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Quantum machine learning (QML) has
been identified as one of the key fields
that could reap advantages from near-
term quantum devices, next to optimiza-
tion and quantum chemistry. Research in
this area has focused primarily on varia-
tional quantum algorithms (VQAs), and
several proposals to enhance supervised,
unsupervised and reinforcement learning
(RL) algorithms with VQAs have been
put forward. Out of the three, RL is
the least studied and it is still an open
question whether VQAs can be compet-
itive with state-of-the-art classical algo-
rithms based on neural networks (NNs)
even on simple benchmark tasks. In this
work, we introduce a training method
for parametrized quantum circuits (PQCs)
that can be used to solve RL tasks for dis-
crete and continuous state spaces based on
the deep Q-learning algorithm. We investi-
gate which architectural choices for quan-
tum Q-learning agents are most important
for successfully solving certain types of en-
vironments by performing ablation stud-
ies for a number of different data encod-
ing and readout strategies. We provide in-
sight into why the performance of a VQA-
based Q-learning algorithm crucially de-
pends on the observables of the quantum
model and show how to choose suitable
observables based on the learning task at
hand. To compare our model against the
classical DQN algorithm, we perform an
extensive hyperparameter search of PQCs
and NNs with varying numbers of param-
eters. We confirm that similar to re-
sults in classical literature, the architec-
tural choices and hyperparameters con-

tribute more to the agents’ success in a
RL setting than the number of parameters
used in the model. Finally, we show when
recent separation results between classical
and quantum agents for policy gradient
RL can be extended to inferring optimal
Q-values in restricted families of environ-
ments. This work paves the way towards
new ideas on how a quantum advantage
may be obtained for real-world problems
in the future.

1 Introduction

Variational quantum algorithms are among the
most promising candidates to show quantum ad-
vantage in the near-term. Quantum machine
learning has emerged as one field that is amenable
to applications of VQAs on noisy intermediate-
scale quantum (NISQ) devices [1, 2]. Many
proposals for QML algorithms have been made
in supervised [3, 4, 5, 6, 7] and unsupervised
[8, 9, 10, 11, 12, 13] learning. In contrast, RL is a
subfield of machine learning that has received less
attention in the QML community [14, 15], and es-
pecially proposals for VQA-based approaches are
only now emerging [16, 17, 18, 19, 20]. RL is es-
sentially a way to solve the problem of optimal
control. In a RL task, an agent is not given a
fixed set of training data, but learns from inter-
action with an environment. Environments are
defined by a space of states they can be in, and
a space of actions that an agent uses to alter
the environment’s state. The agent chooses its
next action based on a policy (probability dis-
tribution over actions given states) and receives
a reward at each step, and the goal is to learn
an optimal policy that maximizes the long-term
reward the agent gets in the environment. State
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and action spaces can be arbitrarily complex, and
it’s an open question which types of models are
best suited for these learning tasks. In classical
RL, using NNs as function approximators for the
agents’ policy has received increased interest in
the past decade. As opposed to learning exact
functions to model agent behavior which is infea-
sible in large state and action spaces, this method
of RL only approximates the optimal function.
These types of RL algorithms have been shown to
play Atari arcade games as well as human players
[21], and even reach super-human levels of per-
formance on games as complex as Go [22], Dota
[23] and StarCraft [24]. RL algorithms can be
divided into policy-based and value-based meth-
ods. While policy-based algorithms seek to di-
rectly optimize a parametrized probability distri-
bution that represents the policy, a value-based
algorithm learns a so-called value function which
then gives rise to a policy. These two methods
constitute related but fundamentally different ap-
proaches to solve RL tasks, and both have their
own (dis-)advantages as we will explain in detail
in section 2.1. Interestingly, these two methods
can also be combined in a so-called actor-critic
setting which leverages the strengths of both ap-
proaches [25]. Actor-critic methods are among
the state-of-the-art in current RL literature [26],
and therefore both value-based and policy-based
algorithms are areas of active research.

One classical value-based RL algorithm that
has gained much popularity is called Q-learning
[27], where the goal is to learn Q-values, numer-
ical values which for a given state-action pair
represent the expected future reward. Based on
these values, a Q-learning agent chooses the ap-
propriate action in a given state, where a higher
Q-value corresponds to a higher expected re-
ward. The NN’s role in a Q-learning algorithm
is to serve as a function approximator for the Q-
function. It is thus natural to ask whether RL
algorithms can be adapted to work with a VQA
approach, and whether such algorithms could of-
fer an advantage over their classical counterparts.
RL is one of the hardest modes of learning in cur-
rent ML research, and is known to require careful
tuning of model architectures and hyperparame-
ters to perform well. For NN-based approaches,
one unfavorable hyperparameter setting can lead
to complete failure of the learning algorithm on
a specific task. Additionally, these hyperparame-

ters and architectures are highly task dependent
and there is no a-priori way to know which set-
tings are best. Well-performing settings are found
by experts via trial-and-error, and the ability to
quickly find these settings is considered a “black
art that requires years of experience to acquire”
[28]. Thus a whole field of heuristics and numeri-
cal studies has formed on finding good sets of hy-
perparameters like NN architectures [29, 30, 31],
activation functions [32, 33, 34], or learning rates
and batch sizes [28, 35]. An increasingly investi-
gated branch of research focuses on methods to
automate the whole process of finding good ar-
chitectures and hyperparameters, among which
there is neural architecture search [36] and auto-
mated machine learning [37].

It is thus to be expected that quantum models
in a VQA-based RL setting also need to be se-
lected carefully. Even more so, it is still an open
question whether VQAs are suitable for function
approximation in RL at all. This question is di-
rectly related to choices made when defining an
architecture for a VQA. There are three impor-
tant factors to consider: the structure (or ansatz )
of the model, the data-encoding technique, and
the readout operators. For the choice of struc-
ture, there is a trade-off between the expressivity
and trainability of a model, as certain structures
are subject to the so-called barren plateau phe-
nomenon [38]. This phenomenon prevents suc-
cessful training of models with a large number of
qubits and layers for highly expressive structures
like random circuits. On the other hand, over-
parametrization has been observed to simplify
optimization landscapes and lead to faster con-
vergence for certain VQAs [39, 40]. Apart from
that, the choice of structure is also limited by
hardware constraints like the topology of a cer-
tain quantum device. While the model structure
is an important factor in training VQAs that has
received much attention in the QML community
[41, 42, 43, 44, 45, 46, 47], the authors of [48]
have shown that the technique used to encode
data into the model plays an equally important
role, and that even highly expressive structures
fail to fit simple functions with an insufficient
data-encoding strategy.

A less explored architectural choice in the con-
text of QML is that of the observables used to
read out information from the quantum model.
Considering that the readout operator of a quan-
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tum model fixes the range of values it can pro-
duce, this choice is especially important for tasks
where the goal is to fit a real-valued function with
a given range, as is the case in many RL algo-
rithms. This is in contrast to NNs, which have
no restriction on the range of output values and
can even change this range dynamically during
training. In Q-learning, the goal is to approx-
imate the real-valued optimal Q-function, which
can have an arbitrary range based on the environ-
ment. Crucially, this range can change depending
on the performance of the agent in the environ-
ment, which is an impediment for quantum mod-
els with a fixed range of output values.

A first step to study the influence of architec-
tural choices on PQCs for policy-based RL al-
gorithms has been made in [20], who point out
that data-encoding and readout strategies play a
crucial role in these types of RL tasks, though
they leave the open question if similar architec-
tural choices are also required in a value-based
setting. Previous work on Q-learning with PQCs
has addressed certain other fundamental ques-
tions about the applicability of VQAs in a value-
based context. A VQA for Q-learning in discrete
state spaces was introduced in [16], where the
quantum model’s output is followed by a layer
of additive weights, and it has been shown that
the model successfully solves two discrete-state
environments. A VQA for Q-learning in environ-
ments with continuous and discrete state spaces
has been proposed in [17], who simplify the con-
tinuous environments’ potentially infinite range
of input values to a restricted encoding into an-
gles of one initial layer of rotation gates, and
use measurements in the Z-basis to represent Q-
values. Notably, none of the models in [17] that
were run for the continuous state-space environ-
ment Cart Pole reach a performance that is con-
sidered to be solving the environment according
to its original specification [49], so it remains an
open question whether a value-based algorithm
that utilizes a PQC as the function approximator
can solve this type of learning task.

These initial works prompt a number of vital
follow-up questions related to the architectural
choices that are required to succeed in arbitrary
RL environments with a quantum Q-learning
agent. We address these questions in form of
our main contributions as follows: first, we pro-
pose a VQA which can encode states of discrete

and continuous RL environments and explain the
intricate relationship between the environment’s
specification and the requirements on the read-
out operators of the quantum model. We show
how a quantum Q-learning agent only succeeds
if these requirements are met. Second, to enable
the model to match the environment’s require-
ments on the range of output values, we make this
range itself trainable by introducing additional
weights on the model outputs. We show how the
necessity of these weights can be inferred from the
range that the optimal Q-values take in an envi-
ronment. Third, we study the performance of our
model on two benchmark environments from the
OpenAI Gym [50], Frozen Lake and Cart Pole.
For the continuous-state Cart Pole environment,
we also study a number of data encoding meth-
ods and illustrate the benefit of previously intro-
duced techniques to increase quantum model ex-
pressivity, like data re-uploading [51] or trainable
weights on the input data [51, 20]. Additionally,
the state space dimension of both environments
is small enough so that inputs can be directly en-
coded into the quantum model without the use
of a dimensionality reduction technique. This
makes it possible to directly compare our model
to a NN performing the same type of Q-learning
algorithm to evaluate its performance. Specifi-
cally, we perform an in-depth comparison of the
performance of PQCs and NNs with varying num-
bers of parameters on the Cart Pole environment.
We show that recent results in classical deep Q-
learning also apply to the case when a PQC is
used as the function approximator, namely that
increasing the number of parameters is only ben-
eficial up to some point [52]. After this, learning
becomes increasingly unstable for both PQCs and
NNs. As an empirical comparison between PQCs
and NNs can only give us insight into model per-
formance on the specific environments we study,
we also explain when recent separation results for
policy gradient RL between classical and quan-
tum agents [20] also hold in the Q-learning setting
for restricted families of environments.

The remainder of this paper is structured as
follows: in section 2 we give an introduction to
RL, followed by a description of our quantum RL
model in section 3. We show when recent results
for a separation between classical and quantum
algorithms for policy-based learning also apply in
the case of Q-learning in section 4. In section 5
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we numerically evaluate the performance of our
algorithm and compare it to a classical approach,
and finally discuss our findings in section 6. The
full code that was used to perform the numerical
experiments in this work can be found on Github
[53].

2 Reinforcement learning
In RL, an agent does not learn from a fixed data
set as in other types of learning, but by making
observations on and interacting with an environ-
ment [54]. This distinguishes it from the other
two main branches of ML, supervised and unsu-
pervised learning, and each of the three comes
with its individual challenges. In a supervised
setting, an agent is given a fixed set of train-
ing data that is provided with the correct labels,
where difficulties arise mainly in creating mod-
els that do not overfit the training data and keep
their performance high on unseen samples. In un-
supervised learning, training data is not labeled
and the model needs to discover the underlying
structure of a given data set, and the challenge
lies in finding suitable loss functions and train-
ing methods that enable this. RL also comes
with a number of challenges: there is no fixed
set of training data, but the agent generates its
own samples by interacting with an environment.
These samples are not labeled, but only come
with feedback in form of a reward. Additionally,
the training data keeps changing throughout the
learning process, as the agent constantly receives
feedback from interacting with its environment.

An environment consists of a set of possible
states S that it can take, and a set of actions
A which the agent can perform to alter the en-
vironment’s state. Both state and action spaces
can be continuous or discrete. An agent interacts
with an environment by performing an action at
at time step t in state st, upon which it receives
a reward rt+1. A tuple (s, a, r, s′) of these four
quantities is called a transition, and transition
probabilities from state s to s′ after performing
action a in a given environment are represented
by the transition function P ass′ ,

P ass′ = P (s′|s, a). (1)

The reward function is designed to evaluate the
quality of the agent’s actions on the environ-
ment based on the learning task at hand, and

the agent’s goal is to maximize its total reward
over a sequence of time steps starting at t, called
the return Gt

Gt =
∞∑
k=0

γkrt+k+1, (2)

where γ ∈ [0, 1] is a discount factor introduced
to prevent divergence of the infinite sum. The
return Gt should be viewed as the agent’s ex-
pected reward when starting from time step t and
summing the discounted rewards of potentially
infinitely many future time steps, where maxi-
mizing the return at step t implies also maximiz-
ing the return of future time steps. Note that
the task is to maximize an expected value, and
that the reward rt in eq. (2), and therefore Gt are
random variables. Environments often naturally
break down into so-called episodes, where the sum
in eq. (2) is not infinite, but only runs over a fixed
number of steps called horizon H. An example of
this are environments based on games, where one
episode comprises one game played and an agent
learns by playing a number of games in series.

2.1 Value-based and policy-based learning
RL algorithms can be categorized into value-based
and policy-based learning methods [54]. Both ap-
proaches aim to maximize the return as explained
above, but use different figures of merit to achieve
this. Both approaches also have their disadvan-
tages as we will see below, and which type of
algorithm should be used depends on the envi-
ronment at hand. In both cases, the function
that models the agent’s behavior in the environ-
ment is called the policy π(a|s), which gives the
probability of taking action a in a given state s.
The main difference between the two approaches
is how the policy is realized. In general, perfor-
mance is evaluated based on a state-value func-
tion (or an action-value function, as we will see
in section 2.2) Vπ(s),

Vπ(s) = Eπ[Gt|st = s], (3)

which is the expected return when following policy
π starting from state s at initial time step t, and
the goal of a RL algorithm is to learn the optimal
policy π∗ which maximizes the expected return
for each state.

A policy-based algorithm seeks to learn an op-
timal policy directly, that is, learn a probabil-
ity distribution of actions given states. In this
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setting, the policy is implemented in form of a
parametrized conditional probability distribution
π(a|s;θ), and the goal of the algorithm is to find
parameters θ such that the resulting policy is op-
timal. The figure of merit in this setting is some
performance measure J(θ) that we seek to max-
imize. This performance measure can include a
value function as in eq. (3), however, once the
policy has been learned J(θ) is not required for
action generation. Typically, these algorithms
perform gradient ascent on an approximation of
the gradient of the performance measure ∇J(θ),
which is obtained by Monte Carlo samples of
policy rollouts (i.e., a set of observed interac-
tions with the environment performed under the
given policy), and are hence called policy gradient
methods. This approach produces smooth up-
dates on the policy (as opposed to value-based al-
gorithms, where a small change in the value func-
tion can drastically alter the policy) that enable
proofs of convergence to locally optimal policies
[55]. However, it also suffers from high variance
as updates are purely based on Monte Carlo sam-
ples of interactions with the environment [56]. A
number of methods to reduce this variance have
been developed, like adding a value-based compo-
nent as described below to a policy-based learner
in the so-called actor-critic method [25].

In a value-based algorithm, a value function as
in eq. (3) is learned instead of the policy. The
policy is then implicitly given by the value func-
tion: an agent will pick the action which yields
the highest expected return according to Vπ(s). A
concrete example of value-based learning is given
in section 2.2, where we introduce the algorithm
that we focus on in this work. While value-based
algorithms do not suffer from high training vari-
ance as policy gradient learning does, they often
require more episodes to converge. They also re-
sult in deterministic policies, as the agent always
picks the action that corresponds to the high-
est expected reward, so this approach will fail
when the optimal policy is stochastic and post-
training action selection is performed according
to the argmax policy.1 Additionally, the policy
resulting from a parametrized value function can
change substantially after a single parameter up-

1Consider for example a game of poker where bluff-
ing is a valid action to scare other players into folding,
but quickly becomes obvious when greedily done in every
round.

date (i.e., a very small change in the value func-
tion can lead to picking a different action after
an update). This results in theoretical difficulties
to prove convergence when a function approxi-
mator is used to parametrize the value function,
hence there are even fewer theoretical guarantees
for this approach than for policy gradient meth-
ods. On the other hand, it was the advent of
deep Q-learning that made it possible to solve
extremely complex problems such as Go with a
reinforcement learning approach [22].

Both approaches have their own (dis-) advan-
tages, and while the popularity of either method
has surpassed the other at some point in the
last decades, there is no clear winner. As men-
tioned above, an actor-critic approach combines a
policy-based and value-based learner to leverage
the advantages of both while alleviating the dis-
advantages, and this method is among the stat-of-
the-art in classical RL literature [26]. Addition-
ally, it can be easier to learn either the policy or
the value function depending on a given environ-
ment. For this reason, both approaches are worth
being studied independently. In the quantum
setting, VQAs for policy gradient learning have
been investigated in [18, 20]. Using PQCs for
value-based learning has been explored in [16, 17],
and a specific value-based RL algorithm called Q-
learning is the focus of this work.

2.2 Q-learning
In Q-learning, we are not interested in the state-
value function as shown in eq. (3), but in the
closely related action-value function Qπ(s, a),

Qπ(s, a) = Eπ[Gt|st = s, at = a], (4)

which also gives us the expected return assum-
ing we follow a policy π, but now additionally
conditioned on an action a. We call the optimal
Q-function Q∗(s, a) = maxπ Qπ(s, a), and an op-
timal policy can be easily derived from the opti-
mal values by taking the highest-valued action in
each step, as

π∗(a|s) = argmax
a

Q∗(s, a). (5)

The goal in Q-learning is to learn an estimate,
Q(s, a), of the optimal Q-function. In its original
form, Q-learning is a tabular learning algorithm,
where a so-called Q-table stores Q-values for each
possible state-action pair [27]. When interacting
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with an environment, an agent chooses its next
action depending on the Q-values as

at = argmax
a

Q(st, a), (6)

where a higher value designates a higher expected
reward when action a is taken in state st as op-
posed to the other available actions. When we
consider learning by interaction with an environ-
ment, it is important that the agent is exposed
to a variety of transitions to sufficiently explore
the state and action space. Intuitively, this pro-
vides the agent with enough information to tell
apart good and bad actions given certain states.
Theoretically, visiting all state-action transitions
infinitely often is one of the conditions that are
required to hold for convergence proofs of tabu-
lar Q-learning to an optimal policy [57]. Clearly,
if we always follow an argmax policy, the agent
only gets access to a limited part of the state and
action space. To ensure sufficient exploration in
a Q-learning setting, a so-called ε-greedy policy is
used. That is, with probability ε a random action
is performed and with probability 1− ε the agent
chooses the action which corresponds to the high-
est Q-value for the given state as in eq. (6). Note
that the ε-greedy policy is only used to introduce
randomness to the actions picked by the agent
during training, but once training is finished, a
deterministic argmax policy is followed.

The Q-values are updated with observations
made in the environment by the following update
rule,

Q(st, at)← Q(st, at) + α[rt+1 + γ ·max
a

Q(st+1, a)

−Q(st, at)],
(7)

where α is a learning rate, rt+1 is the reward
at time t + 1, and γ is a discount factor. Intu-
itively, this update rule provides direct feedback
from the environment in form of the observed
reward, while simultaneously incorporating the
agent’s own expectation of future rewards at the
present time step via the maximum achievable
expected return in state st+1. In the limit of vis-
iting all (s, a) pairs infinitely often, this update
rule is proven to converge to the optimal Q-values
in the tabular case [57].

Q-values can take an arbitrary range, which
is determined by the environment’s reward func-
tion and the discount factor γ, which controls

how strongly expected future rewards influence
the agent’s decisions. Depending on γ, the op-
timal Q-values for the same environment can
take highly varying values, and can therefore be
viewed as different learning environments them-
selves. In practice, it is not necessary that an
agent learns the optimal Q-values exactly. As
the next action at step t is chosen according to
eq. (6), it is sufficient that the action with the
highest expected reward has the highest Q-value
for the sake of solving an environment presuming
a deterministic policy. In other words, for solving
an environment only the order of Q-values is im-
portant, and the task is to learn this correct or-
der by observing rewards from the environment
through interaction. As our goal in this work
is to solve certain environments with Q-learning,
learning the correct order of Q-values is sufficient
and we restrict our attention to this case through-
out our numerical studies.

Obviously, the tabular approach is intractable
for large state and action spaces. For this reason,
the Q-table was replaced in subsequent work by
a Q-function approximator which does not store
all Q-values individually [58, 59]. In the semi-
nal work [21], the authors use a NN as the Q-
function approximator which they call deep Q-
network (DQN) and the resulting algorithm the
DQN algorithm, and demonstrate that this al-
gorithm achieves human-level performance on a
number of arcade games. In this work, the agent
chooses actions based on an ε-greedy policy as de-
scribed above. Typically ε is chosen large in the
beginning and then decayed in subsequent itera-
tions, to ensure that the agent can sufficiently ex-
plore the environment at early stages of training
by being exposed to a variety of states. The au-
thors of [21] also utilize two other improvements
over previous approaches which we adopt: (i) ex-
perience replay : past transitions and their out-
comes are stored in a memory, and the batches
of these transitions that are used to compute pa-
rameter updates are sampled at random from this
memory to remove temporal correlations between
transitions, (ii) adding a second so-called target
network to compute the expected Q-values for
the update rule, where the target network has an
identical structure as the DQN, but is not trained
and only sporadically updated with a copy of
the parameters of the DQN to increase stability
during training. We refer to the original paper
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for further details on the necessity of these tech-
niques to stabilize training of the DQN algorithm.

The DQN is then trained almost in a super-
vised fashion, where the training data and la-
bels are generated by the DQN itself through
interaction with the environment. At each up-
date step, a batch B of previous transitions
(st, at, rt+1, st+1) is chosen from the replay mem-
ory. To perform a model update, we need to
compute max

a
Q(st+1, a). When we use a tar-

get network, this value is not computed by the
DQN, but by the target network Q̂. To make
training more efficient, in practice the Q-function
approximator is redefined as a function of a state
parametrized by θ, Qθ(s) = q, which returns a
vector of Q-values for all possible actions instead
of computing each Q(s, a) individually. We now
want to perform a supervised update ofQθ, where
the label is obtained by applying the update rule
in eq. (8) to the DQN’s output. To compute the
label for a state s that we have taken action a on
in the past, we take a copy of Qθ(s) which we call
qδ, and only the ith entry of qδ is altered where i
corresponds to the index of the action a, and all
other values remain unchanged. The estimated
maximum Q-value for the following state st+1 is
computed by Q̂θδ , and the update rule for the
i-th entry in qδ takes the following form

qδi = rt+1 + γ ·max
a

Q̂θδ(st+1, a), (8)

where θδ is a periodically updated copy of θ. The
loss function L is the mean squared error (MSE)
between q and qδ on a batch of sample transitions
B,

L(q, qδ) = 1
|B|

∑
b∈B

(qb − qδb)
2. (9)

Note that because qδ is a copy of q where only
the i-th element is altered via the update rule in
eq. (8), the difference between all other entries
in those two vectors is zero. As Q-values are de-
fined in terms of (s, a)-pairs, this approach does
not naturally apply to environments with contin-
uous action spaces. In this case, the continuous
action space has to be binned into a discrete rep-
resentation.

3 Quantum Q-learning
In this work, we adapt the DQN algorithm to use
a PQC as its Q-function approximator instead of
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Ry

Ry
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Figure 1: PQC architecture used in this work. Each layer
consists of a parametrized rotation along the Y and Z
axes on each qubit, and a daisy chain of CZ gates. The
green boxes correspond to data encoding gates that en-
code data as parameters of X rotations. When data re-
uploading is used, the whole circuit pictured is repeated
in each layer, without data re-uploading only the varia-
tional part without the initial X rotations is repeated.

a NN. For this, we use a hardware-efficient ansatz
[60] as shown in fig. 1. This ansatz is known to be
highly expressive, and is susceptible to the barren
plateau phenomenon for a large number of qubits
and layers, although this is not an issue for the
small state and action spaces we consider here.
All other aspects of the Q-learning algorithm de-
scribed in section 2.2 stay the same: we use a
target network, an ε-greedy policy to determine
the agent’s next action, and experience replay to
draw samples for training the Q-network PQC.
Our Q-network PQC is then Uθ(s) parametrized
by θ and the target network PQC is Ûθδ(s), where
θδ is a snapshot of the parameters θ which is
taken after fixed intervals of episodes δ and the
circuit is otherwise identical to that of Uθ(s). We
now explain how environment states are encoded
into our quantum model, and how measurements
are performed to obtain Q-values.

3.1 Encoding environment states

Depending on the state space of the environment,
we distinguish between two different types of en-
coding in this work:
Discrete state space: Discrete states are

mapped to bitstrings and then input into the
model, where on an all-zero state the bits cor-
responding to ones in the input state are flipped.
Continuous state space: For continuous input

states, we scale each component x of an input
state vector x to x′ = arctan(x) ∈ [−π/2, π/2]
and then perform a variational encoding, which
consists of rotations in the X direction by the
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angles x′.
As shown in [48], when data is encoded into a

PQC by local rotation gates along theX-axis, the
PQC can only model simple sine functions of its
input. To further increase the expressivity of the
circuit, the data encoding can be repeated in two
ways: either in parallel by increasing the number
of qubits and duplicating the data encoding on
them, or in sequence in an alternating fashion
with the variational layers of the circuit. The
latter is also referred to as data re-uploading in
[51]. Where needed, we will introduce data re-
uploading to our model in section 5.

The formalism introduced in [48] establishes a
connection between PQCs and partial Fourier se-
ries by showing that the functions a given PQC
can model can be represented as a Fourier series,
where the accessible frequency spectrum depends
on the eigenvalues of the data encoding gates, and
the coefficients depend on the architecture of the
variational part of the PQC and the observable
that defines the readout operation. They show
that in models as ours, where data is encoded in
form of Pauli rotations, only Fourier series up to
a certain degree can be learned, where the degree
depends on the number of times the encoding gate
is repeated. Additionally, the scale of the input
data must match the scale of the frequencies of
the modeled function for the model to fit the tar-
get function exactly. Making the scaling of input
data itself trainable to increase a PQC’s expres-
sivity has been suggested in [51, 20], which we
will also use by introducing a weight wd on the
input data. The input value x′i then becomes:

x′i = arctan(xi · wdi) , (10)

where wdi is the weight for input xi. We will
illustrate the advantage of these enhanced data-
encoding strategies numerically in section 5.

3.2 Computing Q-values
The Q-values of our quantum agent are computed
as the expectation values of a PQC that is fed a
state s as

Q(s, a) = 〈0⊗n|U †θ(s)OaUθ(s) |0⊗n〉 , (11)

where Oa is an observable and n the number of
qubits, and our model outputs a vector includ-
ing Q-values for each possible Oa as described in

section 2.2. The type of measurements we per-
form to estimate Q-values will be described in
more detail in section 5 for each environment.
Before that, we want to highlight why the way Q-
values are read out from the PQC is an important
factor that determines the success at solving the
environment at hand. A key difference between
PQCs and NNs is that a PQC has a fixed range
of output defined by its measurements, while a
NN’s range of output values can change arbitrar-
ily during training depending on its weights and
activation function. To understand why this is
an important difference in a RL setting, we need
to recall that Q-values are an estimate of the ex-
pected return

Qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ

[
H−1∑
k=0

γkrt+k+1|st = s, at = a

]
.

This quantity is directly linked to the perfor-
mance of the agent in a given environment, so
the model needs to have the ability to match the
range of optimal Q-values in order to approxi-
mate the optimal Q-function. This means that
the observables in a PQC-based Q-learning agent
need to be chosen with care, and highly depend
on the specific environment. To provide a simple
example where an insufficient range prevents an
agent from solving an environment, consider tab-
ular learning in an environment that consists of
a single state s and two actions a1 and a2, where
the agent should learn to always pick a1. One
episode has a maximum length of H = 10 when
the agent picks a1 in each time step, and other-
wise terminates when the agents picks action a2.
We consider a modification where the values in
the Q-table are capped at 1, i.e., Q-values can
not become larger than one, and both Q-values
are initialized at zero. The environment is such
that the reward for each action is 1 and the Q-
value corresponding to the optimal action is > 1.
For simplicity we set α = 1 and γ = 1, which
gives us an optimal value Q∗(s, a1) = 10. We
now perform an update on both Q-values accord-
ing to the update rule in eq. (7),

Q(st, at)← rt+1 + argmaxaQ(st+1, a).

For action a2, the transition from s leads to
episode termination, so the update rule yields
Q(s, a2) = rt+1 = 1. For action a1, we get
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Q(s, a1) = 2, however, due to the capped Q-table,
we also get Q(s, a1) = 1 for this state-action pair.
We see that after a single update according to this
update rule, both Q-values will be one and due to
the capped range of the Q-table the Q-values are
already saturated. No further update can change
the Q-values, which means that the agent can do
no better than random guessing hereafter. This
simple example illustrates why it is essential in a
tabular Q-learning setting that the range of val-
ues in the Q-table accommodates the magnitude
of optimal Q-values. Updates in the function ap-
proximation case like in the gradient-based DQN
algorithm are more complex due to the regression
task that the agent solves to perform parameter
updates, however, a similar saturation can still
occur as the update rule for Q-values is the same
(see eq. (8)).

We have seen that it is crucial for a PQC-
based Q-learning agent to have an output range
that matches that of the optimal Q-values that
it seeks to approximate. There are two ways to
approach this issue: (i) multiply PQC outputs
by a fixed factor to increase their range in a way
that accommodates the theoretical maximum Q-
value, (ii) make the output range itself a train-
able model parameter. Multiplying the outputs
of the PQC by a fixed factor increases the range
of output values, but at the cost of potentially
being close to the estimated maximum from the
beginning, which makes this approach more sen-
sitive to randomness in model parameter initial-
ization. In particular, as Q-values are initialized
randomly depending on the initial parameters of
the PQC, the Q-values for actions of a specific
state might have large differences. Considering
that the reward which controls the magnitude of
change given by the Q-value updates in eq. (8) is
comparatively small and actions are picked based
on the argmax policy argmaxaQ(s, a), it may take
a long time before subsequent updates of Q-values
will lead to the agent picking the right actions.
Even if we consider models that are initialized
such that all Q-values are close to zero in the
beginning, the actual changes in the rotation an-
gles that the PQC needs to perform for Q-values
of large ranges can become very small. Especially
on NISQ devices, these changes might be imprac-
tically small to be reliably performed and mea-
sured on hardware. For these reasons, we focus
on option (ii). We add a trainable weight wo ∈ R

to each readout operation, so that the output Q-
value Q(s, a) becomes

Q(s, a) = 〈0⊗n|Uθ(s)†OaUθ(s) |0⊗n〉 · woa , (12)

and each action has a separate weight woa . We
make the weights multiplicative in analogy to
weights in a NN. This gives the model the pos-
sibility to flexibly increase the magnitude of Q-
values to match the given environment. Notably,
the number of actions in an environment is usu-
ally small compared to the number of parameters
in the model, so adding one extra weight corre-
sponding to each action does not designate a large
overhead. In section 5.2, we numerically show
that the approach of using a trainable weight
on the output value outperforms multiplying the
model output by a fixed factor that is motivated
by the range of optimal Q-values.

4 Separation between quantum and
classical Q-learning in restricted envi-
ronments
In this section, we make formal statements about
a separation between quantum and classical mod-
els for Q-learning in a restricted family of environ-
ments. These statements are based on recent re-
sults in supervised [61] and policy gradient based
reinforcement learning [20]. The latter work con-
structs families of environments that are proven
to be hard for any classical learner, but can be
solved in polynomial time by a quantum learner
in a policy learning setting. Learning policies is
closely related to learning Q-values, however, Q-
values contain more information about the envi-
ronment per definition as they cover the whole
state-action space. This means that it is not
straightforward to generalize the results from [20]
to a Q-learning setting. In this section, we will
show under which conditions optimal Q-values
can be inferred from optimal policies, so that
the separation results in [20] also apply to the
Q-learning case. The environments constructed
in [20] are based on the supervised learning task
introduced in [61], which are proven to be clas-
sically hard assuming the widely-believed hard-
ness of the discrete logarithm problem, but can
be solved by a quantum learner in polynomial
time. To understand how a separation in super-
vised learning can be generalized to a RL setting,
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it is important to state that any classification task
can be turned into an environment for RL. To do
this, rewards in the environment are assigned ac-
cording to the prediction the agent makes. First
examples of this were introduced in [62] for cases
where the environment allows quantum access to
its states. A classification task like the one pro-
posed in [61] can be turned into a RL task by
simply assigning a reward of 1 (-1) for a correct
(incorrect) classification, and defining an episode
as being presented with a set of training samples.
In this section, we will briefly revise the separa-
tion results for supervised learning given in [61]
and those for policy gradient RL given in [20],
before we move on to characterize the types of
environments that allow a generalization of the
results in [20] to a Q-learning setting.

4.1 A classification task based on the discrete
logarithm problem
The authors of [61] construct a classification task
that is intractable for any classical learner, but
can be solved by a quantum learner in polyno-
mial time. The classification task is based on the
discrete logarithm problem (DLP), and the sepa-
ration relies on the the quantum learner’s ability
to perform the algorithm provided by Shor in [63]
to solve the DLP efficiently.

Definition 1 (Discrete logarithm problem). Let
Z∗p = {1, 2, . . . , p− 1} be the cyclic multiplicative
group of integers modulo p for a large prime p,
and g a generator of this group. The DLP is
defined as computing logg x for an input x ∈ Z∗p.

It is widely believed that no classical algo-
rithm can solve the DLP efficiently, however, it is
proven that the algorithm provided by Shor can
solve DLP in poly(n) time for n = dlog2 pe [63].
Based on this, [61] construct a classification task
with a concept class C = {fs}s∈Z∗p and data points
defined over the data space X = Z∗p ⊆ {0, 1}n as

fs(x) =
{
+1, if logg x ∈ [s, s+ p−3

2 ]
−1, otherwise,

(13)

where each concept fs : Z∗p → {−1, 1} maps one
half of the elements in Z∗p to 1 and the other half
to−1, which yields a linearly separable set of data
points in log-space. A quantum learner can make
use of the algorithm from [63] to compute the

discrete logarithm and solve the resulting triv-
ial learning task. However, if a classical learner
could solve the above learning task this would
imply that there exists an efficient classical algo-
rithm that solves the DLP. This is contrary to the
widely believed conjecture that no efficient classi-
cal algorithm can solve the DLP, and [61] proves
that no classical learner can do better than ran-
dom guessing.

To connect these results to the RL setting,
it is useful to be a bit more precise and define
some terminology. The learning task is defined as
finding a decision rule f∗, which assigns a label
y ∈ {−1, 1} to data point x ∈ X 2. f∗ is learned
on a set of labeled examples S = {xi, yi}i=1,...,m
generated by the unknown decision rule, or con-
cept, f . An efficient learner needs to compute
f∗ in time polynomial in n that agrees with the
labeling given by f with high probability, or in
other words reaches a high test accuracy on un-
seen samples,

accf (f∗) = Pr
x∈X

[f(x) = f∗(x)]. (14)

The authors of [61] prove that no efficient classical
learner can achieve

accf (f∗) = 1
2 + 1

poly(n)

unless an efficient classical algorithm that solves
the DLP exists, while there exists a quantum
learner that achieves close to perfect accuracy
with high probability in polynomial time.

4.2 Learning optimal policies in environments
based on the DLP classification task
After stating the classification task based on the
DLP in the previous section, we now briefly re-
view how the authors of [20] construct families
of environments based on the DLP classification
task to transfer the separation results to RL.
They show that (i) solving these environments

2Note that we are adhering to the notation given in
[61], where the asterisk stands for the learned decision
rule and the function without an asterisk stands for the
decision rule we seek to learn. This is the opposite of the
notation used in Q-learning literature where Q∗ stands for
the optimal Q-values, which we have followed in previous
sections. The authors of [20] have also adopted the latter
notation in their paper to describe the DLP classification
task. We will stick to denoting the learned decision rule
with an asterisk in this section.
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is classically hard for any learner unless there ex-
ists an efficient classical algorithm that solves the
DLP, (ii) there exists a quantum learner that can
solve these environments in polynomial time. To
understand how the DLP classification task can
be used to construct a classically hard to solve RL
environment, it is important to note again that
any classification task can be trivially turned into
a RL task by letting each data point x ∈ X denote
a state in the environment, and giving rewards
to the agent depending on whether it correctly
assigns a state to its predefined label y. The re-
wards for the DLP classification task are 1 (−1)
for a correct (false) classification. While [61] are
interested in achieving a high test accuracy, in a
RL setting we want to find an agent with close-
to-optimal performance in the given environment.
The authors of [20] measure this performance in
terms of a value function Vπ(s) for policy π and
state s,

Vπ(s) = Eπ

[
H−1∑
t=0

γtrt|st = s

]
(15)

which is the expected reward for following policy
π for an episode of length H in state s. Based
on the DLP classification task from [61], the au-
thors of [20] define three different environments
that are classically hard to learn, where the value
function of each of these environments is closely
related to the accuracy in eq. (14) of the policy
on the classification task. This allows them to
get bounds on the value function as a function of
bounds on the accuracy. Roughly speaking, by
Theorem 1 of [61] no classical learner can achieve
performance better than that of random guess-
ing in poly(n) time on those environments, unless
an efficient classical algorithm to solve the DLP
exists. We will briefly explain the set-up of the
quantum learner in [20], before going into more
detail on one of the families of environments they
construct to show a separation between classical
and quantum learners for policy learning.

A RL agent can be trivially constructed from
the classifier in [61], which is based on a classi-
cal support vector machine (SVM) that takes the
samples that have been “decrypted" by a quan-
tum feature map as an input. (This type of classi-
fier is also referred to as an implicit SVM). How-
ever, to get a learner that more closely matches
the parametrized training of a quantum learner
done in [20], they use a model where the fea-

ture embedding and classification task are both
solved by a PQC. This method is referred to as
an explicit SVM. The explicit SVM comprises
a feature-encoding unitary U(x) applied on the
all zero state, which they refer to as |φ(x)〉 =
U(x) |0⊗n〉, a variational part V (θ) with param-
eters θ, and an observable O. The feature-
encoding unitary for the DLP task is the same
as used in [61] so that feature states take the fol-
lowing form for k = n − t logn for a constant t
related to noisy classification (we refer the reader
to [20] for a detailed description of classification
under noise),

|φ(x)〉 = 1√
2k

2k−1∑
i=0
|x · gi〉 . (16)

These states can be efficiently prepared on a
fault-tolerant quantum computer by a circuit that
uses the algorithm proposed by Shor in [63] as a
subroutine. It was proven in [61] that for all con-
cepts fs the data points with labels 1 and −1,
respectively, can be separated by a hyperplane
with a large margin, and that this hyperplane al-
ways exists. The learning task of the PQC V (θ)
is then to find this hyperplane. The hyperplanes
are normal to states of the form

|φs′〉 = 1√
(p− 1)/2

(p−3)/2∑
i=0

|gs′+i〉 , (17)

for s′ ∈ Z∗p. A classifier hs′(x) for these data
points can then be defined as

hs′(x) =
{
1, if | 〈φ(x)|φs′〉 |2/∆ ≥ 1/2
−1, otherwise,

(18)

where ∆ = 2k+1
p−1 is the largest value the inner

product | 〈φ(x)|φs′〉 |2 takes and is used to renor-
malize it to [0, 1]. The variational circuit is de-
fined as V (θ) = V̂ (s′) which is similar in imple-
mentation to U(xi) with xi = gs

′ and k ≈ n/2,
and a measurement operator O = |0⊗n〉 〈0⊗n|.

The simplest way of turning the DLP classifi-
cation task into an environment is to define one
episode as the agent being in a randomly cho-
sen state corresponding to a training sample, per-
forming an action which assigns the predicted la-
bel, and giving a reward of 1 (-1) for a correct
(incorrect) classification. This family of environ-
ments is referred to as SL-DLP in [20]. While the
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family of SL-DLP environments is a straightfor-
ward way to generalize the results from [61] to
policy learning, it lacks the characteristics typ-
ically associated with RL, namely a temporal
structure in the state transitions, such that these
depend on the actions taken by the agent. To
construct a family of environments based on the
DLP which includes this kind of structure, [20]
introduce the family of Cliffwalk-DLP environ-
ments, inspired by the textbook Cliffwalk envi-
ronment from [54]. Here, the goal is still to as-
sign correct labels to given states, but now these
states follow a randomly assigned but fixed order.
The agent has to “walk along the edge of a cliff",
where this edge is represented by the sequence
of ordered states the environment takes. A cor-
rect classification leads to the next state in the
sequence, while an incorrect classification leads
to “falling off the cliff" and immediate episode
termination. The authors of [20] show that the
quantum learnability results of the SL-DLP en-
vironment also hold for the family of Cliffwalk-
DLP environments. In the following section we
will generalize these results to Q-values by giving
a definition of the types of environments where
knowledge of an optimal policy lets us infer opti-
mal Q-values.

4.3 Estimating optimal Q-values from optimal
policies

In section 4.2, we revised how [20] construct an
efficient quantum agent that can achieve close-to-
optimal policies in families of environments based
on the DLP. Now, we turn to generalizing their
results to the Q-learning setting. The classical
hardness of the environment still holds irrespec-
tive of the learner that is used. The remaining
question is now whether there exists an efficient
algorithm to obtain optimal Q-values, given we
have access to an optimal policy. Concretely, our
goal is to compute optimal Q-values Q∗(s, a) for
state-action pairs from an environment, where s
is given by the environment and a is determined
by the optimal policy.

One could imagine that Q∗(s, a) can be easily
estimated using Monte Carlo sampling since the
definition involves only the use of the optimal pol-
icy after the move (s, a) (cf. eq. (4)). However,
in general it is not possible for an agent to get to
arbitrary states s in poly time. We circumvent
this problem by considering special cases of en-

vironments that are classically hard, where there
are only two actions {a, a′}, and where the ana-
lytic values of Q∗(s, a) and Q∗(s, a′) are known.
The only unknown is which action a or a′ is the
optimal one. In this case it is clear that access to
the optimal policy resolves the question.

As an example of such an environment, con-
sider the SL-DLP family of environments from
[20]. In each episode, the agent needs to classify
one random sample from a set of samples cor-
responding to the DLP classification task from
section 4.1, where a correct (incorrect) classifica-
tion yields a reward of 1 (-1). If we set γ = 0,
the two possible Q-values for a given state and
the two possible actions are simply the rewards
corresponding to the result of the classification.
To get the Q-value Q∗(s, a), we query the pol-
icy π∗(a|s) for the optimal action and assign the
reward for a correct classification to the corre-
sponding Q-value. (Note that we can also directly
infer Q∗(s, a′) for the wrong action a′ from this,
as there are only two distinct Q-values.) This
can also be trivially extended to episodes with a
horizon greater than one and γ > 0. After query-
ing the policy for the optimal action given the
initial state of the episode, the expected return is
computed directly assuming optimal actions until
the end of the episode is reached. I.e., we simply
compute

Q∗(st, at) = Eπ∗

[
H−1∑
k=0

γkrt+k+1|st = s, at = a

]

for at given by the optimal policy, where all re-
wards are one from time step t onward. (For more
details on settings with longer horizon and a dis-
count factor larger than zero, and an analytic ex-
pression of the Q-values in these cases, see [20]).

In more general cases, the issue of approxima-
tion reduces to the problem of reaching the de-
sired state s efficiently. When this is possible (i.e.,
it is possible to construct environments which al-
low this without becoming easy to learn), then so
is estimating Q-values given an optimal policy.
Note that for all of the above, the same caveat
as in [20] applies, namely that this method of
obtaining optimal Q-values does not resemble Q-
learning in the sense that we use a tabular or
DQN-type approach as shown in section 2.2, and
it is still an open question whether a rigorous
quantum advantage can be shown in these set-
tings for either policy-based RL or Q-learning.
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Figure 2: Gym environments solved by the quantum
model. a) Frozen Lake environment, where an agent
needs to learn to navigate from the top left of a grid to
retrieve the Frisbee at the bottom right without falling
into any of the holes (dark squares), b) Cart Pole envi-
ronment, which consists of learning to balance a pole on
a cart which moves left and right on a frictionless track.

5 Numerical results
In this section, we present results for our PQC
model on two benchmark RL tasks from the Ope-
nAI Gym [50], Frozen Lake v0 [64] and Cart Pole
v0 [49] (see fig. 2). We ran an extensive hy-
perparameter search for both environments, and
present our results for the best sets of hyperpa-
rameters. A detailed description of the hyperpa-
rameters we tuned and their best values can be
found in appendix B. Our experiments were run
with TensorFlow Quantum [65] and Cirq [66], the
full code can be found on Github [53].

5.1 Frozen Lake
The Frozen Lake (FL) environment serves as an
example for environments with a simple, discrete
state space and with a reward structure that al-
lows us to use an agent which performs measure-
ments in the Z-basis to compute Q-values without
the need for trainable weights to scale the out-
put range. It consists of a 4x4 grid representing
a frozen surface, where the agent can choose to
move one step up, down, left or right. The goal
is to cross the lake from the top left corner to the
bottom right corner where the goal is located.
However, some of the grid positions correspond
to holes in the ice, and when the agent steps on
them the episode terminates and it has to start
again from the initial state. In each episode, the
agent is allowed to take a maximum number of
steps mmax. The episode terminates if one of
the following conditions is met: the agent per-

forms mmax = 200 steps, reaches the goal, or
falls into a hole. For each episode in which the
goal is reached the agent receives a reward of 1,
and a reward of 0 otherwise. The environment
is considered solved when the agent reaches the
goal for 100 contiguous episodes. (See [64] for full
environment specification.)

As the FL environment is discrete and the di-
mensions of the state and action spaces are small,
there is no true notion of generalization in this en-
vironment, as all distinct state-action pairs are
likely observed during training. On the other
hand, generalization to unseen state-action pairs
is one of the key reasons why function approx-
imation was introduced to Q-learning. For this
reason, environments like Frozen Lake are not a
natural fit for these types of algorithms and we
refrain from comparing to a classical function ap-
proximator. Note that we also refrain from com-
paring to the tabular approach, as this is (i) guar-
anteed to converge and (ii) not interesting beyond
environments with very limited state and action
spaces. However, this environment is interesting
from another perspective: there are only 64 Q-
values which we can compute exactly, and there-
fore we can directly compare the Q-values learned
by our model to the optimal Q-values Q∗, which
is not possible for the continuous-state Cart Pole
environment that we study in section 5.2. We
show the difference between our agents’ Q-values
and the optimal Q-values during the course of
training in fig. 3 b). Additionally, the FL en-
vironment serves as a nice example for environ-
ments where a PQC with simple measurements
in the Z-basis can be used to solve a RL task,
without requiring additional post-processing, as
we describe below.

The FL environment has 16 states (one for
each square on the grid) of which four are holes
(marked as darker squares in fig. 2 a), and 4 ac-
tions (top, down, left, right). We encode each
position on the grid as one of the computational
basis states of a 4-qubit system, without use of
trainable input data weights or data re-uploading.
The optimal Q-values for each state-action pair
can be computed as Q∗(s, a) = γβ (cf. eq. (4)),
where β is the number of steps following the
shortest path to the goal from the state s′ that
the agent is in after the transition (s, a). We will
now motivate our choice of observables for the FL
agent by studying the range the optimal Q-values
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Figure 3: Agents with varying depth playing the Frozen Lake environment, and their closeness to the optimal Q-
values. The environment is solved when the agent reaches the goal (receives a score of 1) for 100 contiguous episodes.
a) Average score over 10 agents for circuits of depth 5, 10, and 15, respectively. All agents manage to solve the
environment, higher circuit depth leads to lower time to convergence. Shaded area shows standard deviation from
the mean. b) Mean absolute error between agents’ Q-values and the optimal Q-values Q∗ for all (s, a) pairs over
time steps in episodes, where one time step corresponds to one transition in the environment. Shaded region shows
standard error of the mean.

can take. Note that these optimal Q-values are
defined for the tabular case only, and serve as a
reference for the Q-values we want our Q-function
approximator to model. We know that only one
transition, that from state 14 to the goal state
15, is rewarded. This corresponds to a Q-value
Q∗(14, R) = γ. As the only other state adjacent
to the goal (state 11) is a hole, no other transi-
tion in this environment is rewarded. Through
the recursive Q-value update rule (see eq. (7)),
all other Q-values depend on Q∗(14, R), and are
smaller due to the discount factor and the zero
reward of all other transitions. In case of a func-
tion approximator, the Q-values may not be the
same as the optimal values, but the relationship
between Q(14, R) and all other Q-values still ap-
plies as the update rule in eq. (7) changes values
according to the observed reward and discounted
expected reward. That is, if the function approx-
imator outputs values that match the range of
optimal Q-values and is not fundamentally lim-
ited in the updates that can be performed to it,
the relationship above can be replicated. This
means that we have an upper bound on the range
of Q-values that we want to model which only
depends on γ ≤ 1 and stays constant over all
episodes. Therefore we do not expect that Q-
values need to become larger than γ for our agent

to solve the environment, and only become larger
in practice if the initialization of our model hap-
pens to yield higher values for some state-action
pairs. Motivated by this, we represent the Q-
values for the four actions as the expectation val-
ues of a measurement with the operator Zi for
each of the four qubits i ∈ {1, . . . , 4}, which we
scale to lie between [0, 1] instead of [−1, 1]. Note
that even when parameter initialization yields Q-
values higher than the largest optimal Q-value,
they will still be close to this value as both opti-
mal Q-values and those of our model are upper-
bounded by 1. Figure 3 a) shows the average
scores of ten agents, each configuration trained
with a circuit depth of 5, 10, and 15 layers, re-
spectively. All agents manage to solve the envi-
ronment, and the time to convergence decreases
as the number of layers increases. Figure 3 b)
shows the averaged mean absolute error (MAE)
between the optimal Q-values and the Q-values
produced by the agents at each time step during
training. The agents trained on circuits of depth
15 reach the lowest values and converge earlier to
an average MAE that is roughly 0.05 lower than
that of the agents trained on a circuit of depth
5. This illustrates that as we increase the com-
plexity of the function approximator, the optimal
Q-values can be more accurately modelled. How-

Accepted in Quantum 2022-05-13, click title to verify. Published under CC-BY 4.0. 14



ever, the improvement between 10 and 15 layers
is relatively small compared to that between 5
and 10 layers, similar to a saturation in perfor-
mance w.r.t. number of parameters found in clas-
sical deep RL [52]. We will study this type of
scaling behaviour more in-depth and compare it
to that of NNs in section 5.2. At the same time,
we see that producing optimal Q-values is not
necessary to solve an environment, as we argue
in section 2.2. In the following section, we study
an environment where we are not able to com-
pute the optimal Q-values analytically due to the
continuous state space, but where we compare to
a classical approach to assess the quality of our
solution instead.

5.2 Cart Pole

In the previous section, we have seen that for an
environment with discrete state space and a re-
ward function that results in an upper bound of
Q-values of one, a simple PQC without enhanced
data encoding our readout strategies suffices to
solve the environment. Now we turn to an envi-
ronment that is slightly more complex: the con-
tinuous state space necessitates a more evolved
data encoding strategy, while the reward func-
tion results in Q-values that far exceed the range
of a Z-basis measurement. In the Cart Pole v0 en-
vironment, an agent needs to learn to balance a
pole upright on a cart that moves on a frictionless
track. The action space consists of two actions:
moving the cart left and right. Its state space is
continuous and consists of the following variables:
cart position, cart velocity, pole angle, and pole
velocity at the tip. The cart position is bounded
between ±2.4, where values outside of this range
mean leaving the space that the environment is
defined in and terminating the episode. The pole
angle is bounded between ±41.8°. The other two
variables can take infinite values, but are bounded
in practice by how episode termination is defined.
An episode terminates if the pole angle is outside
of ±12°, the cart position is outside of ±2.4, or
the agent reaches the maximum steps per episode
mmax = 200. For each step of the episode (in-
cluding the terminal step) the agent receives a
reward of one. At the beginning of each episode,
the four variables of the environment state are
randomly initialized in a stable state within the
range [-0.05, 0.05]. The episode score is computed
as the cumulative reward of all steps taken in the

episode. The environment is solved when the av-
erage score of the last 100 episodes is ≥ 195. (See
[49, 54] for full environment specification.)

As in section 5.1, we now motive our choice
of observables depending on how rewards are re-
ceived in this environment. For this, we recall
that a Q-value gives us the expected return for a
given state-action pair,

Qπ(s, a) =
∞∑
k=0

γkrt+k+1.

Cart Pole is an episodic environment with a maxi-
mum number of time stepsH = 200 in the version
of the environment we study here, so the Q-value
following optimal policy π∗ from a stable state s
is

Q∗(s, a) =
H−1∑
k=0

γk.

When following an arbitrary policy π and starting
in a random stable state of the environment, the
Q-value is

Qπ(s, a) =
h−1∑
k=0

γk,

where h ≤ H is the length of the episode which is
determined by the policy. The longer the agent
balances the pole, the higher h, with h = H
the maximum number of steps allowed in an
episode. When not considering random actions
taken by the ε-greedy policy, h depends solely
on the performance of the agent, which changes
as the agent gets better at balancing the pole.
Consequently, the Q-values we want to approxi-
mate are lower bounded by the minimum num-
ber of steps it takes to make the episode ter-
minate when always picking the wrong action
(i.e., the pole doesn’t immediately fall by taking
one false action alone), and upper bounded by
the Q-values assuming the optimal policy, where
h = H. We stress that this upper bound applies
to the optimal policy in one episode only, and
that in practice the upper bound of the magni-
tude of Q-values during training depends on the
performance of the agent as well as the number
of episodes played. Compared to the range of ex-
pectation values of computational basis measure-
ments these values can become very high, e.g. for
γ = 0.99 we get max Q∗(s, a) ≈ 86. Even when
considering that Q-values need not necessarily be
close to the optimal values to solve an environ-
ment, the range given by computational basis
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Figure 4: Comparison of data-encoding strategies for the optimal and one sub-optimal set of hyperparameters for
agents training in the Cart Pole environment. The environment is solved when an agent has an average reward ≥ 195
for the past 100 episodes, after which training is stopped. Results are averaged over 10 agents each, where each
agent consists of 5 layers of the circuit architecture depicted in fig. 1.

measurements is clearly too small compared to
the frequency with which rewards are given and
the number of episodes needed until convergence.

To give the agent the possibility to flexibly ad-
just it’s output range, we add trainable weights
on the output values as described in section 3.2.
The Q-values now take the form

Q(s, a) = 〈0
⊗4|Uθ(s)†OaUθ(s) |0⊗4〉+ 1

2 · woa ,
(19)

where Oa=L = Z1Z2 and Oa=R = Z3Z4 are
Pauli-ZZ operators on qubits (1, 2) and (3, 4) re-
spectively, corresponding to actions left and right.
To further improve performance, we also use data
re-uploading and add trainable weights on the in-
put values as described in section 3.1.

5.2.1 Comparison of data encoding and readout
strategies

To illustrate the effect of data re-uploading and
trainable weights on the input and output val-
ues, we perform an ablation study and assess the
impact of each of these enhancements on learn-
ing performance. To illustrate that our proposed
architecture (i) performs better overall, and (ii)
is less sensitive to changes in hyperparameters,
we show results for the best set of hyperparam-
eters that were found for a circuit of depth five,
as well as a sub-optimal set of hyperparameters

with which it is less easy for the agents to solve
the Cart Pole environment. The hyperparameters
we optimize over are: batch size, learning rates
and update frequencies of the Q-value-generating
model and the target model (cf. section 2.2) (see
appendix B for a detailed list of hyperparameter
settings). Otherwise, we only vary the hyperpa-
rameters of the enhancements we want to study.
The average performance of ten randomly initial-
ized agents for each configuration is presented in
fig. 4 and fig. 5. Once an agent solves the envi-
ronment, we stop training and in the figures show
the last encountered score for each agent in the
averages (i.e., to form averages over equal lengths
of episodes, we assume that each agent continues
scoring the same value as it did in its last inter-
action with the environment).

Figure 4 a) and b) show the effects of vary-
ing data encoding strategies. While both data
re-uploading and trainable weights on the in-
put values alone do not produce agents that
solve the environment in up to 5000 episodes
for both the best and sub-optimal set of hyper-
parameters, combining both of these enhance-
ments yields agents that solve Cart Pole in 3000
and 600 episodes at most on average, respec-
tively. The fact that agents with trainable in-
put weights and data re-uploading perform much
better than those without, emphasizes the impor-
tance of matching the PQC’s expressivity to the
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Figure 5: Comparison of different readout strategies of the same agents as in fig. 4 with the optimal and one
sub-optimal set of hyperparameters.

learning task at hand, as described in [48]. In
fig. 5 a) and b), we compare agents with varying
output ranges. Again, the green curves repre-
sent agents that are enhanced with a trainable
weight corresponding to each Q-value that lets
them flexibly adjust their output range during
training, and these agents succeed with both sets
of the remaining hyperparameters. The purple
curves show agents with a fixed range of outputs
of [0, 1], all of which stay at an extremely low
score during all 5000 episodes, as they fail to fit a
good Q-function approximation regardless of hy-
perparameters. The yellow curves show agents
with a fixed output range of maximally 90, which
is motivated by the range of optimal Q-values.
These agents also solve the environment on av-
erage, however, they are much more sensitive to
parameter initialization and the remaining hyper-
parameters than agents with a trainable output
range. The low final value of the yellow agents in
fig. 5 a) is due to their last interaction with the
environment achieving a relatively low score on
average.

As described above, the magnitude of Q-values
crucially depends on the agent’s ability to balance
the pole in each episode, and as a general trend it
will increase over the course of training for agents
that perform well. How large the final Q-values
of a solving agent are therefore also depends on
the number of episodes it requires until conver-
gence, so a range which is upper bounded by 90
presumes agents that converge relatively quickly.

Considering the range of final Q-values of agents
in the green curves, they can become as high as
approximately 176 for agents that converge late.
However, as we see for agents with a fixed out-
put range of [0, 180] (magenta curves), increasing
the range to accommodate agents that converge
later can lead to complete failure depending on
the remaining hyperparameters.

5.2.2 Comparison to the classical DQN algorithm

In addition to investigating the effects of varying
data encoding and readout strategies, we com-
pare the performance of our PQC model to that
of the standard DQN algorithm that uses a NN
as a function approximator. We do this for vary-
ing numbers of parameters for both the PQC and
NN, and study how performance changes as the
number of parameters increases. Note that be-
cause environments are strictly defined with a
fixed number of input state variables, we can-
not change the number of qubits arbitrarily for
a certain environment. Studying varying system
sizes in terms of qubits requires either artificially
adjusting the data encoding to fit a certain num-
ber of qubits, or studying completely different en-
vironments all together. Therefore we focus on
studying different model sizes in terms of num-
ber of parameters here. Additionally, the stan-
dard approach to increase model performance in
supervised and unsupervised learning in the clas-
sical and quantum literature alike is often to add
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Figure 6: Comparison of classical and quantum agents with varying numbers of parameters in the Cart Pole envi-
ronment. Each sub-figure contains results averaged over ten agents, and the vertical dashed line marks the average
number of episodes until solving the environment. We performed a hyperparameter optimization for each param-
eter configuration separately, and show the best setting for each. (See appendix B for all settings and a list of
hyperparameters that were searched over.)

more parameters. However, it has been shown
that this strategy does often not lead to success
in classical deep RL due to the instability of train-
ing larger networks [52]. Instead, it is much more
important to find good settings of hyperparame-
ters (including the random initialization of model
parameters), and it is preferable to use models
which are less sensitive to changes in these set-
tings.

To study whether this effect is also present
when the function approximator is a PQC, we
compare agents with up to 30 layers of the hard-
ware efficient ansatz depicted in fig. 1. All agents
use the enhancements which have shown to yield
good performance in fig. 4 and fig. 5, namely
data re-uploading and trainable input and output
weights. The other hyperparameters that yield
to the best performance for each depth are found
through an extensive hyperparameter search and
include the three different learning rates (Q-
network, input and output weights), batch size,
and update frequency of the Q-network and tar-
get network (see appendix B for detailed set-
tings). Figure 6 a) shows the average perfor-
mance over 10 quantum agents of each configura-
tion. We indeed observe that increasing the num-
ber of parameters is only efficient up to a certain
point, after which additional layers lead to slower
convergence. The best-performing configuration

on average is a PQC with 25 layers and 302 pa-
rameters, which takes 500 episodes on average to
solve the Cart Pole environment.

To investigate the performance of the classical
DQN algorithm which uses a NN as the function
approximator, we compare NNs with two hidden
layers with varying numbers of units. As sim-
ply increasing the depth of the NNs has not been
beneficial in a RL setting, it has been proposed
to use shallow networks with increased width in-
stead [52]. Therefore we keep the depth of our
NNs fixed at two, and vary the width by chang-
ing the number of units in each hidden layer. This
configuration is also inspired by well-performing
agents on the official OpenAi Gym leaderboard
[67].3 We make the same observation for the NNs
in fig. 6 b) as we did for the PQCs – increasing
the number of parameters does not necessarily
improve performance. The best-performing NN
is one with 20 units in each of its hidden layers,
which yields a network with 562 parameters over-
all that solves the Cart Pole environment in 250
episodes on average. Comparing the configura-
tions of PQC and NN that perform best on aver-

3However, we note that it is hard to find reliable bench-
marks on the Cart Pole environment in classical literature,
as it was already too small to be considered in state-of-the-
art deep learning when the DQN algorithm was introduced
in [21].
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age, the best NN configuration takes roughly half
as many episodes on average to solve Cart Pole
than the best PQC, and does this with roughly
twice as many parameters. Notably, the PQCs
seem to suffer more from an instability during
training as the number of parameters is increased
than the NNs do. We also show a comparison of
the best individual (not averaged) PQC and NN
agents in fig. 7. Here, the gap is relatively small:
the best PQC (5 layers, 62 parameters) takes 206
episodes to solve Cart Pole, while the best NN (2
hidden layers with 30 units each, 1142 parame-
ters) takes 186 episodes.
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Figure 7: Best PQC and NN from the configurations
we study in fig. 6. The best PQC (orange, 5 layers, 62
parameters) takes 20 episodes longer to solve Cart Pole
than the best NN (blue, two hidden layers with 30 units
each, 1142 parameters).

Finally, we note that unlike for the Frozen Lake
environment, it is not straightforward to compute
optimal Q-values for Cart Pole as its state space
is continuous. A trained model that is known to
implement the optimal policy (i.e., correct order-
ing of Q-values for all (s, a)-pairs) could be used
as a baseline to compare other models to, but
the magnitudes of Q-values can highly vary even
among agents that solve the environment so this
comparison will not provide much insight, which
is why we refrain from including it here. Nonethe-
less, we provide a visualization of the Q-values
learned by one of our best-performing quantum
models in appendix A. We observe that these Q-
values have a maximum value close to what we
expected from an optimal agent (i.e., 86).

6 Conclusion

In this work, we have proposed a quantum model
for deep Q-learning which can encode states of
environments with discrete and continuous state
spaces. We have illustrated the importance of
picking the observables of a quantum model such
that it can represent the range of optimal Q-
values that this algorithm should learn to approx-
imate. One crucial difference between PQCs and
classical methods based on NNs, namely the for-
mer’s restricted range of output values defined
by its measurement operators, was identified as
a major impediment to successfully perform Q-
learning in certain types of environments. Based
on the range of optimal Q-values, we illustrate
how an informed choice can be made for the
quantum model’s observables. We also introduce
trainable weights on the observables of our model
to achieve a flexible range of output values as
given by a NN and empirically show the bene-
fit of this strategy on the Cart Pole environment
by performing ablation studies. Our results show
that a trainable output range can lead to bet-
ter performance as well as lower sensitivity to
the choice of hyperparameters and random ini-
tialization of parameters of the model. We also
perform ablation studies on a number of data en-
coding techniques which enhance the expressiv-
ity of PQCs, namely data re-uploading [51] and
trainable weights on the input [51, 20]. We show
the benefit of combining both approaches in the
Cart Pole environment, where any of the two en-
coding strategies on its own does not suffice to
reliably solve the environment. Our results illus-
trate the importance of architectural choices for
QML models, especially for a RL algorithm as
Q-learning that has very specific demands on the
range of output values the model can produce.

Additionally, we investigate whether recent re-
sults in classical deep Q-learning also hold for
PQC-based Q-learning, namely that increasing
the number of parameters in a model might lead
to lower performance due to instability in train-
ing. To evaluate the performance of our model
compared to the classical approach where the
same DQN algorithm is used with a NN as the Q-
function approximator, we study the performance
of a number of classical and quantum models with
increasing numbers of parameters. Our results
confirm that PQC-based agents behave similarly
to their NN counterparts as the number of param-
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eters increases. Performance only increases up to
a certain point and then declines afterward. We
find that in both cases, the hyperparameter set-
tings (and in case of the PQC data encoding and
readout strategies) are the determining factors for
a model’s success much more than the number of
parameters. This is in contrast to previous results
for training PQCs on supervised and unsuper-
vised learning tasks, where additional layers are
likely to increase performance [40, 39, 68]. The
effect that an increased number of parameters
hampers performance in Q-learning also seems to
be more prominent in PQCs than in NNs, which
raises the question whether we need additional
mechanisms to increase learning stability in this
setting than the ones from classical literature.

In addition to our numerical studies, we also
investigated whether a recent proof of quantum
advantage for policy gradient RL agents [20] im-
plies a separation of classical and quantum Q-
learning agents as well. We show how optimal
Q-values for state-action pairs can be efficiently
computed given access to an optimal policy in the
SL-DLP family of environments from [20]. We
explain additional requirements on the structure
of states in a given environment that need to be
fulfilled to allow efficiently inferring optimal Q-
values from optimal policies in more general en-
vironments. However, the separation results in
[20] only guarantee that quantum learners can be
constructed in general, and not that the optimal
policy can be learned by policy gradient methods
directly. It is an interesting open question if a
separation between classical and quantum agents
can also be proven for learning algorithms that
use policy gradient or Q-value updates as shown
in eq. (7). This opens up the path to future inves-
tigations of possible quantum advantages of these
types of quantum agents in relevant settings.
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A Visualization of a learned Q-function
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Figure 8: Visualization of the approximate Q-function learned by a quantum Q-learning agent solving Cart Pole.
Due to the 4 dimensions of the state space in Cart Pole, we represent the Q-values associated to the actions “left”
(green) and “right” (blue) on 3 subspaces of the state space by fixing unrepresented dimensions to 0 in each plot. As
opposed to the analogue values (i.e., unnormalized policy) learned by policy-gradient PQC agents in this environment
[20], the approximate Q-values appear nicely-behaved, likely due to the stronger constraints that Q-learning has on
well-performing function approximations.

B Model hyperparameters
In the following, we give a detailed list of the hyperparameters for each configuration in fig. 3, fig. 4,
fig. 5, fig. 6 and fig. 7. The hyperparameters that we searched over for each model were the following
(see explanations of each hyperparameter in table 1):

• Frozen Lake v0 : update model, update target model, η

• Cart Pole v0, quantum model : batch size, update model, update target model, η, train wd, train
wo, ηwd , ηwo

• Cart Pole v0, classical model : number of units per layer, batch size, update model, update target
model, η
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Hyperparameter explanation

qubits number of qubits in circuit

layers number of layers as defined in fig. 1

γ discount factor for Q-learning

train wd train weights on the model input as defined in section 3.1

train wo train weights on the model output as defined in section 3.2

η model parameter learning rate

ηwd input weight learning rate

ηwo output weight learning rate

batch size number of samples shown to optimizer at each update

εinit initial value for ε-greedy policy

εdec decay of ε for ε-greedy policy

εmin minimal value of ε for ε-greedy policy

update model time steps after which model is updated

update target model time steps after which model parameters are copied to target model

size of replay memory size of memory for experience replay

data re-uploading use data re-uploading as defined in section 3.1

Table 1: Description of hyperparameters considered in this work

Frozen Lake v0, fig. 3 Cart Pole v0, optimal Cart Pole v0, sub-optimal

qubits 4 4 4

layers 5, 10, 15 5 5

γ 0.8 0.99 0.99

train wd no yes, no yes, no

train wo no yes, no yes, no

η 0.001 0.001 0.001

ηwd – 0.001 0.001

ηwo – 0.1 0.1

batch size 11 16 16

εinit 1 1 1

εdec 0.99 0.99 0.99

εmin 0.01 0.01 0.01

update model 5 1 10

update target model 10 1 30

size of replay memory 10000 10000 10000

data re-uploading no yes, no yes, no

Table 2: Hyperparameter settings of PQCs in fig. 3, fig. 4 and fig. 5
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layers 5 10 15 20 25 30

qubits 4 4 4 4 4 4

γ 0.99 0.99 0.99 0.99 0.99 0.99

train wd yes yes yes yes yes yes

train wo yes yes yes yes yes yes

η 0.001 0.001 0.001 0.001 0.001 0.001

ηwd 0.001 0.001 0.001 0.001 0.001 0.001

ηwo 0.1 0.1 0.1 0.1 0.1 0.1

batch size 16 64 32 16 64 16

εinit 1 1 1 1 1 1

εdec 0.99 0.99 0.99 0.99 0.99 0.99

εmin 0.01 0.01 0.01 0.01 0.01 0.01

update model 1 10 10 10 10 10

update target model 1 30 30 30 30 30

size of replay memory 10000 10000 10000 10000 10000 10000

data re-uploading yes yes yes yes yes yes

Table 3: Hyperparameter settings of PQCs in fig. 6 a)

units in hidden layers (10, 10) (15, 15) (20, 20) (24, 24) (30, 30) (64, 64)

γ 0.99 0.99 0.99 0.99 0.99 0.99

η 0.001 0.001 0.001 0.001 0.001 0.001

batch size 64 16 64 64 64 16

εinit 1 1 1 1 1 1

εdec 0.99 0.99 0.99 0.99 0.99 0.99

εmin 0.01 0.01 0.01 0.01 0.01 0.01

update model 1 1 1 1 1 1

update target model 1 1 1 1 1 1

size of replay memory 10000 10000 10000 10000 10000 10000

Table 4: Hyperparameter settings of NNs in fig. 6 b)
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