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INTRODUCTION1

1.1 Complexity in Strongly Correlated
 Electron Systems
One of the oldest questions in science, dating back to at least as far back as 
Leucippus & Democritus in the 5th century BCE1, is “What is matter made 
of?”. This question has slowly morphed into a way of thinking, a method of 
tackling new problems: the reductionist approach. When faced with a system 
of unknown nature, physicists very naturally ask themselves what are the 
building blocks, in the hope that the properties of the building blocks easily 
translate into properties of the larger system. How those building blocks fit 
together, the glue that binds them, is often only a secondary consideration.

Perhaps no field of research embodies this approach as well as condensed 
matter physics. The building blocks here are the atoms forming the lattice, 
and the electrons moving through it. The approach of neglecting or heavily 
approximating the interactions between the building blocks is a necessity 
for an otherwise intractable problem. A centimetre sized piece of material is 
made up of 1023

 atoms and electrons! Tracking every interaction among them 
is simply impossible. The field, therefore has a long history of approximations 
to deal with this problem, with successes some might call unreasonable. For 
example, even the Fermi gas, where the lattice is completely ignored together 
with any interaction between electrons, already has some of the essential 
features, such as a parabolic dispersion and a Fermi surface.

Departing from there each new interaction treated properly adds a new level 
of detail, but they all share a common theme: finding a particular angle to the 
problem so that the language of single particles still applies. For example, when 
treating the interactions between electrons and lattice vibrations, or phonons, 
one that the system still very much looks like free electrons, albeit with a 
modified dispersion relation for energies below the phonon frequency2. This 
strategy forms the foundation of much of the field and its application, though 
particularly electron-electron interactions are more stubborn to this approach.

In recent years condensed matter physicists have started asking questions 
moving away from this approach, in part motivated by the challenges posed 
by electron-electron interactions. A question like “Where does complexity 
come from?”3-5 appears to be better suited for the category of systems scientists 
increasingly deal with, often called strongly correlated systems, where the 
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1.1COMPLEXITY IN STRONGLY CORRELATED ELECTRON SYSTEMS

older approach no longer seems applicable. In these cases, the interactions, 
most commonly electron-electron interactions, are so dominant that the 
language of single electrons is no longer suitable. The physics of such a system 
are often emergent of collective phenomena, as they only appear when a large 
number of particles interact with each other. Properties of such systems can 
vary wildly, summarized beautifully by Philip Anderson: More is Different3. 
For example, electrons can freeze themselves in place in what should be a 
good metal6 (Mott insulators), single particles can seize existing altogether7 
(strange metals), or the system shows behavior more associated with bosons8 
(superconductivity) or something in between called anyons9.

One of the core concepts of condensed matter physics takes a rather peculiar 
place in this view: the quasi-particle. This concept is born from Landau’s Fermi 
Liquid theory stating (rather simplified) that in the presence of interactions a 
system of electrons on a lattice can often be mapped back to a single particle 
physics of newly defined quasi-particles, provided the interactions aren’t too 
strong. What those quasi-particles are depends on the exact system and nature 
of interactions. This is quite remarkable! The applicability of single particle 
physics extends farther than naively expected based on the number of particles 
involved. Still, this is not quite the victory for the reductionist approach as it 
seems, or perhaps just a surface level victory. Rather, the properties of a quasi-
particle can be quite far removed from those of a regular electron. There is a 
whole zoo of quasi-particles that physicists have studied: plasmons, anyons, 
holons, basically anything ending with –on. It is this gap between regular 
electrons and quasi-particles, and the zoo of possible quasi-particles, where 
many-body physics most often shows itself and which a reductionist view 
often struggles to fill. In this sense, the quasi-particle itself is the emergent 
phenomenon. And yet there are limits to Fermi Liquid theory. For example, in 
the copper-oxide superconductors the concept of quasi-particles is certainly 
useful, but it doesn’t cover the full story and sometimes seemingly does not 
even apply at all. Exactly how to understand and describe the copper-oxide 
superconductors is one of the major challenges of condensed matter physics.

1.2 Copper-Oxide Superconductors
One of the most notorious examples of emergent phenomena in condensed 
matter physics, and a primary subject of this thesis, are the copper oxide, 
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or cuprate, high-temperature superconductors. These superconductors are 
composed of alternating layers of CuO square lattices, where the charge 
carriers reside, and insulating buffer layers (see Fig. 1.1a). The electronic state 
underlying these compounds is a Mott insulator, itself a prime example of a 
system where interactions dominate the properties. The insulating state arises 
when the CuO square lattice, schematically shown in Fig. 1.1b has one carrier 
per unit cell, i.e. the lattice is half-filled. Without any interactions the half-
filled square lattice would yield a metallic state. The cuprate superconductors 
however feature a strong on-site electron-electron repulsion, often called U, 
meaning that the presence of two electrons on a single lattice site is penalized 
by an energy cost U. This energy scale is in competition with the natural 
tendency of electrons to delocalize, parametrized by the hopping energy t. If the 
repulsion U is much stronger than the hopping term t the electrons are frozen 
in place, unable to leave their lattice site. The result is a strongly insulating 
state. Additionally, these electrons are arranged antiferromagnetically. This 
is the result of the Pauli principle adding an extra energy cost for virtual 
hopping events were the electrons to have a ferromagnetic alignment.

The seemingly odd choice to start a discussion of a compound family most 
famous for their superconductivity by discussing a strongly insulating 
state is a sign for things to come when we dope the Mott insulating state 
(for the purposes of this thesis hole-dope specifically). The insulating state 
quickly melts with doping, and superconductivity emerges (see Fig. 1.2a). 
One important feature of the superconducting state is its d-wave symmetry7, 
meaning the wavefunction flips sign upon 90 degree rotation. As a result, the 
superconducting gap has nodes where it goes to zero, lying on the diagonals 
in k-space. This splits k-space into two regions (Fig. 1.2b): the nodal direction 
in the neighborhood of the diagonals, and the anti-nodes near the Brillouin 
zone edges k = (±π/a,0) and k = (0,±π/a). Another important feature of 
cuprates is the strong spatial inhomogeneity of the electronic state. This 
can be attributed to Mott physics still being at play, despite the insulating 
state being suppressed. From this emergences a disposition towards phase 
separation and the emergence of multiple ordered states on extremely short 
length scales.

In the region of the phase diagram where Tc is increasing with doping, called 
the underdoped regime, the system is dominated by another salient feature 
called the pseudogap. This phase features a partial gap, with anti-nodal states 
being strongly suppressed. As a result, there is no conventional Fermi surface: 
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Figure 1.1: Cuprate unit cell. 
a) The unit cell of the cuprate superconductor Bi2Sr2CuO6+δ (Bi2201), subject of Chapters 
3 & 4. The charge carriers reside in the CuO planes, while the BiO and SrO planes act as 
insulating buffer layers hosting the dopants. Image adapted from Ref.10. b) Schematic of of a 
Mott insulator, showing one electron per unit cell with spins aligned antiferromagnetically. 
When the energy cost of a doubly occupied lattice site U is larger than the hopping energy t the 
system turns insulating. 

Figure 1.2 Electronic phases of cuprate. 
a) Phase diagram of the many different electronic phases cuprates have been shown to host. 
Image adapted from Ref. 7. b) Sketch of the cuprate Fermi surface. The Brillouin zone diagonals 
(dashed lines) divide the Fermi surface in two parts: the nodal region, where the gap function 
goes to zero, and the anti-nodal region, where the gap function reaches its maximum.

Nodes

Anti 
Nodes

a b
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near the anti-nodes there are no discernable quasiparticles in spectroscopy11-13, 
while near the nodes there are still quasiparticles present at EF. When looking 
at the Fermi level with momentum resolved spectroscopy, one finds four sets 
of disconnected states near the nodes called Fermi arcs. Complicating matters 
further, this phase also features a multitude of different ordered phases14-19 
and possibly precursor pairing, where Cooper pairs have already formed but 
have not yet condensed into a single state20-23. How all of the pieces of puzzle 
fit together is still unknown, leaving the nature of the pseudogap state still an 
open question.

At a doping level of 16% (referred to as optimal doping) the Tc reaches a 
maximum. In this regime the pseudogap state gives way to a perhaps even 
more poorly understood state. This is the so-called strange metal phase. It 
is characterized by a linear in temperature resistivity over the full range 
spanning from Tc to the highest measured temperatures24,25. This particular 
temperature dependence is present over a broad doping range, even at low 
temperatures26,27. This is in contrast to quantum critical behavior, where 
this phenomenology would reduce down to a single doping point at zero 
temperature28. Perhaps the strangest features of this state is that it seems to 
no longer feature coherent quasi-particles29,30. Instead, charge is carried by a 
fully incoherent fluid. One framework to model this state is based around the 
AdS/CFT correspondence from string theory7,31,32. With this correspondence a 
class of quantum theories (so-called conformal field theories, or CFTs) can be 
mapped onto a gravitational problem of a particular geometry (problems in 
an anti de sitter space, or AdS) in one higher spatial dimension. The metallic 
states emerging from this construction share some similarities with the strange 
metal behavior found in the cuprates. A particularly interesting prediction is 
that transport in this state features hydrodynamic flow as opposed to the ohmic 
transport of regular metals33-35. Additionally, the incoherent fluid is proposed 
to have an extremely low viscosity, raising the possibility of turbulent flow 
even on the nanometer scale. This is all despite the high levels of disorder 
cuprates are known to have35.

When increasing the doping level even further into the overdoped regime, 
the Tc drops again. At some point a Fermi liquid metallic state is recovered, 
as is evidenced by the visibility of a full Fermi surface in spectroscopy11,30,36,37 
and the observation of quantum oscillations38,39. The reversion back to a more 
conventional Fermi liquid is not without its own mysteries however. For 
example, signs of incoherent carriers associated with the strange metal phase 
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have been found even when Tc has dropped to nearly zero27. Furthermore, 
the decrease of Tc also features a drop of the number of condensed carriers, 
the superfluid density40-42. In more regular superconductors, the superfluid 
density scales with the total number of carriers in the system. This means that 
as the doping increases, i.e. more carriers are introduced, the superfluid density 
should go up, whereas the exact opposite is found to occur in the cuprates. 
Instead, an increasingly large number of uncondensed carriers emerge with 
overdoping43-45. Furthermore, signs of fluctuating superconductivity above Tc 
have been seen through the persistence of a gap above Tc

46-48 and through 
AC and DC transport signatures22,49. An important role in these phenomena 
is played by disorder50,51, which naturally increases as more dopants are 
introduced in the overdoped regime.

One proposal to explain these observations involving disorder is the 
formation of a granular superconductor52,53. In such a system superconducting 
islands are separated by metallic regions. A key ingredient of this proposal 
is enhanced anti-nodal scattering due to a Van Hove singularity (vHS) close 
to Fermi level at the anti-nodes. Neighboring anti-nodes have opposite sign 
due to the d-wave symmetry. This particular type of scattering therefore 
breaks Cooper pairs. The presence of the Van Hove singularity enhances this 
scattering to the point it locally breaks down superconductivity all together, 
leaving behind a metallic region. The existence of the metallic regions 
would explain the anomalously low superfluid and uncondensed carriers, 
as parts of the system is not superconducting at all. The superconducting 
regions of the system become more dilute with increased doping. At some 
point, the macroscopic properties of the system are no longer a consequence 
the properties of the wavefunction within a single region, but rather a 
consequence of the coupling of these regions to each other. Finally, when the 
coupling becomes sufficiently weak, or when the superconducting islands 
become sufficiently dilute, macroscopic superconductivity has vanished. 
Some traces of superconductivity may however still remain in this otherwise 
metallic state.

Complicating this proposal, or the breakdown of overdoped superconductivity 
in general, are observations of additional ordered states, specifically 
ferromagnetic fluctuations54,55 and charge order near the edge of the 
superconducting dome56-58. The latter is of particular interest as it has only 
been observed for doping levels around the level where superconductivity 
vanishes altogether. Additionally, the wavelength observed in real space 
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suggests a close tie to the vHS which exists near the Fermi level in the same 
doping range. It should be noted however that RIXS experiments disagree on 
the charge order wavelength57, and, while visible in real space, STM results 
find no clear feature in momentum space58. How this relates to the breakdown 
of superconductivity remains an open question.

1.3 Scanning Tunneling Microscopy
A common feature of strongly correlated electron systems is their nanoscale 
electronic inhomogeneity59-61. A careful study of these systems therefore 
requires an accurate mapping of their real space electronic structure on an 
atomic scale. It is for this purpose that scanning tunneling microscopy, or 
STM, is invented62.

The principle of operation for STM is quantum tunneling of electrons between 
the sample and an atomically sharp tip used to study it63. When the two are 
brought together sufficiently close to each other (typically meaning less than a 
nm) and a voltage is applied between them, called the bias voltage, electrons 
can jump between them without them being in physical contact (see Fig. 1.3a). 
The current that starts to flow as a result can be used to both image the surface 
of the sample, and measure the DOS directly below the tip. 

The bias voltage shifts the Fermi levels of the tip and sample with respect to 
each other (Fig 1.3b) so that electron move from the occupied states on one 
side to the unoccupied states on the other (which side is which depends on the 
sign of the applied voltage). The resulting current is then given by the overlap 
of the occupied DOS on one side and the unoccupied DOS on the other:

Where gt,s denotes the density of states of the tip and the sample, f the Fermi-
Dirac distribution, Vb the bias voltage, and M the tunneling matrix elements 
controlled by the details of the tunneling process. Often, simplifications can 
be made to this equation by assuming the density of states of the tip to be 
constant in energy (as can be done by choosing the appropriate material 
for the STM tip), and the Fermi-Dirac functions to be step-functions. The 
latter is only valid at low temperatures, a point we will come back to when 

I(Vb) =
4πe

�

∫ +∞

−∞
|M |2gt(ε− eVb)gs(ε)[f(ε)− f(ε− eVb)]dε (1)

I(Vb) ∝
4πe

�
gt|M |2

∫ εVb

0
gs(ε)dε (2)

∂I

∂Vb
(Vb) =

4πe

�
|M |2gtgs(εVb) (3)

JDOS(q, ω) =

∫
A(k, ω)A(k+ q, ω)dk (4)

1

(1.1)
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discussing tunneling spectroscopy and energy resolution. Doing this reduces 
the expression for the tunneling current to:

Where the step-function shape of the Fermi-Dirac distribution was used 
to change the integration bounds. For simplicity’s sake M is also assumed 
to be constant in energy. The matrix elements M are largely determined by 
the overlap of the orbitals of the tip and the sample, which is often energy 
independent. The orbital overlap decays exponentially with the distance z 
between tip and sample, meaning the tunneling current is extremely sensitive 
to the distance between tip and sample. This distance is controlled by a 
feedback mechanism. The tunneling current is constantly recorded and the tip 
height constantly adjusted so that the current stays constant. When the tip is 
moved across the surface, an image of the surface is reconstructed by recording 
the changes in the tip height needed to keep the current constant. Despite the 
feedback loop, STM is still extremely sensitive to outside influences disturbing 
the tip-sample distance, such as vibrations or sound waves. New STM setups 
are continuously being developed to minimize outside disturbances, with 
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Figure 1.3 Basics of STM. 
a) Schematic of the tip-sample system for STM. At sufficiently close distance z between tip 
and sample, regulated via the feedback loop, electrons can jump the gap when a bias voltage Vb 
is applied. b) Diagram of the DOS on the tip and sample sides. Current can flow between the 
tip and the sample when electrons can jump from occupied states on one side (here the tip) to 
unoccupied sides on the other side (here the sample). The total current is proportional to the 
size of the tunneling window given by eVb and the total number of states inside said window.

(1.2)
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4πe
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0
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∫
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the state-of-the-art system used for the majority of this thesis’ experiments 
reaching a vibration level64 as low as 6 fm Hz-1/2.

Accessing the DOS of the sample, i.e. doing tunneling spectroscopy, is done 
by taking the derivative of eq. 1.2 with respect to the bias voltage Vb. This 
yields the following expression:

Measuring this quantity as a function of Vb is called a dI/dV spectrum, giving 
direct information about the local DOS (or LDOS) of the sample. To do this, 
the tip position above the sample is stabilized using the feedback loop at a 
current IS and voltage VS called the setup current and voltage. The feedback is 
then switched off and the bias voltage is swept while recording the tunneling 
current. The dI/dV could of course then be calculated through numerical 
differentiation. Doing so however enhances the noise in a spectrum. Instead, 
the dI/dV is directly measured by adding a small modulation ΔV at a given 
frequency to the bias voltage, and measuring the resulting oscillations ΔI at 
that frequency using a lock-in amplifier. The ratio ΔI/ΔV gives then the DOS 
in a window ΔV around Vb. After the sweep is finished the feedback is enabled 
again so the tip can safely be moved to another location.

All of the above is combined into a single technique called Scanning Tunneling 
Spectroscopy (STS, although spectroscopic imaging STM or SI-STM is also 
used). Here, a finely spaced grid of 104-105 points or pixels is defined on a 
small section of sample surface (in the range of 10x10 nm). At each point both 
the tip height and the LDOS are measured by first stabilizing the tip position 
with feedback on and then measuring the dI/dV. As such, a 2D map of the 
surface is created simultaneously with a 3D map of the electronic structure, 
where the third dimension are the energies at which the LDOS was measured. 
The ability to measure the electronic structure with such a high spatial 
resolution is especially well suited for studying strongly correlated systems 
which naturally tend to inhomogeneous electronic structures.

The energy resolution of spectroscopic imaging is largely set by how the 
approximation of Fermi-Dirac distributions as step-functions works. Going 
through the derivation more carefully, one finds that the expression for dI/dV 
contains a derivative of the Fermi-Dirac distribution, which is a Gaussian with 

(1.3)
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a FWHM of 3.53kbT. Furthermore, the modulation used to measure dI/dV adds 
its own resolution given by the amplitude of the modulation. These two values 
add quadratically to give the total resolution. For example at a temperature of 
4.2K and a modulation of 1.5mV, the total resolution is 2.58meV.

While STS is most often used to image the real space electronic structure, it 
can also measure a momentum resolved structure with a technique called 
Quasi-Particle Interference or QPI. This technique makes use of the standing 
waves around impurities or defects in the material that STS can observe65,66, 
caused by electrons scattering off the defects (see Fig. 1.4a for a simulation) An 

a b c

a b c

Figure 1.4 Basics of QPI. 
a) Simulation of a Cu(111) lattice with defects showing QPI rings from electron interference. b) 
Fourier transform of a) clearly showing 6 isolated Bragg peaks from the lattice and the a ring-
shaped feature from the QPI waves. c) The wavevector of the QPI waves, and with it the size of 
the ring in b), is determined by bandstructure (here parabolic) of the system. The blue dots show 
the momentum of the carriers at the energy used for a,b). Credit: K. Fujita.



12

INTRODUCTION1

1 1
2
3
4
5

2
3
4
5

incoming electron with momentum k1 and energy ε(k1) will scatter into a final 
state with momentum k2 and energy ε(k2) = ε(k1). The interference between 
these states causes an oscillation in the DOS with a wavevector q = k1 – k2. The 
value of the wavevector q can be measured by imaging the oscillation pattern 
in real space and taking a Fourier transform.

For the case that the system has a only a single band electrons will simply 
scatter from one side of the Fermi surface to the other: q = kF – (-kF) = 2kF. 
Measuring q as a function of energy then directly yields the bandstructure 
of the material (see Fig. 1.4b, c). For multiband systems, the situation is more 
complicated. Not only are there multiple values for q = 2kF, one for each band, 
but also multiple different q’s resulting from interband scattering. While 
in principle tracking the dispersions of these scattering vectors contains 
all the information on the bandstructure, extracting the exact dispersion is 
often impossible without some prior knowledge of the bandstructure. More 
generally, QPI will measure the scattering vector between states with a high 
joint density of states (JDOS). These are often states whose constant energy 
contours are parallel67,68 or parts of the bandstructure which feature a flat 
dispersion which increases the DOS, a useful fact for determining gapped 
bandstructures69,70.

Viewing QPI through the lens of the JDOS gives a way to better approximate 
what a QPI measurement will look like. To do this, it is most useful not to 
think in terms of DOS but of the spectral function A(k,ω). This quantity is 
a generalized version of the DOS suitable for correlated systems, giving the 
probability there is a quasi-particle excitation with momentum k and energy 
ω71. The JDOS is then well approximated by:

Although simple, this allows for quick estimation of QPI measurements, 
especially given the fact that the spectral function A(k,ω) for occupied states 
is directly accessible in ARPES measurements72. By taking the autocorrelation 
of constant energy ARPES measurements, or results from the computational 
method for bandstructure of choice, a good first guess for the QPI signal is 
obtained. Of course more complicated, and more precise, methods to calculate 
QPI patterns exist67,73, but the autocorrelation method is often good enough to 
identify the visible scattering vectors without the need of any further aids.

(1.4)
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High quality QPI measurements push the technique of STS to its limits, 
primarily due to the length of such a measurement. The field of view used 
needs to be large enough, as this directly sets the resolution in q. Still, the 
spectroscopy grid needs to be fine enough to resolve features with higher q. 
Preferably, the atomic lattice is still resolved, as the subsequent Bragg peaks in 
the QPI signal are ideal for calibrating lengths of scattering vectors. Lastly, the 
signal-to-noise ratio of each spectrum needs to sufficient so that the oscillations 
in the LDOS are not washed out. The result is that QPI measurements take a 
long time, the ones presented in this thesis often taking 2-3 days, occasionally 
up to 5 days. As such, stability of the STM setup is paramount, both in terms 
of temperature stability and vibration isolation. 

Even when these issues are properly addressed, QPI measurements are prone 
to artifacts, the most important of which is the setup effect74,75. This is a direct 
consequence of the choice to enable the feedback loop again after measuring 
each dI/dV spectrum. This introduces a normalization factor into the spectrum, 
which can be thought of as a ‘leak’ of the signal at the setup bias into the signal 
at other bias levels. For QPI measurements, this results in a constant-in-q, or 
non-dispersive, signal in the measurement75. The exact shape and position of 
the artifact depends on what the visible q-vector is at the setup bias. Armed 
with this knowledge, it is in principle possible to design the QPI measurement 
in such a way that there is no setup effect present, although this can require 
impractical values for the setup bias.

1.4 Outline of this Thesis
In this thesis we will closely examine how we study strongly correlated 
systems, and apply that knowledge to the study of cuprate superconductors. 
Finally, we propose new experiments to explore the properties of strongly 
correlated systems. This thesis is structured as follows:

In Chapter 2 we study how electronic structures are determined by studying 
a prototypical example of a correlated 2D Fermi Liquid, Sr2RhO4. We do this 
by applying three commonly used spectroscopic techniques, STS, ARPES, and 
quantum oscillations, and find them to be in good agreement. We argue that 
discrepancies between these methods in other systems are a reflection of the 
physics of those systems.
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In Chapters 3 & 4, we study the electronic structure of the overdoped cuprate 
(Pb,Bi)2Sr2CuO6+δ, both in real space and in momentum space, using STS 
and QPI measurements. In Chapter 3, we study the real space structure by 
tracking the evolution of the superconducting gap across and beyond the 
superconducting dome. We find that the magnitude of the spectroscopic 
gap no longer follows the superconducting dome, and instead levels out. 
Furthermore, we find that a metallic matrix forms and grows with increasing 
doping on the nm scale in this system, and that the mechanism of pair breaking 
in this system falls outside the scope of mean field theories. In Chapter 4 we 
employ a combination of QPI and state-of-the-art machine learning noise 
suppression to probe the momentum space structure of (Pb,Bi)2Sr2CuO6+δ. We 
find an anti-nodal band rigidly shifting with doping, in line with earlier results. 
We also observe the bending of the band due to the gap and find shoulder-like 
features near the gap edge suggesting the presence of an additional density 
wave in these samples.

Finally, in Chapter 5 we discuss how strong correlations between electrons can 
give rise to a rare form of transport called hydrodynamic transport. We model 
the transport behavior in this regime for an experiment designed to detect 
hydrodynamic transport using the Navier-Stokes equation modified to include 
disorder effects. We carefully calculate the expected signal for this experiment 
for the Fermi Liquid normal state of the unconventional superconductor 
Sr2RuO4 , and find a crossover between Ohmic and hydrodynamic transport 
over a range of disorder levels. Finally, we discuss the application of this 
experiment to the cuprate strange metal phase, which has been proposed to 
show hydrodynamical behavior with an extremely low viscosity. We show that 
the same experiment will show only Ohmic behavior due to the combination 
of disorder and low viscosity in cuprate strange metals.
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