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Abstract

In this review we discuss skeletal adaptations to the demanding situation of pregnancy 
and lactation. Calcium demands are increased during pregnancy and lactation, and this 
is effectuated by a complex series of hormonal changes. The changes in bone structure 
at the tissue and whole bone level observed during pregnancy and lactation appear 
to largely recover over time. The magnitude of the changes observed during lactation 
may relate to the volume and duration of breastfeeding and return to regular menses. 
Studies examining long-term consequences of pregnancy and lactation suggest that there 
are small, site-specific benefits to bone density and that bone geometry may also be 
affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which 
the pathophysiological mechanism is as yet incompletely known; here, we discuss and 
speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow 
fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of 
estrogen on this process.

Introduction

Pregnancy and lactation are challenging situations for 
the mother’s skeletal homeostasis. Significant changes in 
maternal calcium and bone metabolism must occur to 
fulfill the calcium requirements to build the fetal skeleton. 
These processes are regulated by hormonal changes and 
often lead to physical changes in the mother’s skeleton. 
In addition, lifestyle factors which have an impact on 
bone health can alter during pregnancy and lactation. 
Physical activity may be lower than usual in pregnant 
women, particularly in the third trimester (1), with the 

most marked deficits in the vigorous activities known 
to be beneficial to bone homeostasis. In contrast, the 
10–15 kg weight gain during a healthy pregnancy (2) as a 
result of both lean and fat mass gains (3) likely increases 
bone and joint loading during everyday movements. 
While nutritional requirements are moderately increased 
during pregnancy (4), this appears to be counterbalanced 
by concurrent reductions in energy expenditure from 
decreased physical activity. Accordingly, there is little 
change in diet quality and only a small increase in energy 
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intake during pregnancy and early lactation (4, 5) without 
substantial alterations in calcium intake. Despite this, 
the World Health Organization (WHO) recommends an 
extra dietary calcium intake of 200 mg/day for pregnant 
women compared to non-pregnant women (6, 7). Here, we 
review the current knowledge of how the female skeleton 
physiologically adapts to pregnancy and lactation, how 
fracture healing is affected in these situations, and the 
pathophysiology of pregnancy- and lactation-induced 
osteoporosis (PLO).

Physiological adaptation of bone to 
pregnancy and lactation

Hormonal changes during pregnancy

During pregnancy and lactation there is an increased 
need for calcium in the mother to meet the fetus’ calcium 
requirements (8). In humans, this need is met during 
pregnancy by increased intestinal calcium absorption 
and during lactation by increased calcium resorption 
from bone. Bone resorption is mediated by parathyroid 
hormone-related protein (PTHrP). PTHrP is virtually 
absent in the non-pregnant state and increases from 
the first trimester of pregnancy until labor, after which 
levels drop drastically within hours unless breastfeeding 
is initiated (9). During pregnancy, PTHrP suppresses and 
replaces parathyroid hormone (PTH), thereby preventing 
secondary and tertiary hyperparathyroidism. The first 34 
amino acids of PTHrP display similarity to the structure 
of PTH, and therefore, PTHrP is also a ligand for the  
PTH/PTHrP receptor. However, the mid- and terminal 
regions of PTHrP are distinct and have additional 
functions. The mid-molecular region stimulates placental 
calcium transport in the fetus (10), while the COOH 
terminal region may also inhibit osteoclast activity 
(11), in addition to the more generally known indirect 
activation of osteoclasts by production of receptor 
activator of nuclear factor-kappaB ligand (RANKL) in (pre)
osteoblasts and osteocytes (12, 13). PTHrP is released from 
the placenta and breasts in reaction to estradiol, placental 
lactogen and prolactin, although other tissues including 
the parathyroid glands and uterus also contribute (14, 
15, 16). During pregnancy, high estradiol levels largely 
suppress bone resorption in response to increasing PTHrP. 
In early pregnancy, increased intestinal calcium absorption 
appears to largely satisfy fetal calcium demands, whereas 
higher demands during late pregnancy may additionally 
increase bone resorption, especially in women with 

calcium deficient diets (17). However, bone loss cannot 
be prevented by calcium supplementation (18). Estradiol 
levels drop during lactation. In combination with PTHrP, 
this drop then stimulates bone resorption (14, 15) in a 
synergistic way (19). Oxytocin also adds to this effect  
(see subsequently).

 Physiology in pregnant and lactating humans differs 
from that of rodents (14). In rodents, the increase in 
serum calcium during lactation is not only dependent on 
increased bone resorption, but also on ongoing increased 
calcium absorption in the gastrointestinal tract mediated 
by increased concentrations of PTH.

PTH rises during pregnancy in rodents and the 
subsequent secondary hyperparathyroidism causes both 
augmented intestinal absorption by increased activation 
of cholecalciferol into calcitriol and resorption of the 
skeleton (14). This is in contrast to the suppression 
of PTH by increased PTHrP in humans. Besides PTH 
(rodents) and PTHrP (human), vitamin D metabolites, 
prolactin and placental lactogen are key regulators 
of calcium metabolism in mammals (14). Together 
they are responsible for increased calcium levels, by 
increasing bone resorption, stimulating intestinal calcium 
absorption via synthesis of calcitriol, and reducing urinary 
calcium waste. Calcitriol is elevated during pregnancy in 
both humans and rodents, and while it declines during 
lactation in humans, it remains elevated in rodents and 
stimulates intestinal calcium absorption. Calcitonin is 
thought to protect the skeleton from excess resorption 
during lactation, although few data exist for the role of 
calcitonin and FGF23 in this process (14).

 To summarize, as already reviewed beautifully by 
Kovacs (14, 15), increased calcium needs during pregnancy 
are fulfilled by almost doubling intestinal calcium 
absorption. Meanwhile, during lactation, increased PTHrP 
levels act synergistically with low levels of estrogen to 
increase bone resorption. In rodents, increased intestinal 
uptake of calcium continues during lactation.

 Mechanisms of pregnancy-induced bone changes are 
informed by the study of non-mammalian models. Birds 
that lay hard-shelled eggs in part fulfill their calcium 
requirements by resorbing calcium from medullary bone 
present in the marrow cavities of long bones (20). The 
mechanism of medullary bone turnover is identical 
to bone turnover in mammals. However, the process 
is triggered by a distinct mechanism, particularly well 
characterized in the seasonally reproducing Japanese 
quail (Coturnix coturnix japonica). Long day length triggers 
expression of thyroid stimulating hormone (TSH) in the 
pars tuberalis of the pituitary (21). This induces expression 
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of the type 2 iodothyronine deiodinase (DIO2) in the 
mediobasal hypothalamus (22), converting thyroxine 
prohormone (T4) to bioactive 3,5,3′-triiodothyronine 
(T3). T3 actions on gonadotrophin-releasing hormone 
(GnRH) nerve terminals trigger release of gonadotrophins 
from the pituitary, increasing gonad size and allowing 
reproduction. During the egg production cycle, 
hypocalcemia in the mother during shell calcification 
increases PTH levels, indirectly triggering bone resorption 
and providing calcium for eggshell calcification (23). 
Resorption of medullary bone in avian models, therefore, 
represents a model of rapid and pregnancy-related  
bone turnover.

Whole-bone changes during pregnancy 
and lactation

Pregnancy
The endocrine and associated metabolic changes which 
occur during pregnancy and lactation result in effects on 
the skeleton at both the microstructural and whole-bone 
level. At the microstructural level, results of human iliac 
crest bone biopsies suggest increased bone resorption in 
early pregnancy (8–10 weeks), whereas at term, resorption 
is normalised and markers of increased bone formation 
have been observed (24). Bone loss through trabecular 
thinning and reduced trabecular connectivity in early 
pregnancy appear to be regained through the addition of 
new trabeculae by late pregnancy (25). At the whole bone 
level, bone mineral density (BMD) assessed by clinical 
dual-energy X-ray absorptiometry (DXA) has been shown 
to decrease by up to 5% during pregnancy in the lumbar 
spine (3, 5, 26, 27, 28, 29), with several reports of smaller 
losses in the hip. Results at other skeletal sites are more 
inconsistent; these between-study discrepancies may 
be explained, in part, by differences in calcium intake, 
although variations in the timing of BMD measurement 
will also contribute. Quantitative CT (QCT, or pQCT for 
peripheral scanners) gives information on cortical and 
trabecular bone in addition to detailed bone geometry. 
However, few studies have employed these techniques to 
examine pregnancy-related changes, and results from the 
few studies available have been inconsistent. QCT/pQCT 
studies have found no change in cortical, trabecular or 
total BMD at the radius or tibia (30), distal radius cortical 
BMD (31) or lumbar spine trabecular BMD following 
pregnancy (5), respectively. In contrast, substantial 
variation in distal radius trabecular BMD changes between 
individuals were observed in one study, with annual 

losses of up to 21% (median 1.6%) and with individuals 
with lower baseline BMD values experiencing the greatest 
losses (31). One recent study has examined changes in 
periosteal and endocortical circumferences and bone 
microstructure using high-resolution pQCT (HR-pQCT) 
to characterise the moderate and site-specific bone losses 
occurring during pregnancy in detail. The authors found 
deterioration of trabecular microarchitecture and evidence 
of periosteal and endocortical expansion in women aged 
30–45 years across pregnancy compared to non-pregnant 
controls (32).

Lactation
Lactation is associated with decreases in bone mass (33, 34, 
35), particularly at trabecular-rich sites such as the spine 
and hip (33). These rates of bone loss are pronounced, 
with a mean 4% loss of lumbar spine BMD reported after 
only 3 months of feeding (33, 34, 35). In contrast, these 
changes are smaller or not evident in formula-feeding 
mothers or non-pregnant, non-lactating women (33, 34, 
35). Unfortunately, to our knowledge, no studies have used 
pQCT to examine changes in endocortical and periosteal 
geometry during lactation. Changes at the microstructural 
level can also be assessed in vivo using high-resolution 
pQCT (HR-pQCT). Longitudinal studies of breastfeeding 
women observed increases in cortical porosity and 
decreased cortical thickness, BMD and mineralisation of 
new bone (36, 37). In the same studies, trabecular number 
and bone volume decreased, while contrasting findings 
with regards to trabecular thickness were observed. The 
latter findings could relate to methodological issues, 
with trabecularisation of cortical bone influencing  
reported values.

Lactation-related bone losses vary substantially, with 
38% of women losing >5% spine BMD (38). Magnitude 
of bone loss is positively associated with the amount of 
breast milk produced (33). Furthermore, rates of bone 
microstructural change were greater during exclusive 
rather than intermittent feeding (36) and increased with 
the duration of lactation (37, 39). Taken together, these 
results suggest that increased calcium demand associated 
with exclusive breastfeeding or increased volume or 
duration of feeding results in greater bone loss. Given 
the modest changes in calcium intake during pregnancy 
and the high incidence of vitamin D insufficiency in both 
northern and southern latitudes in pregnant women, 
it could be suggested that dietary insufficiency of these 
nutrients would contribute to bone changes in pregnancy. 
However, the majority of studies suggest that vitamin D  
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and calcium levels are not related (3, 33, 40) or only 
weakly associated to bone turnover markers or bone loss 
during pregnancy and lactation (41) and that calcium 
supplementation has been shown to have small (18, 30) 
or transient (34) effects on bone loss in pregnancy and 
lactation (42, 43, 44, 45, 46). Other mechanisms must 
thus explain these observations.

Following lactation, there appears to be full recovery 
and even improvements in bone mass (34, 35, 47, 48), 
although this appears incomplete in adolescents (49). 
There is some suggestion that recovery at the trabecular-
rich spine is quicker than in other regions. In addition, 
return of regular menses and use of the progestin-only 
contraceptive pill were associated with improved bone 
recovery during and after lactation (35, 48, 49). Lactation-
induced changes in bone microstructure did not resolve 
over a longitudinal study with median follow-up period of 
3.6 years (36) such that cortical porosity was 0.6 s.d. higher 
and mineralisation density and trabecular number 1.3 s.d. 
lower in lactating women than controls. We note that this 
study did not control for postpartum use of hormonal 
birth control which may have influenced results. Overall, 
lactation appears to be associated with a series of changes 
in bone at the macro- and microstructural level. Changes at 
the microstructural level do not appear to be fully resolved 
with time, although it is unclear whether compensatory 
changes at the macrostructural level may preserve strength 
comparable to the increase in periosteal diameter in non-
pregnant aging elderly with severe bone loss (50).

Pregnancy in adolescence
Another area of interest is in adolescent mothers, as it 
has been hypothesised that pregnancy during growth 
may negatively affect bone accrual. A DXA-based study 
(four cases, twelve matched controls) found 9–10% lower 
total body and hip BMD (51) in late adolescent mothers 
at follow-up at 19–21 years of age, although lactation 
was not controlled for. A pQCT-based study found a 1% 
decrease in radius cortical BMD and a 4% decrease in 
total body BMC in new teenage mothers (mean age 18 
years) (52), although both studies were limited by small 
numbers of participants. However, these studies focused 
on later adolescent mothers where pregnancy occurs 
after peak growth, and this limited the understanding of 
the effects of early post-pubertal pregnancies. One study 
which did examine earlier pregnancies found impaired 
recovery of post-weaning lumbar spine and total body 
BMD in mothers aged 14 and 15 years compared to those 
aged 16 or 17 years (53).

Long-term effects of pregnancy and lactation
The long-term effects of pregnancy and lactation on bone 
characteristics in later life have also been examined, and 
overall small, site-specific benefits to BMD have been 
observed (54). While no strong evidence for differences 
in BMD was observed between paired parous/nulliparous 
twins, in a large cross-sectional study, parity was associated 
with both greater lumbar spine BMD and total body BMC 
than in other female relatives, while breastfeeding was 
associated with higher total body BMC and hip BMD 
(55). No association between gravidity, parity and BMD 
was observed in women aged 40–80 years, but parity 
was associated with greater total body and femoral 
neck bone area (56). Similarly, cumulative duration of 
lactation was associated with increased femoral neck and 
tibia bone cross sectional area (CSA) in women 16–20 
years after their final pregnancy (57). Therefore, longer-
term effects of pregnancy may primarily relate to altered 
size rather than density (56). These associations appear 
site specific, as gravidity and parity were not associated 
with vertebral shape or size at age 46 in a Finnish cohort 
(58). This may relate to the suppression of estrogens 
(which inhibit periosteal apposition) during lactation, 
with similar expansion of the axial skeleton observed in 
both eumenorrheic and amenorrheic athletes with lower 
estrogen levels (59). The long-term effects of adolescent 
pregnancy are unclear, having been associated with 
higher BMD (60, 61) and lower BMD at multiple sites (62). 
In terms of long-term clinical consequences, parity and 
lactation were not found to be associated with increased 
fracture risk over a 16-year follow-up (63).

Pathophysiology during pregnancy and lactation

As described in the 'Whole-bone changes during 
pregnancy and lactation' section, it is known that bone 
loss during pregnancy and lactation is a result of the 
hormonal changes that are made to fulfill the increased 
calcium requirements for fetal and neonatal development 
(14, 64, 65). If intestinal calcium absorption is insufficient 
to meet calcium demands, calcium is mobilized from 
the maternal skeleton by either osteoclast activity or 
osteocytic osteolysis mechanisms (14, 66), which in turn 
cause a decrease in bone mass. It is not yet understood 
why some mothers exhibit pregnancy- and lactation-
associated osteoporosis (PLO) and fracture while others 
do not, despite both having low vitamin D and low 
estrogen status (65). Moreover, at pre-clinical levels, it 
has been shown that maximizing calcium and vitamin D  
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physiology through calcitriol supplementation is not 
sufficient to restore specific bone loss during pregnancy 
and lactation (42, 43, 44, 46). More recently, it has been 
shown that calcium restriction during this period has 
minimal effects on post-weaning bone metabolic changes 
(45). These studies may explain why some clinical trials 
failed to demonstrate a full prevention of bone loss during 
pregnancy and lactation with calcium supplementation 
(18, 67). Since it has not been demonstrated that 
differences in inactivity levels can explain PLO, and since 
pathologically raised PTHrP levels are rare (16), other 
factors including genetic polymorphisms, sympathetic 
nervous system activity, secretion of oxytocin, and bone 
marrow fat may contribute to bone loss and disturbance 
of microarchitecture during pregnancy and lactation 
(summarized in Fig. 1). This may explain some of the 
differences between physiological and pathophysiological 
bone loss, that is, PLO. We will discuss each of  
these subsequently.

Genetics

Early reports have indicated that hereditary factors may 
play a role in PLO. Osteoporotic fractures at younger age 

more often have a genetic cause (68, 69), in contrast to 
osteoporotic fractures at older ages which are often due 
to simple postmenopausal osteoporosis. Remarkably, a 
high prevalence of fractures has been reported in cases 
of mothers with PLO (70). Other findings included lack 
of recovery of bone density in the mother during years 
of follow-up after delivery and osteopenia in the children 
when screened at a young age (71). Finally, a series of five 
index cases with PLO patients revealed osteoporosis, as 
defined by low BMD, in over half of their relatives (72).

 Multiple cases have been published which describe 
patients in whom a genetic cause of PLO has been 
identified. Osteogenesis imperfecta is the best-known form 
of monogenic osteoporosis, and indeed, heterozygous 
COL1A1 or COL1A2 mutations have been found in 
several cases of PLO (73, 74). These autosomal dominant 
mutations lead to qualitative or quantitative defects in the 
formation of collagen type I (75). Other cases have been 
attributed to mutations in the gene encoding the LRP5 
(low-density lipoprotein receptor-related protein (75) 
cell-surface protein receptor, a key player in intracellular 
signaling pathways including the Wnt pathway (74). 
Simple and compound heterozygous LRP5 mutations 
have been described in PLO specifically (74, 76). 

Figure 1
Proposed model for the control of osteoclastogenesis and resorptive function of osteoclast (OCs) during adaptations of the skeleton to the demanding 
situations of pregnancy and lactation. Parathyroid hormone-related protein (PTHrP), synthesized in the placenta, breast tissue, parathyroid glands and 
the uterus, is the main actor of increased bone resorption. The increased production of oxytocin (OT) from the posterior pituitary stimulates 
osteoclastogenesis by acting on the osteoclast precursor (preOCs). The over-activity of the sympathetic nervous system (SNS), which increases release of 
neurotransmitters such as norepinephrine, stimulates bone resorption through an enhanced RANKL secretion by osteoblasts (OBs). In the bone marrow 
adipose tissue (BMAT), adipocytes undergo lipolysis to provide fatty acids as an energy source for the increased bone resorption.
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Osteoporosis may be associated with visual impairments, 
such as osteoporosis pseudoglioma syndrome/familial 
exudative vitreoretinopathy, in these patients. This 
is because LRP5 has been shown to be essential for the 
development of blood vessels in the eye (77) as well as 
bone accrual. The underlying genetic mechanisms may 
be more complex in some patients, as illustrated by the 
report of a patient with a heterozygous LRP5 mutation 
together with homozygous polymorphisms in the MTHFR 
gene encoding methylenetetrahydrofolate reductase, 
an enzyme involved in homocysteine metabolism (78). 
Intriguingly, osteoporosis did not cosegregate in this 
patient’s family with the LRP5 mutation, the homozygous 
MTHFR polymorphism, or even the combination of the 
two, implicating additional genetic or non-genetic factors 
in PLO.

 Consideration of a genetic cause for PLO is 
recommended for patients with a family history of 
osteoporosis and fragility fractures or a severe phenotype 
such as a history of fractures before pregnancy and severely 
reduced BMD (Z-score < −2.0 s.d.). This is especially 
critical in cases in which BMD does not recover in the 
months after pregnancy and/or weaning (79). Screening 
for an underlying monogenetic bone disorder has been 
further proposed in patients in whom PLO occurs together 
with one of the following features: joint hypermobility 
and blue sclerae (indicative of osteogenesis imperfecta), 
congenital blindness, or severely reduced vision (as 
associated with osteoporosis pseudoglioma syndrome). 
Nowadays, genetic diagnostics are often offered in 
multi-gene test panels labeled ‘osteogenesis imperfecta 
and related conditions’ which may include additional 
variants derived from familial osteoporosis, osteogenesis 
imperfecta, and genome-wide association studies, studies 
(80, 81, 82). The indication for genetic testing should be 
seriously considered, because a diagnosis has significant 
implications for the patient as well as their relatives. 
Similar to the systematic genetic studies performed for 
BMD and fractures in general, there is a need for genome-
wide association studies for PLO (83, 84, 85, 86).

Oxytocin

Plasma levels of oxytocin peak during late pregnancy 
and lactation. These periods coincide with rapid fetal 
skeletogenesis and neonatal bone modelling, both 
processes that require a high intake of calcium ions for 
mineralization, which is delivered by the mother (87). 
Oxytocin originated as a highly conserved nanopeptide 
for electrolytic homeostasis in primitive vertebrates over 

400 million years ago (88). Although it is well known 
that oxytocin facilitates parturition, this hormone is not 
indispensable for this function (89). In fact, oxytocin 
knock-out mice (OT−/−) can give birth normally but are 
unable to feed their pups because of the lack of milk ejection 
reflex. This defect is completely reversible by peripheral 
injection of oxytocin, suggesting that its primary role 
in mammalian lactation is mediated by a peripheral 
action rather than a central mechanism (89). Conversely, 
the regulation of maternal and sexual behavior, social 
memory, and penile erection and ejaculation in males are 
mediated by a central action of oxytocin (90, 91, 92, 93).

In addition to its action on social behavior, 
milk ejection, and uterine contraction, receptors for 
oxytocin are expressed on osteoblasts, osteoclasts, and 
their precursors (94, 95). Furthermore, bone marrow 
osteoblasts synthesize oxytocin, suggesting the existence 
of an oxytocin/oxytocin receptor system in the bone 
milieu regulated by autocrine and paracrine interactions 
(95, 96). Oxytocin stimulates osteoblast differentiation 
(97), and OT−/− mice as well as mice lacking the oxytocin 
receptor (OTR−/−) display reduced bone mass, mainly 
due to a bone-forming defect (95). Systemic injections 
of oxytocin into WT rodents increase bone mass and 
improve osseointegration of titanium implants (98, 99). 
At the same time, oxytocin stimulates differentiation 
of pre-osteoclastas (Fig. 1) by increasing the ratio of 
RANKL and osteoprotegerin (OPG), while inhibiting bone 
resorption by triggering cytosolic Ca2+ release and nitric 
oxide synthesis. More specifically, oxytocin increases the 
expression of the Ca2+ sensitive NOS isoform (eNOS) and 
triggers a time-dependent increase in the production of 
nitric oxide, as a mechanism to inhibit bone resorption 
(95). Altogether these results are consistent with the 
hypothesis that oxytocin is responsible for maintaining 
a high rate of cell activity in bone, stimulating the 
proliferation of both forming and resorbing cells, while at 
the same time controlling the amount of bone resorbed. 
The inhibitory effect of oxytocin on mature osteoclasts 
may serve as a checkpoint for bone resorption that 
would otherwise be unrestricted following stimulation of 
osteoclastogenesis.

PTHrP, indispensable for the development of the 
mammary gland and pro-resorptive during breastfeeding 
(100), is only partly responsible for the intergenerational 
calcium transfer. It has been suggested that this complex 
process, fundamental for skeletal morphogenesis, is also 
driven by oxytocin. The anabolic effect of oxytocin may 
facilitate the restoration of the maternal skeleton, while 
its pro-osteoclastogenic action may contribute to the 

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-20-0055

https://ec.bioscientifica.com © 2020 The authors
Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 12/23/2022 01:15:54PM
via free access

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-20-0055
https://ec.bioscientifica.com


E M Winter et al. Pregnancy and bone R1499:6

intergenerational transfer of calcium. As evidence of 
this, pregnant OT−/− mice have reduced markers of bone 
formation and OT−/− pups displayed hypo-mineralized 
skeletons (101). Furthermore, pregnant WT mice exhibited 
increased plasma levels of C-telopeptide, a marker of 
bone resorption, and osteoclast cultures obtained from 
the bone marrow of these mice showed higher numbers 
of TRAP-positive cells than non-pregnant mice (101). 
Intraperitoneal injections of oxytocin thrice weekly for 
5 weeks in non-pregnant mice, as well as the addition 
of oxytocin to bone marrow cell cultures obtained from 
control mice, mimicked this pregnancy-induced increase 
in osteoclastogenesis (101). A similar result has been 
obtained in 12 healthy women with spontaneous vaginal 
deliveries at term. The number and size of osteoclasts 
generated in vitro from peripheral blood of these  
women were significantly higher than age-matched 
controls (102).

Overall, these findings show that the enhanced 
osteoclast formation can be explained by elevated oxytocin 
levels during late pregnancy (103). Consistent with this 
hypothesis, pregnant mice lacking oxytocin showed a 
∼80% reduction in ex vivo osteoclast formation compared 
with WT pregnant littermates, suggesting that the 
osteoclastogenesis triggered in pregnant mice is, at least in 
part, dependent upon an intact oxytocin axis. It is therefore 
possible that the increase in serum oxytocin levels during 
pregnancy is responsible for the increase in osteoclast 
formation which tends to mobilize maternal calcium for 
fetal skeletogenesis to occur. Additionally, considering 
that oxytocin mainly stimulates osteoblastogenesis (95), 
it has been investigated whether osteoblast formation ex 
vivo was enhanced in pregnant WT mice and whether 
this response was reduced in oxytocin-deficiency. As 
expected, the formation of alkaline phosphatase-positive 
colonies (CFU-f) was increased during pregnancy in mice, 
as mimicked by intraperitoneal oxytocin injection, thrice 
weekly, in non-pregnant mice, indicating that oxytocin 
might be responsible for inducing osteoblast formation 
(101). The uncoupling of bone remodeling from net 
skeletal loss during lactation has been mainly ascribed 
to decreased levels of estrogen (100). However, estrogen 
deficiency during menopause causes irreversible bone 
loss, while PLO is mostly reversible in both rodents and 
humans (104). Nevertheless, maternal bone loss would be 
continuous in the absence of a mechanism that would 
inhibit excessive osteoclastic resorption. Therefore, it 
has been proposed that oxytocin, which also inhibits 
resorption by mature osteoclasts (95), provides one of 

these mechanisms for the self-regulation of oxytocin-
induced osteoclastogenesis and bone loss. Overall, these 
studies indicate that oxytocin, which is also a mammary 
gland-specific peptide (89), is important for the regulation 
of intergenerational calcium transfer and is possibly also 
mechanistically involved in PLO in humans.

Sympathetic nervous system

Genetically and pharmacologically induced over-
activity of the sympathetic nervous system (SNS) has 
been well demonstrated to be deleterious for bone mass 
and structure (105, 106, 107, 108). This is explained 
by an increase in bone resorption through enhanced 
activating transcription factor 4(ATF4)/RANKL secretion 
by osteoblasts (109), in combination with decreased 
osteoblastogenesis (105). In line with this, a recent 
randomized clinical trial demonstrated that patients 
treated with β-adrenoreceptor-selective blockers had 
better bone microarchitecture than nonusers (110). It 
has been demonstrated that SNS activity is important for 
regulation of pregnancy and lactation (111, 112), but to 
our knowledge, the direct contribution of the SNS to PLO 
has never been investigated or reported.

During pregnancy (113), the increase in neural 
activity is likely to manifest as an increase in the release 
of neurotransmitters such as norepinephrine (NE) and 
neuropeptide Y (114, 115), resulting in an early increase 
in blood pressure within the first few weeks of conception 
(116, 117). Since both neurotransmitters are linked to 
bone metabolism (118, 119, 120), we speculate that they 
could be involved in PLO, although this has not been 
studied to date. During lactation, levels of both NE and 
serotonin (5-hydroxytryptamine, 5HT) in the anterior 
cerebral cortex, hippocampus, and cerebellum have been 
shown to increase, particularly from late pregnancy to 
early postpartum period, and continue to increase in 
the postpartum period (121). This implicates NE and 
serotonin in the regulation of hormone secretion and bone 
metabolism changes during these periods. The increased 
SNS activity during lactation is magnified during post-
partum depression, which occurs in 25–35% of pregnant 
women after delivery (122). Interestingly, a connection 
between depression, bone loss and SNS activity increase 
has been demonstrated (123). Moreover, modulation of 
the SNS could also control other tissues such as adipose 
tissue (124) which is well known to be associated with 
bone remodeling levels (125, 126). However, as stated, the 
role of SNS in PLO remains highly speculative.
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Bone marrow fat

Bone marrow adipocytes appear in the bone marrow 
directly after birth and continue to expand throughout 
the skeleton during growth. In humans, at the age of  
25 years, most of the marrow of the long bones is 
occupied by adipocytes, whereas in the axial skeleton 
the marrow remains mostly hematopoietic. However, 
bone marrow adipocytes accumulate with aging, and 
there is a clear inverse association between bone marrow 
adiposity and bone mass, which is accentuated in 
diseases characterized by increased fracture risk such as 
osteoporosis. This is hypothesised to be due to a shift in 
the lineage allocation of the skeletal stem cell, favoring 
adipogenesis over osteoblastogenesis. However, situations 
of ‘beneficial’ increased bone marrow adiposity have 
also been described, such as hematopoietic regeneration 
following radiation or chemotherapy. In this situation, 
bone marrow adipocytes are hypothesised to be a source 
of energy by supplying fatty acids to hematopoietic and 
bone cells (127).

Studies of bone marrow adiposity during pregnancy 
and lactation have not been performed in humans. 
In rats, bone marrow adipocytes, as assessed by 
histomorphometry of the vertebrae, decrease both in 
number and volume during and after pregnancy, in 
lactating and non-lactating mothers, compared to non-
pregnant controls (128). The changes in bone marrow 
adipocytes were negatively correlated with changes in 
bone formation parameters, although the decrease in bone 
marrow adiposity was accompanied by a decrease in bone 
volume. In mice, bone marrow adiposity, as assessed by 
osmium staining of the tibia, also decreases significantly 
during lactation and this was accompanied by a decrease 
in trabecular bone volume (129). These two studies show 
that bone marrow adiposity decreases during pregnancy 
and lactation and that this is accompanied by a decrease 
in bone volume. A possible hypothesis is that the bone 
marrow adipocytes undergo lipolysis to provide fatty acids 
as an energy source for the increased bone resorption 
due to the increased calcium demands both for fetal 
skeletal development and for maternal milk production. 
Interestingly, the disappearance of adipocytes during 
lactation has also been described in the mammary gland of 
mice (130). Mammary adipocytes were shown to undergo 
de-differentiation during lactation and re-differentiation 
during weaning. Whether bone marrow adipocytes could 
also undergo this de- and re-differentiation remains to be 
investigated.

PLO profile and treatment

PLO is rare, and its prevalence is unknown. The occurrence 
of fragility fractures appears mostly in the third trimester 
and lactation period (131), typically presenting in the 
first pregnancy with acute back pain from (multiple) 
vertebral fragility fractures and subsequently determined 
low BMD. Since premenopausal women rarely undergo 
DXA scanning, the pre-pregnancy BMD in these 
women is mostly unknown. Bone loss, predominantly 
from trabecular bone sites, in combination with the 
increased weight bearing and the lordotic posture of 
pregnancy, is assumed to lead to these spontaneous 
vertebral fractures. Decreased BMD prior to pregnancy 
in such premenopausal women is mostly caused by 
osteoporosis secondary to anorexia nervosa, endocrine 
diseases (e.g. Cushing’s disease, hyperthyroidism or 
primary hyperparathyroidism), inflammatory diseases 
(e.g. rheumatoid arthritis or inflammatory bowel  
diseases) or medication (e.g. glucocorticoids or cancer 
treatments) (15).

Vertebral fractures presenting with back pain should 
be treated with appropriate pain medication and advice on 
weight bearing and mobility. Quality of life and capacity 
to work should also be taken into account, although 
long-term prognosis for PLO is good (132). In general, 
pharmacological treatment for low bone mass is not 
indicated, except calcium and vitamin D supplements, 
since bone mass recovers fully in the year following 
weaning and the onset of the menstrual cycle (3). Several 
studies have shown that parity and lactation are not 
associated with increased long-term risk of postmenopausal 
osteoporosis and fractures and that they may even protect 
against hip fractures (133, 134). Moreover, PLO typically 
presents in first pregnancy, with limited evidence for 
increased fracture risk in future pregnancies (17, 135). 
In contrast, Kyvernitakis et  al. have shown that the 
refracture risk in subsequent pregnancies is 20% and that 
the refracture rate after 6 years is 25%, with risk positively 
related to the number of fractures during the pregnancy 
(136). Therefore, it remains important to counsel women 
with PLO on the fracture risk associated with lactation 
and further pregnancies. Treatment with anti-osteoporosis 
medication such as the anti-resorptive bisphosphonates, 
the anabolic PTH anaologue teriparatide, and the 
human monoclonal RANKL antibody denosumab has 
been shown to be effective in increasing BMD, although 
there are no data on fracture outcomes and the reported 
studies did not include a placebo-treated control (17).  
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In addition, the possible fracture reduction following 
treatment with bisphosphonates that are retained in 
the bone (137) should be weighed against a possible 
negative effect on skeletal development of the fetus 
in following pregnancies and other pregnancy-related 
complications such as low birth weight. Although the 
limited available evidence in humans has not indicated 
that bisphosphonate treatment causes major congenital 
anomalies, the number of patients exposed is not 
sufficient to draw any conclusions on the safety profile 
of these medications (138). Moreover, use of teriparatide 
and denosumab are contraindicated during pregnancy 
and lactation and should therefore be used with caution 
in patient groups of fertile age.

Fracture healing during pregnancy

Although severe fractures are rather rare during pregnancy, 
several clinical case reports have described fracture 
healing during pregnancy (139, 140, 141, 142). These 
studies suggest that fracture healing is accelerated during 
pregnancy, based on earlier bone bridging of the fracture 
callus and reduced time until bony union. This appears 
to be independent from the stage of pregnancy at which 
the fracture occurred. Accelerated bone regeneration 
may be due to the positive impact of several pregnancy-
associated growth factors (such as pregnancy-associated 
plasma protein-A and placental growth factor) on fracture 
healing, which was demonstrated in experimental studies 
(143, 144). Increased estrogen levels may also account 
for improved bone regeneration, as estrogen application 
was shown to accelerate fracture healing (145). In line 
with this, several experimental studies in rodent models 
of estrogen-deficiency demonstrated delayed fracture 
healing. Ovariectomised (OVX), estrogen-deficient rats and 
mice displayed decreased mechanical properties and bone 
formation in the late fracture callus (146, 147, 148). The 
number of osteoclasts was significantly increased during 
callus development (149). This might be explained by the 
effects of estrogen in increasing osteoclast and decreasing 
osteoblast apoptosis (150, 151, 152) and by stimulating the 
recruitment, proliferation and differentiation of skeletal 
progenitor cells (153, 154). Analysis of the intermediate 
phase of endochondral fracture healing in OVX mice 
further demonstrated a decreased cartilaginous callus area 
(145) and a reduced expression of cartilage markers (155) 
and angiogenic factors (156). Therefore, bone regeneration 
appears to be disturbed by estrogen deficiency both during 
the middle and late phases of healing, with changes in 

angiogenesis and the formation of the cartilaginous and 
the bony callus. The molecular mechanisms underlying 
these findings remain unclear. However, as it is known 
that postmenopausal females display a chronic low-
grade inflammatory phenotype and the inflammatory 
response to injury is altered under estrogen-deficiency 
(157, 158, 159), estrogen may also modulate the 
inflammatory response after fracture. Indeed, recent 
studies demonstrated an imbalanced immune response 
to fracture in OVX mice and postmenopausal fracture 
patients (160, 161). In particular, the molecule midkine 
(Mdk) appears to play an important role in this process. 
Mdk is known to be both a proinflammatory cytokine 
regulated by estrogen (162) and a negative regulator of 
bone formation (163) and fracture healing (164). Indeed, 
antibody inhibition of Mdk reduced the negative effects 
of serum from postmenopausal fracture patients on the 
osteogenic differentiation of human MSCs. Overall, 
accelerated fractured healing during pregnancy might be 
due to the positive effects of increased estrogen levels on 
bony and cartilaginous callus formation as well as on the 
inflammatory response after fracture.

Conclusion

Reproduction brings about changes in the endocrine-
mediated processes of calcium, mineral and bone 
metabolism. This applies to pregnancy in humans and 
other mammals, as there is a need for building material for 
the fetal skeleton. Moreover, physical changes occuring 
in pregnant and lactating women such as excessive 
weight on the lumbar spine region cause physiological 
and pathophysiological changes which are not yet fully 
elucidated. We have discussed the possible contribution 
of oxytocin, genetics, bone marrow fat and the SNS to 
pathophysiological changes such as PLO. Finally, fracture 
healing appears to be improved during pregnancy, and 
this is possibly due to the positive effects of estrogen on 
bone regeneration.
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