shows the comparison of the gap filling we observe and several other 
experiments determining the DOS at the Fermi level: optical conductivity14 
(Fig 3A.14a), Specific heat measurements53,54 (Fig 3A.14b), and Knight shift55 
(Fig. 3A.14c). All these probes measure a DOS at Fermi level increasing with 
overdoping, concomitant with the increased gap filling we observe. We posit 
that this increased DOS is due to increasingly more Cooper pairs broken by a 
non-mean field process (see Chapter 3.2.3).

3A.7 Pair Breaking, Gap Filling and Competing Orders.

In the overdoped cuprates several (fluctuating) orders other than super-
conductivity have been observed, being two distinct types of charge order56,57 

a b

Figure 3A.13 Rigid band shift of the anti-nodal band bottom. The anti-nodal ARPES cut is 
indicated by the red line on the Fermi surface in the inset to panel (a). In (a) can be seen that 
the anti-nodal band bottom shifts towards the Fermi level as the samples are progressively 
overdoped. The energy position of the band bottom is shown in panel (b), and is given by the 
average position within the red vertical lines in panel (a). The red dashed line in (b) shows a fit 
through the band bottom energy position for the superconducting samples (blue circles). The 
fit is then extrapolated to determine the doping level of the non-superconducting sample (red 
diamond), given its measured band bottom. 
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and fluctuating ferromagnetism58,59. Here we address their possible relation 
with our findings.

The charge order of the UD regime continues past optimal doping in 
the overdoped regime, weakening as the doping increases. This doping 
dependence is opposite to the behavior of the gap filling, making this an 
unlikely candidate to participate in the gap filling. The second type of order, 
sqrt(2) order observed by STM. Research on this phenomenon is ongoing – 
as mentioned, the relationship to RIXS data is not clear. This CDW is only 
visible in certain areas, and thus we deduce that it is not directly connected to 
the phenomenology reported here. In any case, the main points of our paper 
-- puddle formation, persistent gap, non-mean-field breakdown – remain 
independent on what exactly this CDW is.

Fig 3A.14 Filling vs spectral weight from optical conductivity below Tc
14 (a), Filling vs residual 

specific heat52,53 (b), and Filling vs residual Knight shift below Tc
55 (c).

a b c

a b c
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