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INTRODUCTION1

1.1	 Complexity in Strongly Correlated
	 Electron Systems
One of the oldest questions in science, dating back to at least as far back as 
Leucippus & Democritus in the 5th century BCE1, is “What is matter made 
of?”. This question has slowly morphed into a way of thinking, a method of 
tackling new problems: the reductionist approach. When faced with a system 
of unknown nature, physicists very naturally ask themselves what are the 
building blocks, in the hope that the properties of the building blocks easily 
translate into properties of the larger system. How those building blocks fit 
together, the glue that binds them, is often only a secondary consideration.

Perhaps no field of research embodies this approach as well as condensed 
matter physics. The building blocks here are the atoms forming the lattice, 
and the electrons moving through it. The approach of neglecting or heavily 
approximating the interactions between the building blocks is a necessity 
for an otherwise intractable problem. A centimetre sized piece of material is 
made up of 1023

 atoms and electrons! Tracking every interaction among them 
is simply impossible. The field, therefore has a long history of approximations 
to deal with this problem, with successes some might call unreasonable. For 
example, even the Fermi gas, where the lattice is completely ignored together 
with any interaction between electrons, already has some of the essential 
features, such as a parabolic dispersion and a Fermi surface.

Departing from there each new interaction treated properly adds a new level 
of detail, but they all share a common theme: finding a particular angle to the 
problem so that the language of single particles still applies. For example, when 
treating the interactions between electrons and lattice vibrations, or phonons, 
one that the system still very much looks like free electrons, albeit with a 
modified dispersion relation for energies below the phonon frequency2. This 
strategy forms the foundation of much of the field and its application, though 
particularly electron-electron interactions are more stubborn to this approach.

In recent years condensed matter physicists have started asking questions 
moving away from this approach, in part motivated by the challenges posed 
by electron-electron interactions. A question like “Where does complexity 
come from?”3-5 appears to be better suited for the category of systems scientists 
increasingly deal with, often called strongly correlated systems, where the 
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1.1COMPLEXITY IN STRONGLY CORRELATED ELECTRON SYSTEMS

older approach no longer seems applicable. In these cases, the interactions, 
most commonly electron-electron interactions, are so dominant that the 
language of single electrons is no longer suitable. The physics of such a system 
are often emergent of collective phenomena, as they only appear when a large 
number of particles interact with each other. Properties of such systems can 
vary wildly, summarized beautifully by Philip Anderson: More is Different3. 
For example, electrons can freeze themselves in place in what should be a 
good metal6 (Mott insulators), single particles can seize existing altogether7 
(strange metals), or the system shows behavior more associated with bosons8 
(superconductivity) or something in between called anyons9.

One of the core concepts of condensed matter physics takes a rather peculiar 
place in this view: the quasi-particle. This concept is born from Landau’s Fermi 
Liquid theory stating (rather simplified) that in the presence of interactions a 
system of electrons on a lattice can often be mapped back to a single particle 
physics of newly defined quasi-particles, provided the interactions aren’t too 
strong. What those quasi-particles are depends on the exact system and nature 
of interactions. This is quite remarkable! The applicability of single particle 
physics extends farther than naively expected based on the number of particles 
involved. Still, this is not quite the victory for the reductionist approach as it 
seems, or perhaps just a surface level victory. Rather, the properties of a quasi-
particle can be quite far removed from those of a regular electron. There is a 
whole zoo of quasi-particles that physicists have studied: plasmons, anyons, 
holons, basically anything ending with –on. It is this gap between regular 
electrons and quasi-particles, and the zoo of possible quasi-particles, where 
many-body physics most often shows itself and which a reductionist view 
often struggles to fill. In this sense, the quasi-particle itself is the emergent 
phenomenon. And yet there are limits to Fermi Liquid theory. For example, in 
the copper-oxide superconductors the concept of quasi-particles is certainly 
useful, but it doesn’t cover the full story and sometimes seemingly does not 
even apply at all. Exactly how to understand and describe the copper-oxide 
superconductors is one of the major challenges of condensed matter physics.

1.2 Copper-Oxide Superconductors
One of the most notorious examples of emergent phenomena in condensed 
matter physics, and a primary subject of this thesis, are the copper oxide, 
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or cuprate, high-temperature superconductors. These superconductors are 
composed of alternating layers of CuO square lattices, where the charge 
carriers reside, and insulating buffer layers (see Fig. 1.1a). The electronic state 
underlying these compounds is a Mott insulator, itself a prime example of a 
system where interactions dominate the properties. The insulating state arises 
when the CuO square lattice, schematically shown in Fig. 1.1b has one carrier 
per unit cell, i.e. the lattice is half-filled. Without any interactions the half-
filled square lattice would yield a metallic state. The cuprate superconductors 
however feature a strong on-site electron-electron repulsion, often called U, 
meaning that the presence of two electrons on a single lattice site is penalized 
by an energy cost U. This energy scale is in competition with the natural 
tendency of electrons to delocalize, parametrized by the hopping energy t. If the 
repulsion U is much stronger than the hopping term t the electrons are frozen 
in place, unable to leave their lattice site. The result is a strongly insulating 
state. Additionally, these electrons are arranged antiferromagnetically. This 
is the result of the Pauli principle adding an extra energy cost for virtual 
hopping events were the electrons to have a ferromagnetic alignment.

The seemingly odd choice to start a discussion of a compound family most 
famous for their superconductivity by discussing a strongly insulating 
state is a sign for things to come when we dope the Mott insulating state 
(for the purposes of this thesis hole-dope specifically). The insulating state 
quickly melts with doping, and superconductivity emerges (see Fig. 1.2a). 
One important feature of the superconducting state is its d-wave symmetry7, 
meaning the wavefunction flips sign upon 90 degree rotation. As a result, the 
superconducting gap has nodes where it goes to zero, lying on the diagonals 
in k-space. This splits k-space into two regions (Fig. 1.2b): the nodal direction 
in the neighborhood of the diagonals, and the anti-nodes near the Brillouin 
zone edges k = (±π/a,0) and k = (0,±π/a). Another important feature of 
cuprates is the strong spatial inhomogeneity of the electronic state. This 
can be attributed to Mott physics still being at play, despite the insulating 
state being suppressed. From this emergences a disposition towards phase 
separation and the emergence of multiple ordered states on extremely short 
length scales.

In the region of the phase diagram where Tc is increasing with doping, called 
the underdoped regime, the system is dominated by another salient feature 
called the pseudogap. This phase features a partial gap, with anti-nodal states 
being strongly suppressed. As a result, there is no conventional Fermi surface: 
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Figure 1.1: Cuprate unit cell. 
a) The unit cell of the cuprate superconductor Bi2Sr2CuO6+δ (Bi2201), subject of Chapters 
3 & 4. The charge carriers reside in the CuO planes, while the BiO and SrO planes act as 
insulating buffer layers hosting the dopants. Image adapted from Ref.10. b) Schematic of of a 
Mott insulator, showing one electron per unit cell with spins aligned antiferromagnetically. 
When the energy cost of a doubly occupied lattice site U is larger than the hopping energy t the 
system turns insulating. 

Figure 1.2 Electronic phases of cuprate. 
a) Phase diagram of the many different electronic phases cuprates have been shown to host. 
Image adapted from Ref. 7. b) Sketch of the cuprate Fermi surface. The Brillouin zone diagonals 
(dashed lines) divide the Fermi surface in two parts: the nodal region, where the gap function 
goes to zero, and the anti-nodal region, where the gap function reaches its maximum.

Nodes

Anti 
Nodes

a b
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near the anti-nodes there are no discernable quasiparticles in spectroscopy11-13, 
while near the nodes there are still quasiparticles present at EF. When looking 
at the Fermi level with momentum resolved spectroscopy, one finds four sets 
of disconnected states near the nodes called Fermi arcs. Complicating matters 
further, this phase also features a multitude of different ordered phases14-19 
and possibly precursor pairing, where Cooper pairs have already formed but 
have not yet condensed into a single state20-23. How all of the pieces of puzzle 
fit together is still unknown, leaving the nature of the pseudogap state still an 
open question.

At a doping level of 16% (referred to as optimal doping) the Tc reaches a 
maximum. In this regime the pseudogap state gives way to a perhaps even 
more poorly understood state. This is the so-called strange metal phase. It 
is characterized by a linear in temperature resistivity over the full range 
spanning from Tc to the highest measured temperatures24,25. This particular 
temperature dependence is present over a broad doping range, even at low 
temperatures26,27. This is in contrast to quantum critical behavior, where 
this phenomenology would reduce down to a single doping point at zero 
temperature28. Perhaps the strangest features of this state is that it seems to 
no longer feature coherent quasi-particles29,30. Instead, charge is carried by a 
fully incoherent fluid. One framework to model this state is based around the 
AdS/CFT correspondence from string theory7,31,32. With this correspondence a 
class of quantum theories (so-called conformal field theories, or CFTs) can be 
mapped onto a gravitational problem of a particular geometry (problems in 
an anti de sitter space, or AdS) in one higher spatial dimension. The metallic 
states emerging from this construction share some similarities with the strange 
metal behavior found in the cuprates. A particularly interesting prediction is 
that transport in this state features hydrodynamic flow as opposed to the ohmic 
transport of regular metals33-35. Additionally, the incoherent fluid is proposed 
to have an extremely low viscosity, raising the possibility of turbulent flow 
even on the nanometer scale. This is all despite the high levels of disorder 
cuprates are known to have35.

When increasing the doping level even further into the overdoped regime, 
the Tc drops again. At some point a Fermi liquid metallic state is recovered, 
as is evidenced by the visibility of a full Fermi surface in spectroscopy11,30,36,37 
and the observation of quantum oscillations38,39. The reversion back to a more 
conventional Fermi liquid is not without its own mysteries however. For 
example, signs of incoherent carriers associated with the strange metal phase 
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have been found even when Tc has dropped to nearly zero27. Furthermore, 
the decrease of Tc also features a drop of the number of condensed carriers, 
the superfluid density40-42. In more regular superconductors, the superfluid 
density scales with the total number of carriers in the system. This means that 
as the doping increases, i.e. more carriers are introduced, the superfluid density 
should go up, whereas the exact opposite is found to occur in the cuprates. 
Instead, an increasingly large number of uncondensed carriers emerge with 
overdoping43-45. Furthermore, signs of fluctuating superconductivity above Tc 
have been seen through the persistence of a gap above Tc

46-48 and through 
AC and DC transport signatures22,49. An important role in these phenomena 
is played by disorder50,51, which naturally increases as more dopants are 
introduced in the overdoped regime.

One proposal to explain these observations involving disorder is the 
formation of a granular superconductor52,53. In such a system superconducting 
islands are separated by metallic regions. A key ingredient of this proposal 
is enhanced anti-nodal scattering due to a Van Hove singularity (vHS) close 
to Fermi level at the anti-nodes. Neighboring anti-nodes have opposite sign 
due to the d-wave symmetry. This particular type of scattering therefore 
breaks Cooper pairs. The presence of the Van Hove singularity enhances this 
scattering to the point it locally breaks down superconductivity all together, 
leaving behind a metallic region. The existence of the metallic regions 
would explain the anomalously low superfluid and uncondensed carriers, 
as parts of the system is not superconducting at all. The superconducting 
regions of the system become more dilute with increased doping. At some 
point, the macroscopic properties of the system are no longer a consequence 
the properties of the wavefunction within a single region, but rather a 
consequence of the coupling of these regions to each other. Finally, when the 
coupling becomes sufficiently weak, or when the superconducting islands 
become sufficiently dilute, macroscopic superconductivity has vanished. 
Some traces of superconductivity may however still remain in this otherwise 
metallic state.

Complicating this proposal, or the breakdown of overdoped superconductivity 
in general, are observations of additional ordered states, specifically 
ferromagnetic fluctuations54,55 and charge order near the edge of the 
superconducting dome56-58. The latter is of particular interest as it has only 
been observed for doping levels around the level where superconductivity 
vanishes altogether. Additionally, the wavelength observed in real space 



8

1

1 1
2
3
4
5

2
3
4
5
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suggests a close tie to the vHS which exists near the Fermi level in the same 
doping range. It should be noted however that RIXS experiments disagree on 
the charge order wavelength57, and, while visible in real space, STM results 
find no clear feature in momentum space58. How this relates to the breakdown 
of superconductivity remains an open question.

1.3	 Scanning Tunneling Microscopy
A common feature of strongly correlated electron systems is their nanoscale 
electronic inhomogeneity59-61. A careful study of these systems therefore 
requires an accurate mapping of their real space electronic structure on an 
atomic scale. It is for this purpose that scanning tunneling microscopy, or 
STM, is invented62.

The principle of operation for STM is quantum tunneling of electrons between 
the sample and an atomically sharp tip used to study it63. When the two are 
brought together sufficiently close to each other (typically meaning less than a 
nm) and a voltage is applied between them, called the bias voltage, electrons 
can jump between them without them being in physical contact (see Fig. 1.3a). 
The current that starts to flow as a result can be used to both image the surface 
of the sample, and measure the DOS directly below the tip. 

The bias voltage shifts the Fermi levels of the tip and sample with respect to 
each other (Fig 1.3b) so that electron move from the occupied states on one 
side to the unoccupied states on the other (which side is which depends on the 
sign of the applied voltage). The resulting current is then given by the overlap 
of the occupied DOS on one side and the unoccupied DOS on the other:

Where gt,s denotes the density of states of the tip and the sample, f the Fermi-
Dirac distribution, Vb the bias voltage, and M the tunneling matrix elements 
controlled by the details of the tunneling process. Often, simplifications can 
be made to this equation by assuming the density of states of the tip to be 
constant in energy (as can be done by choosing the appropriate material 
for the STM tip), and the Fermi-Dirac functions to be step-functions. The 
latter is only valid at low temperatures, a point we will come back to when 

I(Vb) =
4πe

�

∫ +∞

−∞
|M |2gt(ε− eVb)gs(ε)[f(ε)− f(ε− eVb)]dε (1)

I(Vb) ∝
4πe

�
gt|M |2

∫ εVb

0
gs(ε)dε (2)

∂I

∂Vb
(Vb) =

4πe

�
|M |2gtgs(εVb) (3)

JDOS(q, ω) =

∫
A(k, ω)A(k+ q, ω)dk (4)

1

(1.1)
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discussing tunneling spectroscopy and energy resolution. Doing this reduces 
the expression for the tunneling current to:

Where the step-function shape of the Fermi-Dirac distribution was used 
to change the integration bounds. For simplicity’s sake M is also assumed 
to be constant in energy. The matrix elements M are largely determined by 
the overlap of the orbitals of the tip and the sample, which is often energy 
independent. The orbital overlap decays exponentially with the distance z 
between tip and sample, meaning the tunneling current is extremely sensitive 
to the distance between tip and sample. This distance is controlled by a 
feedback mechanism. The tunneling current is constantly recorded and the tip 
height constantly adjusted so that the current stays constant. When the tip is 
moved across the surface, an image of the surface is reconstructed by recording 
the changes in the tip height needed to keep the current constant. Despite the 
feedback loop, STM is still extremely sensitive to outside influences disturbing 
the tip-sample distance, such as vibrations or sound waves. New STM setups 
are continuously being developed to minimize outside disturbances, with 

e-

ε = 0
ε = eVb

Tip DOS Sample DOS

ε - E
F

ε - E
F

z e-

Vb

Feedback 
loop

a b

e-

ε = 0
ε = eVb

Tip DOS Sample DOS

ε - E
F

ε - E
F

z e-

Vb

Feedback 
loop

a b

Figure 1.3 Basics of STM. 
a) Schematic of the tip-sample system for STM. At sufficiently close distance z between tip 
and sample, regulated via the feedback loop, electrons can jump the gap when a bias voltage Vb 
is applied. b) Diagram of the DOS on the tip and sample sides. Current can flow between the 
tip and the sample when electrons can jump from occupied states on one side (here the tip) to 
unoccupied sides on the other side (here the sample). The total current is proportional to the 
size of the tunneling window given by eVb and the total number of states inside said window.

(1.2)

I(Vb) =
4πe

�

∫ +∞

−∞
|M |2gt(ε− eVb)gs(ε)[f(ε)− f(ε− eVb)]dε (1)

I(Vb) ∝
4πe

�
gt|M |2

∫ εVb

0
gs(ε)dε (2)

∂I

∂Vb
(Vb) =

4πe

�
|M |2gtgs(εVb) (3)

JDOS(q, ω) =

∫
A(k, ω)A(k+ q, ω)dk (4)

1
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the state-of-the-art system used for the majority of this thesis’ experiments 
reaching a vibration level64 as low as 6 fm Hz-1/2.

Accessing the DOS of the sample, i.e. doing tunneling spectroscopy, is done 
by taking the derivative of eq. 1.2 with respect to the bias voltage Vb. This 
yields the following expression:

Measuring this quantity as a function of Vb is called a dI/dV spectrum, giving 
direct information about the local DOS (or LDOS) of the sample. To do this, 
the tip position above the sample is stabilized using the feedback loop at a 
current IS and voltage VS called the setup current and voltage. The feedback is 
then switched off and the bias voltage is swept while recording the tunneling 
current. The dI/dV could of course then be calculated through numerical 
differentiation. Doing so however enhances the noise in a spectrum. Instead, 
the dI/dV is directly measured by adding a small modulation ΔV at a given 
frequency to the bias voltage, and measuring the resulting oscillations ΔI at 
that frequency using a lock-in amplifier. The ratio ΔI/ΔV gives then the DOS 
in a window ΔV around Vb. After the sweep is finished the feedback is enabled 
again so the tip can safely be moved to another location.

All of the above is combined into a single technique called Scanning Tunneling 
Spectroscopy (STS, although spectroscopic imaging STM or SI-STM is also 
used). Here, a finely spaced grid of 104-105 points or pixels is defined on a 
small section of sample surface (in the range of 10x10 nm). At each point both 
the tip height and the LDOS are measured by first stabilizing the tip position 
with feedback on and then measuring the dI/dV. As such, a 2D map of the 
surface is created simultaneously with a 3D map of the electronic structure, 
where the third dimension are the energies at which the LDOS was measured. 
The ability to measure the electronic structure with such a high spatial 
resolution is especially well suited for studying strongly correlated systems 
which naturally tend to inhomogeneous electronic structures.

The energy resolution of spectroscopic imaging is largely set by how the 
approximation of Fermi-Dirac distributions as step-functions works. Going 
through the derivation more carefully, one finds that the expression for dI/dV 
contains a derivative of the Fermi-Dirac distribution, which is a Gaussian with 

(1.3)

I(Vb) =
4πe

�

∫ +∞

−∞
|M |2gt(ε− eVb)gs(ε)[f(ε)− f(ε− eVb)]dε (1)

I(Vb) ∝
4πe

�
gt|M |2

∫ εVb

0
gs(ε)dε (2)

∂I

∂Vb
(Vb) =

4πe

�
|M |2gtgs(εVb) (3)

JDOS(q, ω) =

∫
A(k, ω)A(k+ q, ω)dk (4)

1
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a FWHM of 3.53kbT. Furthermore, the modulation used to measure dI/dV adds 
its own resolution given by the amplitude of the modulation. These two values 
add quadratically to give the total resolution. For example at a temperature of 
4.2K and a modulation of 1.5mV, the total resolution is 2.58meV.

While STS is most often used to image the real space electronic structure, it 
can also measure a momentum resolved structure with a technique called 
Quasi-Particle Interference or QPI. This technique makes use of the standing 
waves around impurities or defects in the material that STS can observe65,66, 
caused by electrons scattering off the defects (see Fig. 1.4a for a simulation) An 

a b c

a b c

Figure 1.4 Basics of QPI. 
a) Simulation of a Cu(111) lattice with defects showing QPI rings from electron interference. b) 
Fourier transform of a) clearly showing 6 isolated Bragg peaks from the lattice and the a ring-
shaped feature from the QPI waves. c) The wavevector of the QPI waves, and with it the size of 
the ring in b), is determined by bandstructure (here parabolic) of the system. The blue dots show 
the momentum of the carriers at the energy used for a,b). Credit: K. Fujita.
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incoming electron with momentum k1 and energy ε(k1) will scatter into a final 
state with momentum k2 and energy ε(k2) = ε(k1). The interference between 
these states causes an oscillation in the DOS with a wavevector q = k1 – k2. The 
value of the wavevector q can be measured by imaging the oscillation pattern 
in real space and taking a Fourier transform.

For the case that the system has a only a single band electrons will simply 
scatter from one side of the Fermi surface to the other: q = kF – (-kF) = 2kF. 
Measuring q as a function of energy then directly yields the bandstructure 
of the material (see Fig. 1.4b, c). For multiband systems, the situation is more 
complicated. Not only are there multiple values for q = 2kF, one for each band, 
but also multiple different q’s resulting from interband scattering. While 
in principle tracking the dispersions of these scattering vectors contains 
all the information on the bandstructure, extracting the exact dispersion is 
often impossible without some prior knowledge of the bandstructure. More 
generally, QPI will measure the scattering vector between states with a high 
joint density of states (JDOS). These are often states whose constant energy 
contours are parallel67,68 or parts of the bandstructure which feature a flat 
dispersion which increases the DOS, a useful fact for determining gapped 
bandstructures69,70.

Viewing QPI through the lens of the JDOS gives a way to better approximate 
what a QPI measurement will look like. To do this, it is most useful not to 
think in terms of DOS but of the spectral function A(k,ω). This quantity is 
a generalized version of the DOS suitable for correlated systems, giving the 
probability there is a quasi-particle excitation with momentum k and energy 
ω71. The JDOS is then well approximated by:

Although simple, this allows for quick estimation of QPI measurements, 
especially given the fact that the spectral function A(k,ω) for occupied states 
is directly accessible in ARPES measurements72. By taking the autocorrelation 
of constant energy ARPES measurements, or results from the computational 
method for bandstructure of choice, a good first guess for the QPI signal is 
obtained. Of course more complicated, and more precise, methods to calculate 
QPI patterns exist67,73, but the autocorrelation method is often good enough to 
identify the visible scattering vectors without the need of any further aids.

(1.4)

I(Vb) =
4πe

�

∫ +∞

−∞
|M |2gt(ε− eVb)gs(ε)[f(ε)− f(ε− eVb)]dε (1)

I(Vb) ∝
4πe

�
gt|M |2

∫ εVb

0
gs(ε)dε (2)

∂I

∂Vb
(Vb) =

4πe

�
|M |2gtgs(εVb) (3)

JDOS(q, ω) =

∫
A(k, ω)A(k+ q, ω)dk (4)

1
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1.4OUTLINE OF THIS THESIS

High quality QPI measurements push the technique of STS to its limits, 
primarily due to the length of such a measurement. The field of view used 
needs to be large enough, as this directly sets the resolution in q. Still, the 
spectroscopy grid needs to be fine enough to resolve features with higher q. 
Preferably, the atomic lattice is still resolved, as the subsequent Bragg peaks in 
the QPI signal are ideal for calibrating lengths of scattering vectors. Lastly, the 
signal-to-noise ratio of each spectrum needs to sufficient so that the oscillations 
in the LDOS are not washed out. The result is that QPI measurements take a 
long time, the ones presented in this thesis often taking 2-3 days, occasionally 
up to 5 days. As such, stability of the STM setup is paramount, both in terms 
of temperature stability and vibration isolation. 

Even when these issues are properly addressed, QPI measurements are prone 
to artifacts, the most important of which is the setup effect74,75. This is a direct 
consequence of the choice to enable the feedback loop again after measuring 
each dI/dV spectrum. This introduces a normalization factor into the spectrum, 
which can be thought of as a ‘leak’ of the signal at the setup bias into the signal 
at other bias levels. For QPI measurements, this results in a constant-in-q, or 
non-dispersive, signal in the measurement75. The exact shape and position of 
the artifact depends on what the visible q-vector is at the setup bias. Armed 
with this knowledge, it is in principle possible to design the QPI measurement 
in such a way that there is no setup effect present, although this can require 
impractical values for the setup bias.

1.4	 Outline of this Thesis
In this thesis we will closely examine how we study strongly correlated 
systems, and apply that knowledge to the study of cuprate superconductors. 
Finally, we propose new experiments to explore the properties of strongly 
correlated systems. This thesis is structured as follows:

In Chapter 2 we study how electronic structures are determined by studying 
a prototypical example of a correlated 2D Fermi Liquid, Sr2RhO4. We do this 
by applying three commonly used spectroscopic techniques, STS, ARPES, and 
quantum oscillations, and find them to be in good agreement. We argue that 
discrepancies between these methods in other systems are a reflection of the 
physics of those systems.
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In Chapters 3 & 4, we study the electronic structure of the overdoped cuprate 
(Pb,Bi)2Sr2CuO6+δ, both in real space and in momentum space, using STS 
and QPI measurements. In Chapter 3, we study the real space structure by 
tracking the evolution of the superconducting gap across and beyond the 
superconducting dome. We find that the magnitude of the spectroscopic 
gap no longer follows the superconducting dome, and instead levels out. 
Furthermore, we find that a metallic matrix forms and grows with increasing 
doping on the nm scale in this system, and that the mechanism of pair breaking 
in this system falls outside the scope of mean field theories. In Chapter 4 we 
employ a combination of QPI and state-of-the-art machine learning noise 
suppression to probe the momentum space structure of (Pb,Bi)2Sr2CuO6+δ. We 
find an anti-nodal band rigidly shifting with doping, in line with earlier results. 
We also observe the bending of the band due to the gap and find shoulder-like 
features near the gap edge suggesting the presence of an additional density 
wave in these samples.

Finally, in Chapter 5 we discuss how strong correlations between electrons can 
give rise to a rare form of transport called hydrodynamic transport. We model 
the transport behavior in this regime for an experiment designed to detect 
hydrodynamic transport using the Navier-Stokes equation modified to include 
disorder effects. We carefully calculate the expected signal for this experiment 
for the Fermi Liquid normal state of the unconventional superconductor 
Sr2RuO4 , and find a crossover between Ohmic and hydrodynamic transport 
over a range of disorder levels. Finally, we discuss the application of this 
experiment to the cuprate strange metal phase, which has been proposed to 
show hydrodynamical behavior with an extremely low viscosity. We show that 
the same experiment will show only Ohmic behavior due to the combination 
of disorder and low viscosity in cuprate strange metals.
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Discrepancies in the low-energy quasiparticle dispersion extracted from angle 
resolved photoemission, scanning tunneling spectroscopy and quantum oscillation 
data are common and have long haunted the field of quantum matter physics. Here, we 
directly test the consistency of results from these three techniques by comparing data 
from the correlated metal Sr2RhO4. Using established schemes for the interpretation 
of the experimental data, we find good agreement for the Fermi surface topography 
and carrier effective masses. Hence, the apparent absence of such an agreement in 
other quantum materials, including the cuprates, suggests that the electronic states 
in these materials are of different, non-Fermi liquid like nature. Finally, we discuss 
the potential and challenges in extracting carrier lifetimes from photoemission and 
quasiparticle interference data.

Direct Comparison of ARPES, STM, 
and Quantum Oscillation Data for
Band Structure Determination in Sr2RhO42

This chapter has been published as 
Battisti et. al. npj Quant. Mat. 5: 91 (2020)
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2.1	 Introduction
Strongly correlated electrons are at the root of some of the most mysterious 
quantum materials, including unconventional superconductors, strange 
metals, and heavy fermion materials1–5. Most of the exotic phases of electronic 
matter in these systems emerge from collective behavior of the electrons. 
A universally accepted understanding of these systems is still lacking, and 
requires close cooperation between scientists using different theoretical and 
experimental methods. From the experimental side, many insights to date 
have come from spectroscopic techniques that probe the band structure and 
many-body renormalizations of electrons close to the Fermi level, including 
angle-resolved photoemission (ARPES), scanning tunneling microscopy 
(STM), and quantum oscillations (QO), which are the focus of this article. 

In the most widely used interpretations, spectroscopic-imaging STM (SI-STM) 
and ARPES probe the spectral function in real and reciprocal space6–10. Quantum 
oscillations probe the Fermi surface area and the k-averaged cyclotron mass 
which can in turn be related to the pole of the spectral function at energies 
close to the Fermi level11. There should thus be well-defined relations between 
the quantities measured by these three techniques12.

Surprisingly though, several apparent contradictions between results based 
on these techniques can be found in the literature. Such contradictions can 
involve very fundamental properties of the electronic structure: for example, 
quantum oscillation studies on underdoped cuprate high-temperature 
superconductors claim the existence of Fermi surface pockets while STM and 
ARPES reported disconnected Fermi arcs13,14. Similarly, the strength of gap 
inhomogeneities seen by STM in several unconventional superconductors 
appears to be inconsistent with gap broadening in ARPES spectra that average 
over large areas. These and other discrepancies between results of different 
techniques have previously been discussed in cuprate superconductors15–18, 
heavy fermion systems19 and topological insulators20. However, it often 
remains unknown if these apparent differences are a consequence of some 
inherent limitations of the techniques or if they are due to challenges of data 
interpretation, also connected to the exotic non-Fermi-liquid nature of some of 
these systems. Given this lack of understanding, discrepancies are frequently 
attributed to the use of samples grown in different research laboratories or are 
ignored because of a lack of trust in one of the techniques. 
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2.2RESULTS & DISCUSSIONS

With this article, we aim to test the consistency of data from ARPES, STM and 
QO experiments by making an unbiased comparison on the same correlated 
electron material. The ideal candidate for such a comparison should be a 
quasi-two-dimensional (2D) metal in which electron correlations still play 
an important role, but without the mysteries associated with materials like 
unconventional superconductors. Ideally it should further be structurally 
similar to the cuprates, ruthenates and iridates. Such a material could then 
act as a representative for the wider class of transition metal oxides, but -in 
contrast to cuprates, ruthenates and iridates- is well understood and simple 
enough that it can clearly be described within Fermi liquid theory. With this in 
mind, we chose Sr2RhO4, a layered perovskite that fulfills the conditions above. 

2.2	 Results & discussions
2.2.1	 ARPES and QPI Fermi Surface

In Figs. 2.1 and 2.2, we compare Fermi surface data from the three techniques. 
Consistent with previous reports11,21,22, the ARPES k-space map (Fig. 2.1a) 
shows two nearly circular contours that are backfolded to form 3 pockets; a 
hole-like α pocket centered at Γ, a lens-shaped electron pocket at M (βM) and 
a square-shaped hole pocket at X (βX). The backfolding is of structural origin 
and arises from a staggered rotation of the RhO6 octahedra around the c-axis, 
which doubles the in-plane unit cell. Hybridization with eg states pushes the 
xy band of Sr2RhO4 below the chemical potential, leaving a Fermi surface with 
out-of-plane xz/yz character, containing 3 electrons per Rh site11,22,23.  Despite 
the quasi-1D hopping associated with the out-of-plane orbitals, the Fermi 
surface is nearly isotropic. This change arises from a strong level repulsion 
of states that would be degenerate in the absence of spin-orbit coupling24,25. 
The marked anticrossing can be attributed to an enhancement of spin-orbit 
splittings in the presence of electronic correlations25–27.

Figs. 2.1b,c show an STM topography and a constant energy conductance 
layer, where spatial modulations attributed to quasiparticle interference are 
neatly resolved. The few atomic defects in the field of view clearly act as 
scattering centers for quasiparticles, creating the interfering standing wave 
patterns. The Fourier-transform of the normalized conductance layer at the 
Fermi level E=0 meV is shown in Fig. 2.1d. To mitigate the set-up effect, we 
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take the Fourier transform not of the conductance layers dI/dV(r,eV), but of 
the normalized conductance data, dI/dV(r,eV)/(I(r,eV)/V), where I(r,eV) is 
the tunnelling current and V is the bias voltage (see discussion in the methods 
and Fig 2A.1)28–32. For the β band, we directly observe the STM ‘Fermi surface’ 
with wave-vector q=2kF. More generally, we expect to observe features 
corresponding to scattering vectors q that connect points of high spectral 
weight in momentum space. For the present case, we can readily connect these 
q vectors with the Fermi surface measurement from ARPES. Interestingly, 
different scattering processes have different strength. While some scattering 
processes are very clear, others are less visible or completely absent. Varying 
intensities or absences of scattering processes have been observed in other 
materials33-35 and can stem from the differences in the scattering process. For 
example, different QPI scattering intensities are expected from magnetic 
versus potential scattering or from broad coulombic potentials versus 
localized impurity potentials36-40. In principle, theoretical tools exist to predict 
QPI intensities based on both the electronic structure of the material, and the 
nature of the scattering potenial36-40. A comparison with such QPI simulations 
could allow us to learn more about the defect states in Sr2RhO4. 

In Fig. 2.1e, we use the Fourier transform of the SI-STM data discussed above 
to reconstruct the entire FS of Sr2RhO4 from the QPI pattern. To this end, we 
first extract peaks in the data by fitting the intensity profiles in radial cuts 
(see Fig 2A.2). We then obtain the fundamental β band in k-space by rescaling 
the q-vectors by a factor of two. The backfolded β bands are obtained by 
translating the fundamental band by reciprocal lattice vectors determined 
from the STM topography. The α band is reconstructed by subtracting the 
interband vector qα-β from the intraband scattering qβ-β. In Fig. 2.1e, we display 
in blue the data points derived in this way, and in grey the direct interband 
scattering vectors qα-β that we used for the derivation. The identification of the 
grey scattering vectors as qα-β is corroborated by the Fermi velocity we obtain 
for this vector (see below). The direct comparison of these contours with the 
ARPES Fermi surface shows good agreement for all Fermi surface pockets, as 
further illustrated in Fig. 2A.3. 

2.2.2	 Shubnikov de Haas Oscillations

Next, we use QO to find the Fermi surface areas and quasiparticle 
masses. The inset of Fig. 2.2a shows a trace of quantum oscillations in the 
magnetoresistance at 0.1 K (Shubnikov de Haas (SdH) oscillations). To extract 
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Figure 2.1 Sr2RhO4 Fermi surfaces.
a) ARPES Fermi surface. b) STM topograph with atomic resolution showing presence 
of impurities. c) STM conductance layer dI/dV(r,eV) at energy eV=-20meV, acquired 
simultaneously to the topograph in panel b, showing interference between quasiparticles 
standing waves patterns. d) STM ‘Fermi surface’, obtained by a two-dimensional Fourier 
transform of the conductance layer corresponding to the Fermi level of a spectroscopic map 
measured over a field of view of 70×70nm2. Here and for all QPI data, we show the normalized 
data, i.e. the Fourier transform of dI/dV(r,eV)/(I(r)/eV), to mitigate the set-up effect (see 
Methods). The data is additionally symmetrized and the low-q components are suppressed 
with a 2D gaussian: raw data is shown in Supplementary Figure 1. e) Comparison between 
extracted Fermi surfaces of ARPES and STM. For completeness, we also show the QPI signal 
of qαβ, which was used in the derivation (see text and Figs. 2A.2 and 2A.3).
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Fermi surface information from the quantum oscillations measurement, we 
analyse the frequency components plotted in Fig. 2.2a. Seven closely spaced 
peaks are resolved, corresponding to seven frequencies between 0.9 kT and 1.3 
kT. This might be surprising at first, as from our previous analysis we expect 
only three distinct Fermi surface pockets. We attribute the higher number of 
QO frequencies to two effects. Firstly, the finite interlayer hopping implies 
that the Fermi surface of Sr2RhO4 is quasi-cylindrical, and thus has multiple 
extremal orbits per sheet. The characteristic signature of such a remnant 3D 
Fermi surface warping is an overall 1/cos(θ) field angle dependence of the 
frequencies (consistent with quasi-2D electronic structure) with small splittings 
that disappear for certain angles, as observed in Fig. 2.2b. The quasi-2D nature 
of the quasiparticle band structure is confirmed directly by photon energy 
dependent ARPES measurements (Fig. 2.2c) probing the Fermi surface along 
kz. Secondly, the ARPES measurements resolve a small splitting in the β-band 
along ГM. This small degeneracy lifting can be attributed to the doubling of 
the unit cell along the c-axis and is reproduced by LDA+U+SO band structure 
calculations25. Hence, there are four primary frequencies up to the measured 
out-of-plane angle of 40°. We can then use multiple facts to constrain the 
band assignments: (i), Following ARPES and STM data, the extremal orbit 
areas increase in size from the a (hole), bM (electron) and bX (hole). (ii), The 
total electron count should be 3 electrons per Rh atom. (iii), The experimental 
specific heat  γ can be calculated in the 2D approximation from: 

where NA is Avogadro’s number, kB is Boltzmann’s constant, a is the tetragonal 
lattice parameter (3.857 Å) and ħ is Planck’s constant. (iv), Following the 
ARPES data, the bM band should be split leading to two frequencies.

Combining these conditions, we draw the conclusion that a corresponds to the 
lowest frequency (0.93 kT, corresponding to 1.934 electron/Rh, see methods), 
bM to the two middle frequencies (average 1.068 kT, 0.152 electrons/Rh) and 
bX to the highest frequency (1.288 kT, 0.908 electrons/Rh). The calculated γ = 
17.4 ± 0.8 mJ/Rh mol K2 then agrees with the directly observed value of 17.7 
± 0.7 mJ per Rh mol K2 22, and the total electron count is 2.994 electrons per 
Rh. A quantitative comparison of the Fermi surface volumes extracted from 
ARPES, QO and STM based on this assignment can be found in Table 2.1. QO 
amplitudes also yield the Dingle temperatures (1.5K for the α pocket,1.5K for 
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Figure 2.2 Quantum oscillations and kz dispersion.
a) Shubnikov-de Haas oscillations at 0.1 K for a magnetic field parallel to the c-axis. The 
main panel shows the frequency components obtained by Fourier transform of the quantum 
oscillation trace shown in the inset. The peaks correspond to Fermi surface pockets. The 
background subtraction used was a third order polynomial and the field sweep rate was 0.05 T/
min. The noise level is 50 pVHz-1/2. b) Angle dependence of the QO frequencies for angle θ from 
the c-axis. The solid black line is a 1/cosθ dependence expected for a quasi-two-dimensional 
Fermi surface. c) ARPES kz dependence in the MГ high symmetry direction at E=-20meV, 
showing only slight modulations of the band along the c-axis. 
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the βM pocket, and 1.9K for the βX pocket), which can be related to the mean 
free path of the electrons. We refer to the literature for a detailed discussion on 
the challenges of such an interpretation41. 

2.2.3.	 Quasi-particle Dispersion

We now turn our attention to the low-energy dispersion. In Fig. 2.3, we show 
constant energy layers for selected energy levels and the energy-momentum 
dispersion along the two high symmetry directions for both ARPES and SI-
STM. These data confirm that βM is an electron pocket while α and βX are 

Table 2.1 Summary of band structure parameters from different techniques.
Comparison between values obtained from the three techniques. vF is the Fermi velocity, A (in % 
of the reduced tetragonal Brillouin zone) and <m> (in units of me) are the Brillouin zone filling 
and average mass for each of the three sheets, respectively. The pocket-averaged Fermi velocities 
from QO (marked with *) are extracted using ħkF = mvF, using the pocket-averaged Fermi wave 
vector. The Fermi velocity for the α band from STM (also marked with *) was extracted from the 
slope of the qαβ and qββ signals. The QO values for A are given both as average over the multiple 
peaks for each pocket, and for every peak.
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in the Methods.
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hole-like. The ARPES data also reproduce the splitting of the β band along ΓM 
observed in Fig. 2.2. The STM dispersions plots show several features that are 
not observed by ARPES. These can all be assigned to different β-β intraband 
and α-β interband scattering vectors translated by reciprocal lattice vectors. 
The q vector which is most clearly resolved by STM along both high-symmetry 
directions arises from β-β intraband scattering. Comparing its dispersion 
with the β-band measured by ARPES, we find quantitative agreement along 
ΓX, where both techniques lead to measured Fermi velocities vF = 0.55eVÅ. 
Along ΓM, where band structure calculations find a small splitting in the 
Fermi surface, our ARPES data resolves both bands and shows that they have 
slightly different dispersion with Fermi velocities of 0.57eVÅ and 0.77eVÅ, 
respectively, compared to vF = 0.70eVÅ extracted from the STM dispersion. 
The lack of a noticeable splitting in the STM dispersion cannot be explained 
by insufficient momentum resolution, suggesting that it is due to a vanishing 
STM matrix element for one of the bands.

In order to extend this comparison to QO, we look at the quasiparticle 
cyclotron masses m*. These masses can be deduced for individual Fermi 
surface pockets from the temperature dependence of the quantum oscillation 
amplitudes using the Lifshitz-Kosevich formula (Fig. 2A.4). For a 2D Fermi 
surface, they can also be calculated without any approximations from the full 
mapping of the low-energy quasiparticle band structure obtained by STM and 
ARPES, using

where AFS is the Fermi surface volume. To this end, we extract the areas of 
the pockets not only at the Fermi energy, but at a few constant energy layers 
within a small window. The linear fits of these areas shown in Fig. 2.4 yield 
the effective masses of the different pockets. We note that the slope dAFS/dE 
decreases strongly near the chemical potential in the ARPES data while no 
such effect is observed in STM. This change of slope is a known artifact arising 
from the combination of a Fermi cutoff and finite energy resolution. For the 
quantification of m*, we thus exclude a narrow energy range around EF from 
the ARPES data. Table 2.1 shows the values of the effective masses obtained 
by STM, ARPES, and QO measurements. Knowledge of m* and the Fermi 
surface area also allows a sheet-averaged Fermi velocity to be calculated from 
QO data as
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These values are also shown in Table 2.1 for comparison with STM and 
ARPES.

2.2.4.	 Lifetime Analysis

Finally, we discuss the extraction of peak widths in the ARPES and STM data, 
which can in principle be related to quasiparticle lifetimes. Here, the two 
techniques face rather different challenges. In simple systems, like Sr2RhO4 
studied here, the measured photoemission intensity appears to represent the 
spectral function. For a sufficiently linear band, the imaginary part of the self-
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Figure 2.4 Fermi surface pockets and effective masses. 
Extraction of effective masses from ARPES, STM, and QO. The data points show the volume 
dAFS(ω) of the different pockets as a function of energy (see also Fig 2A.5). The effective masses 
are proportional to the slope of dAFS(ω). For the fits of the ARPES data, we excluded datapoints 
that are closer to the Fermi level than the energy resolution of the detector. The black lines and 
marks around the Fermi level indicate the masses and volumes extracted from QO.
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energy (which is equal to half the inverse lifetime in a Fermi liquid) can thus 
be obtained from the width Wk of the momentum distribution curves (MDC) as 

where v(ω) is the slope of the dispersion at the same energy. In practice, the main 
difficulty is the treatment of the effective resolution of ARPES measurement. 
ARPES peak widths measured at state-of-the-art instruments are rarely limited 
by the instrumental energy and momentum resolution but contain a variety 
of other contributions that are notoriously hard to quantify. These include in 
particular broadening from the finite integration over perpendicular momenta, 
structural mosaicity in the probed area and the often-unknown quality of the 
surface. Additional broadening can occur from work function inhomogeneities 
of and around the sample which cause uncontrolled electric fields that degrade 
the resolution of the electron optics. Finally, in an energy range of ~ dE/2, where 
dE is the effective energy resolution, the MDC peak position starts to deviate 
noticeably from the intrinsic quasiparticle pole, which prohibits a model-free 
analysis of very low energy dispersions and self-energies. STM does not suffer 
from these experimental difficulties. However, it is not always clear to what 
extent the tunneling spectra reflect A(r, ω). In particular the so-called setup 
effect, the dependence of the tunneling spectra on the lateral variation of the tip-
sample distance, which itself is defined by the setup current and voltage, can 
cause complications. In many cases, the set-up effect can be mitigated by taking 
ratios between different quantities as we do here, but then the interpretation of 
the resulting data is less straight forward. In addition, analyzing self-energies 
from STM data can be complicated when different q vectors overlap, especially 
for complex Fermi surfaces. We also note that a unique reconstruction of 
the spectral function from STM data is not always possible. Perhaps most 
importantly, one has to consider the scattering mechanism, which can strongly 
influence line-shapes and line-widths36-40. For this reason, only few attempts 
have been made to extract lifetimes from STM data42-45.

Despite these difficulties, an analysis of the MDC’s along the ΓX direction 
shown in Figs. 2.5a-c clearly show an energy dependence of the quasiparticle 
lifetime in fair agreement with the expectations for a Fermi liquid-like metal. 
In a Fermi liquid, we expect the imaginary part of the self-energy to be a 
quadratic function at low energy,
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Figure 2.5 ARPES and QPI linewidths and self-energies. 
Linewidth analysis for the βX band. a) ARPES MDCs and Lorentzian fits (red). The inset 
shows the position of the cut as red line in the reduced Brillouin zone (black square). b, c) 
STM MDCs from normalized conductance (dI/dV)/(I/V) (b) and conductance dI/dV (c) 
including Lorentzian fits (blue and orange, respectively) with a linear background. The cuts are 
equivalent to the one used in panel (a) at double the reciprocal lattice vectors. d) Comparison 
of the MDC widths Wk (ω) from STM and ARPES data. STM widths are phenomenological 
full-width-half-maximum extracted by Lorentzian fits, ARPES widths are extracted by fitting 
a Lorentzian convoluted with a Gaussian broadening that stems from the finite resolution. 
e) Comparison of the widths multiplied by the slope of the dispersion, which, in a simplified 
picture, equals to the imaginary part of the self-energy. Note that the scale of the energy axis 
spans a significant fraction of the Fermi energy, which is roughly 400meV for the β band (in the 
parabolic band approximation and before hybridization, as we assume that scattering processes 
that are relevant for the lifetimes do not discriminate between the βX and βM bands).
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where A is a material specific prefactor. To compare our results with the 
expectation, we plot the linewidths and self-energies extracted from ARPES 
and STM data as a function of energy in Figs. 2.5d,e (for a comparison of the 
individual ARPES and STM spectral lines, see Fig. 2A.6). Indeed, our results 
are consistent with a quadratic dependence on energy. Further, the absolute 
scale of the measured self-energy is of the same order than what is obtained for 
Sr2RhO4 with dynamical mean field theory (DMFT)50,51 calculated for a generic 
two-dimensional Fermi liquid using the random phase approximation46-49. 
We note that the agreement holds for an energy range of that is a significant 
fraction of the Fermi energy, which is roughly 400meV for the β band when 
defined in the parabolic band approximation as 

This is encouraging for further lifetime investigations: given a good 
understanding of both the resolution for ARPES and the scattering process 
for STM, both techniques have the potential to bring insight into energy and 
momentum dependent correlation effects in electronic matter of quantum 
materials. 

We show SI-STM results of Sr2RhO4 and extract its Fermi surface and low-
energy dispersion, and present a quantitative comparison of the STM 
quasiparticle interference data with ARPES and QOs. Our data here reveals the 
previously unknown band structure above the Fermi level, and quasiparticle 
lifetimes for Sr2RhO4. We show that Fermi surface volumes agree among the 
three techniques within ~ 1% of an electron for all pockets, while quasiparticle 
masses exhibit a relative variation of ~ 30%. We consider these values to be 
characteristic for the precision that can realistically be obtained in favorable 
cases with these three techniques, and therefore conclude that for the oxide 
Sr2RhO4, STM, ARPES, and QO can extract the same information regarding 
Fermi surface and low energy dispersion. The relevance of our study goes 
beyond Sr2RhO4: Our data suggest that apparent disagreements in the 
literature on cuprates do not arise from the intrinsic structural complexity of 
oxides but are likely a consequence of our limited understanding of materials 
with non-Fermi liquid electronic states and the applications of the techniques 
to such samples, especially ones with significant spatial inhomogeneity.
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2A	 Appendix
2A.1	 Methods

2A.1.1	 Sample Preparation

Our single crystals samples were grown in a Crystal Systems four mirror image 
furnace using a flux feeding floating zone method. Dried SrCO3 and Rh2O3 
(3N) were ground together in a 1:0.575 ratio, pelletised and calcined at 1000°C 
in flowing O2 atmosphere for 24 hours. Rods were hydrostatically pressed 
using the usual methods and sintered at 1100°C for 2 hours in flowing O2. The 
growth conditions in the image furnace were 100% O2 gas at 10 bar pressure, 
growth speed of 10 mmhr-1 and a counter rotation of 30 rpm. Subsequently, 
the crystals were annealed 1150°C under flowing oxygen for 2 weeks, as 
described elsewhere.22

The surfaces studied by STM and ARPES have been obtained by cleavage in 
ultrahigh vacuum.

2A.1.2	 Quantum Oscillations: 

Quantum oscillations measure low energy characteristics of the electron 
fluid in an applied magnetic field. The oscillations, caused by the Landau 
quantization from the magnetic field, give precise information on the size of the 
Fermi pockets and the effective masses of the electrons. Quantum oscillations 
are a true bulk probe that is generally not influenced by surface effects but 
they are very sensitive to disorder in the crystals and require high quality 
samples to be observed. Furthermore, they also require high magnetic field 
and low temperatures to suppress the quasiparticle-quasiparticle scattering 
and the interpretation is not always simple as little information is given 
about the loci, shape and type (electron or hole) of the Fermi pockets. When a 
strong magnetic field B is applied to the sample, the Landau quantization of 
quasiparticle orbits leads to an oscillation of the density of states at the Fermi 
level, periodic in reciprocal field. These oscillations are reflected in most 
of the physical properties; in the case of magnetoresistance they are called 
Shubnikov–de Haas (SdH) oscillations41.52. By analyzing the frequency f (in 
Tesla) of the oscillations across an inverse field range, the number and sizes of 
the Fermi surface pockets can be obtained. Moreover, the effective masses for 
the various pockets can be deduced from the temperature dependence of the 
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oscillation amplitude (Fig. 2A.4) via the Lifshitz-Kosevich formula, although, 
we note that the data analysis can be non-standard when measuring across a 
broad magnetic field range (for a comprehensive discussion see Ref. 22). The 
QO amplitudes also contain the Dingle temperature. These can be used to find 
mean free paths of 500 Å for the α pocket, 714 Å for the βM pocket, and 481 Å 
for the βX pocket.

Quantum oscillation data was acquired using a standard four probe technique 
in a dilution refrigerator (current I = 300 mA) for temperatures between 0.1 K 
and 1.0 K and magnetic fields between 7 T and 15 T.  Low contact-resistance 
electrical connections were made to the crystals using gold wire (25 micron) 
and Dupont 6838 high temperature curing paint (annealed at 470°C under O2). 
The current was applied in the ab plane (the two-dimensional morphology of 
the crystals allowed for easy identification of the crystallographic ab plane 
and c axis). In the dilution refrigerator the samples were mounted on an 
in-situ single axis rotator for the angular quantum oscillation study. Three 
crystals were measured from the same batch, with consistent results. 

2A.1.3	 ARPES: 

ARPES measures single particle excitations directly in momentum space. The 
most commonly used expression for the photocurrent I(k, ω) is:

where Mf,i represents the photoemission matrix elements, A(k,ω) is the 
spectral function and f(ω) the Fermi function10. The expression for the intrinsic 
photocurrent is then convolved with the experimental momentum and energy 
resolution R(δk,δω). Besides experimental difficulties, complications can arise 
from the interference of photocurrents from different emission sites and/or 
from different terms in the light-matter interaction Hamiltonian. Expressing 
the photocurrent in terms of the spectral function further relies on the sudden 
approximation, i.e. the assumption that the photoexcitation is instantaneous 
and that there is no interaction between photoelectron and the sample during 
the photoemission process10. This approximation is well tested down to much 
lower photon energies than used in the present work.

The ARPES experiments reported in this paper have been performed at 
beamline I05 of Diamond Light source using photon energies in the range of 
20 – 80 eV53. Energy and momentum resolutions were set to ~ 5 meV / 0.008 
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Å-1, except for the data shown in Fig. 2.2c where the resolution varied with 
photon energy and thus with kz. All data were acquired at T ~ 8K.

2A.1.4	 STM: 

STM measures the tunneling current generated between an atomically sharp 
tip and a conducting sample when a voltage V is applied between the two. 
By scanning the tip over the sample surface, STM directly delivers real-space 
information with atomic resolution53. The tunneling current I is directly 
proportional to the integrated local density of states (LDOS) of quasiparticles, 
which in the formalism of many-body physics can be defined via the local 
spectral function

The local spectral function of the sample can be accessed for both occupied 
and unoccupied states by measuring the local differential conductance52:

where AS,T are the spectral functions of sample and tip, respectively, and where 
we approximated the Fermi-Dirac distribution as a step function. |t(r)|2 
represents the position-dependent tunneling matrix element that contains the 
exponential dependence on tip-sample distance.  Usually, the spectral function 
of the tip, AT is designed to be constant and the momentum-dependence of the 
tunneling matrix elements is ignored. 

When measuring in spectroscopic-imaging mode (SI-STM), for each pixel on a 
chosen field of view a dI/dV spectrum is acquired at the tip-sample distance 
determined locally by the set-up conditions (Vs,Is). The result of such a 
measurement is a three-dimensional dataset representing the local density of 
states as function of position and energy. 

Because we determine the tip-sample distance at each point by the set-up 
conditions, the effect of the matrix element (assuming it is energy independent) 
is cancelled. However, the procedure does bring in an extra denominator:
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The procedure can thus  introduce additional artifacts into the measured 
differential conductance dI/dV28,56, the so-called set-up effect.  

A common way to reduce this effect is to choose set-up conditions far away 
from the Fermi level such that inhomogeneities in the integrated density of 
states average out, however, this is not always experimentally possible. Other 
methods include the use of the ratio between quantities with positive and 
negative bias57, or the division of the differential conductance by the total 
conductance (dI/dV)/(I/V)28–30 - the approach that we also use in this paper. See 
Figs. 2.5b-c, 2A.1, 2A.6 for comparisons. The current I is the measured current 
at that particular location and bias V, which means it is small but generally 
non-zero at the Fermi level. The voltage V is a value set in the experiment, 
implying for the Fermi level that the data would be multiplied by 0 in the 
normalization. To circumvent this, we manually add a 10uV (negligible to the 
energy scale set by temperature) offset in data processing.  

The STM experiments reported in this paper have been performed with an 
ultra-high vacuum, home-built STM with exceptional stability, described 
elsewhere58. All data was taken at a base temperature of 4.2K. Measurements 
are performed with a chemically etched tungsten tip that is prepared by field 
emission on a gold surface before measuring Sr2RhO4.

Figure 2A.1 
Raw data of Fermi surfaces extracted from STM (not corrected for drift, without core suppression 
and not symmetrized) for both dI/dV (a) and (dI/dV)/(I/V) (b). 

2A.2	 Supplementary Figures
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Figure 2A.2 
Extraction of the points plotted in Fig. 2.1e and Fig. 2.4 for STM data. a-c Cuts along different 
angles are taken (blue lines) and fitted with Lorentzian function and a linear background. The 
image on the right shows the fitted points at the conductance layer at the Fermi level. d-f 
Analogous procedure for the QPI at low q.
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Figure 2A.4 
Quantum oscillation. The dependence of the amplitude of the QO seven frequencies as a 
function of temperature with a Lifshitz-Kosevich fit used to extract the masses.

Figure 2A.3 
Comparison of STM and ARPES Fermi surfaces. STM data has been processed as in Figure 1d 
and it is rescaled by a factor 2 to take account of the difference between scattering vectors seen 
with STM (q-space) and the direct momentum space probed by ARPES (k-space).
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Figure 2A.5 
The extracted Fermi surface pocket’s volumes used for Fig. 2.4.
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Figure 2A.6 
Direct comparison of MDCs from ARPES and STM as shown in Fig. 2.5. 
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Puddle Formation, Persistent Gaps, and non-
mean-field Breakdown of Superconductivity 
in Overdoped (Pb,Bi)2Sr2CuO6+δ 3

The cuprate high-temperature superconductors exhibit many unexplained electronic 
phases, but it was often thought that the superconductivity at sufficiently high doping 
is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory1. 
However, a series of measurements show that the number of paired electrons (the 
superfluid density) vanishes when the transition temperature Tc goes to zero2-4, in 
contradiction to expectation from BCS theory. The origin of this anomalous vanishing 
is unknown. Our scanning tunneling spectroscopy measurements in the overdoped 
regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that it is due 
to the emergence of puddled superconductivity, featuring nanoscale superconducting 
islands in a metallic matrix5-7. Our measurements further reveal that this puddling 
is driven by gap filling, while the gap itself persists beyond the breakdown of 
superconductivity. The important implication is that it is not a diminishing pairing 
interaction that causes the breakdown of superconductivity. Unexpectedly, the 
measured gap-to-filling correlation also reveals that pair-breaking by disorder does 
not play a dominant role and that the mechanism of superconductivity in overdoped 
cuprate superconductors is qualitatively different from conventional mean-field 
theory.

This chapter has been accepted as 
Tromp et al. in Nature Materials 
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3.1 Introduction
The essence of high-temperature superconductivity in the cuprates revolves 
around doping a Mott insulator. Superconductivity emerges when hole-doping 
is greater than 5% per lattice site; Tc initially increases through the underdoped 
(UD) region of the phase diagram, before it decreases again in the overdoped 
(OD) region1. Superconductivity breaks down completely at roughly 27% 
doping. For the strongly overdoped region (SOD), it is often assumed that 
screening sufficiently reduces electron-electron correlations for a Fermi liquid to 
appear8-10. The superconducting state is then of the Bardeen-Cooper-Schrieffer 
(BCS) type, and the suppression of superconductivity is a consequence of a 
diminishing pairing interaction. Evidence for such conventional behavior in 
the OD regime comes from photoemission experiments, which suggest the 
existence of a full Fermi surface with superconductivity, as indicated by an 
energy gap that opens up in a BCS fashion below Tc

11,12. As a caveat, very 
recent magneto-transport experiments indicate that even at high doping the 
normal state has strange metal features13.

The first surprise in this regard was the discovery that the superfluid density 
decreases linearly to zero with doping beyond optimal doping2-4,14,15, contrary 
to the BCS expectation that it should be of the order of the total carrier 
density and hence proportional to the doping level1,2. Additionally, optical 
conductivity measurements revealed a large density of metallic carriers below 
Tc

14, suggesting a filling of the superconducting gap due to pair breaking. 
One possible explanation for these observations involves potential disorder, 
reducing the electron mean free path, at length scales comparable to the small 
coherence length that is typical for the cuprates5-7,16. According to Bogoliubov-
de-Gennes (BdG) theory (i.e. BCS in spatially heterogeneous systems), disorder 
at these length scales leads to emergent granular superconductivity6,17–23, i.e. 
puddles of well-developed superconductivity with a size set by the coherence 
length, separated by regions where the gap is suppressed. The resulting weak-
link superconductor will show a low superfluid density. 

We investigate these issues using scanning tunneling spectroscopy which 
yields the spatial distribution of the electron density of states with atomic-
scale precision. Our measurements show that in (Pb,Bi)2Sr2CuO6+δ (Bi2201) 
which has one CuO2 layer per unit cell and is known to have a high residual 
resistivity13, such a “puddled” superconductor does indeed develop at high 
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doping (Figs. 3.1,3.2). The typical spatial extent of the puddles is a few 
nanometers, of the order of the small coherence length in this system (Fig. 3.3). 
Our measurements additionally reveal that the superconducting gap persists 
beyond the dome, and that instead the heterogeneity is driven by gap filling 
(Fig. 3.4). This strongly suggests that the breakdown of superconductivity 
is not a result of a vanishing pairing interaction. A comparison with BdG 
simulations suggests that this filling is likely due to the decay of the Cooper 
pairs in surrounding metallic areas, which in turn explains the observation 
of a large density of metallic carriers. Unexpectedly, we also find a striking 
violation of a basic BdG rule. Within BdG theory, pair breaking goes hand-in-
hand with gap closing, because depletion of the number of Cooper pairs in a 
superconductor leads to a diminishment of the gap magnitude ∆ as well:

where V is the attractive interaction and the c+’s are electron field operators. 
Instead, our data show that the puddles characterized by the largest gap 
magnitudes exhibit also the largest gap filling (Fig. 3.4c), and that the average 
gap magnitudes are barely depending on doping (Fig. 3.4a). We therefore 
conclude that the physics governing the superconducting transition is of a 
different, non-mean-field kind. 

3.2 Results & Discussion 
To arrive at these findings, we study a series of Bi2201 samples with eight 
different doping levels, from underdoped to beyond the superconductor-metal 
transition, with an emphasis on the strongly overdoped regime. We chose 
Bi2201 because it has only one CuO2 plane per unit cell, and has a rather large 
residual resistivity24, suggesting that disorder is exceptionally important. On 
each sample, we measure the atomic-scale-resolved differential conductance 
g(E,r) as a function of bias energy E and location r, which is proportional to the 
Bogoliubov quasiparticle density of states. 

We first consider the spatially averaged g(E) spectra obtained at 4.2 K (Fig. 
3.1a). Consistent with earlier reports25–28, crossing into the overdoped regime, 
the spectra acquire an increasingly large non-zero Bogoliubov quasiparticle 
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density of states at the Fermi level. This is remarkable as this quantity should 
go to zero for a standard d-wave BCS superconductor, but it is consistent 
with results from optical conductivity measurements14. It remains to be seen 
whether ARPES, if performed in SOD regions with such small gaps, would 
observe a similar phenomenology both in Bi2201 and Bi2212. We investigate 
this phenomenology using individual spectra, as in a heterogeneous situation 
like this, the average spectra do not represent the phenomenology adequately 
(Figs. 3.1b-d). 

3.2.1 Gap Closure vs. Gap Filling

Next, we use a phenomenological model to fit all spectra over the whole 
doping range to extract the superconducting gap and gap filling of each 
individual spectrum. We calculate the spectral weight on each point k = (kx, 
ky) on the Fermi surface using a Dynes formula with superconducting gap

 where ∆ is the maximal gap, and then average over the Fermi surface27. We use 
the Dynes formula30–32 as a mere phenomenological description constructed to 
reveal characteristic scales for the observed gap size and the gap filling, and 
discuss interpretational concerns after the presentation of the data. Our model 
yields the following function for the modeled differential conductance:

where <>FS indicates the average over the Fermi surface, P(E) is a third-degree 
polynomial function to account for background variation, and Dynes(E, ∆k, Γ) 
is the Dynes function with the pair-breaking parameter Γ. For this study, we 
concentrate on the superconducting gap and thus restrict ourselves to a ±15 
meV range (in the underdoped and optimally doped range, which are not the 
focus of this paper, a pseudogap exists at a larger energy scale, as indicated 
by the red arrows in Fig. 3.1a). Lastly, we convolute g(E) with a Gaussian 
function to account for spectrum broadening due to a finite temperature and 
the lock-in modulation.
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Figure 3.1 Heterogeneous gap filling in Bi2201. 
a) The average spectra of eight different doping levels, labeled by their Tc. The shaded areas 
indicate the energy range used in the fitting procedure. The blue arrows show the average 
extracted gap magnitude. For the UD25K and OPT35K samples, the red arrows indicate the 
pseudogap as determined by He et al.27. The inset in the top spectrum indicates the position of 
the samples on the superconducting dome. b-d) Spectra along 3 nm linecut for the OD23K, 
OD12K, and OD3K samples respectively. These raw, unprocessed spectra indicate the high 
degree of electronic inhomogeneity in these samples. e) A linecut of spectra from a self-
consistent BdG simulation from the center of a superconducting puddle (r = 0) to the metallic 
environment which shows the van Hove singularity modeled to be close to the Fermi level (see 
Chapter 3A.4 for details). The boundary of the puddle is indicated by the red spectrum. The 
pairing interaction is nonzero inside the puddle (i.e., inside the red line) and is zero outside it. 
The energy unit is relative to the hopping parameter t1, and the length unit is relative to the 
coherence length ξ (see Chapter 3A.4). f) Typical topography measured on the OD12K sample 
on the same length scale as Figs. 3.1b-d.
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We define the filling parameter F as the ratio g(E = 0,T -> 0)/P(E = 0), which 
can be expressed in terms of our fitting parameters as:

Figs. 3.2a,b illustrate how the model differentiates between gap closure, 
controlled by ∆, and gap filling, controlled by Γ or F. Fig. 3.2c shows some 
typical spectra and fits from various locations. It is clear that, when compared 
to the scenarios presented in Figs. 3.2a,b, the measured spectra look more 
similar to the filling scenario as opposed to the closing scenario. We then 
fit roughly 105 spectra from 8 different doping levels with this model, and 
display the extracted gap size and gap filling in Fig. 3.3. We note that for the 
strongly overdoped samples, high signal-to-noise is key for successful fits; 
the traces shown in Figs. 3.1b-d and Fig. 3.2c are raw spectra without any 
averaging. A further challenge is that at higher doping, a significant fraction 
of spectra exhibit completely gapless regions. We identify such spectra after 
fitting and exclude them from subsequent analysis. In the appendix 3A, we 
provide details (see Chapter 3A.2 and Fig. 3A.4) and demonstrate that our key 
results are independent of these choices. We also provide a modified version 
of the model with an alternative definition of the gap filling, and show that 
our results are independent of the precise definition of gap filling.

3.2.2 Persistent Superconducting Gap & Gap Filling

We start our discussion with the spatial maps of the gap size ∆(r) as a function 
of doping (Figs. 3.3b-d). Strikingly, while more spectra are fully filled at 
higher doping, the average gap size remains roughly constant on the strongly 
overdoped side (Fig. 3.3a). Initially, the gap size increases when moving 
from underdoped to optimally doped. Beyond optimal doping, the gap size 
barely decreases anymore when going through the OD and SOD side, and 
instead remains roughly constant – even beyond the superconductor-to-metal 
transition. In particular, throughout the SOD region, we observe an almost 
constant average gap amplitude even though Tc is rapidly decreasing. Our 
study thus excludes a homogenously diminishing pairing interaction as the 
cause of the superconductor-to-metal transition.

Given a constant gap, what drives the changes in spectra on the overdoped 
side? Our analysis indicates that it is the gap filling. We extract the gap filling, 
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F, using Eq. (2), for each measured sample, and present the distribution of 
the gap fillings in Figs. 3.3f-h, and their histograms in Fig. 3.3e. Remarkably, 
the mean gap filling changes considerably over the doping range. In the 
OP region, the spectra have a filling close to zero, i.e. they are fully gapped. 
Crossing into the OD regime, a subset of spectra starts to develop a finite 
gap filling. This subset grows with further doping, with all spectra having a 

a b

c

Figure 3.2 Gap filling versus gap closure.
Difference between gap closure (a) and gap filling (b) by presenting a sweep of the gap magnitude 
parameter Δ for constant Γ, and a sweep of the scattering rate parameter Γ for constant Δ, 
respectively. c) Example fits from our model applied to our raw data for the OD23K, OD12K, 
and OD3K data. The zeros of the spectra are offset for better visibility, as indicated by the red 
marks. The black marks indicate the gap width as determined by the model.
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finite filling in the SOD regime. The values of F shift markedly in this doping 
regime from nearly fully gapped (F = 0) near optimal doping to almost fully 
filled (F = 1) towards the SOD regime and extending into the metallic regime. 
The trends in gap closing and gap filling are summarized in Fig. 3.4a,b: as 
the doping is increased into the overdoped regime, the gap size remains 
roughly constant; in contrast, the gap filling increases rapidly. Thus, a first key 
result of this paper is that it is not a decaying gap width Δ, but an increasing 
gap filling F that is responsible for the diminishing superconductivity and 
eventually drives the superconductor-to-metal transition. We also note that 
the persistence of the superconducting gap we observe is remarkably similar 
to the persistent spin gap observed in a similar doping range33. 

Notably, the gap filling is highly heterogenous, as can be seen from the 
width of the distributions in Figs. 3.3e and in the spatial maps in Fig. 3.3f-
h. We observe areas both with and without a gap, each existing at a length 
scale consistent with the coherence length (~ 1.5 nm). Some spectra exhibit 
a peak that can be associated with a van Hove singularity (vHS) as reported 
previously25,26; but we note that it is a highly anomalous one: both the energy 
and the amplitude of the peak vary in space on length-scales that are not 
consistent with the spatially averaged anti-nodal signature observed in 
photoemission34,35. Further, we only find this peak in the SOD regime, whereas 
ARPES measurements suggest that the vHS should be observable in lower 
doped samples as well, at energies still easily measurable by STM. The 
question of the vHS in STM data remains open. Notwithstanding the vHS, 
our observations indicate that the breakdown of superconductivity in the 
overdoped regime of the single-layer bismuth cuprate is likely caused by an 
emergent strongly inhomogeneous superconductivity, leading to an effective 
weak-link physics that explains the diminishing superfluid density. Hence, 
at first glance, our data suggest that theoretical models involving disorder-
driven breakdown of superconductivity in the BdG framework5-7,16-19,22,23 are 
a good description of the physics of strongly overdoped Bi2201, with the 
additional information that it is the gap filling that drives the formation of the 
superconducting puddles.

Figure 3.3 Doping dependence of the spatially resolved gap filling and gap magnitude. 
a) Gap magnitude histogram for each doping concentration. b-d) The spatial distributions of 
the gap magnitude for the OD23K, OD12K, and OD3K samples. The spectra that are omitted 
from the histograms (see Chapter 3A.2) are indicated by the white areas in Figs. 3.3b-d. e) 
Gap filling histogram for each doping level. f-h) Spatial distribution of the gap filling for the 
OD23K, OD12K, and OD3K samples respectively.
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Next, we focus on the origin of the gap filling. According to BdG theory, 
the excitations that fill the gap are quasiparticles of the Fermi-liquid normal 
state that are released by breaking up Cooper pairs. Well-known causes for 
pair breaking are potential disorder5-7,16 (for a d-wave superconductor) and 
thermal phase fluctuations35-38. However, if potential disorder were the only 
culprit, the areas where the pair breaking is smallest (where superconductivity 
survives best) should have the largest gaps, which is not what we observe. We 
demonstrate this in Fig. 3.4c, where we show the local relationship between 
the gap size Δ and the pair breaking Γ, and find a clear positive correlation 
between the two. Further, we can exclude thermal phase fluctuations based on 
our temperature dependent measurements, up to 20 K for the OD9K sample. 
Thermal phase fluctuations should lead to a strongly temperature-dependent 
filling, in contrast to our observations (see Chapter 3A.3). 

3.2.3 Cooper Pair Decay in a Metallic Matrix

We therefore consider an alternative candidate for pair breaking: the decay of 
Cooper pairs into smaller gap or metallic regions, as previously suggested39-41. 
This can be seen as akin to an inverse proximity effect42. We are not aware 
of self-consistent simulations for this scenario in the literature, but they are 
possible with state-of-the-art numerical methods. We start with a large real-
space supercell implementing a realistic tight-binding band structure. We 
then introduce the superconducting puddles by switching on a local pairing 
interaction characterized by a linear dimension L that is approaching the (bulk) 
coherence length. The BdG equations are then solved self-consistently (see 
Chapter 3A.4 for further details) and typical outcomes are shown in Fig. 3.1e. 
The simulated spectra are surprisingly similar to the experimental ones, and 
one might wonder whether this gap-filling dominated physics is connected 
to certain disordered superconductors21,22,43,44 and interface superconductors45 
with a local density of states phenomenology that is not dissimilar from what 
we observe here. 
However, there is one aspect of our data that is markedly inconsistent with 
the BdG description of granular superconductors. Our data shows that the 
largest gaps also exhibit the strongest gap filling (Fig. 3.4c), while within 
BdG, gap filling should always go hand-in-hand with a decrease of the gap 
magnitude. Our self-consistent simulations confirm that this is indeed also 
valid for the heterogeneous case: upon application of our fitting model to 
the calculated spectra shown in Fig. 3.1e, we find that the regions with the 
largest gaps show the least amount of pair breaking as shown in Fig. 3.4d. We 
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a b

dc
Data

OD12K
Simulation

Figure 3.4 Gap filling driven breakdown of superconductivity and the contradiction 
to BdG. 
a,b) The mean (circles) and median (diamonds) of the gap magnitude and the gap filling, 
respectively. The shaded areas represent the local variations in the gap magnitudes and fillings 
by depicting the histograms. The green dashed lines in Fig. 3.4a show the expectation of a gap 
size proportional to Tc, with a proportionality constant either chosen to match the OPT35K data 
point, or determined by weakly coupled d-wave BCS theory. The doping levels were calculated 
using the Presland formula for the superconducting samples, and using the anti-nodal band 
shift measured by photoemission for the OD0K sample (see Chapter 3A.5). c) 2D histogram of 
the measured local relation between gap magnitude Δ and pair-breaking parameter Γ for the 
OD12K sample. The positive correlation between the two is indicated by the red line. d) The 
relation between the gap magnitude and pair-breaking parameter extracted from self-consistent 
BdG simulations (Fig. 3.1e) using the same fitting model. In contrast to Fig. 3.4c we find a 
clear negative correlation. The error bars indicate the uncertainty in the obtained values due to 
the fitting process.
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note that self-consistency in the calculations is necessary here; fixing the gap 
magnitude artificially would obscure any effect from pair breaking on the gap 
magnitude. The comparison between Fig. 3.4c and Fig. 3.4d shows a striking 
inconsistency between the experiment and BdG expectation. 

3.3 Conclusion & Outlook
In summary, our real-space imaging reveals a strongly heterogeneous 
superconductivity consisting of superconducting puddles with a size 
set by the coherence length immersed in a metallic matrix. This explains 
the diminishing superfluid density2-4 and the origin of the large fraction 
of metallic carriers14: it stems from the filling of the gap. Our data further 
demonstrate that superconductivity does not, as it is often assumed, become 
conventional in the SOD regime. The breakdown of superconductivity is 
not the consequence of a vanishing pairing interaction and does not follow 
the BdG description. Furthermore, the gap filling is entirely different from 
simple quasiparticles populating the gap and counting the number of broken 
BCS Cooper pairs. Instead, what fills the gap might be related to the strange 
normal state13, e.g. collective excitations of an unknown kind rooted in the 
“strange metal” physics, which at present cannot be calculated, or to electrons 
from a different sector, but not by means of simple pair-breaking. Last but not 
least, this unconventional physics may not be limited to the low-temperature, 
overdoped regime. STM studies at optimal doping of Bi2212 showed a rather 
similar puddling effect upon approaching the superconducting transition 
temperature40,46. This may imply that the physics of the thermal transition – 
the “high Tc” problem itself – is governed by unknown physics. It would be 
interesting to revisit this high-temperature regime to make this more precise.
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3A Appendix
3A.1 Experimental Methods

We performed a systematic study on a series of (Pb,Bi)2Sr2CuO6+δ samples 
with 8 distinct doping levels, covering the range from underdoped (UD25K) 
to strongly overdoped (OD0K) side. Single crystal samples were grown by the 
conventional floating-zone technique13,27. The UD25K, OP35K, and OD15K 
samples contain La doping, i.e. (Pb,Bi)2(La,Sr)2CuO6+δ, while the rest of the 
samples are without La doping. The doping levels, transition temperatures Tc, 
and measurement temperatures are listed in Table S1. The doping levels of the 
superconducting samples are determined using the Presland formula, while 
the doping level of the OD0K sample is extracted from the rigid band shift 
measured by ARPES (see Chapter 3A.5). All samples were cleaved in situ in a 
cryogenic environment and inserted immediately into the STM. The data were 
acquired using different home-built cryogenic STMs among three groups.

Name Doping Tc 
(K)

Measure-
ment
T (K)

Data 
acquired 
by

Samples 
fabricated
by

Vsetup (mV)/
Isetup (pA)/
Lock-in 
Amplitude 
(mV)

Effective 
Energy 
Resolution 
(FWHM, 
meV)

UD25K 0.101 25 5.7 Hudson 
group

Kondo 
group

-100/400/1 2.7 

OP35K 0.160 35 5.7 Hudson 
group

Kondo 
group

-100/400/1 2.7

OD23K 0.224 23 4.2 Allan 
group

UvA 
group

-150/150/1.5 2.58

OD15K 0.243 15 6 Hoffman 
group

Kondo 
group

-100/100 /2 3.5

OD12K 0.249 12 4.2 Allan 
group

UvA 
group

-200/170/1.5 2.58

OD9K 0.255 9 4.2 – 20 Allan 
group

UvA 
group

-150/200/1.5 2.58 – 6.42

OD7K 0.258 7 2.2 Allan 
group

UvA 
group

-20/600/1.5 2.50

OD3K 0.265 3 4.2 Allan 
group

UvA 
group

-200/170/1.5 2.58

OD0K 0.274 4.2 Allan 
group

UvA 
group

-25/200/1.5 2.58

Table 3A.1: Samples and their measurement conditions in this study.
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3A.2 The Phenomenological Model to fit Spectra

3A.2.1 The d-wave Gap Model
The d-wave gap is here modeled as a mean of multiple s-wave gaps, one for 
each point along the Fermi Surface. For each s-wave gap, the gap size is given 
by . The points are found using the Fermi Surface of the tight-binding model 
for the OD15K sample27 although the final shape of the spectrum varies a lot 
with the exact points in k-space used. Each s-wave gap is generated by using 
the Dynes formula

where the same Γ is used for all s-wave gaps. The resulting d-wave gap is 
the mean of all s-wave gaps. To account for the normal-state density of states 
(DOS), the d-wave gap function is multiplied with a polynomial function, 
typically of the 3rd order. The resulting spectrum is then convoluted with a 
Gaussian function with a full width at half maximum (FWHM) given in the 
table above, in order to emulate the effect of finite temperature and the lock-in 
modulation have on the shape of the measured spectrum.

The points in momentum space are calculated only once before the fitting 
process to reduce computation time. The fitting parameters characterizing the 
gap are only Δ and Γ. To calculate the filling for the d-wave gap we calculate 
the mean of the filling for each individual s-wave gap using Eq. 3.4.

3A.2.2 Statistical Analysis with and without the Excluded Spectra
In the main text we “white out” certain spectra (white areas in Figs. 3.3b-d), 
and exclude them for the statistical analysis when either of the two conditions 
is met in the fit results: 1) Γ > 20 meV; 2) Δ > 15 meV. Our interpretation is that 
these spectra are fully filled, for the following reason: the spectra that meet 
the first criterion have so much broadening that there is no well-defined gap. 
Similarly, for the spectra that meet the second criterion, the large “gap” is a 
reflection of background modulations. Such spectra are thus counted as fully 
filled. Still, we show here that including these spectra in the analysis does not 
alter our main conclusions. 

Fig. 3A.1 shows, from left to right, the spatial distributions of: Δ, including 
“whited-out” (1st column) and excluding “whited-out” (2nd column) spectra, 

(3.A1)

∆ = V
∑
k

〈c†k↑c
†
−k↓〉 (1)

∆k = ∆(cos kx − cos ky)/2 (2)

g(E) = P (E) ∗ 〈Dynes(E,∆k,Γ)〉FS = P (E) ∗ 〈Re

(
E + iΓ√

(E + iΓ)2 −∆2
k

)
〉FS (3)

F =

〈
1√

1 + (∆k/Γ)2

〉

FS

(4)

Dynes(E,∆k,Γ) = Re

(
E + iΓ√

(E + iΓ)2 −∆2
k

)
(5)

g(E) = P (E) ∗ [(1− F ) ∗Dynes(E,∆,Γ) + F ] (6)

∆rr′ = Vrr′〈cr↑cr′↓〉 (7)

1



59

1 1
2
3
4
5

2
3
4
5

3.AAPPENDIX

15

0

15

0

10

0

10

0

1

0
7 nm 7 nm 7 nm 7 nm 7 nm

7 nm 7 nm 7 nm 7 nm 7 nm

3 nm 3 nm 3 nm 3 nm 3 nm

4 nm 4 nm 4 nm 4 nm 4 nm

3 nm3 nm3 nm3 nm3 nm

2 nm2 nm2 nm2 nm2 nm

3 nm3 nm3 nm3 nm3 nm

4 nm4 nm4 nm4 nm4 nm

Δ (meV) 
without exclusions 

Δ (meV) 
exclusions 

Г (meV) 
without exclusions 

Г (meV) 
exclusions Filling 

UD25K

OPT35K

OD23K

OD15K

OD12K

OD7K

OD3K

OD0K

Figure 3A.1 Spatial variations of the gap size Δ with and without exclusions, parameter Γ 
with and without exclusions, and the calculated filling for all samples. See 3A.2 for details.
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Γ, with (3rd column) and without (4th column) “whited-out” spectra, and F, 
the filling (5th column) for all samples. The images are ordered top to bottom, 
from lowest to highest doping, respectively. Following the argumentation 
in the preceding paragraph, the filling for “whited-out” spectra is set to 1, 
when they are included in the statistics. Fig. 3A.2 shows the histograms for Δ 
including “whited-out” spectra, and the histograms of Γ, both with and without 
“whited-out” spectra. The remaining histograms of Δ excluding the “whited-

a b c

Figure 3A.2 Histograms of the gap size Δ without any spectra that are whited out (a). 
Histograms for Γ including (b) and excluding whited-out spectra (c). See 3A.2 for details.

a b c

Figure 3A.3 The results for Δ without excluding any spectra, and for Γ including and 
excluding “whited-out” spectra are summarized(a, b, c respectively). The circles indicate the 
mean Δ, Γ for each sample, with the diamonds indicating the medians. The shaded areas in 
the background represent the spread in values these parameters have. The green dashed lines 
in the left figure indicate the behavior expected for Δ proportional to Tc. The value of 2Δ/Tc 
corresponds to the dirty d-wave BCS limit, while 2Δ/Tc is chosen such that it matches the 
OPT35K data point.
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out” spectra and of the filling can be found in the main text. The histograms in 
Fig. 3A.2 are summarized in Fig. 3A.3 in a similar fashion to Fig. 3.4.

From the spatial distributions and histograms of Δ and Γ in Figs. 3A.1-3, we 
conclude that even when the “whited-out” spectra are considered: 1) the gap 
size still deviates from the behavior in the OD regime; 2) gapped spectra can 
still be found in the non-SC sample in significant quantities.

The spatial averages of the “whited-out” spectra and of the rest spectra are 
shown in Fig. 3A.4 for each sample. We find that after whiting out all samples, 
even the non-SC sample, show a gap in their average spectrum. We note that the 
spatially-averaged “whited-out” spectra in the OD regime are fully filled, i.e. 
they no longer have a gap, and often show a peak near Fermi level. This further 
justifies our choice to assign all these spectra a filling of 1. For the UD25K and 
OPT35K samples, the “whited-out” spectra are made up of spectra for which 
the fit has failed due to limited signal-to-noise. Even though these spectra 
appear as gapped, we attribute this to the presence of a pseudogap. We find 
that the assignment of F = 1 to these spectra does not alter the main conclusion 
either, given the relatively small portions of “whited-out” spectra in these 
samples (see Fig. 3A.4). The increase of the area of “whited out spectra” in the 
OD as shown in Fig. 3A.4 reaffirms the increased gap filling in these samples.

3A.2.3 Fit Parameters Fig. 3.2c’
In Table 3A.2, we present the values of Δ and Γ as determined by our model 
for the examples shown in Fig. 3.2c of the main text. Also indicated are the 
95% confidence intervals for those values. All confidence intervals are below 
the effective energy resolution of the experiment (see Table 3A.1), with one 

Figure 3A.4. a) The spatially-averaged spectra after the “whited-out” spectra have been 
removed. b) Spatial averages of the “whited-out” spectra for each doping level. c) The 
proportions of “whited-out” spectra that make up each sample as a function of doping.

a b c
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exception. Spectrum number 1 of the OD12K sample does not show a gap, 
and therefore the values for Δ and Γ are ill-determined, as expressed by the 
confidence interval. This spectrum however also meets our conditions defined 
in Chapter 3A.2. As such, the poorly determined values for Δ and Γ are a clear 
indication that we in those cases we are dealing with spectra for which those 
parameters have no physical meaning. 

3A.2.4 Energy Range for Fitting and Approximations for the Normal Density of States
The spectra in the UD and OPT samples show clear pseudogap (PG) features, 
with PG sizes ranging from 20 meV to over 60 meV (see Fig. 3.1a). Furthermore, 
in the OD regime, the normal-state DOS shows a peak near the Fermi level. 
These additional features next to the superconducting gap complicate the 
accurate fitting of the superconducting gap. We circumvent this complication 
by limiting our analysis to a small window Ewin around the Fermi level. In this 
reduced energy window, the additional features are only partly visible, and 
can be sufficiently approximated by a polynomial DOS. The choices of Ewin and 
the order of the polynomial background are arbitrary but necessary choices 

Sample Spectrum Δ (meV) Γ (meV)
OD23K 1 6.3 ± 1.3 1.6 ± 0.7

2 5.4 ± 1.3 2.1 ± 0.9
3 6.7 ± 0.8 1.1 ± 0.4
4 6.3 ± 0.5 0.9 ± 0.3
5 9.9 ± 1.9 2.0 ± 0.5

OD12K 1 0.8 ± 2E5* 47 ± 5E6*
2 6.9 ± 2.0 3.0 ± 1.0
3 3.4 ± 0.8 1.1 ± 0.8
4 2.7 ± 0.7 0.9 ± 0.7
5 4.2 ± 1.7 2.9 ± 1.6

OD3K 1 6.7 ± 1.7 3.1 ± 0.9
2 4.7 ± 1.1 2.9 ± 0.9
3 5.9 ± 1.4 3.2 ± 0.9
4 4.9 ± 2.7 3.2 ± 2.1
5 5.4 ± 1.4 2.6 ± 0.9

* Spectra that do not show a gap and therefore have ill-defined gap parameters.

Table 3A.2 Fitted values of Δ and Γ for the example spectra shown in fig 2c of the main text, 
together with the 95% confidence interval for those values. The spectra are numbered from 
bottom to top.
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made before the fitting procedure. Here we show the influence the particular 
choices have on the superconducting gap size and filling in the OD samples.

In the main text, we use Ewin = ±15 meV, which is a choice made before the fitting 
procedure. Altering this choice does not affect the main conclusions of our 
analysis, as shown in Fig. 3A.5. We repeat the analysis using different energy 
windows and find that the qualitative behavior does not change: Δ remains 
constant while F sharply increases in the SOD regime. Further increasing Ewin 
beyond 20 meV, the highly inhomogeneous normal-state DOS becomes more 
significant, defeating the aim of focusing on the superconducting gap through 
an energy window. With an energy window smaller than 10 meV, we find 
that too little of a spectrum is left to characterize the superconducting gap 
accurately.

Another possible influential choice in the fitting procedure is the order of the 
background polynomial used to model the normal-state DOS. Fig. 3A.6 shows 
the mean gap size and filling for the OD23K, OD12K, and OD3K samples 
for different orders of polynomial ranging from 1st to 4th order. The overall 
behavior of nearly constant gap size and increasing filling is present for all 
polynomial orders. We opt to use a 3rd order polynomial in the main text as it 
offers the best balance between underfitting and overfitting.

3A.2.5 An Alternative Model
Here we introduce an alternative approach to determining the gap filling, and 
show that the conclusions are the same using this model. We use a model 
which explicitly includes the filling F as a fitting parameter, in contrast to 
extracting F using fit parameters ∆ and Γ in the main text:

where P(E) and Dynes(Δ,Γ) are defined the same as those in the main text. 
The gap filling is now explicitly parametrized by the parameter F, with F = 0 
corresponding to fully gapped and F = 1 to fully filled. To prevent overfitting 
and to limit built-in correlations between fit parameters we fix the value of Γ. 
Fig. 3A.8 shows the average gap size and gap filling from the fit results using 
this model, analogous to Fig. 3.4 in the main text. For this alternative model, 
we exclude spectra with a) Δ close to 0 (Δ < 1 meV), and b) F close to 1 (F > 
0.95) from further analysis. In case a) the gap sizes become smaller than our 
thermally limited energy resolution, preventing an accurate determination of 
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Δ. In case b) F becomes ill-defined as F can be absorbed into when the gap 
is barely present. Fitting our data with this model, we find that the gap size 
remains constant in the OD regime, while the gap filling increases rapidly. 
Confirmation by an alternative model further strengthens the conclusions of 
the main text. 

A B

Figure 3A.5 Dependence of our conclusion on the choice of the energy window. The 
dependencies on the fitting energy window for the average Δ and filling (a, b respectively) for 
the overdoped samples OD23K, OD12K, and OD3K. While the absolute values of the averages 
vary slightly with the cutoff energy, the overall behavior of a constant gap size and increasing 
filling factor is independent of the cutoff.

a b

Figure 3A.6 Dependence of our conclusion on the choice of the polynomial normal-state DOS. 
The average gap size and filling (a, b) for the overdoped samples OD23K, OD12K, and OD3K 
as the order of the polynomial normal-state DOS is varied. While the absolute values of the 
averages vary a bit among the various polynomials, the overall qualitative behavior of a barely 
varying gap size and the drastic increasing filling is present in all cases.
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Figure 3A.7 Topography of the OD12K, together with the spatial distributions of the polynomial 
background terms used in the fits in the main text. The correlation coefficients of the 3rd, 2nd, 
and 1st order terms with the topography are 0.08, -0.11, and -0.13 respectively, meaning they do 
not correlate with the topography. The 0th order term (i.e. the constant term) does correlate with 
the topography (coefficient of 0.37). The underlying relation of this is that they both relate to 
the same quantity, the average LDOS of that spectrum. If this is low the constant background 
term will go down. A low average DOS also means there are less states to tunnel into with 
our STM tip, meaning that the tip will move closer to the sample to maintain the same setup 
current. Hence, this location will register as a suppression of the surface. This is clearly visible 
when comparing the topography with the spatial distribution of the constant background term. 
Darker regions of the topography are also visible as darker regions of the constant term.
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3A.3 Temperature Dependence

In Fig. 3A.9a, we show the temperature evolution of the average spectrum 
measured in the same field of view on the OD9K sample. Furthermore, we 
show the median values for the gap and filling parameters as a function of 
temperature in the same field of view in Figs. 3A.9b,c respectively. We find 
that a gap is still present up to 20K for the OD9K sample, even when the 
temperature-limited and lock-in broadened energy resolution is taken into 
account. With increasing temperature, we see that the gap magnitude and gap 
filling remain fairly constant up to 20K.

3A.4 Intrinsic Metal-Induced Pair-Breaking Effects Within a Superconducting 
Puddle Embedded in a Metallic Matrix

In this section, we consider the case of a small d-wave superconducting 
puddle whose size is of the order of the superconducting coherence length ξ0, 
embedded in a metallic matrix. This is a particularly relevant model for the 
strongly overdoped regime. Our treatment of this system is entirely mean-field; 
we employ large-scale numerical simulations of the Bogoliubov-de Gennes 
Hamiltonian to uncover interesting aspects of this system. To our knowledge, 

a b

Figure 3A.8 Gap magnitude and filling versus doping using the alternative model. 
The gap size (a) and the gap filling (b) as determined by the application of the alternative 
model described above. The shaded areas indicate the histograms of the parameters at each 
doping level. The average gap sizes and average filling are indicated by the circles. The median 
(diamonds) is shown to better reflect highly asymmetric distributions as is the case for the gap 
filling. The robustness of the qualitative trends against the use of different models reinforces 
the main conclusions. 
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such calculations have not previously been performed in the literature; similar 
calculations (but for a superconducting puddle in a superconducting matrix) 
have been reported by Fang et al.40 and Nunner et al47.

We show here that one striking effect of the surrounding metallic matrix is to 
significantly weaken d-wave superconductivity, such that the resulting d-wave 
order parameter within the puddle is less than that of a bulk homogeneous 
system with the same pairing interaction. Decreasing the size of the puddle has 
the effect of decreasing the average d-wave order parameter within the puddle. 
We additionally find a concurrent increase in the average local density of states 
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Figure 3A.9 Temperature evolution of the gap width and gap filling. a) Average spectra 
measured in the same field of view on the OD9K sample (V = -150 mV, I = -200 pA). b) Median 
values for the gap magnitude in the same field of view of a, as a function of temperature. The 
shaded areas indicate the histograms of the gap at each temperature. c) Median values for the 
Filling parameter in the same field of view of a, as a function of temperature. The shaded areas 
indicate the histograms of the Filling at each temperature. 
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(LDOS) at zero energy within the puddle when the puddle size is decreased. 
The behavior of the puddle as its size is decreased is vastly reminiscent of the 
effect of increasing disorder on bulk d-wave superconductivity, and originates 
entirely from the mixing of the superconducting states within the puddle 
with the metallic states of the surrounding matrix. Thus, the surrounding 
metal induces pair-breaking within the puddle, very similar to the effect of 
disorder48-50. Importantly, our calculations confirm that the negative correlation 
between gap size and filling expected in the mean-field theory also holds for 
the heterogeneous case (see Fig. 3.4d).

In our simulations, we assume that the d-wave superconducting puddles are 
square patches of size l × l. We self-consistently calculate the order parameter 
from:

The pairing interaction Vrr’ is nonzero only for nearest-neighbor bonds 
attached to sites within the l × l patch, and otherwise vanishes. To compute 
Δrr’ and the LDOS ρ(r, ω), we employ an exact real-space Green’s function 
method particularly suited for very large inhomogeneous systems51,52. For 
the calculations reported here, the system size is 100 × 200, which is larger 
compared to what more traditional exact-diagonalization methods can access. 
We iterate the calculation until the order parameter is converged, and we 
assume that we are at T = 0. We take the normal-state dispersion (up to next-
nearest-neighbor hopping) to be given by the following parameters: t1 = 1, t2 = 
-0.33, and μ = -1.22 (from this point on we express all energies in units where 
t1 = 1). The spatially resolved site-centered d-wave order parameter plotted 
throughout this section is obtained by adding the order parameter on all four 
bonds connected to a single site but assuming a sign difference between the 
order parameter on bonds along the x-direction and that on bonds along the 
y-direction.

We are interested in determining whether d-wave superconductivity in 
puddles behaves differently compared to the bulk case due to the abundance 
of low-energy states in the nearby metal, and we will tune the size of the 
puddles (from 5 × 5 to 17 × 17) in particular to isolate the effect of the nearby 
metal. One expects that the smaller the puddle, the stronger the effect of the 
metal, since a larger fraction of the puddle is in close proximity to the metal-
superconductor boundary. We take the nearest-neighbor pairing interaction 
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strength to be V0 = 1.0 inside the superconducting puddle and V0 = 0 outside it. 
To provide a baseline for comparisons, we perform the same calculation for a 
bulk d-wave superconductor as well, with the same nearest-neighbor pairing 
interaction V0 = 1.0 present throughout the entire system. We will frequently 
express the puddle size in terms of l/ξ0, where ξ0 is the coherence length of 
the superconducting condensate within the puddle; this is to make clearer the 
effects of miniaturizing the superconducting puddle to dimensions of the order 
of ξ0 itself. Note that we have suppressed here the explicit l-dependence of ξ0, 
since as it turns out the magnitude of the superconducting order parameter 
within the puddle, and consequently ξ0 itself, depends sensitively on l.

Our results are collected together in Fig. 3A.10. In Fig. 3A.10a, we compare 
the spectral gap (here rather roughly defined as half the peak-to-peak distance 
in energy, measured from the LDOS) to the d-wave order parameter, with both 
quantities averaged within the puddle. It can be seen that the spectral gap tracks 
the d-wave order parameter closely for the bulk system and for larger puddles 
(7 × 7 up to 17 × 17, all corresponding to 2 < l/ξ0 < 10), although for puddles 
the spectral gap slightly overestimates the d-wave order parameter. However, 
once the puddle size is small enough such that l/ξ0 ≈ 1 (as is the case for the 5 
× 5 puddle), a gap is no longer visible in the spectrum, even though a nonzero 
superconducting order parameter remains within the puddle. The strong 
pair-breaking effects of the surrounding metal are most easily seen in Fig. 
3A.10b. Here we plot the average d-wave order parameter within the puddle 
as a function of l/ξ0 The average order parameter within all seven puddles 
considered is considerably less than that of the bulk system, and decreases 
in magnitude as l/ξ0 is made smaller. Note that when the puddle is made 
smaller and smaller, the mixing of metallic states into the superconducting 
puddle increases since more of the puddle becomes in closer proximity with 
the superconductor-metal boundary, and hence there is more pair-breaking. 
Fig. 3A.10c shows the average zero-energy LDOS for seven different puddle 
sizes. Notice that the zero-energy LDOS of all puddles is much bigger than 
that of the bulk system, and that it increases as the puddle size is decreased. 
As with the d-wave order parameter, the large zero-energy LDOS is an effect 
of the mixing of the metallic states into the superconducting puddle, giving 
the latter a much larger number of low-energy states than one would expect a 
bulk d-wave superconductor to have. The overall trend is succinctly captured 
by Fig. 3A.10d, which plots together with the d-wave order parameter and 
the zero-energy LDOS both averaged within the puddle, with the variations 
in both quantities due solely to the puddle size. It can be seen that these two 
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Figure 3A.10 Results for clean superconducting puddles within a metallic matrix of varying 
size, with V0 = 1.0. a) plot of the average spectral gap versus the average d-wave order 
parameter, both averaged within the superconducting puddle, with the dashed line indicating 
where the two quantities are equal. It can be seen that for puddles, the spectral gap is a good 
indicator of the d-wave order parameter (although overestimating it, lying above the dashed 
line) right until the puddle becomes sufficiently small and l/ξ0 ≈ 1 (e.g., 5 × 5), at which point 
no gap can be seen even though a nonzero superconducting order parameter is present. b) plot 
of the average of the d-wave order parameter within the superconducting puddle versus the 
puddle size l/ξ0, with the value for the bulk system shown as a dashed line. c) plot of the zero-
energy LDOS averaged within the superconducting puddle versus the puddle size l/ξ0, again 
with the value for the bulk system shown as a dashed line. d) plot of the LDOS at E = 0 versus 
the d-wave order parameter, both averaged inside the superconducting puddle. Evidently, the 
effect of reducing the puddle size on the superconducting condensate within the puddle is the 
same as that of increasing the amount of disorder: the d-wave order parameter becomes smaller, 
while the zero-energy LDOS increases.
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Figure 3A.11 Plots of the LDOS as a function of energy for a d-wave superconducting puddle 
inside a metallic matrix with decreasing puddle size, with V0 = 1.0. The puddle sizes are 9 × 9, 7 
× 7, and 5 × 5 (a-c), corresponding to l/ξ0 approximately equal to 3.6, 2.4, and 1.2, respectively. 
Shown are LDOS averages within the puddle (blue) and outside it (black). Also shown for 
comparison is the average LDOS for a bulk d-wave superconductor with the same pairing 
interaction V0 = 1.0 (d). The dashed blue lines indicate the average d-wave order parameter 
within the superconducting puddle. Note that as the puddle size becomes smaller, the zero-
energy LDOS inside the patch becomes larger, the coherence peaks become smeared out and 
move to lower energies, and the gap becomes less discernible.
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quantities are inversely proportional to each other, with a large d-wave order 
parameter corresponding to a small zero-energy LDOS and vice versa. This is 
behavior very similar to that expected from disorder acting on a bulk d-wave 
superconductor; one cannot escape the conclusion that the metallic matrix 
induces pair-breaking effects within the superconducting puddle very similar 
to that of disorder.

All of these findings are more explicitly demonstrated in Fig. 3A.11, wherein 
we show plots of the LDOS vs. energy for three puddle sizes (5 × 5, 7 × 7, 
and 9 × 9, whose l/ξ0 values are given approximately by 1.2, 2.4, and 3.6, 
respectively), in addition to the bulk d-wave case. We note first that for 
superconducting puddles, a striking feature of the LDOS is its very large 
value at E = 0 compared to that of the bulk system. One can also notice that for 
larger puddles, a gap is easily discerned in the spectrum, and coherence peaks 
are visible but are broader, less well-defined, and shorter in height compared 
to those of a bulk system. These features become progressively broader as 
the puddle is shrunk, and more spectral weight accumulates near the Fermi 
energy, a result of the fact that the average d-wave order parameter becomes 
smaller the tinier the puddles get. However, when the puddle is made 
sufficiently small such that l/ξ0 ≈ 1, such as the 5 × 5 case here, the gap ceases 
to be visible in the quasiparticle spectrum, and the LDOS resembles that of a 
normal metal. Nevertheless, there is still a nonzero d-wave order parameter 
present within the puddle. 

Figure 3A.12. a) Waterfall plot of the spectra calculated for the 9x9 puddle (the same data as 
presented in Fig. 3.1f), showing a clear correlation between the gap size going to zero and the 
coherence peaks disappearing. b) Spectra of the OD12K sample binned and averaged according 
to their gap size Δ, as determined by our model. The visibility of the coherence peaks here has 
no clear relation to the size of the gap. The spectra in a,b) have been shifted with respect to 
eachother for clarity.

a b
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In sum, we have shown here some of the surprising effects of embedding 
a d-wave superconducting puddle within a metallic matrix. We have 
demonstrated that the surrounding metallic matrix has a pair-breaking effect 
on the superconductivity within the puddle, akin to that of disorder, that fills 
the gap, including at the Fermi level. We have also shown that the smallness of 
the puddle has a nontrivial effect on the LDOS, with the quasiparticle spectrum 
within the puddle showing broad signatures of a gap that progressively 
becomes filled up and washed out the smaller the puddle becomes. The 
similarity of the pair-breaking effects of the metallic matrix to disorder points 
to the difficulty of attributing the effects seen in the experiment and detailed 
in the main text to purely mean-field effects. 

Our calculations show that within a mean-field picture, pair-breaking, whether 
it be due to disorder or the effect of metallic states on a superconducting 
puddle, naturally leads to an anticorrelation between these two quantities. 
Such a scenario points to the necessity of “beyond-mean-field” physics in 
resolving the conundrum posed by the experimental results discussed in the 
main text.

3A.5 Rigid Band Shift in Overdoped Bi2201

The doping levels of the superconducting samples are determined using the 
Presland formula, while the doping level of the OD0K sample is extracted 
from the rigid band shift measured by ARPES. Below, we describe this 
procedure more detail.

ARPES measurements on SOD samples show a rigid band shift of the 
anti-nodal band bottom when the doping is increased (Fig. 3A.13). ARPES 
measurements were performed using the He1α line at 21.2 eV with linear 
polarization. The sample temperature for all samples was 50K, and the total 
experimental resolution was set to 6 meV. The k-space cut was along the face 
of the Brillouin zone (a line spanning the direction (π,π)-(π,0)-(π,-π), indicated 
in the inset of Fig. 3A.13a).

Shown in Fig. 3A.13a as “+” symbols are the positions of the peak maxima 
of the Energy Distribution Curves (EDC’s), extracted after dividing out the 
resolution broadened Fermi-Dirac distribution from the raw data. The energy 
position of the band bottom as shown in Fig. 3A.13b is extracted by taking 
the average of the EDC maxima positions within a small momentum window 
(indicated in Fig 3A.13a by the two vertical red lines). Using these doping-
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dependent band bottom energy values, we can determine the doping level of 
the OD0K crystal by fitting the positions of the superconducting samples and 
extrapolating the result. We find that the OD0K sample has a doping level of 
p=0.274±0.008.

3A.6 Gap Filling and DOS from other Experiments

Fig. 3A.14 shows the comparison of the gap filling we observe and several other 
experiments determining the DOS at the Fermi level: optical conductivity14 
(Fig 3A.14a), Specific heat measurements53,54 (Fig 3A.14b), and Knight shift55 
(Fig. 3A.14c). All these probes measure a DOS at Fermi level increasing with 
overdoping, concomitant with the increased gap filling we observe. We posit 
that this increased DOS is due to increasingly more Cooper pairs broken by a 
non-mean field process (see Chapter 3.2.3).

3A.7 Pair Breaking, Gap Filling and Competing Orders.

In the overdoped cuprates several (fluctuating) orders other than super-
conductivity have been observed, being two distinct types of charge order56,57 

a b

Figure 3A.13 Rigid band shift of the anti-nodal band bottom. The anti-nodal ARPES cut is 
indicated by the red line on the Fermi surface in the inset to panel (a). In (a) can be seen that 
the anti-nodal band bottom shifts towards the Fermi level as the samples are progressively 
overdoped. The energy position of the band bottom is shown in panel (b), and is given by the 
average position within the red vertical lines in panel (a). The red dashed line in (b) shows a fit 
through the band bottom energy position for the superconducting samples (blue circles). The 
fit is then extrapolated to determine the doping level of the non-superconducting sample (red 
diamond), given its measured band bottom. 
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and fluctuating ferromagnetism58,59. Here we address their possible relation 
with our findings.

The charge order of the UD regime continues past optimal doping in 
the overdoped regime, weakening as the doping increases. This doping 
dependence is opposite to the behavior of the gap filling, making this an 
unlikely candidate to participate in the gap filling. The second type of order, 
sqrt(2) order observed by STM. Research on this phenomenon is ongoing – 
as mentioned, the relationship to RIXS data is not clear. This CDW is only 
visible in certain areas, and thus we deduce that it is not directly connected to 
the phenomenology reported here. In any case, the main points of our paper 
-- puddle formation, persistent gap, non-mean-field breakdown – remain 
independent on what exactly this CDW is.

Fig 3A.14 Filling vs spectral weight from optical conductivity below Tc
14 (a), Filling vs residual 

specific heat52,53 (b), and Filling vs residual Knight shift below Tc
55 (c).

a b c

a b c
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The underdoped cuprates are infamous for their complex electronic structure in both 
real and momentum space, such as a pseudogap, disjointed Fermi arcs and nanometer 
inhomogeneity amongst others. As the doping increases to the overdoped regime the 
complexity in momentum space decreases through the disappearance of the pseudogap 
and the restoration of a full Fermi surface, while the real space electronic structure 
remains highly complex as discussed in Chapter 3. To try to explain how these two 
distinct views on the electronic structure fit together, we probe the momentum space 
structure through quasi-particle interference, thereby staying closer to real space 
inhomogeneity observed by STS. We implement a state-of-the-art self-supervised 
machine learning algorithm to suppress the noise present in the QPI images. The 
noise suppressed images reveal a full Fermi surface with an anti-nodal band shifting 
rigidly with increased doping. They also reveal a backbending of the band due to the 
superconducting gap and features around the gap edge associated with an additional 
density wave. These findings raise new questions on how the different probes of the 
electronic structure fit together.

Quasi-particle Interference in Overdoped 
(Pb,Bi)2Sr2CuO6+δ: Application of Noise 
Suppression through Self-Supervised 
Machine Learning4

This chapter contributes to
Tromp et al. in preparation
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QPI IN OVERDOPED (Pb,Bi)2Sr2CuO6+δ4

4.1 Introduction

Of all electronic phases exhibited by the cuprate family, superconductivity in 
the overdoped regime was often assumed to be relatively straight-forward1, 
assuming it to be a d-wave BCS superconductor originating from a Fermi 
liquid normal state, supported by observations of a full Fermi surface2–4 
and quantum oscillations5 absent in the underdoped regime. Recent results 
however have shown that the overdoped cuprates are less conventional 
than this early consensus. In particular, the superconducting state has an 
anomalously low superfluid density6–8 and a large uncondensed spectral 
weight and the normal state shows residuals of strange metal phase at optimal 
doping9. Furthermore, superconductivity is not the only ordered state in the 
overdoped regime. The 4a0 charge order found in the underdoped regime10,11 
extends into the overdoped, gradually weakening as the doping is increased 
further10. Close to the edge of the superconducting dome a different charge 
order seemingly appears10,12, concomitant with ferromagnetic fluctuation13,14. 
Lastly, the breakdown of superconductivity itself is highly unconventional as 
we have seen in the previous chapter.

The disappearance of superconductivity in Bi2Sr2CuO6+δ occurs concomitantly 
with a Lifshitz transition3,15. The flat dispersion associated with this transition 
has been shown to amplify superconducting fluctuations4, and plays a major 
role in the formation of a granular superconductor16. Previous STM results 
have shown patches of charge order with a wavelength closely associated with 
the van Hove Singularity (vHS)12,17,18 accompanying the Lifshitz transition, 
although it should be pointed out that there is little signature of this in 
momentum space and RIXS study disagree on the wavevector10. The spectral 
feature of the vHS, a peak in the density of states, has been shown to be highly 
inhomogeneous, shifting in energy, and disappearing and reappearing over 
a nanometer length scale (see Chapter 3). This then poses the question how 
the real space electronic structure, featuring a highly inhomogeneous LDOS, 
unusual vHS behavior, and nanometer sized puddles of charge order and 
metallic behavior in the superconducting state, and the momentum space 
electronic structure, featuring a full single band Fermi surface, no pseudogap, 
and no Fermi surface reconstruction due to density waves, combine to form 
one consistent view.
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4.1INTRODUCTION

The ideal tool to bridge this gap between real space and momentum space is 
quasi-particle interference (QPI), being a real space nanoscale measurement 
used to extract momentum space information. QPI has a long history of 
valuable insights into the underdoped cuprates, particularly by mapping the 
gap structure19,20 and observing the transition from Fermi arcs to a full Fermi 
surface2,21. Furthermore, Fourier transform based analyses of STS data has 
yielded key results into the charge density and pair density waves11,22–25 of this 
doping regime. An advantage of QPI over other momentum space probes is 
the ability to directly access unoccupied states , even at low temperatures. This 
is especially useful when characterizing the vHS. ARPES results have shown 
the Lifshitz transition associated with the vHS3,15 but cannot map the anti-
nodal dispersion near this transition as this requires access to the unoccupied 
states. Furthermore, for momenta farther away from the anti-node or for 
doping levels further away from the Lifshitz transition the dispersion ARPES 
measures is heavily influenced by the gap, and extracting information about 
the normal state dispersion requires elevated temperatures26,27. This too can be 
circumvented by access to the unoccupied states for which QPI can measure 
the dispersion for energies high enough that the gap no longer plays a role.

In this chapter we will characterize the anti-nodal dispersion electronic 
strucute of the overdoped cuprates by performing QPI experiments on 
samples of the single layer cuprate (Pb,Bi)2Sr2CuO6+δ with Tc’s of 23K, 12K, and 
3K (labeled OD23K, OD12K, and OD3K resp.). To do so, we will implement a 
self-supervised machine learning model to suppress pixel-independent noise 
present in the QPI images. Our data reveals a full Fermi surface, consistent 
with previous reports in this doping range2,15, and a rigid shifting of the bands 
with increased doping. Furthermore, we observe a back-bending of the band 
due to the superconducting gap and shoulder-like features near the gap edge 
previously associated with a coexisting density wave27. We also note the 
discrepancies between various methods for counting the number of carriers, 
such as the Luttinger count, the Hall carrier density, or the use of universal 
doping vs. Tc relations. Finally, we point out that there is no clear candidate 
for the ordered state responsible for the features around the gap edge.
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4.2 Methods
4.2.1 QPI Measurements

We perform the STS measurements using an ultra-stable home built cryogenic 
STM setup28. All samples are cleaved at cryogenic temperatures before being 
loaded in the STM head held at a temperature of 4.2K where all experiments 
are performed. The samples show an atomically flat surface revealing the Bi-O 
plane (see Fig. 4.1a for an example). The STS measurements were taken over a 
50x50 nm2 field of view (45x45 nm2 for OD23K) using a fine grid resolving the 
atomic lattice. The real-space conductance layers (Fig. 4.1b) show nm-scale 
modulations of the LDOS consistent with previous results. All data is drift 
corrected using the Lawler-Fujita algorithm24,29,30 (known as geometric phase 
analysis in other electron microscopy communities). As in Chapter 2, we 
normalize the conductance layers with their corresponding current layers by 
taking dI/dV(r,eV)/(I(r,eV)/V) before taking the FFT to reveal the QPI patterns. 
Figs. 4c,d show the FFT of the dI/dV(r,eV) and the normalized dI/dV(r,eV)/
(I(r,eV)/V) for the OD12K sample at E = 10meV side by side. Note that the 
signal is sharper in Fig 4.1d but loses definition close to the Bragg peaks.

4.2.2 Self-supervised Machine Learning for Noise Suppression

The QPI signals shown in Fig. 4.1 show a considerable amount of noise, making 
analysis of these images more difficult. The first remedy to limit the amount 
of noise is to measure longer, take longer or more averages of the spectra that 
form the initial conductance map. The success of this approach is limited by 
the maximum measurement time, which is already pushed when taking QPI 
measurements due to the size of the FOV. An alternative would be to smooth 
the QPI average by taking a moving average over the image with some window 
shape (typically a box or Gaussian filter). This however broadens the features in 
the image, undoing the gain in sharpness by taking the dI/dV(r,eV)/(I(r,eV)/V).

To suppress the noise in the QPI images while preserving the sharpness we 
implement a machine learning algorithm for noise suppression or denoising. 
The core principle behind machine learning denoising, or image reconstruction 
in general, is that the structure of an image can be described with a number of 
parameters that is much less than the number of pixels of the image. As such, 
it should be possible to learn the underlying structure and reconstruct a noise 
free (or at least a noise suppressed) version of the image.
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4.2METHODS

A neural network can be seen as a function f with an input xi and output yi 
governed by a set of parameters θ. The quality of the output yi is given by 
the error or loss E calculated by comparing to the desired output or label ŷi 
through the loss function L: 

ba

c d

3 nm 3 nm

Figure 4.1 Bi2201 Topography and LDOS. 
a) High resolution topography of a 15x15 nm field of view of the OD12K sample. The atomic 
lattice of the Bi-O plane is clearly resolved with the Pb dopants visible as bright white dots. b) 
LDOS modulations at E = 10 meV in the same FOV as a). c,d) QPI signal of a 45x45 nm FOV 
of the OD12K sample at E = 10 meV revealed by taking the FFT of the dI/dV layer and the (dI/
dV)/(I/V) layer respectively after drift correction. The red crosses indicate the Bragg peaks from 
the atomic lattice.

(4.1)E = L(ŷi, yi) = L(ŷi, f(xi|θ)) (1)

1
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The best output yi is then the output that minimizes the error E. Typically 
this is not the case of the output yi given by the initial set of parameters θ. 
To minimize E, during each cycle or epoch the loss is calculated and the 
parameters θ adjusted to yield a lower loss in the next epoch through gradient 
descent. When the error has been minimized the network has been trained. 
When the dataset consists of multiple elements, such as multiple QPI images, 
the dataset is often split into batches. During an epoch each image within a 
batch is fed to the network and a loss over the batch is calculated, after which 
the parameters θ are updated and the next batch is used. Over the course 
of one epoch each element of the dataset has been fed to the network. It is 
common practice to split off a part of the dataset into a validation dataset. 
The loss of the network over the validation network is calculated at regular 
intervals during training, but is not used to update the network parameters. 
As such, the loss over the validation dataset, or validation loss, represents 
the performance of the network on data not used for training, and is closely 
monitored during the training process.

The most common approach is to use supervised learning31–33, i.e. using pairs 
of corrupted and clean images as inputs and labels (Fig. 4.1a). The network 
is trained by minimizing the loss between the clean example and the output 
when a noisy image is inputted. When a corrupted image without a clean 
example is then fed to the network, the output will be a noise-free version of 
the input provided the underlying structure of the input is similar enough to 
that of the images used to train the network. Recent work has shown that the 
clean images don’t have to be clean at all34. Having multiple noisy version 
of the same image can be enough to learn the structure of the image. If one 
characterizes the noise well enough to generate artificial noise similar enough 
to the noise in the original image, one can use this to generate the necessary 
training data to train the network and denoise the original data.

The issue with this approach is that it requires training data that is often not 
available in a scientific setting. Clean versions of the images are most often 
not available as scientific measurement setups are often already operating at 
their limits. Even acquiring multiple noisy copies of the same image is often 
not possible due to time constraints or changing experimental conditions. To 
work with STM data we need a self-supervised approach, i.e. one that doesn’t 
require training data. Instead, we will assume some structure of the noise to 
denoise the QPI images. The method we implement here, called Noise2Void 
or Noise2Self36,37, assumes that the noise is pixel independent, meaning that 
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Figure 4.2 Self-supervised denoised QPI images. 
a) Schematic of the traditional, supervised approach noise suppression. The network is trained 
on a pair of noisy inputs and clean targets. A different noisy image not part of the training 
data can then be denoised using the network. b) Schematic of Noise2Self. The input and targets 
now consist of a noisy image with some pixels masked and those masked pixel. The trained 
network can now be used to denoise the original image. a,b adapted from Ref. 35. c) DnCNN 
architecture used consisting of 17 layers containing each a convolutional (Conv) layer with 
64 features, batch normalization (BN, expect the first layer), and a ReLU activation function. 
These are followed by a convolutional layer generating the output. d) Example of QPI data 
before denoising (OD12K sample, E = 10 meV, same as Fig. 4.1d). e) Symmetrized version of 
d) for comparison to f). f) Denoised and symmetrized using d) as input. The noise is clearly 
suppressed with the image slightly blurred.
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the strength of the noise on one pixel will not tell anything about the strength 
of the noise on other pixels, neighbors included. For the mathematical 
reasoning behind this approach and details of the implementation we refer to 
the original papers36,37. The idea of Noise2Self (Fig. 4.2b) is to alter the value 
of some pixels during each training step (usually setting the pixel to zero or 
to the average of its neighbors). The network will then assign new values to 
those pixels and the training loss is evaluated at those pixels. Which pixels 
are altered varies during training. The network will fill in the blanks of the 
missing pixels using the underlying structure it learned, without any pixel 
independent structure as it doesn’t have access to the pixel it is trying to fill in. 
As such, the network can reconstruct a clean version of the noisy image. This 
approach to noise suppression has already found successful application in 
tomography35,38 and can also be used to optimize parameters for certain filters 
or dimension reduction techniques37.

It is important that this approach only works for pixel independent noise. 
Anything else will be interpreted as part of the structure of the image. If 
there is structured noise present in the image, for example some repeating 
pattern, Noise2Self will preserve this structure, while approaches based on 
clean training data can also suppress this type of noise36. Most notably this 
also holds for any artifact that might be introduced into the data during the 
measurement.

The network architecture we will use is a DnCNN network32 (see Fig. 4.2c), 
similar to the one used in the original Noise2Self paper37, implemented using 
Python’s TensorFlow package. We will use 17 layers, with 64 features each. The 
loss is calculated using the mean squared error, and we will use a learning rate 
of 0.01 during training. The data is layer-wise mean subtracted before taking 
the FFT and afterwards normalized to [0,1] layer-wise. The QPI data is split 
into batches of 10 images which are shuffled each training step. The network 
is trained for 100 epochs. The noise suppressed images are then symmetrized. 
An example of the data used as output and fully processed data is shown in 
Figs. 4.2d-f. The algorithm has worked as intended, with the noise in Fig. 4.2f 
suppressed compared to Fig. 4.2d,e. The reconstruction is not perfect, as the 
image is slightly blurred compared to the inputs. 
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4.3 Results
4.3.1 Fermi surface

We start by looking at the QPI signal at E = 0meV, showing the interference 
from states on the Fermi surface. In this doping range we expect a full Fermi 
surface2,21, meaning the QPI signal will trace the shape of the Fermi surface 
with q = 2kF. The E = 0meV layers shown in Fig. 4.3a-c for the OD3K, OD12K, 
and the OD23K samples indeed have a signal at q = 2kF consistent with a full 
Fermi surface of a single band. In particular there is no sign of octet model 
scattering vectors characteristic of the pseudogap in the underdoped regime. 
The horizontal and vertical line through the center in Fig. 4.3b are the result of 
an unknown artifact only present in the OD12K measurement. Note that the 
signal at the anti-node next to the Bragg peaks are very faint or absent. This 
seems to be the result of two factors: first, these scattering vectors are already 
weaker in the dI/dV QPI signals (see Fig. 4.1c) and second, these vectors 
become even weaker after normalizing to (dI/dV)/(I/V). The reason behind 
these two factors are unclear. Fainter signal at the anti-nodes can be the result 
of a combination of details of the scattering process and conditions of the STM 
tip. Why normalization weakens the signal at large q vectors is also not clear, 
though it should be noted that something similar happens in the rhodates in 
Chapter 2, as seen in Fig. 2A.1.

We trace the Fermi surfaces by fitting the peak position of the q = 2kF signal 
along the cuts indicated by the red lines in Fig. 4.3c. The result is shown in Fig. 
4.3d, where we have divided the values for the q vectors by 2 and rotated them 
to show the band from which the scattering originates in the 1st Brillouin Zone 
(BZ). We also show a tight binding fit2,27 to the Fermi surfaces. There is very 
little difference between the 3 Fermi surfaces and their fits, especially for the 
OD3K and OD12K samples. This is due to the fact that the band only moves 
very little for these doping values, especially in the nodal region, combined 
with the uncertainty of the fit when extracting the Fermi surface.

To see the shift of the band as a function of doping we plot the ε0 parameter of 
the tight binding model, which governs the band shift, as a function of doping 
in Fig. 4.4a, together with the ε0 parameters determined by He et al.2 with the 
QPI patterns of the same (Pb,Bi)2Sr2CuO6+δ compound using the same tight 
binding model. The doping levels on the x-axis are determined using the Tc 
of the samples and the Presland formula for the relation between doping and 
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Tc
39. We find lower values for ε0 and a different slope as a function of doping. 

We could fit a straight line through our point to quantify the difference in 
offset and slope. Given the number of data points however this would not 
be very reliable. Regardless, our results are not fully consistent with their 
previous results, where we point out, in addition to the earlier mentioned 
precision of our Fermi surface extraction, the values for ε0 determined by He 
et al. are obtained by ‘fitting’ the tight binding model to their data by eye. 

Figure 4.3 Bi2201 QPI Fermi surfaces. 
a-c) The QPI signal at E = 0meV for the OD3K, OD12K, and OD23K samples respectively 
after normalizing to (dI/dV)/(I/V) and denoising using the Noise2Self algorithm. The red 
crosses indicate the position of the Bragg peaks. The red lines in c) show the cuts used to extract 
the Fermi surface scattering vectors. d) The Fermi surfaces determined using the QPI pattern 
in a-c) by dividing the scattering vectors by two, rotating them and duplicating them to show 
two parts of the Fermi surface. The dashed lines show the tight binding fits to the Fermi surface 
for each sample.

a

d

b

c
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A different way to show the shifting of the band is to look at the area of the 
Fermi surface and calculate the Luttinger count. The result is shown in Fig. 
4.4b, together with the Luttinger counts determined by He et al. Similarly 
to the result for ε0 we find a discrepancy between our result and theirs, not 
surprisingly given that ε0 and Luttinger count are related. It is important 
to note that for (Pb,Bi)2Sr2CuO6+δ the Luttinger count does not match the 
doping levels from the Presland formula39, as was noticed previously for 
both single layer and double layer Bi-based cuprates (Pb,Bi)2Sr2CuO6+δ and 
Bi2Sr2CaCu2O8+δ

2,3. Still this universal formula for doping vs. Tc is useful as 
long as the relation depicted in Fig. 4.4b shows a straight line. 

4.3.2 Anti-nodal Dispersion

Next we look at the anti-nodal dispersion by taking a series of cuts perpendicular 
to the (0,0)-(2π,2π) line shown in Fig. 4.5a. The cuts are taken more towards 
the midway point between nodal and anti-nodal since the signal fades away 
moving closer to the anti-node. The cuts, examples of which are shown in 
Fig. 4.5b-d, feature both a gap around Fermi level and a band crossing EF. The 
cuts in Fig. 4.5b,c have a strongly reduced intensity directly around EF due to 
the gap but note that there are still clear QPI for the E = 0meV layer, as seen 
in Fig. 4.3a,b. The cut in Fig. 4.5d also has reduced intensity near EF, but not 

Figure 4.4 Tight binding ε0 and Luttinger count. 
a) The ε0 parameter of the tight binding fits shown in Fig. 4.3d as a function of doping in blue. 
The doping values on the x-axis are calculated using the Tc of the samples and the Presland 
formula39. The ε0 values determined previously2 for the same compound are shown in red. b) 
The Luttinger count calculated using the area of the Fermi surface as a function of doping in 
blue. Previously determined values are shown in red.

a b
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at EF. This is most likely an artifact from the noise suppression, a point we 
will get back to in section 4.4. The fact that there is still QPI associated with a 
full Fermi surface at E = 0meV for superconducting samples is a result of the 
pronounced gap filling occurring in this doping range described in Chapter 3. 

Next, we fit the peak position of momentum distribution curves (MDCs) of 
the cuts to extract the band crossing EF, shown in Fig. 4.5b-d as the blue dots 
and plotted together in Fig. 4.6a for the cut highlighted in Fig. 4.5a. For cuts 

Figure 4.5 Anti-nodal dispersion. 
a) The E = 0 meV QPI layer for the OD23K sample indicating the lines along which the cuts 
are taken used to extract the bandstructure. The green line shows the cut shown in b-d). The 
red crosses indicate the position of the Bragg peaks. b-d) The cuts along the green line in a) for 
the OD3K, OD12K, and OD23K sample respectively. The blue points show the peak position of 
the fitted MDCs, the green points show the peak position of the fitted EDCs.

a b

dc
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taken at the anti-node where the bandstructure has a saddle point (the vHS) 
the dispersion is parabolic, disregarding any possible back bending due to a 
gap. The cuts in Fig. 4.5 however are taken away from the anti-node so that 

Figure 4.6 Bandshift measurement. 
a) The anti-nodal dispersion for the OD3K, OD12K, and OD23K extracted from the cuts 
shown in Fig. 4.5b-d by fitting the MDC peak positions. The bandshifts are measured by 
finding the shift to the OD12K and OD23K dispersions that minimizes the sum of the point-
wise distances to the OD3K dispersion. The result of the shifting procedure for the data shown 
in a) is shown in b).

Figure 4.7 Bandshift doping dependence. 
a) The extracted QPI bandshifts relative to the OD3K sample for the three cuts indicated in 
Fig. 4.5a, with the cut labeled anti-nodal being closest to the Bragg peaks and the one labeled 
midway furthest. b) The average of the shifts shown in a) compared to the shifts determined by 
tight-binding fits to the QPI Fermi surface, and compared to the shifts determined by Ref. 2.

ba

ba
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the dispersion is no longer guaranteed to be parabolic. Therefore we take an 
agnostic approach to measuring the bandshift. We add a shift manually to the 
dispersion of the OD12K and OD23K and calculate the relative distance for 
points at constant q//. The true bandshift is then the shift which minimizes 
the sum of the squared distances. The shifted dispersion for the highlighted 
cut in Fig. 4.5a are shown in Fig. 4.6b. We then repeat this procedure for all 
cuts taken. The resulting bandshifts relative to the OD3K sample are shown 
in Fig. 4.7a for each cut, where the errorbars give the 95% confidence interval 
for the calculated shifts. We find that, within error, the shifts follow a straight 
line, where the caution of the number of data points again holds. The straight 
line of the shifts, or the rigidity of the bandshifts, becomes more apparent 
when we average the calculated values over the different cuts used and plot 
them against previous results2, as we have done in Fig. 4.7b. We find a good 
agreement with the slope of the ε0(p) line determined by He et al. Note that 
the data points for ε0 were shifted so that all the curves coincide at a shift of 0 
for the OD3K sample. This is done as the shift measured from movement of 
the bandstructure only gives relative values of this shift, versus more absolute 
values when calculating ε0 from tight-binding model.

Another feature of the anti-nodal electronic structure becomes apparent when 
we look at the peak positions of the energy distribution curves (EDCs, green 
points in Fig. 4.5b-d). We find shoulder features at lower q near both gap 
edges for all samples. The shoulder above the Fermi level can be attributed to 
back bending of the band due to the band, although it should be noted that 
this occurs at unusually large energies for the OD3K sample. The exact shape 
of the backbended band reveals important information on the nature of the 
gap. For a purely superconducting gap we expect a particle-hole symmetric 
bending of the band, while for other ordered states the bending does not 
necessarily have this symmetry. The data presented here however lacks the 
resolution to conclusively determine whether the bending is particle-hole 
symmetric. 

Another clue to the nature of the gap stems from the feature near the gap 
edge below the Fermi level. Here, for a superconducting gap, we expect 
band bending only to occur for momenta larger than kF (or qF in our case). 
We find that this shoulder is present in all cuts for each sample. The large 
extension in q and its lack of dispersion means it is unlikely to stem from 
purely bandstructure QPI. Such a feature has been observed before by ARPES 
in the same compound27, where it was attributed to superconductivity co-
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existing with an additional density wave. The precise nature of the density 
wave determines some of the details of the back bending, but all scenarios 
share this additional low momentum feature. There are indications of an 
additional ordered state next to superconductivity in this doping range for 
Bi2201, however their link to this feature remains to be investigated

4.4 Discussion
4.4.1 Artifacts of Noise Suppression

The observation that the shoulder feature above EF occurs at an unusually large 
energy for the OD3K sample warrants a closer examination of the denoising 
algorithm. Another unusual aspect of the OD3K data is that the gap seems to 
be asymmetric. The suppression of intensity due to the gap seems to extend 
to larger energies above EF than below. A comparison of the anti-nodal cuts 
from noise suppressed data with the (dI/dV)/(I/V) data used as input, shown 
in Fig. 4.8, shows that the asymmetry is a result of the noise suppression. 
The comparison shows that the dispersion is well-preserved by the noise 
suppression, together with the shoulder features around the gap, although 
the one above EF has moved up in energy. The comparison also shows that the 
relative intensities of the energy layers is changed quite drastically, a point 

ba

Figure 4.8 Before and after comparison anti-nodal cuts. 
a) Anti-nodal cut taken from the OD3K (dI/dV)/(I/V) data before noise suppression along the 
green line indicated in Fig 4.5a. b) The same cut after noise suppression of the full data set. The 
main features are preserved (dispersion, shoulders at the gap edge), but the relative intensities 
of the energy layers has changed drastically.
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emphasized when we plot the average value of the energy layers, shown in Fig. 
4.9a. It is clear that relative layer intensities are not preserved during the noise 
suppression. This is a result of the 2D network design used combined with an 
imperfect reconstruction of the images. Ultimately, the images are fed one by 
one to the network and shuffled between epochs. Any information about the 
relative information of the image in the 3D dataset, or any information about 
neighboring layers is lost during the denoising. As a result, the intensity of a 
layer relative to the other layers is can exhibit sharp jumps or vary more freely 
than pixel intensities within a layer, for which neighborhood information is 
provided to the network to suppress sharp jumps. The fact that there is still 
some gap structure present in the noise suppressed data is in part due to the 
normalization applied before the data is fed to the network. The data is layer-
wise normalized to the interval [0 1], which is then applied in reverse to the 
network output. The application of the reverse normalization restores some of 
the relative intensity, but not all.

The remedy for this would be to implement a 3D network, which takes the dataset 
as a whole as input. Training such a network would require unreasonably long 
computation times for anything but a very small dataset, or require running on 
a supercomputer. A good intermediate solution is a 2.5D network, as was done 
for the Noise2Self tomography implementation38. In such a network, the input 
is comprised of three images: the image to be denoised and its neighbors in the 
3D dataset. The addition of the neighboring layers to the actual input does two 
things: first it improves the overall quality of the denoising as more information 
is known to the network through the addition of extra neighbors to the masked 
pixels. Second it can add context to the input in the third dimension not present 
for a strictly 2D network. As such, a 2.5D network can suppress sharp changes 
in intensity along the third direction.

Further improvements to the network are possible. While common for image 
reconstruction tasks, the DnCNN architecture used here is but one of many. 
Other common architectures include Red3040 and U-Net41. As for the layers 
used within DnCNN there is room to optimize the number of layers used, 
the number of feature per layer, or the use of dropout. Other optimizations 
include the activation function or the loss function. The mean squared error 
used here is a default choice for image reconstruction, but given the size of the 
images, switching to loss functions which tries to capture structural similarity 
might be worthwhile.
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In the current implementation of the noise suppression the network is trained 
on each dataset separately. A possible route towards improved performance 
and more general applicability is to pool the data together and train the network 
once on the new bigger dataset. The rationale being that, the samples being 
from the same compound family, the QPI images across the samples share 
enough of a common underlying structure. For the current data this would 
require down sampling some images to ensure equal image size throughout 
the whole dataset. This approach would open the door to a more generally 
applicable network for QPI images from distinct compounds having distinct 
bandstructures through transfer learning. Transfer learning extends the range 
of applicability by training a deep network on a large dataset (e.g. a collection 
of QPI dataset from different samples and/or compound families). This 
network can then be applied to a dataset not seen before, and not necessarily 
having a structure present in the training dataset, by retraining only the top 
layer(s) of the network. The deep parts of the network then encode the general 
common elements of QPI images (e.g. common noise sources) while the top 
layers take care of dataset specific structures. This would also have the added 
benefit of speeding up the computation time for each new dataset once the 
deep network has been trained. 

Figure 4.9 Layer intensities before and after noise suppression. 
a) The average intensity of the QPI layers of the OD3K sample before and after noise suppression 
as a function of energy. While the averages for the (dI/dV)/(I/V) before denoising resembles the 
real space average, the averages after denoising have lost that resemblance. b) Comparison of 
the real space averages for the dI/dV data and the (dI/dV)/(I/V) data for the OD3K sample. 
Normalizing layer-wise by the current has made the gap much more pronounced.

ba
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As a side note, the uncharacteristically deep gap for the OD3K sample shown 
by the blue curve in Fig. 4.9a is a result of the normalization of the dI/dV 
spectra with the current layers I, as shown by the comparison of the real space 
averages of the dI/dV spectra and the (dI/dV)/(I/V) spectra shown in Fig. 4.9b. 
The current I and the bias voltage V are in principle roughly linearly related in 
the small energy window around V = 0, so that the ration I/V remains constant 
even as V and with it I approach zero. Even so, small fluctuations in the value 
for I registered by the STM hardware can lead to large differences in the 
normalized (dI/dV)/(I/V). To temper these differences we add a 10μV offset to 
the bias during normalization, to only partial success as seen by the sharpness 
of the gap in the (dI/dV)/(I/V) average depicted in Fig. 4.9b.

4.4.2 Carrier Concentration and Bandshifts

Bandshifts in overdoped cuprates have been reported before in both 
Bi2Sr2CuO6+δ 2,42 and La2-xSrxCuO4 42,43, although their doping dependence is 
not trivial. The magnitude of the shifts increase strongly past overdoping at 
p=0.16, for La2-xSrxCuO4 even becoming non-zero only then42. Interestingly, this 
occurs before the closing of the pseudogap around p* = 0.19 - 0.20 44, suggesting 
the bandshifts are decoupled from the restoration of the full Fermi surface. 
Instead, the increased magnitude of the bandshifts seems to coincide with the 
start of a gradual change in the Hall carrier density from nH = p to nH = 1+p 
45. The rigidity of the shift, behavior typical of a Fermi liquid combined with 
the gradual change of nH to nH = 1+p and the emergence of a T2 component of 
the resistivity45 suggests that these doped carriers constitute a coherent Fermi 
liquid-like normal state, coexisting with an incoherent electron fluid with 
T-linear resistivity, nH = p, and little to no shifts in the chemical potential42,45. 
This tentative relation between bandshift magnitude and nH would imply 
another change in shift magnitude at the end of the superconducting dome, 
where nH saturates to nH = 1+p. QPI investigation beyond the superconducting 
dome will test this relation in the metallic state past the Lifshitz transition. 

Future STM work can relate these two fluids to spectral features 
(superconducting or pseudogap, vHS) by identifying the real space distribution 
of these features and applying masks to the dI/dV data before taking the FFT 
to reveal the QPI patterns, a technique used previously to study charge order 
in Bi2Sr2CuO6+δ 

11,23. The machine learning techniques detailed in this chapter 
can help overcome the challenges of the additional noise introduced by such 
real space masking.
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Interestingly, there is a mismatch between the Luttinger count extracted 
from STM and ARPES and universal formulas for doping vs Tc, as was 
noted before2,42,44. Adding to the puzzle, the relation between Luttinger 
count and universal doping formulas does appear to be linear across the 
full superconducting dome2, implying that the amount of holes doped per 
dopant is constant over this part of the phase diagram. This appears at odds 
with the doping dependence of the bandshifts and Hall carrier concentration, 
which feature a sharp change at optimal doping42,45. The former discrepancy 
is especially concerning as both the Luttinger count and the bandshifts are 
typically determined by a tight-binding characterization of the Fermi surface, 
although we have shown that the bandshift still holds without the use of 
tight-binding models. A possible solution to this is by noting that the tight-
binding hopping parameters can be doping dependent, for which there is 
precedent42,43. This doping dependence seems to smooth however, rather 
than featuring a pronounced change at p = 0.16 the bandshift and nH have. 
Why the drastic increase in free carrier deduced from nH is not reflected in a 
similarly rapid change in the Fermi surface area remains an open question. 
One proposal that the Luttinger count only counts coherent carriers44 seems 
unlikely as the relation between Luttinger count and universal formulas is 
linear over a doping range larger than the one in which coherent carriers are 
added. Investigation into the non-superconducting overdoped regime will 
reveal how these relations hold when there are no incoherent carriers present. 
Alternatively, the high Luttinger count is the result of surface effects, to which 
both STM and ARPES are susceptible, versus bulk measurement on which 
nH and the universal doping formulas are based. These surface effects would 
then most likely be caused or enhanced by the physics of the cuprates, as we 
have shown in Chapter 2 that bulk and surface probes of the bandstructure 
are in agreement with each other for Fermi liquid systems. 

4.4.3 Density Waves in Overdoped Bi2Sr2CuO6+δ

The observation of the shoulder features at the gap edge (Fig. 4.5b-d) has 
been attributed to the presence of some density wave in addition to the 
backbending of the band due to superconductivity. This raises the question 
what that density wave is. There are two main candidates in overdoped 
single layer cuprates: a charge density wave (CDW) or ferromagnetic 
fluctuations (FMF). CDW order has been observed across the overdoped 
regime in both Bi2Sr2CuO6+δ 10–12 and La2-xSrCuO4 

46, albeit with markedly 
different doping dependence. In the latter compound X-ray diffraction 



100

1 1
2
3
4
5

2
3
4
5

4 QPI IN OVERDOPED (Pb,Bi)2Sr2CuO6+δ

studies have found CDW order extending over the entirety of the overdoped 
superconductivity regime with a nontrivial doping dependence, but only 
disappearing concomitantly with superconductivity at the edge of the dome. 
In contrast, in Bi2Sr2CuO6+δ the overdoped CDW shows re-entrant behavior, 
being disconnected from the underdoped CDW that gradually disappears in 
the overdoped11. The re-entrant behavior only starts to show around a Tc of 
15K10,12. The fact that we observe the shoulder feature for the OD23K sample 
disqualifies the strongly overdoped CDW as the cause for all three samples. It 
could be possible that the feature in the OD23K sample is caused by remnants 
of the overdoped CDW, while for the higher doped samples it is caused by 
the re-entrant CDW. More detailed calculations investigating the difference 
in band bending between these two CDWs combined with QPI or ARPES 
measurements with high enough resolution to resolve those differences are 
needed to resolve this issue. The shoulder-like feature above EF accessible by 
QPI or high-temperature ARPES (if the appropriate temperature range exists) 
can provide additional information on the exact structure of the backbending. 
It should be noted that X-ray diffraction and STM disagree on the wavevector 
of re-entrant CDW10,12. Particularly, the STM observation can be interpreted 
as QPI resulting from anti-nodal scattering, given that a clear momentum 
space signature of this CDW is absent in the STM measurements12. Also note 
that there is a gap in the doping range in the available X-ray data, leaving 
room for an interpretation where the proposed CDW is not re-entrant, but a 
continuation of the underdoped CDW. As the observation of the shoulder-
like feature only provides indirect evidence for a CDW, the question whether 
a CDW exists across the overdoped regime in Bi2Sr2CuO6+δ remains open.

An alternative explanation involves the FMF found in overdoped La2-xSrCuO4 
13,14 and Bi2Sr2CuO6+δ 47. In the latter case the FMF appear to extend over a doping 
range compatible with the samples studied here. The FMF have not however 
been shown to form static order at higher doping or lower temperatures. How 
fluctuating order impacts the backbending remains to be investigated. 

4.5 Conclusion & Outlook
In conclusion, we have investigated the anti-nodal electronic structure of 
overdoped Bi2Sr2CuO6+δ using QPI. We have implemented a state-of-the-art 
self-supervised machine learning algorithm to suppress the noise in the QPI 
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images. Using the noise suppressed data we have shown that the anti-nodal 
band shows a rigid bandshift with overdoping. Additional studies into the 
non-superconducting regime are needed to resolve discrepancies between the 
doping dependences of the bandshifts42,43, the Luttinger count2,44, and the Hall 
carrier density45. The backbending of the band due to the superconducting 
gap features shoulder-like features near the gap edge associated with the 
presence of a density wave27, whose nature remains unknown. More detailed 
calculations, focused particularly on the types of CDW with a doping 
dependent scattering vector and weak coherence proposed by X-ray and STM 
experiments combined with higher resolution experiments are needed to reveal 
the origins of the band bending and the associated density wave. The findings 
presented here reveal a picture where QPI and ARPES appear in agreement 
over the momentum space electronic structure, but in disagreement with 
other probes such as transport and X-ray diffraction over the carrier density 
and the presence and doping dependence of an additional ordered state next 
to superconductivity. More detailed studies of the electronic structure around 
the gap from both experimental and theoretical/computational viewpoint 
over an extended doping range are needed to bridge the gap between the 
various probes.
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In sufficiently strongly interacting and clean electron systems transport phenomena 
are determined by hydrodynamic effects in contrast to diffusion dominated transport 
due to disorder. Successful efforts in showing these hydrodynamic effects relied 
primarily on clean systems with extremely large disorder length scales1–3. Here we take 
the opposite approach by focusing our attention on a system with a short interaction 
length scale, i.e. a strongly interacting system, which is still clean enough to show 
hydrodynamic transport. Built on a previous result2 we propose an experiment to 
observe nanoscale vortices in the strongly interacting superconductor Sr2RuO4, 
spurred on by its cleanliness of both the bulk crystal and structured mesoscopic devices. 
Our calculations indicate the existence of a crossover from diffusive to hydrodynamic 
transport in Sr2RuO4. The crossover exists over a wide range of disorder levels, and is 
robust against boundary effects. These results suggest a new probe into the strongly 
interacting normal stat of Sr2RuO4. Implementing the calculations for a cuprate 
strange metal system, proposed to be hydrodynamic through holography4, shows no 
hydrodynamic effects for realistic disorder levels, pointing towards the importance of 
disorder in strange metal systems.

Hydrodynamic Transport Description 
of the Strongly Correlated Electron System 
Sr2RuO45
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5.1 Introduction
The emergence of complex electronic behavior is tied to the number of 
electrons and the strength of their mutual interactions5. It is therefore 
reasonable to expect that transport in mesoscopic devices is a prime candidate 
to observe such complex behavior due to large number of electrons in such a 
device while still being on the small length scales at which complexity often 
arises (see for example the emergence of superconducting puddles in Chapter 
3). One telltale sign of complex or collective behavior in mesoscopic devices 
is the observation of hydrodynamic transport phenomena1,3,6–8, as these 
phenomena rely on a conserved momentum of all electrons involved. Such 
behavior however is quickly drowned out by interactions which destroy this 
collective momentum, such as phonon interactions or impurity scattering, 
reducing transport physics to single particle physics.

Transport phenomena are thus split into several regimes, based on which 
of the above interactions are dominant. When impurity scattering, phonon 
scattering, or some other momentum non-conserving interaction dominates, 
transport is said to be in the diffusive or Ohmic regime (Fig. 5.1a). In this case a 
sense of collective electron momentum is destroyed over length- or time scales 
smaller than the system being probed. A lack of conserved momentum is also 
the case for the second transport regime, the ballistic regime (Fig. 5.1b). In this 
regime there are no interactions present, in the sense that the time it takes for 
an electron to engage in any interaction (either momentum conserving or non-
conserving) is larger than the time it takes for an electron to cross the system. 
As such, while there are no interactions to destroy the conserved momentum, 
there are also no interactions to establish a collective momentum. This only 
happens in the last regime, the hydrodynamic regime (Fig. 5.1c). Here electron-
electron interactions dominate, conserving the total momentum of the electron 
fluid, while momentum non-conserving processes are largely absent within 
the system. The fact that the total momentum is conserved allows for more 
complex transport behavior to exist, with phenomena often associated with 
everyday fluid dynamics such as laminar flow, vortex formation, and possibly 
even the onset of turbulence.

Examining which transport regime is relevant is most conveniently done by 
estimating the relevant length scales involved. These fall into three categories. 
First there is the size of the system or device, typically denoted L. Second, there 
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Figure 5.1: Transport regimes. 
Schematics of the transport regime which are determined by the relative sizes of the length 
scales involved. a) When the system size L is the smallest length scale, transport is ballistic: 
electrons can cross the system without scattering. b) When the length scale for momentum 
conserving scattering lmc is smallest, and the length scale for momentum diffusion lmc is largest 
the electron fluid as a whole carries a single conserved momentum and transport is governed 
by hydrodynamics. c) When lmd becomes smaller than L the momentum of the electron fluid can 
diffuse away during transport, losing its conserved nature. Transport is now diffusive.
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is the length scale over which momentum of the electron fluid is lost to the 
lattice (or some other subsystem). This momentum diffusion length lmd bundles 
scattering events such as impurity scattering and electron-phonon scattering 
(although there are exceptions to the latter3,8). Lastly, the momentum conserving 
length lmc characterizes the processes conserving the electron momentum fluid, 
typically electron-electron interactions. The system size L is under control of 
the experimentalists, while lmd and lmc depend on the materials involved and 
external factors such as temperature and applied pressure.

Observing hydrodynamic electron flow is no easy feat, primarily because the 
required combination of length scale is difficult to achieve. For hydrodynamic 
flow to occur lmc needs to be the smallest length scale, while L needs to be at 
least on the order of lmd, if not smaller: 

This way the electron fluid momentum can equilibrate within the device and 
without being disrupted by momentum diffusion.

First attempts and successes of observing hydrodynamic flow were achieved 
using semiconducting systems, such as GaAs and graphene1,2,9. The main 
advantage of these systems is that lmd can be made quite large (several microns). 
This way, lmc < lmd is easier to guarantee even with very little electron-electron 
interactions, as is the case for these semiconducting systems. Furthermore, 
with modern lithography tools it is possible to make devices of the right shape 
and dimensions out of these materials to show signatures of hydrodynamic 
flow. Indeed, in such devices scientists have observed a unique temperature 
dependence of the resistivity called the Gurzhi effect10, the formation of 
backflow vortices2,11,12, Poiseuille flow8,13,14, and distinct effects of the device 
geometry on transport15–17. 

More recently, the hunt for hydrodynamic electron behavior has shifted to more 
complex (semi-)metallic systems, such as PdCoO2, WP2, and WTe2

3,6,8. Their 
mean free paths, while still remarkably long, are significantly shorter than 
those of the semiconducting systems mentioned above. Instead, their stronger 
electron-electron interactions, and therefore shorter lmc, enable hydrodynamic 
flow. In the case of PdCoO2, being an oxide system, an additional challenge is 
to structure the devices while preserving their lmd. Nevertheless, observations 
of hydrodynamic flow have offered interesting windows into these systems, 
in particular the observation of phonon drag in WTe2

8.
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The endpoint for the move towards increasingly strongly correlated systems 
is transport in strange metal systems. In these systems it is widely believed 
that the quasi-particles that would otherwise constitute electrical flow are no 
longer present due to the exceedingly large electron-electron interactions18–20. 
As such, any definitive theory on the nature of these systems, and transport 
therein, is still lacking. One proposal inspired by string theory called AdS/
CFT posits on general grounds that transport is of hydrodynamic nature with 
an extremely low viscosity4,21. Observing such flow would present a major 
step forwards in understanding strange metal systems.

In this chapter we present a stepping stone towards hydrodynamic experiments 
in strange metal systems by proposing and examining experiments in the 
normal state Fermi liquid of Sr2RuO4. We believe that hydrodynamic flow is 
observable in this state due to a unique combination of lengthscales. Firstly, 
the normal state, albeit a Fermi liquid, is a strongly correlated one. This is 
evidenced by transport properties such as the strongly enhanced effective 
mass22–24 or the recently observed nematic behavior25. Secondly, the mean free 
path lmd can reach up to 1μm, remarkably long for an oxide superconductor. 
We will examine several device designs which can give clear evidence 
of hydrodynamic flow, and we will calculate the expected signatures in 
experiments. Finally, we will take a closer look at what such an experiment 
would look like for a strange metal system.

5.2	 Sr2RuO4 as a Hydrodynamic
	 System: the Relevant Length Scales
Sr2RuO4 is perhaps best known for its highly unconventional superconducting 
state emerging below a Tc of 1.5K. While we focus mainly on the normal state 
rather than the superconducting state (reviews into the superconductivity 
of Sr2RuO4 can be found here26–28), one aspect is worth pointing out. The 
superconducting state is highly sensitive to disorder due to its unusual 
pairing symmetry (the exact pairing symmetry is still an ongoing debate28). 
This mainly shows as a reduction of Tc for more disordered crystals. In fact, 
there is a clear relation between Tc and the residual resistivity ρ0, which serves 
as a proxy for the amount of disorder. The Tc is thus a useful diagnostic tool 
to determine sample quality. Samples with a Tc around 1.5K have a mean 
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free path (extracted from ρ0) of around 1μm. It is this extremely long mean 
free path which motivates the choice of Sr2RuO4 as a candidate for showing 
hydrodynamic transport behavior.

The first of the relevant length scales, or time scales which appear more 
naturally in the Navier-Stokes equations, are most easily calculated from the 
resistivity ρ(T). As Sr2RuO4 is a quasi-2D system, with resistivity anisotropies 
ranging from 102 to 103 24,26,29, we can use the following relation between the 
residual resistivity and a scattering time from Boltzmann transport29: 

Where δ is the distance between the RuO planes and e is the electron charge. 
Sr2RuO4 is a multiband system, with three bands called the α,β, and γ bands, 
so the summation runs over the Fermi vector kF and Fermi velocity vF of 
each of the bands, and in principle we also need to take into account that the 
scattering time can differ between the bands. For the latter, we will assume 
that the scattering time is independent of the band index, and treat this as an 
effective scattering time for the whole system: 

The Fermi vectors and velocities are readily available from literature22,23,30, as 
is the interplanar distance31. It turns out that the Fermi velocities of the three 
bands are roughly similar, so we can calculate a length from the scattering 
time by simply using an average Fermi velocity: 

To get a sense of the size of the device needed to observe hydrodynamic 
transport, we look at two different scattering processes: impurity scattering 
and electron-electron scattering. These two are the only relevant ones, as the 
low temperature resistivity behavior is purely quadratic in T 29: 

At low enough temperatures impurity scattering dominates the resistivity, 
as this is the only process which is temperature independent. As such, the 
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5.2SR2RUO4 AS A HYDRODYNAMIC SYSTEM

impurity length scale lmd is calculated using the residual resistivity ρ0 by 
extrapolating the resistivity to T = 0K. High quality Sr2RuO4 crystals can have 
a ρ0 as low as 0.1μΩ cm 24,32, which using the formulas above yield a length 
scale of lmd = 960nm.

The electron-electron scattering length lmc is extracted from the T2 term of the 
total resistivity by simply plugging in AT2 into equation 5.3. Using a value for 
A of 7.3 nΩ cm/K2 33 we find an electron-electron scattering length of lmc = 60 
nm at a temperature of 15K (see Fig. 5.2a). Note that this length scale has a T-2 
temperature dependence, meaning this length diverges towards T=0. In order 
to observe hydrodynamic effects not only is it needed that L < lmd, but also 
lmc < L. The former will be the main reason behind the size of the geometry, 
while the latter will determine the temperature window of the experiment. 
For a size of a few hundred nm, a temperature of around 15K will satisfy both 
conditions. 

Figure 5.2 Electron-electron length scale. 
a)The temperature dependence of the electron-electron scattering length scale associated with 
momentum conservation, calculated using the T2 coefficient and Fermi momenta and velocities 
given in the main text. The red dashed lines indicates the device width of 300nm. When lmc 
exceeds the device width, which occurs at 6.7K here, transport crosses over to the ballistic 
regime. b) The resistance data used for a FIB-structured Sr2RuO4 device used in this chapter to 
estimate the total scattering time τ. The resistance in normalized to the room temperature value 
R300. Source: Remko Fermin, private communication. 

a b
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5.3	 Hydrodynamic Transport
	 Simulations
5.3.1 Momentum Diffusion in the Navier-Stokes Equation

A more precise value for both these quantities, the geometry size and the 
appropriate temperature window, can be given first by examining the Navier-
Stokes equations appropriate for electron flow, and solving the numerically 
for the envisioned device geometry. As we will see, the earlier estimates turn 
out to be fairly accurate.

In general, the transport behavior will be some combination of hydrodynamic 
effects and regular Ohmic flow. As such, the Navier-Stokes equations dealing 
with hydrodynamic flow are modified in the following way2,12,17: 

Where n is the carrier density, e the electron charge, m* the effective mass, ν the 
kinematic viscosity, and τ the total scattering time. The variables to solve the 
equations for are the current density J(x,y) and the electrical potential Φ(x,y), 
where we use the quasi-2D nature of Sr2RuO4 to approximate as being fully 
2D. The addition of the final term encodes the Ohmic behavior in our system. 
Furthermore, we are looking for steady-state solutions which reduces the 
continuity equation to: 

The carrier density is calculated by using 4 electrons per unit cell22,34 and the 
volume of said unit cell31, yielding a density of n = 2.1*1028 m-3. For the effective 
mass m* we will use an average of the effective mass of each band of 8.5 me. 
The viscosity ν is related to the length scale lmc through2,12,17: 

Where we again use the averaged Fermi velocity vF. At a temperature of 15K, 
ν is roughly 0.005m2s-1. This quantity, together with the total scattering time, 
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5.3HYDRODYNAMIC TRANSPORT SIMULATIONS

is temperature dependent, and the relative sizes of the two will determine 
the type of electron flow in the device. The scattering time τ we will estimate 
from the total resistivity at the temperature of interest. For this we will use the 
resistance data below (see Fig. 5.2b). Note that we will use the full resistivity. 
The scattering time in equation 5.6 is introduced through the inclusion of 
resistivity via the Ohmic term. As such, this scattering time includes any 
process which contributes to the resistivity. Also it is interesting to note that 
for the resistivity the exponent of the temperature dependence goes down at 
higher temperatures29,34. This is unusual as in regular metals electron-phonon 
coupling sets in at higher temperatures which as a T5 dependence (below 
the Debye temperature which is above 400K for Sr2RuO4 35). The drop of the 
exponent is associated with the presence of a Van Hove singularity close to EF 
in the γ band, which enhances scattering rates36. How this enhancement fits 
into the momentum conserving versus momentum diffusing framework is 
unclear. Therefore we opt to overestimate the amount of momentum diffusion 
and use the total resistivity for the scattering time.

The data we use to calculate the total scattering time τ is resistance data, not 
resistivity data. We convert between the two by assuming a value for the 
residual resistivity ρ0 and scale the finite resistivity according to the resistance 
data. This also means that ρ0 is a free parameter of the simulations. We will use 
this to get a sense of the influence of disorder on the backflow.

Equation 5.6 features a new length scale as the coefficient of the Laplacian 
term: 

This length scale determines the size of the hydrodynamic effects. The size of 
the geometry needs to be large enough to accommodate this, while the size of 
the probes (the contacts used to measure the hydrodynamic effects) needs to 
be small enough to be sensitive to this size. For the estimates given in section 
5.2 Dν is 120nm. This is thankfully compatible with the earlier estimate for the 
geometry size. 

For the device geometry we propose to use the vicinity geometry, which was 
originally proposed and used to demonstrate the presence of hydrodynamic 
effects in graphene2. In this setup the current is injected into the device through 
a small opening (see Fig. 5.3a). When the flow follows solely Ohm’s law the 
current follows the edges of the device (Fig. 5.3b). When hydrodynamic effects 
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are present, a negative pressure directly next to the point of injection causes 
the formation of a backflow or whirlpool (Fig. 5.3c). As such, the current flows 
in a different direction depending on the transport regime, and the voltage 
across two contacts where the backflow can occur will have the opposite 
sign. The change of sign is the signature of crossing over from purely Ohmic 
behavior to hydrodynamic behavior.

Important in considering which geometry to use is considering what type of 
hydrodynamic flow is expected, codified in the Reynolds number: 

For low Reynolds numbers (<1) the flow will be laminar, while for high 
Reynolds number (>1000) the flow will be dominated by turbulent effects, 
with a crossover or pre-turbulent regime for intermediate values. The fluid 
velocity is given by the drift velocity u = J/ne, on the order of 10ms-1 for a 
total current of 1mA in mesoscopic devices. The typical length scale is order 
100nm, and using a viscosity of ν = 0.005m2s-1 gives a Reynolds number of 
RE = 2*10-4. This means the flow will be deep in the laminar regime. As such, 
many effects associated with hydrodynamics will not occur in Sr2RuO4. In 
particular, experiments relying on the merging several flow paths will not 
show the desired effects, as we demonstrate in Appendix 5A.

The geometry we use in our simulation has a main channel with a length 
L and a width H of 1μm and 300nm respectively. The current injector has a 
width W of 50nm, same for the voltage contacts used to measure the backflow 
voltage. Devices of Sr2RuO4 of such sizes can be fabricated using state-of-the-
art techniques, by first exfoliating a bulk crystal into film flakes and then by 
creating the structure with focused ion beam milling (FIB), which has been 
shown to preserve the sample quality as measured by ratio of low temperature 
and high temperature resistance37. Using thin flakes for the device, a necessity 
for using FIB, has the added benefit of increasing the current densities, which 
enhances the voltage signal. We will assume a flake thickness of 500nm for the 
conversion between current density and total current.

5.3.2 COMSOL Implementation

We numerically solve equation 5.6 for this geometry using the COMSOL 
Coefficient Form PDE interface. This package solves a general PDE of the 
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W

L

win

Iin

Iout

Vtop

Vb
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a

c

Figure 5.3 The vicinity geometry. 
a) The geometry of the device as used in the COMSOL simulations. The current enters the 
main device of width W and length L through the contact Iin of width win and flows out of the 
device at Iout. The backflow voltage is measured between the contacts Vtop and Vbot. The sign of 
this voltage depends of the flow regime. In the diffusive or Ohmic regime shown schematically 
b) this voltage is positive as the current flows from Vtop to Vbot. In the hydrodynamic regime 
depicted in c) the sign reverses as the backflow reverses direction due to the formation of 
negative pressure immediately next to Iin.
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following form for a user defined geometry: 

Where u = (u1,u2,u3) is the vector containing the independent variables, 
(σΦ,Jx, Jy) in our case. This equation maps onto equations 5.6 and 5.7 by setting 
the coefficients as follows: 

The boundary conditions are set so that no current flows through the edges of 
the sample, and that the flow along the edges is allowed to slip, encoded via 
a slip-length: 

Where is the current perpendicular to the boundary, the current along the 
boundary, and n the vector normal to the boundary. The slip-length Lslip 
captures the interaction between the boundary and the fluid. Using a slip-
length allows us to interpolate between two commonly used boundary 
conditions in fluid mechanics: no-slip condition (Lslip = 0) and no-stress 
condition (Lslip to infinity). This does come at the cost of another parameter 
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5.3HYDRODYNAMIC TRANSPORT SIMULATIONS

whose value is initially unknown. An estimate for Lslip can be given through 
the following argument38: The slip-length should encode interactions with the 
boundary. Therefore for distances to the boundary smaller than the slip-length 
electrons are more likely to scatter off the boundary than off anything else 
(including other electrons). The estimate for the slip-length is then the smallest 
of the scattering length scales of the system, in our case the electron-electron 
scattering length. In our simulations we will use a temperature independent 
slip-length of Lslip = 50nm. At the current inlet and outlet we fix the potential, 
being 1mV at the inlet and 0mV at the outlet. Fixing the potential drop over 
the device turns out to give the least artifacts at the current inlet and outlet, 
though in principle it is also possible to fix the total current through the device 
and measure the potential drop between inlet and outlet.

The temperature dependence of the backflow voltage is solely determined by 
the temperature dependence of the viscosity ν and the scattering time τ. The 
temperature dependence of the former is T-2 via equations 5.4 & 5.8, and the 
temperature dependence of the latter is given by the resistance data used to 
extract the scattering time. For each temperature point we calculate these two 
quantities and use them to simulate the flow profile of the vicinity geometry. 
From this we calculate the backflow voltage between the two voltage contacts. 
Finally we express the result as a backflow resistance by dividing the backflow 
voltage by the total current injected. The reason to do this is that by fixing the 
voltage drop between the current contacts via the boundary conditions the 
total current can in principle vary as a function of temperature. This effect 
is separated out by using the backflow resistance as the final result. Then 
we repeat the simulations for various values of ρ0 to examine the effects of 
disorder on the result.

5.4	 Hydrodynamic Transport in
	 Sr2RuO4

5.4.1 Negative Backflow Resistance

The results of the Sr2RuO4 simulations are shown in Fig. 5.4 and Fig. 5.5. In 
Fig. 5.4a we show current distributions typical for the high temperature (Fig. 
5.4a) and the low temperature (Fig 5.4b) transport behaviour in the backflow 
section of the device. The distributions are qualitatively different, having 
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Figure 5.4 Sr2RuO4 Flow Profiles .
a,b) The flow profiles in the backflow section of the device at high temperature (T=25K) and low 
temperature (T=5K) resp. for ρ0 = 0.25μΩcm. The appearance of a whirlpool at low temperature 
marks a qualitative difference between the two transport behaviors. c) The flow profiles for Jy 
across the main channel of the device as a function of temperature for the same ρ0. At low 
temperature the flow follows a roughly parabolic profile which flattens out as the temperature 
increases. The red line in the inset shows the line on the geometry along which Jy is measured.

a b c

a b c

a b c
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5.4HYDRODYNAMIC TRANSPORT IN SR2RUO4

an opposite flow direction in the two different regimes. The emergence of a 
whirlpool at low temperature is a sign of hydrodynamic dominated transport. 
The crossover between these two regimes is also apparent from the current 
distribution across the main channel of the device in Fig 5.4c. The high 
temperature calculation shows a nearly flat distribution, dropping near the 
edges of the device. As the temperature is lowered the distribution smoothly 
deforms towards the parabolic Poiseuille flow typical for hydrodynamic 
transport. The finite current at the boundaries is a result of the finite Lslip used in 
the simulations. The smooth evolution of the current distributions emphasizes 
that in general the transport is a mixture of both Ohmic and hydrodynamic 
effects, and any calculation needs to address them simultaneously.

The crossover from Ohmic to hydrodynamic transport, and the influence 
of disorder on the crossover, is apparent in both the forward and backflow 
resistances of the device shown in Fig. 5.5. In Fig. 5.5a we show the total or 
forward resistance of the device, calculated by measuring the total injected 
current and dividing by the 1mV potential drop fixed as boundary conditions. 
At low temperatures the resistance shows an upturn with decreasing 
temperature, departing from more usual metallic behavior at higher 
temperatures. This upturn is reminiscent of the Gurzhi effect10, one of the 
signs of hydrodynamic behavior.

Figure 5.5 Sr2RuO4 Backflow resistance. 
a) The total resistance of the device as a function of temperature for multiple values of ρ0, using 
the current flowing through the red lines shown in the inset. The upturn in the resistance is a 
sign of hydrodynamic effects10.  b) The backflow resistance for the Sr2RuO4 vicinity geometry 
for various values of the residual resistance ρ0. A positive resistance is indicative of the diffusive 
regime, a negative resistance of hydrodynamic regime (see Fig. 5.3). The red line indicates the 
temperature below which ballistic effects set in2,39 (see Fig. 5.2a). The inset shows the vicinity 
geometry, with the red lines showing where the voltage is measured. 

a b
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HYDRODYNAMIC TRANSPORT DESCRIPTION Sr2RuO4

The crossover is perhaps most evident when looking at the backflow resistance 
shown in Fig. 5.5b. At higher temperature we find a positive backflow 
resistance, consistent with Ohmic transport. As the temperature drops, the 
backflow resistance eventually drops below zero, indicating a crossover into 
the hydrodynamic regime. The temperature at which the zero crossing occurs 
depends on the level of disorder in the device, encoded in ρ0. For clean samples 
(ρ0 = 0.1 μΩ cm) the crossover occurs at T=19K, a temperature which drops to 
T=9K for ρ0 = 1μΩ cm. This is a surprisingly broad range of disorder levels at 
which the crossover should still be observable. While this wide margin seems 
to offer some leniency for the fabrication processes of the samples, some care 
should be taken with this result. At the top of this range (ρ0 = 1μΩ cm) the Tc 
of bulk Sr2RuO4 has dropped to zero due to disorder26. This dramatic change 
due to disorder warrants a more careful look into the appropriate transport 
description when lmc roughly equals lmd. 

When the temperature drops even further, the geometry size becomes the 
smallest length scale of the system. The flow becomes predominantly ballistic 
characterized by an upturn in the backflow resistance as the temperature 
is reduced2,39. While the backflow resistance remains negative during this 
upturn, the system is in a quasi-ballistic regime where interaction still play a 
role39. Fully ballistic transport sets in when the backflow resistance becomes 
positive. The physics of the crossover between hydrodynamic and ballistic, 
governed by the Knudsen number Kn = lmc/L, is not captured in our transport 
description., though we can estimate when it occurs: lmc = L occurs at roughly 
6.5K, marked by the red dashed line in Fig. 5.5b.

5.4.2 Boundary Effects: the Slip-length

There is still one free parameter left unexamined: the slip-length Lslip. To study 
its effect on the backflow voltage we fix the total scattering time to τ = 1*10-10 
s and the temperature to T=15K so that we are in the hydrodynamic regime 
where we expect Lslip to have the largest effect. We then vary Lslip over a range 
of 1nm to 1μm. Fig. 5.6a,b show the backflow patterns for both Lslip = 1nm 
and Lslip = 1μm. We find that while the exact size and shape of the whirlpool 
does change with the slip length, its presence is remarkably stable against a 
changing Lslip. Over a range of at least 3 orders of magnitude we still expect a 
negative backflow resistance. To check that the slip length is indeed properly 
incorporated we show the flow distributions across the main channel in Fig. 
5.6c and find that indeed the curvature of the distribution flattens and the 
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5.4HYDRODYNAMIC TRANSPORT IN SR2RUO4

Figure 5.6 Lslip dependent Flow Profiles.
a,b) The flow patterns in the backflow section of the device for Lslip = 1nm and Lslip = 1μm 
respectively. Despite the large difference in Lslip the flow direction remains stable. c) The flow 
profile across the main channel of the device for several values of Lslip. The flattening of the 
profile and the increasingly large current along the boundaries are consistent with a gradual 
change from no-slip conditions to no-stress conditions.

a b c

a b c

a b c
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current at the boundary increases for larger Lslip, consistent with a change from 
no-slip boundary conditions (Lslip = 0) towards no-stress boundary conditions 
(Lslip towards infinity). The changes in the current distribution due to the slip 
length imply that the forward resistance does not have a similar stability as 
the backflow resistance seems to have.

These two predictions about the forward and backflow resistances are 
confirmed in Fig. 5.7 where we show the effect of Lslip on the forward and 
backflow resistance. The total resistance shows a strong dependence of the slip 
length, as we expected from Fig. 5.6c. The drop in resistance as Lslip increases 
can be attributed to the decreased curvature of the flow profile, as the friction 
between adjacent fluid layers decreases when their relative velocity decreases. 
As anticipated from Fig. 5.6a,b the backflow resistance indeed remains negative 
over the full range of slip lengths. Not only that, its magnitude also remains 
nearly unchanged. The remarkable stability of the backflow resistance against 
the slip length improves the feasibility of a vicinity geometry experiment. 
Determining the slip length experimentally is quite difficult, especially when 
the flow profile cannot be directly measured. The fact that Lslip does not 
influence not only the sign but also the magnitude of the backflow resistance 
eliminates the need for an accurate determination of Lslip. 

These result together indicate that hydrodynamic effects on the low temperature 
transport of Sr2RuO4 are not only possible in principle, but also fall within the 
technical abilities of modern experimental techniques. The approach we use 

Figure 5.7 Lslip dependent resistances. 
a) The total resistance of the device as a function of slip length. The resistance shows a strong 
dependence resulting from the changing current distribution as the slip length changes. b) The 
backflow resistance as a function of slip length. Remarkably, the backflow resistance remains 
nearly constant over a wide range of values for Lslip, despite the changes in the total resistance. 

a b
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5.5TOWARDS STRANGE METAL HYDRODYNAMICS

to calculate the backflow resistance also offer a degree of internal consistency 
with future experiments, as most important input parameters (such as the 
residual resistivity ρ0 and the T2 coefficient) can be extracted from a simple 
R-T curve of the crystal the device is created from. The use of COMSOL 
allows for more realistic simulations as the exact device geometry is more 
easily incorporated in the simulations. Since the existence of hydrodynamic 
effects rely heavily on the presence and the strength of electron correlations 
the observation of the effects described above offer a novel window into the 
correlated physics of Sr2RuO4. It would also represent a step forwards for the 
use of hydrodynamics in the description and probing of correlated electron 
systems, for which other transport frameworks may fall short. 

5.5	 Towards Strange Metal
	 Hydrodynamics
5.5.1 Transport Parameters

One example of such a system, and an extreme example of a correlated 
system, is a strange metal. This metallic phase, characterized by a linear-in-T 
resistivity for all temperatures, is most well known as the normal state of 
cuprate superconductors at optimal doping19,40, although it is also found in 
other strongly correlated superconductors41–43. One important aspect of the 
linear-in-T resistivity is that it violated the Mott-Ioffe-Regel limit, defined as 
the resistivity at which the mean free path is on the same order as the lattice 
constant44. This violation seems to imply that the current is not carried by 
the quasi-particles we have come to expect from a Fermi liquid. This striking 
hypothesis is supported by ARPES experiments which find a clear lack of 
quasi-particles18,20. How to deal with this absence of quasi-particles and how 
to describe the (transport) properties of such a system is one of the most 
profound mysteries of correlated electron physics.

One proposal makes use of the AdS/CFT correspondence4,21. This 
mathematical machinery creates a bridge between certain models in general 
relativity (Anti-de Sitter spaces, the AdS part) and certain quantum theories 
(conformal field theories, the CFT part). The idea being that a hard problem 
on one side of the bridge translates to a more tractable problem on the other 
side. Then after solving the more tractable problem, the solution is translated 



124

1 1
2
3
4
5

2
3
4
5

5 HYDRODYNAMIC TRANSPORT DESCRIPTION Sr2RuO4

back. In particular, one can create metallic systems with this construction with 
properties reminiscent of strange metal behavior, particularly the linear-in-T 
resistivity. Additionally, transport in these systems is governed by the laws 
of hydrodynamics. In what follows we sketch what an experiment using the 
vicinity geometry would look like for a strange metal system with properties 
deriving from the AdS/CFT correspondence. We will follow the review ref4 
when determining the relevant hydrodynamic system parameters.

A core concept of the AdS/CFT strange metal is minimal viscosity. Metals in 
this phase have a very particular relation between their dynamic viscosity η 
and their entropy density s: 

Where A is some numerical prefactor, equal to 1/4π in the AdS/CFT setting, 
although real system have a value closer to 1. The entropy density takes a 
Sommerfeld like form of 

with n the number density, and μ the chemical potential. This leads to the 
following expression for the kinematic viscosity ν which we will use in our 
simulations: 

Where we used the mass density ρ = nme to convert the dynamic viscosity η to 
the kinematic viscosity ν. Plugging in the numbers, we find a viscosity of ν = 
2*10-7m2s-1, using μ = 1eV appropriate for optimally doped cuprates45, 4 orders 
of magnitude lower than the Sr2RuO4 case! This also means that the Reynolds 
number RE is 4 orders of magnitude larger, meaning it is on the order of 1. 
This means that pre-turbulent phenomena might be an possibility.

There is a scattering time associated with the minimal viscosity under the 
name of Planckian dissipation: 
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5.5TOWARDS STRANGE METAL HYDRODYNAMICS

However, even a strange metal system is not immune to disorder scattering. 
In fact, the cuprates, perhaps the most well-known example of a strange metal 
system, is notorious for its high levels of disorder. The highest quality cuprate 
samples have a residual resistance of ρ0 = 1.5μΩcm in the case of La2-xSrxCuO4 46. 
This is remarkably low for a cuprate, but still an order of magnitude worse than 
Sr2RuO4. Translating this to a scattering time, this corresponds to τ = 1.8*10-12s.

5.5.2 Absence of Whirlpool Formation

In our simulations for the strange metal system, we will use the same geometry 
size as the Sr2RuO4 case, as this size is already pushing the limitations of 
modern FIB techniques. Unlike the Sr2RuO4 we will assume a temperature 
independent scattering time given by the residual resistivity ρ0, representing a 
more optimistic scenario compared to including Planckian dissipation into τ. 
Also unlike the previous simulations we no longer fix the potential drop over 
the device. Instead we fix the total current flowing through the device. As such 
we have better control over the Reynolds number during the simulations, 
and we can avoid accidentally entering the turbulent regime as a result of a 
sudden increase in the current due to a drop in the forward resistance when 
hydrodynamic effects take over. The drawback is that fixing the current 
through the device is more susceptible to artifacts in the current distribution, 
as can be seen in Fig 5.8a, where the flow through the main channel of the 
device is skewed to one side of the channel.

Using a value of ν = 1*10-7m2s-1, τ = 1.8*10-12s, and Lslip = 50nm, our simulation 
yields the flow distribution shown in Fig. 5.8a. This flow profile is consistent 
with Ohmic transport, meaning the higher levels of disorder has drowned out 
the effects of the minimal viscosity. To observe a sign of the minimal viscosity, 
we show the flow profile for τ = 1.8*10-10s and τ = 1.8*10-9s in Fig. 5.8b,c. In the 
former case the first signs of a whirlpool emerge, but it fails to encompass the 
entirety of the backflow section, meaning the backflow resistance is most likely 
still positive in this case. Only when the scattering time is increased higher 
does the whirlpool cover the full width of the geometry, and do we expect 
a negative backflow resistance. It is also only for these values of τ that we 
see the effects of minimal viscosity. The higher Reynolds numbers associated 
with this flow shows itself through the emergence of additional whirlpools 
on the left of the current injector. In this case it is worth considering adding 
additional voltage contacts on the left of the current injector to check whether 
these additional whirlpools indeed appear.
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a

b

c

Figure 5.8 Minimal Viscosity Flow Profiles.
Flow profiles in the vicinity geometry using minimal viscosity and a scattering time of τ = 
1.8*10-12s, 1.8*10-9s, and 1.8*10-8s (a,b,c respectively). The extremely low viscosity requires 
large scattering times for hydrodynamic effects to appear.
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The difficulty of observing hydrodynamic flow for a minimal viscosity 
system is summarized in Fig 5.9, where we show the backflow resistance as 
a function of scattering time for the above simulations. A negative backflow 
resistance would require extremely large scattering times, unrealistic not only 
for cuprate systems but for any system. These difficulties can be traced back to 
the length scale Dν over which hydrodynamic effects can be seen. For systems 
much larger than this, Ohmic effects dominate. For ν = 1*10-7m2s-1 and τ = 
1.8*10-12s, realistic values for a cuprate system, Dν = 5Å, barely two unit cells! 
Only when τ increases by several orders of magnitude does this length scale 
approach the system size. It turns out that the extremely low viscosity might 
actually be a drawback in a system that also includes disorder. The linear 
temperature dependence of ν is too slow to make much of a difference, even 
when ignoring any detrimental temperature dependence of τ.

Figure 5.9 Minimal Viscosity Backflow Resistance. 
The backflow resistance as a function of scattering time using a viscosity ν = 1*10-7m2s-1 in 
line with minimal viscosity. The inset shows the backflow resistance for the highest values of τ, 
where the resistance changes sign.
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These results stress the importance of disorder in strange metal systems. Taking 
a straight forward approach to the role of disorder, similar to the approach for 
Fermi liquid systems, we find that hydrodynamic effects get washed out by 
disorder for a strange metal system. A more detailed examination of disorder 
in holography or other strange metal descriptions will need to determine 
whether such a straight-forward approach is warranted. Despite this negative 
result, we still believe it is worth performing such an experiment for a strange 
metal system. Given how little is known for certain about these system, 
any new information is valuable even if it is the absence of hydrodynamic 
transport. We also remark that this result is a consequence of the proposed 
minimal viscosity. In the hypothetical case that the viscosity of a strange metal 
is more in line with that of a Fermi liquid (such as Sr2RuO4) hydrodynamic 
transport would become more likely. 

5A	 Appendix
The low Reynolds number for a Fermi liquid (RE ~ 1*10-4, see Chapter 5.3) 
limits the design space for experiments attempting to show hydrodynamic 
transport. An illustrative example is the Tesla valve47(Fig. 5A.1), a one-way 
valve without any moving parts. The operating principle relies on splitting off 
the flow into a main channel and an arced section, and merging again the two 
parts of the flow. How much flow is split off and how the two flows merge is 
fully controlled by the exact design. When properly designed, the Tesla valve 
has an easy axis, where only a small part is split off and the flow resistance 
is low (Fig. 5A.1a), and a hard axis, where more flow is split off and the flow 
resistance is higher (Fig. 5A.1b). However as we demonstrate this design is 
unsuitable for the demonstration of hydrodynamic transport in Fermi liquids, 
as it relies on higher Reynolds numbers.

To do so we will simulate the liquid flow through a nm sized Tesla valve. 
We will use a viscosity typical of ν = 0.005m2s-1 typical for Sr2RuO4 and vary 
the Reynolds number by varying the flow velocity. We will only simulate 
hydrodynamic behavior, meaning we will omit the last term of eq. 5.6 from 
the simulations. This allows us to use the standard COMSOL hydrodynamics 
package, speeding up the calculation drastically. We will pick the size of 
the Telsa valve such that inequality 5.1 is still satisfied, despite momentum 
diffusion being absent from the simulation. The width of the Tesla valve we 
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Easy Direction Hard Direction
a b

Figure 5A.1 Tesla Valve Geometry. 
Sketch of the Tesla valve geometry and the flow along the easy (a) and the hard (b) flow 
direction. The difference in split and subsequent merger of flow between the two directions 
result in a different resistance between the two.

Easy Direction Hard Direction

Low 
Reynolds 
Number

High 
Reynolds 
Number

a b

c d

Figure 5A.2 Tesla Valve Flow Profiles. 
Flow profiles through the Tesla valve for the easy (a,c) and hard (b,d) directions for RE = 1*10-4 
(a,b) and RE = 316 (c,d). Only for the higher RE does the proposed diode function occur.
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set to be 100nm. The length of the loop arm is 200nm, and the loop itself has 
an inner radius of 50nm. The flow velocity will range from roughly u = 10ms-1 
(RE ~1*10-4) to u = 1*107ms-1 (RE ~1*102).

In Fig. 5A.2 we show the results for these simulations for flow in the easy and 
hard direction for both low Reynolds number (RE = 1*10-4, Fig. 5A.2 a,b) and 
high Reynolds number (RE = 316, Fig. 5A.2 c,d). We find that in the low RE 
case the flow profiles in the easy and hard direction look very similar, meaning 
that their associated flow resistances are also very similar. This implies that in 
this case the Tesla valve does not act as a diode as it was designed to do. The 
case of high RE is quite different. Here, the flow profiles show large differences 
between the two flow directions. This can be attributed to the formation of 
whirlpools at the points where the flow is split off and merged. The size of the 
whirlpools depend significantly on the overall flow direction. As such we can 
expect the Tesla valve to function as a diode in this regime.

We can put the expectations about diode function on more solid ground by 
quantifying the flow resistance for each calculated flow profile. This can be 
done by using17 

Where ν is the kinematic viscosity, ρ the fluid mass density, d the device 
thickness, and I the total current flowing through the device. The dependence 
of the exact flow profile is captured by taking the integral running over the 
full geometry of the derivatives of the fluid velocity vx,y with respect to the 
spatial coordinates x,y. We can use this expression to define a measure of how 
well the Tesla valve acts as a diode, the diodicity: 

This quantity solely depends on the shape of the fluid profiles, as all the 
prefactors to the integral in eq 5A.1 cancel out (the total current we keep the 
same when switching between easy and hard flow axis). A diodicity of D 
= 1 means there is no difference between the flow directions, and the valve 
does not work, while D > 1 means the Tesla valve works as intended. For 
each Reynold number we simulate we calculate the diodicity D, and track 
its evolution as a function of Reynolds number. The results are shown in Fig. 
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5A.3. We find that at low Reynolds numbers D = 1, as we anticipated from Fig. 
5A.2 a,b. Only at roughly RE = 20 does the diodicity deviate from 1, reaching 
a value of 2.14 for Re = 316, the flow shown in Fig. 5A.2 c,d.

From this we conclude that the Tesla valve only works for moderate Reynolds 
number >10. The space to change the Reynolds number for a Fermi liquid 
system is only limited, meaning this geometry design is unsuitable for Sr2RuO4 
systems. The limited space is a result of all three components of the Reynolds 
number being subject to limitations. The system size L is limited by having to 
satisfy inequality 5.1, typically meaning there is at most 1 order of magnitude 
design space. The fluid viscosity ν is a system property whose temperature 
dependence is of little help as there is only a limited temperature range over 
which hydrodynamic flow is present. This leaves the fluid velocity v, given by 
the current through the device. A fluid velocity of roughly 10ms-1 (RE ~ 1*10-4) 

Figure 5A.3 Diodicity. 
Diodicity D of the Tesla valve as a function of the Reynolds number RE. The onset of diode 
functionality (D>1) only occurs around RE=20, much larger than the RE=10-4 typical for flow 
in a Fermi liquid system.
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corresponds to a total current of roughly 1mA. This would have to increase 
by 4 order of magnitude to 10A to start seeing some sort of diode function, a 
current which a mesoscopic device will typically not survive.

This is exemplary for the limited design space for hydrodynamic experiments 
for Fermi liquid systems caused by an extremely low Reynolds number and 
little room to increase it. Hydrodynamic flow is most pronounced when 
whirlpools start to form, an effect unique to the hydrodynamic regime. These 
only start to appear generically at moderate Reynolds numbers. Deep in 
the laminar regime the geometry has to be design specifically to allow for a 
whirlpool to form. The vicinity geometry achieves this by forcing the fluid to 
flow through a very narrow constriction, whereas the Tesla valve solely relies 
on the Reynolds number for whirlpool formation.

Interestingly, the minimal viscosity proposed for strange metals opens more 
design space at first glance. The extremely low viscosity means that the 
Reynolds number is automatically higher, already having RE ~1 for v ~10ms-1, 
a velocity at which a Fermi liquid is still deep within the laminar flow regime. 
The effects of this comparatively high Reynolds number on the formation 
of whirlpools is clear by comparing Fig. 5.4b and Fig 5.8c This is however 
discounting the limits placed by the presence of momentum diffusion 
discussed in Chapter 5.4. 
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Summary
A common strategy to explain the electronic properties of most everyday 
materials is the reductionist approach. This strategy involves identifying and 
thoroughly studying the smallest building block of the system, electrons in 
this case, and scaling the properties of the building blocks to the size of the full 
system. Crucially, how the building blocks fit together, or how the electrons 
interact with each other, is ignored. The application of this approach works 
remarkably well to explain the properties of most materials, despite the strong 
Coulomb repulsion that electrons should experience between each other.

Modern research is increasingly focused on a class of materials called strongly 
correlated electron systems whose properties the reductionist approach 
struggles to explain. In these systems the Coulomb interaction between 
electrons is a crucial factor in determining the properties of the material. One 
of the consequences is that the number of electrons present in the system 
can play a major role in ways that go beyond the reductionist approach.  
One of the most notorious examples of such a system are the copper-oxide 
high-temperature superconductors. These superconductors emerge from an 
insulating system where the Coulomb interaction freezes the electrons in 
place. A slight change in the number of electrons in this system leads to a 
number of unconventional electronic states, among which a superconducting 
state with the highest known critical temperature at ambient pressure. How 
this superconducting state forms and disappears again, and its relation to the 
strongly insulating parent state, has eluded physicists ever since its discovery, 
and remains a highly active field of research.

The nanometer length scale offers a unique window into strongly correlated 
systems. The electronic properties can vary on these relevant length scales, 
and the flow of electrons on such length scales can feature hydrodynamic 
phenomena not possible on larger scales. In this thesis we present our 
contribution to the field of strongly correlated electrons system by exploring 
exactly this nano-scale. We employ the technique of scanning tunneling 
microscopy (STM) which allows us to measure the local distribution of 
electrons, or local density of states, with subatomic precision. We also explore 
how electrons flow through a mesoscopic structure of a strongly correlated 
material.
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In Chapter 2 we take a closer look at how we study correlated systems, by 
comparing three spectroscopic techniques. The three techniques in question, 
ARPES, STM, and quantum oscillations, all measure (aspects) of the 
bandstructure of a material. To see how these techniques compare we apply 
them to Sr2RhO4, which acts as a model system, a metaphorical drosophila, 
of Fermi liquids. We measure the Fermi surface using ARPES and the quasi-
particle interference (QPI) observed by STM, and compare this with the Fermi 
surface pocket sizes determined by quantum oscillations. The Fermi velocities 
determined by each of these techniques is given the same treatment, as are the 
quasi-particle lifetimes measured by ARPES and STM. In all of these cases we 
find that the three techniques are in agreement. This leads us to conclude that 
the disagreement between these measurement techniques that occurs in other 
strongly correlated systems is a reflection of their physics.

Next, we turn our attention to copper-oxide high-temperature superconductors, 
in particular the overdoped superconductors where the critical temperature 
decreases with increases doping. In Chapter 3 we measure the local density 
of states using STM of multiple samples covering a broad range of critical 
temperature, including a sample which is no longer superconducting due to 
the high doping level. This allows us to carefully study the disappearance of 
superconductivity in this material. We find that an increasingly large number 
of nanometer sized metallic regions emerge in the superconducting state as 
the critical temperature goes down. In particular we find superconducting 
regions in the sample that no longer superconducts on a macroscopic scale. 
We also find that the spectroscopic gap associated with superconductivity 
does not disappear through a reduction of the gap magnitude, but rather by 
acquiring an increasingly large density of states at the Fermi level, a filling of 
the gap. The breaking of Cooper pairs responsible for the gap filling is found 
to have a highly unusual relation with the gap magnitude. These observations 
combined lead to a picture of emergent granular superconductivity in the 
strongly overdoped copper-oxide superconductors governed by a pair 
breaking process which the most common theoretical approach fails to 
accurately describe. 

In Chapter 4 we study the electronic structure in momentum space of the 
same copper-oxide superconductor samples by measuring the quasi-particle 
interference with STM. To increase the signal-to-noise ratio of our STM images 
we implement a machine learning algorithm for noise suppression. The use 
of self-supervised learning allows for effective noise reduction without the 



139

SUMMARY

large amounts of data necessary for more traditional supervised learning. 
Our QPI images of the overdoped copper-oxide superconductors reveal a full 
Fermi surface and rigid shift of the anti-nodal band as a function of doping. 
We note that different determinations of the exact doping level by various 
measurement techniques do not agree. We also observe the bending of the 
band due to superconducting gap and find an unusual feature near the gap 
edge associated with the presence of an additional ordered state. The presence 
of this feature of a broad doping range appears to be a poor fit with previous 
claims of charge density waves of ferromagnetic fluctuations in overdoped 
copper-oxide superconductors.

In Chapter 5 we move away from measurements of the electronic structure in 
either real or momentum space, and instead examine electrical transport in 
mesoscopic structures. On such a length scale the interactions between electrons 
can lead to transport phenomena typically associated with hydrodynamics, 
provided the disorder is not too strong. We argue that the strongly correlated 
unconventional superconductor Sr2RuO4 provides the right combination of 
strong interaction and low disorder to observe hydrodynamic behavior. Using 
modified Navier-Stokes equations to include a disorder term we simulate 
the flow of electrons in Sr2RuO4 through a structure previously used to 
successfully demonstrate hydrodynamic behavior, and calculate the expected 
voltage drop over the device. We then do the same for the strange metal 
phase of copper-oxide superconductors using results from the holographic 
description of this phase. Using our framework for hydrodynamic transport 
in the presence of disorder, we find that the higher amounts of disorder 
compared to Sr2RuO4 and the extremely low viscosity this state is proposed 
to have make hydrodynamic behavior highly unlikely. Despite this result we 
argue that it is still worthwhile carrying out this experiment in copper-oxide 
superconductors, given the limited amount of available data on mesoscopic 
transport in these systems.
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Samenvatting
Een veel voorkomende strategie om de elektronische eigenschappen van de 
meeste allerdaagse materialen te verklaren is de reductionistische invalshoek. 
Deze strategie begint met het identificeren en grondig bestuderen van de 
kleinste bouwsteen van het systeem, elektronen in dit geval, om vervolgens 
de eigenschappen van die bouwsteen op te schalen naar de schaal van het 
gehele systeem. Cruciaal is dat hierbij wordt genegeerd hoe deze bouwstenen 
samen passen, hoe de elektronen onderling wisselwerken. Deze aanpak werkt 
verrassend goed in het beschrijven van de meeste materialen, ondanks de 
sterke Coulomb afstoting die elektronen tussen elkaar zouden moeten voelen.

Hedendaags onderzoek focust steeds meer op een groep materialen, genaamd 
sterk gecorreleerde elektron materialen, waarmee de reductionistische 
strategie steeds meer moeite heeft om die te verklaren. In zulke systemen is 
de Coulomb wisselwerking een cruciale factor in de eigenschappen van het 
materiaal. Een van de consequenties hiervan is dat het aantal elektronen in het 
systeem een belangrijke rol can spelen op manieren die voorbij gaan aan de 
reductionistische strategie. Een van de meest notoire voorbeelden hiervan zijn 
de koperoxide hogetemperatuursupergeleiders. Deze supergeleiders komen 
voort uit een isolerend systeem waar de Coulomb afstoting dusdanig sterk 
is dat de elektronen op hun plaats zijn vast gevroren. Een kleine verandering 
in het aantal elektronen in dit systeem veroorzaakt een verscheidenheid aan 
onconventionele elektronische toestanden, waaronder een supergeleidende 
toestand met de hoogst bekende kritische temperatuur bij omgevingsdruk. 
Hoe supergeleiding hier vormt en weer verdwijnt, en de relatie met het 
originele, sterk isolerend systeem, is een open vraag sinds de ontdekking van 
deze systemen die zeer actief onderzocht wordt.

De nanometer lengteschaal biedt een unieke blik op sterk gecorreleerde 
systemen. De elektronische eigenschappen kunnen sterkt variëren op deze 
schaal, en het vloeien van elektronen op deze schaal kan worden gekenmerkt 
door hydrodynamische fenomenen die niet mogelijk zijn op grotere 
lengteschalen. In dit proefschrift presenteren wij onze bijdrage aan het sterk 
gecorreleerde elektronsystemen vakgebied door precies deze nanoschaal 
te onderzoeken. Hiervoor maken wij gebruik van scanning tunneling 
microscopie (STM) die ons in staat stelt om de lokale verdeling van elektronen, 
of de lokale toestandsdichtheid, te meten met subatomaire precisie. Ook zullen 



142

SAMENVATTING

we onderzoeken hoe elektronen stromen door mesoscopische structuren van 
sterk gecorreleerde materialen.

In hoofdstuk 2 bestuderen we nader hoe we precies onderzoek doen aan 
sterk gecorreleerde systemen door drie spectroscopische technieken met 
elkaar te vergelijken. De drie technieken in kwestie, ARPES, STM, en 
kwantum oscillaties, meten ieder (aspecten) van de bandenstructuur van een 
materiaal. Om te zien hoe deze technieken vergelijken passen we ze ieder 
toe op Sr2RhO4, een modelsysteem, een metaforische drosophila, voor Fermi 
vloeistoffen. We brengen het Fermi oppervlak in kaart met behulp van zowel 
ARPES als quasideeltjes interferentiepatronen (QPI) waargenomen door STM, 
en vergelijken deze met de Fermi oppervlaktes bepaald aan de hand van 
kwantum oscillaties. De Fermi snelheden bepaald door deze drie technieken 
krijgen dezelfde behandeling, alsmede quasideeltjes vervaltijd bepaald door 
ARPES en STM. In al deze gevallen zijn de drie technieken in overeenkomst. 
Dit leidt ons tot de conclusie dat de discrepanties tussen deze technieken die 
zich voordoen voor andere sterk gecorreleerde systemen een reflectie zijn van 
de onderliggende fysica. 

Vervolgens verleggen wij onze aandacht naar de koperoxide hogetemperatuur- 
supergeleiders, in het bijzonder de overgedoteerde supergeleiders voor 
welke de kritische temperatuur omlaag gaat bij hogere doteringsniveaus. 
In hoofdstuk 3 meten we de lokale toestandsdichtheid met STM voor 
verscheidene monsters die een breed bereik aan doteringsniveaus beslaan, 
inclusief een monster met een dusdanig veel gedoteerd dat hij niet meer 
supergeleidend is. Dit stelt ons in staat om nauwkeurig het afbreken van 
supergeleiding in dit materiaal te bestuderen. Wij observeren de formatie 
van steeds meer nanometer grote metallische regio’s in de supergeleidende 
toestand wanneer de kritische temperatuur daalt. In het bijzonder zien we 
supergeleidende regio’s in het monster dat niet meer supergeleidend is op 
een macroscopische schaal. Ook zien we dat het spectroscopische gat waar 
supergeleiding mee geassocieerd is niet verdwijnt door het sluiten van dat 
gat, maar door een toenemende toestandsdichtheid op het Fermi niveau, het 
dempen van dat gat. Het opbreken van de Cooperparen verantwoordelijk 
voor het dempen blijkt een zeer ongebruikelijke correlatie te hebben met de 
grootte van het supergeleidend gat. Deze waarnemingen vormen samen een 
beeld van een emergente granulaire supergeleider in de sterk overgedoteerde 
koperoxide supergeleiders waarin een paarbrekend proces bepalend is dat 
niet door de meest gangbare theoretische modellen kan worden gevat.
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In hoofdstuk 4 bestuderen wij de elektronische structuur van dezelfde  
koperoxide supergeleiders in de momentumruimte door de interferentie-
patronen van de quasideeltjes waar te nemen met STM. Om de signaal-
ruisverhouding van onze STM beelden te verhogen implementeren we een 
machine learning algoritme om de ruis te onderdrukken. Het gebruik van 
een zelfsupervisie tijdens het trainen maakt het mogelijk om effectief de 
ruis te onderdrukken zonder de grote hoeveelheden aan data die de meer 
traditionele supervisie van machine learning nodig heeft. Onze QPI beelden 
van de overgedoteerde koperoxide supergeleiders laten een volledig Fermi 
oppervlak zien met een band bij de antinodi die rigide verschuift als functie 
van doteringsniveau. We merken op dat verschillende bepalingen van het 
exacte doteringsniveau door verschillende meetmethodes niet overeen komen. 
We zien ook dat de band nabij het Fermi niveau wordt omgebogen door het 
supergeleidend gat, en de aanwezigheid van een kenmerk die geassocieerd 
kan worden met een bijkomende geordende toestand. De aanwezigheid van 
dit kenmerk over een breed bereik van doteringsniveaus is in tegenspraak met 
eerdere claims van ladingsdichtheidsgolven of ferromagnetische fluctuaties 
in overgedoteerde koperoxide supergeleiders.

In hoofdstuk 5 nemen we afstand van metingen van de toestandsdichtheid, en 
bestuderen we in de plaats daarvan elektrisch transport door mesoscopische 
structuren. Op deze schaal kunnen de wisselwerkingen tussen de elektronen 
onderling leiden tot transportverschijnselen die typisch geassocieerd worden 
met hydrodynamica, ervan uitgaande dat de wanorde in het materiaal niet 
te groot is. We beargumenteren dat de sterk gecorreleerde onconventionele 
supergeleider Sr2RuO4 de juiste combinatie van sterke wisselwerking en weinig 
wanorde heeft om zulk hydrodynamisch gedrag te vertonen. Gebruik makend 
van de Navier-Stokes vergelijking aangepast om ook wanorde te beschrijven 
simuleren we het vloeien van elektronen door een Sr2RuO4 structuur wiens 
ontwerp eerder is toegepast om hydrodynamisch gedrag aan te tonen, en 
rekenen we het verwachte voltage verschil uit over de structuur. We herhalen 
dit proces voor de vreemde metaal toestand van de koperoxide supergeleiders 
gebruik makend van resultaten van een holografische omschrijving van die 
toestand. Het toepassen van ons model voor hydrodynamisch transport in 
combinatie met wanorde laat zien dat de sterkere aanwezigheid van wanorde 
in vergelijking met Sr2RuO4 in combinatie met de extreem lage viscositeit 
die de vreemde metalen hebben volgens de holografische omschrijving 
ertoe leiden dat hydrodynamische verschijnselen zeer onwaarschijnlijk zijn. 
Ondanks dit resultaat vinden we het nog steeds de moeite waard om zulk 
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soort experimenten te doen voor koperoxide supergeleiders, gegeven de 
beperkte hoeveelheid data beschikbaar voor mesoscopisch transport voor 
deze systemen.
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