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SYSTEMATIC REVIEW AND META- ANALYSIS

Extreme Diversity of the Human Vascular 
Mesenchymal Cell Landscape
Laura E. Bruijn, BSc; Brendy E. W. M. van den Akker, BSc; Connie M. van Rhijn, BSc;  
Jaap F. Hamming, MD, PhD; Jan H. N. Lindeman , MD, PhD

BACKGROUND: Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic 
and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as “fibroblasts,” “myofibro-
blasts,” “smooth muscle cells,” “fibrocytes,” “mesangial cells,” and “pericytes.” However, a discriminative marker-based sub-
classification has to date not been established.

METHODS AND RESULTS: As a first effort toward a classification scheme, a systematic literature search was performed to 
identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular 
mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the ex-
pression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human 
atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific 
protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), 
contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin 
heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], 
non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion 
proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along 
classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indica-
tions were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of 
the human atherosclerotic process.

CONCLUSIONS: This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesen-
chymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus 
multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.

Key Words: atherosclerosis ■ fibroblasts ■ myofibroblasts ■ vascular smooth muscle cells

Vascular mesenchymal cells are critically involved 
in blood vessel development and homeostasis 
and are progressively acknowledged as key ef-

fector cells in vascular pathological conditions, such 
as atherosclerosis, aneurysmal disease, and neointima 
formation.1-3

In the context of vascular pathology, mesen-
chymal cells are generally subclassified by classic 
umbrella terms, such as “fibroblasts,” “myofibro-
blasts,” “smooth muscle cells” (SMCs),4 “fibrocytes,”5 

“mesangial cells,”6 and “pericytes.”7 This generic 
nomenclature is based on the process under inves-
tigation, their presumed function or specific anatom-
ical location, and/or their in vitro behavior.8,9 At this 
point, a discriminative consensus (sub)classification 
for vascular mesenchymal cells, let alone classifying 
marker sets required for mechanistic understanding, 
is needingly missing. In this light, and in the context 
of the emerging key roles for mesenchymal cells in 
human vascular disease, we considered a systematic 
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exploration of potential relevant class-specific marker 
sets.

To address this point, we performed a systematic 
literature search to identify candidate mesenchymal 
cell-specific markers, and evaluated the expression 
pattern and the expression dynamics of the identified 
markers in different stages of the human atheroscle-
rotic process.

METHODS
This study is based on a 2-step approach. First, we 
conducted a systematic literature search to map 
the reported markers for vascular mesenchymal cell 
subpopulation characterization and classification. 
Subsequently, we applied immunohistochemistry and 
immunofluorescence to evaluate the specificity and 
expression pattern of the identified markers in a rep-
resentative sample of early, intermediate, and (stabi-
lized) end stages of the human aortic atherosclerotic 
process (Virmani classification,10 respectively: adaptive 
intimal thickening [AIT], late fibroatheroma [LFA], and 
fibrocalcific plaque [FCP]) (Figure 1).

The authors declare that all supporting data are avail-
able within the article (and its online supplementary files).

Systematic Literature Review of 
Phenotypical Immunohistochemical 
Markers
A systematic literature review was conducted ac-
cording to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses guidelines. 
Studies were identified by searching PubMed and 
Embase. The search strategy (outlined in Data S1 
and S2 [Systematic Review Protocol]) was based on 
3 search themes, combined in the search by AND. 
The first theme was created for vascular remodeling 
and phenotypic heterogeneity. The second theme 
included descriptions of fibroblasts, myofibroblasts, 
and SMCs. The final, third theme consisted of terms 
for atherosclerosis, aortic aneurysmal disease, and 
fibrosis. Because the focus of the study was on the 
classic supportive mesenchymal vascular cell type, 
we considered aspects of osteogenic, adipogenic, 
and pericyte differentiation beyond the scope of the 
literature review.

The search was most recently updated in December 
2019. First, 2 authors (J.L. and L.B.) independently re-
viewed the titles and abstracts for eligibility. Thereafter, 
full-text articles were assessed.

In parallel to the above phenotypic markers, 
we mapped reported markers of a synthetic and 
proinflammatory phenotype for functional sub-
classification, as these functions are considered 
independent of the cell phenotype (ie, SMCs, my-
ofibroblasts, and fibroblasts can be synthetic and/
or inflammatory).

Human Atherosclerotic Tissue Sampling
Formalin-fixed, paraffin-embedded aortic wall samples 
were selected from the Vascular Tissue Repository 
at the Department of Vascular Surgery, Leiden, the 
Netherlands. These human perirenal aortic patches 
were obtained during clinical organ transplantation 

CLINICAL PERSPECTIVE

What Is New?
• A classification scheme for the vascular mesen-

chymal cell population is missing.
• This study provides a first framework for a sys-

tematic marker-based classification of human 
vascular mesenchymal cells, and implies an un-
derappreciated, extremely diverse spectrum of 
human mesenchymal cells within the aortic wall.

What Are the Clinical Implications?
• Mesenchymal cells play a central role in vascu-

lar pathological conditions, such as atheroscle-
rosis and abdominal aortic aneurysms.

• This systematic evaluation indicates an ex-
treme diverse and dynamic mesenchymal cell 
landscape, but also implies an unappreci-
ated cellular flexibility with indications for both 
Endothelial-to-Mesenchymal cell Transition 
as well as Leucocyte-to-Mesenchymal cell 
Transition (fibrocytes) as common events.

• This study provides a first step in a better un-
derstanding of the role of vascular mesenchy-
mal cells in human disease.

Nonstandard Abbreviations and Acronyms

AIT adaptive intimal thickening
FAP fibroblast activation protein
FCP fibrocalcific plaque
FSP-1 fibroblast-specific protein-1
HR healed rupture
LFA late fibroatheroma
P4HB prolyl 4-hydroxylase β
SM22α smooth muscle protein 22α
SMC smooth muscle cell
Smemb nonmuscle myosin heavy chain
SM-MHC smooth muscle myosin  

heavy chain
Thy-1 thymocyte differentiation antigen 1
αSMA α-smooth muscle actin
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with grafts derived from cadaveric donors. Histologic 
sections were prepared for each tissue block, sec-
tions were Movat pentachrome stained (for protocol, 
see Data S3), and the extent of atherosclerosis was 
classified (modified American Heart Association clas-
sification, according to Virmani et al10) The tissue block 
showing the highest degree of atherosclerosis was 
used as the reference block. For this evaluation, we 
randomly selected preclassified tissue blocks repre-
sentative for AIT, LFA, and FCP (Figure 1). All stainings 
were performed on sequential tissue sections from the 
selected tissue blocks.

To evaluate mesenchymal cell presence in respec-
tively progressive and stabilizing atherosclerotic le-
sions, representative sections of the unstable lesion 
thin cap fibroatheroma10 in addition to the stable lesion 

LFA and healed rupture (HR)10 were selected. HR was 
selected as well because of a suspected enrichment of 
the mesenchymal cell subtype fibrocytes.11

Immunohistochemical Staining on 
Atherosclerotic Lesions
Single-Labeling Immunohistochemistry

Consecutive (4-μm) sections were immunostained for 
the 28 immunohistochemistry markers (Table 1) iden-
tified in the literature review. All single stainings were 
performed by immunohistochemistry, because im-
munohistochemistry allows for direct clear overview, 
provides superior contextual information, and is not 
interfered by background staining (mainly caused 
by elastin) when assessed by immunofluorescence. 

Figure 1. Histologic overview (Movat pentachrome staining) of selected representative sections of adaptive intimal 
thickening (AIT), late fibroatheroma (LFA), and fibrotic calcified plaque (FCP).
A, AIT is characterized by a thickening intima, consisting of smooth muscle cells (SMCs) in a proteoglycan-rich matrix (B) and a normal 
media and adventitia (C). D, LFA is characterized by a necrotic core of cellular debris and cholesterol crystals that is covered by a 
multilayered fibrous cap, consisting of SMCs in a collagenous proteoglycan-rich matrix with infiltration of inflammatory cells (F). E, 
Shoulder regions. G, FCP is characterized by extensive fibrosis, a condensated (former) necrotic core, and ample calcification (H) and 
neointimal formation (I). Legend to the Movat staining: red, SMCs/fibrin; violet, leukocytes; black, elastin; blue, proteoglycans/mucins; 
yellow, collagen. Various shades of green reflect colocalization of collagen (yellow) and proteoglycans (blue).

A (7.4x) Intima

B (45x) C (45x)

200μm

100μm 100μm
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Heat-induced (Tris/EDTA, pH 9.2/citrate, pH 6) or en-
zyme-induced antigen retrieval was performed if re-
quired (Table 1).

All primary antibodies were diluted in 1% BSA/PBS 
and were incubated overnight at 4°C. Endogenous 
peroxidase activity was blocked with a 20-minute incu-
bation of 0.3% hydrogen peroxide. The Envision/3,3’-
diaminobenzidine (Dako, Glostrup, Denmark) system 
was used for visualization. Nuclei were counterstained 
by Mayer hematoxylin (Merck Millipore, Amsterdam, 
the Netherlands). Slides stained for phosphorylated 
nuclear factor-κB were washed with Triton X-100 
(Abcam, Cambridge, UK) 0.1% in PBS for 10 minutes. 
All stainings for a given antibody were processed in a 
single batch.

Imaging of Immunohistochemistry Slides

Immunohistochemistry images were captured by 
means of a digital microscope (Philips IntelliSite 
Pathology Solution Ultra-Fast Scanner; Philips 
Eindhoven, the Netherlands).

Evaluation of Marker Expression on 
Atherosclerotic Tissue

For all markers, expression patterns were inventoried 
for 6 separate aspects of the aortic wall (see Figure S1 
for an outline): intima, inner media, middle media, outer 
media, adventitia, as well as at the level of the arteriole-
type (thick-walled) vasa vasorum and venule-type (thin-
walled) vasa vasorum in the adventitia. In addition, we 
evaluated the mesenchymal populations in the areas 
adjacent to shoulders of and covering (multilayered fi-
brous cap) the necrotic core of the LFA-type lesion. 
For the FCP lesion type, the cells in the newly formed 
intima overlying the fibrous lesion, rather than the rem-
nants of the former fibrous cap, were appreciated.

Scoring was performed by 2 observers using semi-
quantitative scoring estimates (ie, 0%, <10%, 10%–
50%, or >50% positivity) for each region.

Multilabeling Immunohistochemistry

Double-labeling stainings were primarily performed by 
immunohistochemistry, for the same reasons single 

E (40x)

IntimaD (9.9x)

F (40x)

100μm

200μm

100μm

Figure 1. Continued
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immunohistochemistry stainings were preferred over 
single immunofluorescence stainings.

Double-labeling immunohistochemistry stainings 
were performed by sequential single-labeling immuno-
histochemistry. A second heat-induced antigen retrieval 
after the first chromogen staining was used to inactivate 
the previous signal. All epitopes resisted the second 
heat retrieval. Vulcan red (10 minutes, dilution 1:50) and 
Ferangi blue (5 minutes, dilution 1:50; both from BioCare 
Medical, Pacheco, CA; both alkaline phosphatase enzy-
matic chromogens) were combined in the double stain-
ing because these chromogens provide optimal color 
separation and a clear colocalization signal (purple). 
Double-stained slides were not counterstained.

Immunofluorescence Staining
Multilabeling Immunofluorescence

Colocalization of >2 markers was visualized by im-
munofluorescence, as no triple chromogen panel 
could be established that provided adequate color 
differentiation.

All primary (Table 2) and Alexa Fluor secondary an-
tibodies (dilution 1:200; Thermofisher, Waltham, MA) 
were diluted in 1% PBS/BSA and incubated overnight 
at 4°C and 60 minutes at room temperature, respec-
tively. Negative controls were created by omitting the 
primary antibodies, and antigen stability was checked 
after the first heat retrieval.

In the triple-labeling immunofluorescence stainings, 
cluster of differentiation (CD) 45 staining was first per-
formed as a single staining: the CD45 antibody was 
incubated overnight and visualized using goat an-
ti-mouse (MACH2 AP-Polymer; Biocare Medical) as 
a secondary antibody (30 minutes incubation at room 
temperature) and visualized using Vulcan Fast Red 
(10  minutes, dilution 1:50; Biocare Medical) fluores-
cence. After a second heat retrieval, the other 2 anti-
bodies of different isotypes were incubated overnight 
and corresponding fluorescent-labelled seondary anti-
bodies were applied.

Slides were mounted using ProLong Gold with 
4′,6-diamidino-2-phenylindole antifade reagent 
(Thermofisher) and stored at 4°C until analysis. Vulcan 

G (9.3x) Intima

H (40x) I (40x)

200μm

100μm 100μm

Figure 1. Continued
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Red fluorescence was visualized using a Texas Red 
Filter (542–582 nm).

Imaging of Immunofluorescence Slides

Digital images were acquired using the Panoramic MIDI 
Digital Slide Scanner (3D HISTECH Ltd, Budapest, 
Hungary) and analyzed with CaseViewer software (3D 
HISTECH Ltd). Minor linear adjustments (brightness 
and contrast) were performed. Nonlinear adjustments 
were not performed.

Because (partial) overlapping cells may result in 
pseudocolocalization in widefield optical microscopy, 
the anticipated pseudocolocalization of CD31 and re-
spectively FSP-1 (fibroblast-specific protein-1)/thymo-
cyte differentiation antigen 1 (Thy-1)/FAP (fibroblast 
activation protein), as well as the anticipated genuine 
colocalization of CD45 and vimentin, was validated 
by confocal microscopy (Zeiss LSM 800 CLSM, 

Oberkochen, Germany). Image analysis was per-
formed with ZEN Lite (Zeiss).

RESULTS
Literature Review
Identification of Phenotypical 
Immunohistochemistry Markers

The search strategy identified 3246 articles after re-
moval of duplicates, 655 of which were considered 
of potential relevance (Figure  2 [Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses dia-
gram]). Potentially relevant articles mainly addressed 
SMC differentiation (n=559 articles), and to a lesser 
extent aspects of (myo)fibroblastic or mesenchymal 
differentiation (96 articles). The abstracts of these 
latter 96 articles were all assessed for potential rele-
vance. Given the large number of publications on SMC 

Figure 2. Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram for selection of articles on 
phenotypical mesenchymal markers.
SMC indicates smooth muscle cell.
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differentiation (n=559), it was decided for an alterna-
tive approach by focusing on all review articles for as-
sessment of the abstracts (n=69). Because the most 
recent review was published in March 2018, we addi-
tionally screened abstracts of articles published after 
January 2018 (n=44). On exclusion of articles deemed 
not relevant for this study, the abstract screening re-
sulted in 190 potentially relevant articles, of which 180 
full-text articles were included for the qualitative syn-
thesis. Motivation for noneligibility of full-text articles is 
provided in Table S1.
The identified markers were included for further evalu-
ation (Table 3)12-89 if at least 3 independent studies ref-
erenced them. Markers excluded in this evaluation are 
summarized in Table S2. All in all, this strategy yielded 
16 candidate markers (either lineage or differentiation 
specific), which are summarized in Table 3.

Cell Identity Markers

On the basis of the literature, identified markers were 
classified as (mesenchymal) lineage or (sub)class spe-
cific (ie, potentially discriminating between fibroblasts, 
myofibroblasts, or SMCs). The literature synopsis did 
not indicate a discriminatory marker(set) for myofibro-
blasts versus SMCs (Table 3), nor a single fibroblast-
specific marker.

In this context, it was decided to categorize the 
identified markers along the following lines: we first de-
fined a group of 4 markers that are reported as lineage 
specific (eg, vimentin) and a second group consisting 
of 3 markers associated with the principal force gen-
erating machinery (α-smooth muscle actin [αSMA], the 
2 smooth muscle myosin heavy chain [SM-MHC] iso-
forms [SM1 and SM2], and nonmuscle myosin heavy 
chain [Smemb]). This cluster may allow differentiation 
between contractile (expressed in both SMC-like and 
myofibroblastic classes) and noncontractile mesen-
chymal cells.

A third group constituted of 7 molecules that are 
accessory to the contractile machinery (eg, tropomyo-
sin). The final 2 markers (final fourth subset) are asso-
ciated with cell-cell and/or cell-matrix interactions (eg, 
vinculin).

Markers of Functional Status

The literature review for candidate functional mark-
ers (ie, proinflammatory and synthetic markers) in 
the context of vascular biology research identified 
222 full-text articles (Figure 3). Motivation for noneli-
gibility of the reviewed full-text articles is provided in 
Table S3. Again, a threshold of at least 3 independent 
references for each functional marker was adopted to 
include the marker for immunohistochemistry evalua-
tion (Tables S4 and S5).

On the basis of this search strategy, 8 synthetic and 
4 proinflammatory markers were selected for further 
evaluation (Table 4).90-128

Histological Validation
Interference by Rabbit Polyclonal Antibodies

A particular point of concern that emerged from the 
histological evaluation was an apparent interference 
when using rabbit polyclonal antibodies on forma-
lin-fixed, paraffin-embedded vessel wall samples. 
Interference was consistent for different sources and 
batches of isotype controls, and found for rabbit 
serum (Figure S2). In fact, all rabbit immunoglobulins 
in concentrations beyond 1 μg/mL produced a char-
acteristic staining pattern on the arterial wall samples. 
This phenomenon was rabbit IgG/serum specific. 
Consequently, we avoided the use of rabbit polyclonal 
antibodies requiring working dilutions of ≥1 μg/mL in 
this evaluation.

Vascular Distribution and Specificity

We validated the expression patterns and staining 
specificity of the phenotypical and functional cell mark-
ers identified in the literature review on the vessel wall 
samples from the biobank. All markers selected in the 
review process were stained (single staining) on con-
secutive slides of the reference tissue block. Results 
from the evaluation (summarized as semiquantitative 
scores for the different aspects of the arterial wall) are 
summarized in Figure 4.

Lineage (mesenchymal) markers
Vimentin, FSP-1/S100A4, Thy-1/CD90, and FAP were 
identified as mesenchymal lineage-specific markers 
(Figure 5A).
All 4 markers were diffusely expressed throughout 
the vessel wall and vasa vasorum in the early athero-
sclerotic (AIT) reference sample. However, a notable 
inconsistent expression was found for these markers in 
the media, with subsets of spindle-shaped cells being 
vimentin+ and FAP+, but negative for both FSP-1 and 
Thy-1, challenging Thy-1 and FSP-1 as generic mes-
enchymal lineage markers. Indeed, validation of this 
observation in triple immunofluorescence stainings 
of (Thy-1/FSP-1/FAP)/vimentin/αSMA showed that up 
to 10% of the spindle-shaped αSMA+/vimentin+ or 
αSMA+/FAP+ cells in the media were negative for both 
Thy-1 and FSP-1 (Figure S3).

This dissociation between vimentin and Thy-1 ex-
pression became even more pronounced in the more 
advanced atherosclerotic stages by an apparent in-
verse association between Thy-1 expression and dis-
ease progression, with a particularly low expression of 
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Thy-1 in the neointima. Further discrepancies were ob-
served for vimentin and FAP. Although medial vimentin 
expression remained stable in advanced-stage (LFA) 
atherosclerotic disease samples, FAP expression var-
ied (Figure S4).

For explorative purposes, we also evaluated vimentin 
and αSMA coexpression in the cap of progressive lesions 
(ie, LFA and the unstable progressive atherosclerotic 
lesion [thin cap fibroatheroma]), as well as a stabilized 
lesion type (HR) (Figure S5). The cap in LFA was rich in 
mesenchymal cells (elongated vimentin+ cells). Transition 
to a thin cap fibroatheroma was associated with a clear 
decrease in cap cell density. In both LFA and thin cap 
fibroatheroma, ≈80% of the vimentin+ cells were double 
vimentin+/αSMA+. Similarly, 80% of the vimentin+ cells in 
the cell-rich/proteoglycan-rich luminal granulation tissue 
associated with healing of a ruptured atherosclerotic le-
sion (HR) were double vimentin+/αSMA+.

On the basis of these observations, vimentin clas-
sified as the most inclusive lineage marker. However, 
we did observe a small population of spindle-shaped 
FAP+/vimentin– cells in the cap of LFA (Figure  S4.2), 
defying vimentin as an all-inclusive panmesenchymal 
marker.

Specificity of vimentin as a mesenchymal lineage 
marker was challenged by the diffuse presence of 

round, vimentin+ cells in the vicinity of the vasa vaso-
rum in the adventitia. Validation studies that included 
triple immunofluorescence staining for the panleuco-
cyte marker CD45, the macrophage marker CD68, 
and vimentin showed subsets of triple-positive cells 
in the adventitia (Figure  S6.1/2). This colocaliza-
tion was observed for different vimentin antibodies, 
and confirms the expression of vimentin in subsets 
of macrophages. Along similar lines, we identified 
(small) subsets CD45+/CD68+ and FSP-1+, Thy-1+, or 
FAP+ triple-positive cells in the adventitia, consistent 
with subsets of FSP-1+, Thy-1+, and FAP+ macro-
phages (Figure S6.3-5).

Moreover, indications were found for vimentin ex-
pression in subsets of endothelial cells. Endothelial 
cell-specific expression was confirmed by CD31/vi-
mentin double staining (Figure S7). Confocal micros-
copy characterized the apparent spatial associations 
between CD31 and FSP-1, Thy-1, and FAP as pseudo-
colocalization. Distinct, small populations of solitary vi-
mentin+/CD31+ and vimentin+/CD34+ were observed in 
the vicinity of the adventitial vasa vasorum (Figure S8).

A third nonclassic population of vimentin+ cells was 
observed in the granulation tissue of HR. Approximately 
10% of these spindle-shaped cells were double Vim+/
CD45+(Figure S9.1). Incidental (<5% of the population) 

Figure 3. Diagram for selection of articles on synthetic/proinflammatory markers.
SMC indicates smooth muscle cell; and LUMC, Leiden University Medical Center.

Relevant abstracts from
systematic search for

SMC/(M)FB
(n=190)Sc

re
en

in
g Relevant abstracts for

screening 
(n=48; of which

• Pro-inflammatory
phenotype (n=14)

• Synthetic phenotype
(n=34))

Full-text articles assessed for eligibility
(n=238)

Full-text articles excluded
(n=16), with reasons:

N=1: no full text available in 
LUMC

n=13: no protein markers for 
differentiation or proliferative/ 
synthetic features described

n=1: retracted publication
n=1: conference proceeding

El
ig

ib
ili

ty
In

cl
us

io
n

Studies included in qualitative synthesis
(n=222)

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 16, 2022



J Am Heart Assoc. 2020;9:e017094. DOI: 10.1161/JAHA.120.017094 14

Bruijn et al Diversity of Human Vascular Mesenchymal Panorama

double Vim+/CD45+ cells were also observed in the 
cap and neointima of LFA and FCP reference sections. 
Distinct (spindle-shaped and round) morphological fea-
tures may imply distinct subpopulations (Figure S9.2/3).

Contractile/noncontractile phenotype markers
αSMA, SM-MHC (isoforms SM1 and SM2), and 
Smemb (embryonic form of SM-MHC) are principle 
parts of the contractile machinery that is characteristic 
for SMCs and myofibroblasts (Figure 5B).

αSMA was expressed in virtually all spindle-shaped 
cells in the intima, media, and adventitia. In mesen-
chymal cells covering the vasa vasorum, αSMA was 
consistently expressed. Expression of the SM-MHC 
isoforms and Smemb was more variable: SM-MHC 
(SM1) expression was notably less in the middle section 

of the media than in the inner and outer segments 
of the media, and expression of the second isoform 
(SM2) was limited to the outer segment of the media. 
Smemb expression was more pronounced in the outer 
medial segment than in other medial segments. A dis-
criminatory expression profile was seen for SM-MHC/
Smemb expression in the vasa vasorum with parallel 
expression in the thick-walled arteriole-like vessels, but 
Smemb single positivity was found in the thin-walled 
venule-like vessels.

Progressive stages of atherosclerosis showed sta-
ble αSMA expression, whereas SM-MHC and Smemb 
expression were negatively and positively associated, 
respectively, with disease progression, potentially dis-
qualifying SM-MHC and Smemb as all-encompass-
ing contractile markers. Smemb expression has been 

Table 4. Overview of Selected Potential Functional Markers

Subdivision Antibody, Reference Function
Tested Immunohistochemistry 

Suitability

Synthetic 1. Collagen type I28,90,91 Provides tensile strength of the arterial wall110 
In pathologic conditions, collagen contributes to plaque 

growth and serves as a depot for atherogenic molecules111

Nonspecific staining

2. Procollagen type 125,92,93 Precursor of collagen I, the most abundant collagen in 
ECM112

Weak to no staining; in higher 
concentrations, nonspecific 

staining

3. Prolyl 4-hydroxylase 
β16,33,94

Involved in hydroxylation of prolyl residues in 
preprocollagen113,114

Works well

4. Osteopontin40,95,96 Mediates cell migration, adhesion, and survival of SMCs and 
endothelial cells and functions as Th1 cytokine115,116

Works well, but extracellular 
presence hampers cell 

phenotyping

5. Fibronectin25,48,97 ECM constituent with great diversity of cellular functions, 
including adhesion, cytoskeletal organization, migration, 

growth, and differentiation117

Works well, but extracellular 
presence hampers cell 

phenotyping

6. Laminin40,97,98 ECM constituent (base membrane) with great diversity 
of cellular functions, including adhesion, migration, 

differentiation, and proliferation118,119

Works well, but extracellular 
presence hampers cell 

phenotyping

7. CRBP-127,47,99 Regulation of uptake, intracellular transport, and metabolism 
of retinol120

No protein expression 
detectable in AAA and 
atherosclerotic tissue

8. PDGFR-α43,100,101 PDGF-α is a mitogen for mesenchymal cells and regulates 
proliferation, migration, and differentiation during embryonic 

development121,122

Nonspecific staining

Proinflammatory 9. NF-ĸB29,102,103 Pivotal mediator of inflammatory responses by inducing 
proinflammatory genes and regulating the survival, 

activation, and differentiation of innate immune cells and 
inflammatory T cells123

Low protein expression in vessel 
wall

10. Interleukin 6103-105 Proangiogenic and proinflammatory/anti-inflammatory 
cytokine, predominantly associated with plasma cells and 

macrophages124,125

Works well

11. MCP-1105-107 Regulates migration and infiltration of monocytes/
macrophages126

No protein expression 
detectable in AAA and 
atherosclerotic tissue

12. Interleukin 8104,108,109 Proangiogenic and proinflammatory cytokine, predominantly 
associated with lymphocytes and neutrophils; promotes 
neutrophil infiltration and activation, and can exert strong 

proangiogenic activities127,128

Works well

AAA, abdominal aortic aneurysm; CRBP-1 indicates cellular retinol-binding protein 1; ECM, extracellular membrane; MCP-1, monocyte chemoattractant protein 
1; NF-κB, nuclear factor-κB; PDGF-α, platelet-derived growth factor α; PDGFR-α, PDGF-α receptor; SMC, smooth muscle cell; and Th1, T-helper type 1 T-cell.
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linked to a synthetic phenotype. Indeed, most, but not 
all, of the Smemb+ cells in the cap and shoulder re-
gions expressed the synthetic marker prolyl 4-hydrox-
ylase β (P4HB) (Figure S10).

Auxiliary contractile markers
The third group of markers identified in the review con-
sisted of a group of auxiliary molecules to the contrac-
tile machinery (SM22α [smooth muscle protein 22α], 

Figure 4. Semiquantitative evaluation of single immunohistochemistry (IHC) stainings.
The presence of immunohistochemical markers is appreciated in 6 zones of the vessel wall: intima (I), inner media underlying lesion (M1), 
middle media (M2), outer media (M3), adventitia (Ad), thin-walled, venous-type vasa vasorum (VV thin), and thick-walled artery-type 
vasa vasorum (VV thick). In late fibroatheroma (LFA), the intima is divided in a central cap region (Cap) and shoulder regions (Sh); and in 
fibrotic calcified plaque (FCP), the neointima (Neo) overlaying the fibrous cap is considered. AIT indicates adaptive intimal thickening; 
FAP, fibroblast activation protein; FSP, fibroblast-specific protein; α-SMA, α-smooth muscle actin; SM22α, smooth muscle protein 22α; 
Smemb, nonmuscle myosin heavy chain; SM-MHC, smooth muscle myosin heavy chain; and Thy1, thymocyte differentiation antigen 1.
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Figure 5. Histological validation of the selected immunohistochemistry (IHC) markers.
A, Mesenchymal lineage IHC markers. Overview of staining patterns in the selected representative atherosclerotic sections of adaptive 
intimal thickening (AIT) (early), late fibroatheroma (LFA) (progressive), and fibrotic calcified plaque (FCP) (end stage). Close ups in LFA 
and FCP represent cap regions and neointima, respectively. B, Generic contractile IHC markers. Overview of staining patterns in the 
selected representative atherosclerotic sections of AIT (early), LFA (progressive), and FCP (end stage). Close ups in LFA and FCP 
represent cap regions and neointima, respectively. C, Accessory contractile IHC markers. Overview of staining patterns in the selected 
representative atherosclerotic sections of AIT (early), LFA (progressive), and FCP (end stage). Close ups in LFA and FCP represent 
cap regions and neointima, respectively. D, Focal adhesion IHC markers. Overview of staining patterns in the selected representative 
atherosclerotic sections of AIT (early), LFA (progressive), and FCP (end stage). Close ups in LFA and FCP represent cap regions and 
neointima, respectively. E, Interleukin 6 (IL-6) and interleukin 8 (IL-8) staining (activation markers). Overview of staining patterns in 
the selected representative atherosclerotic sections of AIT (early), LFA (progressive), and FCP (end stage). Close ups in LFA and FCP 
represent cap regions and neointima, respectively. F, Prolyl 4-hydroxylase β (P4HB) staining (synthetic marker). Overview of staining 
patterns in the selected representative atherosclerotic sections of AIT (early), LFA (progressive), and FCP (end stage). Close ups in LFA 
and FCP represent cap regions and neointima, respectively. CD indicates cluster of differentiation; FAP, fibroblast activation protein; 
FSP, fibroblast-specific protein; α-SMA, α-smooth muscle actin; SM22α, smooth muscle protein 22α; Smemb, nonmuscle myosin 
heavy chain; SM-MHC, smooth muscle myosin heavy chain; and Thy1, thymocyte differentiation antigen 1.
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h1-Calponin, h-Caldesmon, Telokin, Tropomyosin, 
Desmin, and Smoothelin) (Figure 5C).

Spatial expression of these markers was vari-
able: subsets of spindle-shaped cells in the intima, 
media, and vaso vasora were positive for SM22α and 
h-Caldesmon. Desmin and Smoothelin expression 
were both selectively expressed in the medioadventi-
tial border zone. Desmin was selectively expressed in 
arteriole-type vasa vasorum, whereas Smoothelin was 
specifically expressed in venule-type vasa vasorum.

Although h1-Calponin was expressed in virtually 
all spindle-shaped cells in the intima and media in the 
early stages of atherosclerosis, spatial expression of 

h1-Calponin was more pronounced in LFA, shown 
by h1-Calponin−/αSMA+ cells in the cap (Figure S11). 
Telokin and Tropomyosin were not fully contractile 
cell specific, as round triple Telokin+/vimentin+/CD45+ 
and Tropomyosin+/vimentin+/CD45+ cells were pres-
ent in the adventitia (Figure S12.1/2).

Heterogeneous responses were seen for the aux-
iliary contractile markers in the context of the ath-
erosclerotic disease progression: Smoothelin and 
Desmin expression related inversely to disease pro-
gression, whereas medial expression of h1-Calponin, 
h-Caldesmon, SM22α, Tropomyosin, and Telokin 
remained stable. H1-Calponin+, Tropomyosin+, 
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Telokin+, and SM22α+ were present in subsets of 
mesenchymal cells in the cap/shoulder, and in the 
neointima regions in LFA and FCP. A subpopulation 

(<10%) of spindle-shaped Tropomyosin+ αSMA– 
cells was observed in the cap of the LFA lesion 
(Figure S13).
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Focal adhesion proteins: vinculin and paxillin
The fourth cluster of markers included Vinculin and 
Paxillin, molecules involved in cell-cell and cell-matrix 
interactions (Figure 5D). In AIT, they were both abun-
dantly expressed in the intimal and outer medial zone 
and to a lesser extent in the inner and middle media. 
Although Paxillin expression was also observed 
in double CD45+/vimentin+ cells in the adventitia 
(Figure S12.3), Vinculin expression was absent in the 
adventitia. Although Paxillin expression remained sta-
ble during atherogenic progression, Vinculin expres-
sion decreased during disease progression.

Functional markers
Apart from their phenotypical identities, mesenchymal 
cells can be actively involved in matrix deposition and 
homeostasis (synthetic phenotype), and may adapt an 
inflammatory phenotype. We evaluated several mark-
ers for a synthetic or an inflammatory phenotype (re-
sults are summarized in Table 4).

On the basis of an evaluation of compatibility with im-
munohistochemistry-based subtyping, which involved 
a preferably intracellular staining pattern and availabil-
ity of antibodies compatible with paraffin-embedded 
material, the signal/background ratio, and specificity, it 
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was decided for P4HB and interleukin 6 (IL-6) or inter-
leukin 8 (IL-8; aka, CXCL8) as preferred markers for a 
secretory inflammatory phenotype. Motivations for re-
fraining from the other candidate markers are provided 
in Figure S14.

IL-6 and IL-8 expression was used to visualize in-
flammatory status of the mesenchymal cell popula-
tion (Figure 5E): in AIT, IL-6 and IL-8 expression was 
observed for infiltrating mesenchymal cells in the in-
tima, and in subsets of adventitial mesenchymal cells. 
IL-8 was expressed in the medioadventitial border as 
well. Increased medial IL-6 and IL-8 expression, and 
significant expression of IL-6 and IL-8 in the cap and 
shoulder regions, was observed during atherogenic 
progression.

Expression of these inflammatory markers in the 
mesenchymal cell population may reflect the inflam-
matory character of atherosclerosis, an aspect that is 
illustrated by macrophage and T-cell stainings on the 
reference sections (Figure S15).

P4HB, an enzyme involved in (pre) collagen pro-
cessing, was identified as preferred marker for a 
synthetic phenotype (Figure 5F). Expression of P4HB 
was confined to the intima and, with the exception of 
some vasa vasorum absent in the media and adven-
titia, in early-stage atherosclerosis. In more advanced 
stages of atherosclerosis, P4HB expression was ob-
served in the cap and shoulder regions, as well as 
in the adventitial venule-like and arteriole-like vasa 
vasorum. P4HB remained absent in the entire media.

On the basis of the tentative results of the review 
and the inventory, a proposed marker set was com-
piled for an explorative evaluation of the vascular mes-
enchymal landscape (Tables 5 and 6).

DISCUSSION
The vascular mesenchymal landscape appears to be 
highly dynamic, diverse, and complex. It extends far 
beyond the classic tripartite classification scheme of 
fibroblasts, myofibroblasts, and SMCs. Furthermore, 
there is no evidence for a clear separation along the 
lines of myofibroblast and SMC populations. These 
findings for the human context confirm and extend 
observations for murine models of atherosclerosis that 
imply an extremely diverse spectrum of mesenchymal 
cells within the vessel wall.129,130

Mesenchymal cells are the pivotal cellular compo-
nent of load-bearing structures and organs. They are 
the principle component of blood vessels, where they 
modulate vascular tone and maintain vascular integrity 
through deposition and maintenance of the extracellu-
lar matrix.131,132 As a consequence, mesenchymal cells 
are in the center of vascular pathological conditions, 
such as atherosclerosis and aneurysmal disease.133,134 
In fact, mesenchymal cell activation and migration in 
response to intimal lipoprotein deposition is the initiat-
ing step in the human atherosclerotic process.135 Data 
from murine atherosclerotic models suggest that SMCs 
contribute the majority of foam cells.136 In the more 

Table 6. Proposed Marker Set for Comprehensive Inventory of Mesenchymal Cell Populations in Human Vasculature

Phenotype Function Pathological Conditions

Generic mesenchymal: FAP+/
vimentin+/CD31−/CD45−

Contractile, generic*: αSMA+/
tropomyosin+

Synthetic: 
P4HB+

Proinflammatory: IL-6+/
IL-8+

EndoMT/stem cells: CD34+† 
CD31+

Noncontractile: αSMA−/
tropomyosin−

LeucoMT: CD45+

Construction scheme of proposed mesenchymal marker set selection. Suggestions for well-working antibodies are provided in Table 1. To acquire ≈99% 
inclusivity for mesenchymal cells, a dual-marker set of vimentin+/FAP+ (possibly as costaining, stained by the same chromogen) is needed. Likewise, for 
contractile mesenchymal cells, the dual-marker set αSMA/Tropomyosin reaches ≈99% inclusivity. CD indicates cluster of differentiation; EndoMT, Endothelial-
to-Mesenchymal cell Transition; FAP, fibroblast activation protein; IL-6, interleukin 6; IL-8, interleukin 8; LeucoMT, Leuccyte-to-Mesenchymal cell Transition; 
P4HB, prolyl 4-hydroxylase β; and αSMA, α-smooth muscle actin.

*For a list of accessory contractile and focal adhesion markers, see Table 3.
†OR,/ AND.

Table 5. Proposed Marker Set for Standard Inventory of Mesenchymal Cell Populations in Human Vasculature

Phenotype Function Pathological Conditions

Generic mesenchymal: 
vimentin+/CD31−/CD45−

Contractile, generic*: 
αSMA+

Synthetic: P4HB+ Proinflammatory: IL-6+/
IL-8+

EndoMT/stem cells: CD34+† 
CD31+

Noncontractile: αSMA− LeucoMT: CD45+

Construction scheme of proposed mesenchymal marker set selection. Suggestions for well-working antibodies are provided in Table  1. Vimentin, in a 
marker set with CD31−/CD45−, will identify ≈95% of mesenchymal cells. αSMA will identify ≈95% of contractile mesenchymal cells. CD indicates cluster of 
differentiation; EndoMT, Endothelial-to-Mesenchymal cell Transition; IL-6, interleukin 6; IL-8, interleukin 8; LeucoMT, Leuccyte-to-Mesenchymal cell Transition; 
P4HB, prolyl 4-hydroxylase β; and αSMA, α-smooth muscle actin.

*For a list of accessory contractile and focal adhesion markers, see Table 3.
†OR,/ AND.
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advanced stages of atherosclerotic disease, mesen-
chymal cells critically contribute to plaque stability, as 
well as to aspects such as vascular calcification and 
intimal hyperplasia.137,138 Indeed, an exploratory inven-
tory implied clear qualitative changes in the cap during 
plaque progression with a nadir in cell density in thin 
cap lesions, but recovery of mesenchymal cell density 
(elongated vimentin+ cells) in the cell-rich/matrix-rich 
granulation tissue of a healed rupture.

Along similar lines, mesenchymal cells are key play-
ers in both genetic (eg, thoracic aneurysms associated 
with bicuspid valve disease139) and degenerative aneu-
rysms, such as the abdominal aortic aneurysm.140 For 
the latter, impaired mesenchymal differentiation has 
been directly linked to aneurysm rupture.141

The vascular mesenchymal landscape is particu-
larly complex, not only as a reflection of the hetero-
geneous embryological origin of the vascular tree,142 
and the vascular layers,143 but also because SMCs are 
nonterminally differentiated,144,145 thus allowing a high 
degree of phenotypical plasticity. Moreover, it is now 
clear that processes, such as endothelial-to-mesen-
chymal transition,146 contribute to the vascular mesen-
chymal population.

Evidence was also found for the presence of fibro-
cytes. Ample elongated double CD45+/vimentin+ cells 
were observed in the process of cap healing following 
plaque rupture, and in the neointima overlaying a fi-
brous lesions. Moreover, we observed subpopulations 
of round and spindle-shaped double CD45+/vimentin+ 
cells in the cap of LFA. This observation is consistent 
with the (co)existence of distinct subpopulations of 
double CD45+/vimentin+ cells in the atherosclerotic 
process: spindle-shaped fibrocytes, which could be 
consistent with the phenomenon of leukocyte-mesen-
chymal transition,147 and the round cells possibly rep-
resenting a subclass of macrophages.148

The immunological field has benefited enormously 
from the introduction of the consensus classification 
of leukocyte subtypes, based on well-defined marker 
sets (CD markers); such classification system does not 
exist for mesenchymal cells. In a first attempt toward 
a mesenchymal cell classification for the vasculature, 
we inventoried candidate subtype markers through a 
literature review, and mapped the identified markers on 
a set human aorta specimens with successive stages 
of the atherosclerotic process.

The literature review identified 4 mesenchymal 
lineage markers: vimentin, FSP-1/S100A4, Thy-1/
CD90, and FAP. Validation stainings disqualified 
FSP-1/S100A4 and Thy-1/CD90 as universal mes-
enchymal lineage markers. Therefore, conclusions 
based on studies relying on these markers may be 
incomplete.

On the basis of its performance in this evaluation, 
and on the assumption that most spindle-shaped cells 

are mesenchymal cells, vimentin classified as the pre-
ferred mesenchymal lineage marker for the vasculature 
because this was the most inclusive marker for spin-
dle-shaped cells in the media. However, histological 
stainings identified small subsets of vimentin–/FAP+ 
cells in specific niches, suggesting that vimentin may 
not be fully inclusive and that a comprehensive appre-
ciation of the full mesenchymal spectrum may rely on 
the vimentin/FAP dual-marker set.

On the same token, vimentin expression was seen 
in subset(s) of vascular macrophages, as well as the 
endothelial lining of vasa vasorum, indicating that vi-
mentin is not fully mesenchymal cell specific, and that 
full specificity relies on costaining of exclusion mark-
ers (eg, CD31 and CD68). This study also identified 
solitary double vimentin+/CD31+ and vimentin+/CD34+ 
cells in the vicinity of adventitial vasa vasorum, possibly 
identifying vascular stem cells or cells in Endothelial-to-
Mesenchymal cell Transition.149

Next to the lineage markers, the review identified 
several subclass markers. Markers for contractile phe-
notype were subdivided in 2 closely related subgroups: 
principal constituents of the contractile apparatus 
(αSMA, SM-MHC, and Smemb) and its auxiliary mol-
ecules (ie, actin/myosin interaction regulating [h1-Cal-
ponin, Desmin, h-Caldesmon, Tropomyosin, Telokin, 
Smoothelin, and SM22α]).

αSMA classified as the most inclusive marker for 
presence of a professional contractile machinery. 
However, coverage of the full spectrum of contrac-
tile mesenchymal cells may require a dual-marker set 
of αSMA/Tropomyosin, as the histological evaluation 
identified small specific niches in the cap of LFA that 
contained spindle-shaped αSMA−/Tropomyosin+ 
cells.

Smemb has been linked to a synthetic phenotype. 
Indeed, a subset of elongated Smemb+ in the shoul-
der and cap of progressive atherosclerotic lesions also 
expressed P4HB. Yet, Smemb+/P4HB− elongated cells 
were abundantly present in the media of early-stage 
atherosclerosis. These observations characterize 
Smemb as a mere differentiation marker.

A considerable degree of coexpression was ob-
served for the auxiliary contractile markers in early 
atherosclerotic disease (AIT). However, increased het-
erogeneity was observed for the progressive stages. 
Clear spatial distribution of these subpopulations im-
plies some form of synchronization in the processes of 
subdifferentiation. Exploration of underlying molecular 
synchronization pathways and functional diversity of 
the subdifferentiated cells is beyond the scope of this 
inventorying exploration.

The literature review further identified the focal adhe-
sion proteins Vinculin and Paxillin, a binding partner of 
Vinculin,150 as markers of mesenchymal differentiation. 
These proteins do not associate with the contractile 
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apparatus, but are involved in environmental sens-
ing,151 and are abundantly expressed by mesenchymal 
cells in the normal vessel wall.152 We observed down-
regulation of Vinculin in spindle-shaped cells in the 
media during atherogenic progression, a phenomenon 
that has been interpreted as an indication of disturbed 
intermesenchymal or mesenchymal–extracellular ma-
trix interaction.153

The identification of functional markers set for 
histological phenotyping came with several techni-
cal challenges. The inflammatory spectrum is nota-
bly broad, thus interfering with the identification of a 
generic marker. Moreover, by virtue of the respon-
sive and adaptive nature of the inflammatory, pro-
tein expression can be extremely low and volatile, 
thus creating suboptimal conditions for immuno-
histochemistry. The cytokines/chemokines IL-6 and 
IL-8 (both essentially controlled by nuclear factor-κB 
activity) can be present as intracellular stores, and 
thus are well identifiable by immunohistochemistry 
staining. On this basis, we evaluated their potential 
as markers of (aspects of) an inflammatory pheno-
type. Indeed, IL-6 and IL-8 were both particularly up-
regulated in lesional intimas, such as the cap and 
shoulder regions of LFA. The dynamics of the innate 
and adaptive cellular immune response in human 
atherosclerosis have been extensively reported 
previously.154,155

Along similar lines, challenges exist for markers of 
a synthetic, secretory phenotype. Histological stain-
ing of deposited matrix products results in a profound 
extracellular staining pattern that interferes with the 
interpretation of intracellular stainings. Our evaluation 
identified the (pre)collagen processing enzyme PH4B 
as the optimal marker for mapping a synthetic pheno-
type in immunohistochemistry. In AIT, P4HB expres-
sion was confined to the intima, with the exception of 
some vasora, and showed upregulation during athero-
genic progression in lesional intimas, such as the cap 
and shoulder regions in LFA.

Because our literature review did not provide con-
clusive evidence with respect to a discriminatory 
marker set identifying the classic smooth muscle phe-
notype and myofibroblast phenotype, it was reasoned 
that the arteriolar smooth muscle cell of the vasa va-
sorum in the adventitia constitutes the best reference 
to the classic, functionally contractile SMC phenotype. 
On basis of this premise, we could not establish a 
clear separation along the lines of myofibroblastic and 
SMC populations based on the (auxillary) contractile 
markers.

As (myo)fibroblastic cells are characterized by their 
ability to synthesize collagen, P4HB was explored 
as discriminative factor. However, spindle-shaped 
P4HB+ cells covering the vasa vasorum were found 
as well.

This may suggest that myofibroblasts are rather cell 
states of fibroblastic cells or SMCs than a discrete cell 
type.

This evaluation of the mesenchymal landscape on 
the basis of a parallel evaluation of >25 markers indi-
cates a spatially diverse, highly dynamic, and hetero-
geneous panorama. The spatial diversity and extreme 
granularity, and the relative long protein half-lives for 
most markers, pose particular challenges to RNA-
based analysis, and to techniques relying on tissue 
dissection and clustering, such as single-cell analysis. 
Although immunohistochemistry has a clear advan-
tage to these challenges, this explorative study has 
some limitations as well. First, the study is based on 
the results of a literature review. As such, the evalua-
tion may be incomplete and findings from in vitro stud-
ies may not apply to the in vivo context (eg, we did not 
encounter a clear myofibroblast phenotype). Although 
specific cell isolation studies may add a further level 
of information about the in vivo context, studies on 
isolated cells were considered outside the scope of 
this inventory. Moreover, immunohistochemistry is 
semiqualitative at best, and heavily relies on the qual-
ity of the antibodies. Although quality control was per-
formed, the specificity of antibodies for formalin-fixed, 
paraffin-embedded samples cannot be guaranteed. 
For this reason, we performed validation studies with 
alternative antibodies for the potentially controversial 
positive findings of vimentin positivity in nonmesen-
chymal cell lineages (fibrocytes and macrophages). 
Other stainings were not validated by staining with a 
different antibody. However, decisions to refrain from 
a candidate marker were only taken when multiple 
clones produced negative or nonspecific staining. The 
impact of nonspecific staining on data interpretation 
is clearly illustrated by the consistently observed non-
specific staining pattern when using rabbit polyclonal 
antibodies in concentrations beyond 1 µg/mL (1:1000 
for most antibodies) on formalin-fixed, paraffin-em-
bedded vessel sections.

The purpose of the study was to establish a marker 
set for mapping the mesenchymal landscape. The 
extreme granularity and spatial variation were unex-
pected. The full extent of the landscape can only be 
appreciated through systematic cataloging of the phe-
notypical diversity through a process that will rely on 
multiparameter imaging of samples covering the full 
disease spectra, targeted expression profiling, and 
functional evaluation. We consider this aspect beyond 
the scope of this inventorying study. However, this 
study provides the groundwork for a consensus clus-
ter classification.
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Data S1. Systematic Search Protocol for most commonly used phenotypical 

and functional mesenchymal markers in the vascular research field160,161 

 

Administrative information 

Authors- contact and contributions: 

1. J.H. Lindeman. Dept. of Surgery, Division of Vascular Surgery, Leiden University 

Medical Center. J.H.N.Lindeman@lumc.nl 

2.  L.E. Bruijn: Dept. of Surgery, Division of Vascular Surgery, Leiden University 

Medical Center. L.E.Bruijn@lumc.nl  
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Both authors reviewed the titles, abstracts and full-texts for eligibility independently, 

based on the search strategy developed by author L.E. Bruijn in collaboration with 

search specialist J.W. Schoones, LUMC.  

 

Financial support: none 

 

Methods 

Information sources: Pubmed and Embase 

 

Pubmed search strategy:  

(("Phenotype"[mesh:noexp] OR phenotyp*[tiab] OR "phenotypic modulation"[tw] OR 

"phenotypic regulation"[tw] OR "phenotypic differentiation"[tw] OR "phenotypic 

characterization"[tw] OR "phenotypic characterisation"[tw] OR "phenotypic 

diversity"[tw] OR "phenotypic heterogeneity"[tw] OR phenotypic modulat*[tw] OR 
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phenotypic regulat*[tw] OR phenotypic different*[tw] OR phenotypic character*[tw] 

OR phenotypic divers*[tw] OR phenotypic heterog*[tw] OR (("phenotypic"[ti] OR 

"pheno"[ti]) AND ("modulation"[ti] OR "regulation"[ti] OR "differentiation"[ti] OR 

"characterization"[ti] OR "characterisation"[ti] OR "diversity"[ti] OR 

"heterogeneity"[ti])) OR "vascular remodeling"[tw] OR "vascular remodelling"[tw]) 

AND ("Fibroblasts"[majr] OR "Myofibroblasts"[majr] OR "fibroblast"[ti] OR 

"fibroblasts"[ti] OR fibroblast*[ti] OR "myofibroblast"[ti] OR "myofibroblasts"[ti] OR 

myofibroblast*[ti] OR "Myocytes, Smooth Muscle"[majr] OR "smooth muscle cell"[ti] 

OR "smooth muscle cells"[ti]) AND ("Blood Vessels"[majr] OR "blood vessels"[ti] OR 

"blood vessel"[ti] OR "artery"[ti] OR "arteries"[ti] OR "aorta"[ti] OR "aortic"[ti] OR 

"Arteriosclerosis"[majr] OR "Atherosclerosis"[majr] OR atherosclero*[ti] OR 

arteriosclero*[ti] OR "coronary artery disease"[ti] OR "coronary artery diseases"[ti] 

OR "AAA"[ti] OR "Aortic Aneurysm, Abdominal"[majr] OR "Abdominal Aortic 

Aneurysm"[ti] OR "Abdominal Aortic Aneurysms"[ti]) NOT ("mesenchymal stem 

cells"[ti] OR "mesenchymal stem cell"[ti] OR "Mesenchymal Stromal Cells"[Majr]) 

AND ("1990/01/01"[PDAT] : "3000/12/31"[PDAT]) AND (english[la] OR dutch[la])) 

 

Total number of references: 2698 

Date: 9-12-2019 
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Data S2. Embase search strategy. 

 

('Phenotype'/ OR Phenotyp*.ti,ab. OR 'Phenotypic modulation.mp. OR 'Phenotypic 

regulation'.mp. OR 'Phenotypic differentiation'.mp. OR 'Phenotypic 

characterization'.mp. OR 'Phenotypic characterisation'.mp. OR 'Phenotypic 

diversity'.mp. OR 'Phenotypic heterogeneity'.mp. OR Phenotypic modulat*.mp. OR 

Phenotypic regulat*.mp. OR Phenotypic different*.mp. OR Phenotypic 

character*.mp. OR Phenotypic divers*.mp. OR Phenotypic heterog*.mp. OR 

(('Phenotypic'.ti. OR 'Pheno'.ti.) AND ('Modulation'.ti. OR 'Regulation'.ti. OR 

'Differentiation'.ti. OR 'Characterization'.ti. OR 'Characterisation'.ti. OR 'Diversity'.ti. 

OR 'Heterogeneity'.ti.)) OR 'Vascular Remodeling'.mp. OR 'Vascular 

Remodelling'.mp.) AND ('Fibroblasts'/ OR 'Myofibroblasts'/ OR 'Smooth Muscle cell'/ 

OR 'Fibroblast'.ti. OR 'Fibroblasts'.ti. OR Fibroblast*.ti. OR 'Myofibroblast'.ti. OR 

'Myofibroblasts'.ti. OR Myofibroblast*.ti. OR 'Smooth muscle cell'.ti. OR 'Smooth 

muscle cells'.ti.) AND ('Blood Vessels'/ OR 'Arteriosclerosis'/ OR 'Atherosclerosis'/ 

OR 'Abdominal aortic aneurysm'/ OR 'Blood vessels'.ti. OR 'Blood vessel'.ti. OR 

'artery'.ti. OR 'Arteries'.ti. OR 'Aorta'.ti. OR 'Aortic'.ti. OR Atherosclero*.ti. OR 

Arteriosclero*.ti. OR 'Coronary artery disease'.ti. OR 'Coronary artery diseases'.ti. 

OR 'AAA'.ti. OR 'Abdominal Aortic Aneurysm'.ti. OR 'Abdominal Aortic 

Aneurysms'.ti.) NOT 'Mesenchymal stroma cell'/ OR 'Mesenchymal stem cell'.ti. OR 

'Mesenchymal stem cells'.ti. 

 

Total number of references: 1371 

Date: 10-12-2019 
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Data management: References were stored in a PDF-file.  

Selection and data collection process: author L.E. Bruijn retrieved all included 

articles on 09-12-2019 in Pubmed and Embase with the search strategy. Gray 

literature was not located for this study. Next, the two reviewers independently 

undertook the initial selection based upon title, abstract and keywords. In case of 

disagreement, the two reviewers discussed whether the study should be included or 

excluded based on the initial selection. Subsequently, full texts were reviewed when 

eligibility was considered either definite or ambiguous.  

 

Outcomes and prioritization:  

Potential relevant differentiation/functional markers were extracted from the included 

studies for the qualitative synthesis. Studies were not assessed for quality as our 

research question was which mesenchymal and functional markers are most 

commonly used in the vascular research field and quality of the studies was 

therefore irrelevant.   
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Data S3. Movat Pentachrome Protocol. 

 

Working solutions: 

(A) 1% Alcian Blue Solution: 1 g Alcian Blue 8 GX (Merck, Burlington, US), 100 

ml distilled water, 1 ml Glacial Acetic Acid (Sigma Aldrich, Saint Louis, US) 

(B) Alkaline Alcohol solution: 10 ml Ammonium Hydroxide (Merck, Burlington, 

US), 90 ml Ethanol 100%.  

(C) Elastic Hematoxylin Solution: 25 ml 10% Alcoholic Hematoxylin (J), 25 ml 

Ethanol 100%, 25 ml 10% Ferric Chloride (D), 25 ml Verhoeff’s Iodine 

Solution (K).  

(D) 10% Ferric Chloride Solution: 10 g Ferric Chloride (Sigma Aldrich, Saint 

Louis, US), 100 ml distilled water 

(E) 5% Sodium Thiosulfate Solution: 5g Sodium Thiosulfate (Sigma Aldrich, Saint 

Louis, US), 100 ml distilled water  

(F) Biebrich Scarlet/Acid Fuchsin solution: pre-made from ScyTek Laboratories 

(Logan, United States).  

(G) 1% Acetic Acid Solution: 1 ml Glacial Acetic Acid, 99 ml distilled water 

(H) 5% Aqueous Phosphotungstic Acid solution: 5 g Phosphotungstic Acid (Sigma 

Aldrich, Saint Louis, US), 100 ml distilled water 

(I) 4% Alcoholic Saffron Solution: 4 g Saffron (Safranor Safran du Gâtinais, 

Échilleuses, France), 100 ml Ethanol 100%.  
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(J) 10% Alcoholic Hematoxylin Solution: 10 g Hematoxylin (Merck, Burlington, 

US), 100 ml Ethanol 100% 

(K) Verhoeff’s Iodine Solution: 2 g Iodine Crystals (Sigma Aldrich, Saint Louis, 

US), 4 g Potassium Iodide (Sigma Aldrich, Saint Louis, US), 100 ml distilled 

water 

Protocol:  

1. Deparaffinization and rehydration of slides. 2. Rinse slides in distilled water. 3. 

Stain in 2 changes with (A) , both times for 15-25 minutes. 4. Rinse slides in running 

warm to hot water until clear. 5. Place slides in (B) for 30 minutes, then rinse in 

running tap water. 6. Stain in (C) for 20 minutes. 7. Rinse in running warm tap water. 

8. Differentiate in 2% aqueous (D) for 5 seconds-2 minutes. 9. Place slides in (E) for 

about 1 minute. 10. Wash in running tap water and rinse in distilled water. 11. Stain 

in (F) for 1-1.5 minutes. 12. Rinse in distilled water. 13. Rinse in (G) for 7-12 

seconds. 14. Place slides in (H) for 7-12 minutes. 15. Rinse in distilled water. 16. 

Rinse in (G) for 8-10 seconds. 17. Place in 2 changes of Ethanol 100%. 18. Stain in 

(I) for 1.5 minute and quickly rinse in Ethanol 100%. 19. Dehydration of slides.  
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Table S1. Excluded full-texts in Systematic Search.  

Number Publication Reason 

1 Owens GK. Molecular control of vascular smooth muscle cell 
differentiation and phenotypic plasticity. Novartis Found Symp. 
2007;283:174-91.  

Conference 
proceeding.  

2 Bentzon JF, Majesky MW. Lineage tracking of origin and fate of 
smooth muscle cells in atherosclerosis. Cardiovasc Res. 
2018;114(4):492-500. 

No marker proteins 
for differentiation 
described.  

3 Maegdefessel L, Rayner KJ, Leeper NJ. MicroRNA regulation of 
vascular smooth muscle function and phenotype: early career 
committee contribution. Arterioscler Thromb Vasc Biol. 
2015;35(1):2-6. 

No marker proteins 
for differentiation 
described.  

4 Matchkov VV, Kudryavtseva O, Aalkjaer C. Intracellular Ca²⁺ 
signalling and phenotype of vascular smooth muscle cells. Basic 
Clin Pharmacol Toxicol. 2012;110(1):42-8. 

No marker proteins 
for differentiation 
described.  

5 Song Z, Li G. Role of specific microRNAs in regulation of 
vascular smooth muscle cell differentiation and the response to 
injury. J Cardiovasc Transl Res. 2010;3(3):246-50. 

No marker proteins 
for differentiation 
described.  

6 Erlinge D. Extracellular ATP: a central player in the regulation of 
vascular smooth muscle phenotype. Focus on "Dual role of PKA 
in phenotype modulation of vascular smooth muscle cells by 
extracellular ATP". Am J Physiol Cell Physiol. 2004;287(2):C260-
2. 

No marker proteins 
for differentiation 
described.  

7 Bochaton-Piallat ML, Bäck M. Novel concepts for the role of 
smooth muscle cells in vascular disease: towards a new smooth 
muscle cell classification. Cardiovasc Res. 2018;114(4):477-480. 

No marker proteins 
for differentiation 
described.  

8 Shi N, Mei X, Chen SY. Smooth Muscle Cells in Vascular 
Remodeling. Arterioscler. Thromb. Vasc. Biol. 2019;39(12):e247-
e252. 

No marker proteins 
for differentiation 
described.  

9 Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat 
Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev 
Cardiol. 2019;16(12):727-744. 

No full-text available 
in Leiden University 
Medical Library 
collection. 

10 Kannenberg F, Gorzelniak K, Jager K, Fobker M, Rust S, Repa J, 
Roth M, Bjorkhem I, Walter M. Characterization of cholesterol 
homeostasis in telomerase immortalized tangier disease 
fibroblasts reveals marked phenotype variability. J. Biol. Chem. 
2013;288(52):36936-36947. 

No marker proteins 
for differentiation 
described.  

 

  

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 16, 2022



Table S2. Excluded phenotypical markers identified with Systematic Search.  

Protein marker Reason for exclusion 

DDR215,310 <3 references 

NGS97 Primarily pericyte marker 

Anti-reticular fibroblast marker (RFM)97 <3 references 

MHC class II302 <3 references 

CD4302 <3 references 

Acting binding proteins 
Cofilin16 

Profilin16 

Talin176 

<3 references 

MYPT-116 <3 references 

Cytoskeleton proteins 
Tubulin98 

Metavinculin40,42,111 

<3 references 
Vinculin selected 

Leiomodin-1111 <3 references 

Integrins (A1,A7,B1)211,294 <3 references 

Myocardin211,222,294 Master regulator of SMC differentiation. Panel of 
contractile markers included yet.  

N-Cadherin/T-Cadherin86,294 <3 references 

Calmodulin111,214,249 Telokin selected 

LPP38 <3 references 

Myosin light chains (LC17a en LC17b)39 <3 references 

Cysteine- and glycine-rich protein 191 <3 references 

1E12226 <3 references 

Phospholamban228,300 Expressed specifically in cardiac muscle.   

Aquaporin-1228,300 <3 references 

Osteoglycin228 <3 references 

Ubiquitin228 <3 references 

APEG-1294 <3 references 

CRP-2294 <3 references 

MAS5300 <3 references 
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Table S3. Excluded full-texts in synthetic/inflammatory marker search.  

Number Publication Reason 

1 Owens GK. Molecular control of vascular smooth muscle cell 
differentiation and phenotypic plasticity. Novartis Found Symp. 
2007;283:174-91.  

Conference 
proceeding.  

2 Bentzon JF, Majesky MW. Lineage tracking of origin and fate of 
smooth muscle cells in atherosclerosis. Cardiovasc Res. 
2018;114(4):492-500. 

No marker proteins 
for differentiation 
described.  

3 Maegdefessel L, Rayner KJ, Leeper NJ. MicroRNA regulation of 
vascular smooth muscle function and phenotype: early career 
committee contribution. Arterioscler Thromb Vasc Biol. 2015 
Jan;35(1):2-6. 

No marker proteins 
for differentiation 
described.  

4 Matchkov VV, Kudryavtseva O, Aalkjaer C. Intracellular Ca²⁺ 
signalling and phenotype of vascular smooth muscle cells. Basic 
Clin Pharmacol Toxicol. 2012;110(1):42-8. 

No marker proteins 
for differentiation 
described.  

5 Song Z, Li G. Role of specific microRNAs in regulation of vascular 
smooth muscle cell differentiation and the response to injury. J 
Cardiovasc Transl Res. 2010;3(3):246-50. 

No marker proteins 
for differentiation 
described.  

6 Erlinge D. Extracellular ATP: a central player in the regulation of 
vascular smooth muscle phenotype. Focus on "Dual role of PKA 
in phenotype modulation of vascular smooth muscle cells by 
extracellular ATP". Am J Physiol Cell Physiol. 2004;287(2):C260-
2. 

No marker proteins 
for differentiation 
described.  

7 Bochaton-Piallat ML, Bäck M. Novel concepts for the role of 
smooth muscle cells in vascular disease: towards a new smooth 
muscle cell classification. Cardiovasc Res. 2018;114(4):477-480. 

No marker proteins 
for differentiation 
described.  

8 Shi N., Mei X., Chen S.-Y. Smooth Muscle Cells in Vascular 
Remodeling. Arterioscler. Thromb. Vasc. Biol. 2019;39(12):e247-
e252. 

No marker proteins 
for differentiation 
described.  

9 Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat 
Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev 
Cardiol. 2019;16(12):727-744. 

No full-text 
available in Leiden 
University Medical 
Library collection. 

10 Reddy MA, Villeneuve LM, Wang M, Lanting L, Natarajan R. Role 
of the lysine-specific demethylase 1 in the proinflammatory 
phenotype of vascular smooth muscle cells of diabetic mice. Circ 
Res. 2008;103(6):615-23. Retraction in: Circ Res. 
2009;105(6):e9. 

Retracted 
publication.  

11 Ramos KS, Weber TJ, Liau G. Altered protein secretion and 
extracellular matrix deposition is associated with the proliferative 
phenotype induced by allylamine in aortic smooth muscle cells. 
Biochem J. 1993;289. 

No protein markers 
for differentiation or 
proliferative/ 
synthetic features 
described.  

12 5. Stengel D, O'Neil C, Brochériou I, Karabina SA, Durand H, 
Caplice NM, Pickering JG, Ninio E. PAF-receptor is preferentially 
expressed in a distinct synthetic phenotype of smooth muscle 
cells cloned from human internal thoracic artery: functional 
implications in cell migration. Biochem Biophys Res 
Commun.2006;346(3):693-9. 

No protein markers 
for differentiation or 
proliferative/ 
synthetic features 
described.  

13 Liu L, Abramowitz J, Askari A, Allen JC. Role of caveolae in 
ouabain-induced proliferation of cultured vascular smooth muscle 
cells of the synthetic phenotype. Am J Physiol Heart Circ Physiol. 
2004;287(5):H2173-82. 

No protein markers 
for differentiation or 
proliferative/ 
synthetic features 
described.  

14 Rybalkin SD, Bornfeldt KE, Sonnenburg WK, Rybalkina IG, Kwak 
KS, Hanson K, Krebs EG, Beavo JA. Calmodulin-stimulated cyclic 
nucleotide phosphodiesterase (PDE1C) is induced in human 

No protein markers 
for differentiation or 
proliferative/ 

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 16, 2022



arterial smooth muscle cells of the synthetic, proliferative 
phenotype. J Clin Invest. 1997;100(10):2611-21. 

synthetic features 
described.  

15 Wang Y, Lindstedt KA, Kovanen PT. Phagocytosis of mast cell 
granule remnant-bound LDL by smooth muscle cells of synthetic 
phenotype: a scavenger receptor-mediated process that 
effectively stimulates cytoplasmic cholesteryl ester synthesis. J 
Lipid Res. 1996;37(10):2155-66. 

No protein markers 
for differentiation or 
proliferative/ 
synthetic features 
described.  

16 Kannenberg F, Gorzelniak K, Jager K, Fobker M, Rust S, Repa J, 
Roth M, Bjorkhem I, Walter M. Characterization of cholesterol 
homeostasis in telomerase immortalized tangier disease 
fibroblasts reveals marked phenotype variability. J. Biol. Chem. 
2013;288(52):36936-36947 

No marker proteins 
for differentiation 
described.  
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Table S4. Excluded synthetic IHC markers.  

Marker Reason for exclusion 
(pro-)Collagen II, III, VIII40,208,268 Among all the collagen subtypes, type I collagen is 

considered to be most abundant in vascular fibrous 
pathology.  

Collagenase IV294 <3 references 

Heat shock protein 47 (Hsp47)195 <3 references 

ECM components  
Chondroitin sulfate98 

Vitronectin40 

Tenascin232 

Tropoelastin232 

Fibrillin233 

Osteoglycin235 

Syndecan-1/4104,294 

Versican20 

Aortic-carboxypeptidase-like protein 
(ALCP)42,91 

<3 references 

Matrix Gla Protein (MGP)232,235,317 Predominantly extracellular protein  

TGN46278 <3 references 

Intermediate filaments 
GFAP278 

Cytokeratin 8 and 18111,232 

<3 references 

Cyclophilin A281 <3 references 

Zona occludens 2- protein111 <3 references 

Cingulin111 <3 references 

uPa111 <3 references 

tPA111 <3 references 

Connexin 43104,194 <3 references 

IGF‐BP2102 <3 references 

TSP-140 <3 references 

Cytochrome P-45OIAI232 <3 references 

Osteoprotegerin241 <3 references 

SMPD3105 <3 references 

Sortilin-1105 <3 references 
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Table S5. Excluded pro-inflammatory IHC markers.  

Marker Reason for exclusion 
IL-1a259,263 <3 references 

IL-1β106,112,162 Not detectable at protein level294  

TNF-α106,112,162 Very low expression at protein level294 

MCSF109 <3 references 

TGF-β177 <3 references 

Cell activation markers (ICAM-1, VCAM-1, E-selectin, MMP-
2, MMP-3, MMP-7, MMP-9)29,106,112,177,203,260,318 

NF-κB selected as central regulator 

CCR219 <3 references 

MHCII14 <3 references 

CXCL1107,239 <3 references 

 

162-326 
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Figure S1. Defining the regions of interest within atherosclerotic lesions for 

semi-quantitative scoring system. 

Abbreviations: I. Intima M1. Inner media zone M2. Middle media zone M3. Outer media zone Ad. 

Adventitia VVven. Venule-like vasa vasora VVart. Arteriole-like vasa vasora.    
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Figure S2. Rabbit IgG in concentrations higher than 1 µm/mL produce 

significant background.  

 

 
Overview of rabbit isotype controls in several concentrations (on early fibroatheroma (EFA); 2,5x 

and 26x magnification). Non-specific binding of rabbit IgG is significantly increased in rabbit IgG 

concentrations of 1 μg/mL or higher. This phenomenon was not observed in mouse IgG or mouse 

sera.  
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Figure S3. Disqualification of Thy-1/CD90 and FSP-1/S100A4 as universal 

mesenchymal lineage markers.  

 

Fig S3.1. A. The majority of spindle shaped cells in the media of AIT are triple positive for Vimentin+ 

(in green; AF488; FITC-channel), FSP-1+ (in red; AF546; TRITC-channel) and αSMA+ (in magenta; 

AF647; Cy5-channel). The inserts show single channel signals for αSMA+ (B) and Vimentin+ (C). 

Insert (D) shows the presence of αSMA+/Vimentin+/FSP-1- double positive subpopulation.   
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Fig S3.2. A. The majority of spindle shaped cells in the media of AIT are triple positive for Vimentin+ 

(in green; AF488; FITC-channel), CD90+ (in red; AF546; TRITC-channel) and αSMA+ (in magenta; 

AF647; Cy5-channel). The inserts show single channel signals for Vimentin+ (C) and αSMA+ (D). 

Insert (B) shows the presence of αSMA+/Vimentin+/CD90- double positive subpopulation.   
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Figure S4. Challenging Vimentin as an all-inclusive panmesenchymal marker. 

 

Figure S4.1: A. Adaptive Intimal Thickening (AIT) section double IHC stained for FAP (in red) and 

Vimentin (in blue). In AIT, FAP and Vimentin show almost complete (B/C; in purple).  
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Figure S4.2. A. Late Fibroatheroma (LFA) section double IHC stained for FAP (in red) and Vimentin 

(in blue). During atherogenic progression, although FAP expression remained stable in the medial 

zones (F), FAP expression is unstable in the cap region, shown by spindle-shaped single FAP+  cells 

(E; arrows, in red), challenging Vimentin as an all-inclusive panmesenchymal marker.  
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Figure S5. Double Vimentin+/αSMA+ cells in the cap of progressive 

atherosclerotic lesions (LFA and TCFA) and stabilized atherosclerotic lesions 

(HR).  

 

Figure S5.1: A. Movat Pentachrome staining of LFA (Late Fibroatheroma).  

Legend: red, smooth muscle cells/fibrin; violet: leukocytes; black: elastin; blue: proteoglycans/mucins; 

yellow: collagen. Various shades of green reflect colocalization of collagen (yellow) and proteoglycans 

(blue).   

B. Insert of the cap double IHC stained for Vimentin (in blue) and αSMA (in red), showing that the cap 

is mesenchymal cell (Vimentin+) rich. Approximately 80% of the Vimentin+ cells were double 

Vimentin+/αSMA+ (arrow in B, in purple; star indicates a single Vimentin+/αSMA- cell).  
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Figure S5.2: C. Movat Pentachrome staining of TCFA (Thin cap fibroatheroma). For legend see 

Figure S5.1.  

D. Insert of the cap double IHC stained for Vimentin (in blue) and αSMA (in red). Transition from a 

LFA to a TCFA was associated with a clear decrease in cell density. Approximately 80% of the 

Vimentin+ cells were double Vimentin+/αSMA+ (arrow in D, in purple; star indicates a single 

Vimentin+/αSMA- cell).  
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Figure S5.3: E. Movat Pentachrome staining of HR (Thin cap fibroatheroma). For legend see Figure 

S5.1.  

F. Within the cell-rich/proteoglycan-rich luminal granulation tissue that is associated with healing of a 

ruptured atherosclerotic lesions (HR), approximately 80% of the Vimentin+ cells (in blue) were double 

Vimentin+/αSMA+ (arrow in D, in purple; star indicates a single Vimentin+/αSMA- cell).  
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Figure S6. Vimentin, Thy-1/CD90, S100A4/FSP-1 and FAP are limited in 

mesenchymal lineage specificity: expression in monocytic cells.  

 

Figure S6.1: A. Triple IF staining of Vimentin (Vim), clone 1A4, (in green; AF488; FITC-channel), 

CD45 (in red; Vulcan Red; TRITC-channel) and CD68 (in magenta; AF647; Cy5-channel) in the 

adventitia. Nuclei are DAPI-stained (blue). Arterial elastic laminae in the medial layer are occasionally 

visible in greenblue due to auto-fluorescence. The four top inserts show the single channel 

information for Dapi, Vimentin, CD45 and CD68 (from left to right). Inserts on the down right show 

overlay information for (B) CD45+/Vimentin+ cells, respectively of which a part is 

CD68+/Vimentin+/CD45+(C). 

  

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 16, 2022



 

Figure S6.2: A. Triple IF staining of Vimentin (Vim), clone VI-10, (in green; AF488; FITC-channel), 

CD45 (in red; Vulcan Red; TRITC-channel) and CD68 (in magenta; AF647; Cy5-channel) in the 

adventitia. Nuclei are DAPI-stained (blue). Arterial elastic laminae in the medial layer are occasionally 

visible in greenblue due to auto-fluorescence. The four top inserts show the single channel 

information for Dapi, Vimentin, CD45 and CD68 (from left to right). Inserts on the down right show 

overlay information for (B) CD45+/Vimentin+ cells, respectively of which a part is 

CD68+/Vimentin+/CD45+(C). 
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FigureS6.3: A. Triple IF staining of FSP-1 (in green; AF647; Cy5-channel), CD45 (in red; Vulcan Red; 

TRITC-channel) and CD68 (in magenta; AF488; FITC-channel) in the adventitia. Nuclei are DAPI-

stained (blue). Arterial elastic laminae in the medial layer are occasionally visible in greenblue due to 

auto-fluorescence. The four top inserts show the single channel information for Dapi, FSP-1, CD45 

and CD68 (from left to right). Inserts on the down right show overlay information for (B) CD45+/FSP-1+ 

cells, respectively of which a part is CD68+/FSP-1+/CD45+(C). 
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Figure S6.4: A. Triple IF staining of CD90 (in green; AF488; FITC-channel), CD45 (in red; Vulcan 

Red; TRITC-channel) and CD68 (in magenta; AF647; Cy5-channel) in the adventitia. Nuclei are 

DAPI-stained (blue). Arterial elastic laminae in the medial layer are occasionally visible in greenblue 

due to auto-fluorescence. The four top inserts show the single channel information for Dapi, CD90, 

CD45 and CD68 (from left to right). Inserts on the down right show overlay information for (B) 

CD45+/CD90+ cells, respectively of which a part is CD68+/CD90+/CD45+(C).  
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Figure S6.5: A. Triple IF staining of FAP (in green; AF488; FITC-channel), CD45 (in red; Vulcan Red; 

TRITC-channel) and CD68 (in magenta; AF647; Cy5-channel) in the adventitia. Nuclei are DAPI-

stained (blue). Arterial elastic laminae in the medial layer are occasionally visible in greenblue due to 

auto-fluorescence. (B) The four top inserts show the single channel information for Dapi, FAP, CD45 

and CD68 (from left to right). Inserts on the down right show overlay information for (B) CD45+/FAP+ 

cells, respectively of which a part is CD68+/FAP+/CD45+(C).  
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Figure S7. Limited mesenchymal lineage specificity of Vimentin: expression in 

endothelial cells. Thy-1/CD90, S100A4/FSP-1 and FAP are not expressed in 

endothelial cells.  

 

 
Figure S7.1: A. Movat Pentachrome staining of EFA (Early Fibroatheroma). Legend: red, smooth 

muscle cells/fibrin; violet: leukocytes; black: elastin; blue: proteoglycans/mucins; yellow: collagen. 

Various shades of green reflect colocalization of collagen (yellow) and proteoglycans (blue). B. Close 

up of intact endothelium in the arterial wall and of endothelial cells in a vasum vasorum (C).  
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Figure S7.2: D. Double IF staining of Vimentin (cytoplasma staining, in green; AF488; FITC-channel) 

and CD31 (plasma membrane and cell junction staining, in red; Vulcan Red; TRITC-channel) of a 

consecutive section of the EFA shown in A. Nuclei are DAPI-stained (in blue). 

The inserts on the left shown single channel information for Vimentin (E1/F1) and CD31 (E2/F2).  

Vimentin and CD31 colocalize in the arterial intima (E3) and in endothelial cells in the vasa vasora 

(F3).  
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Figure S7.3: G1. Close up of single positive CD31+ ( in green; AF488; FITC-channel; plasma 

membrane and cell junction staining)/CD90- endothelial cells in the arterial wall. G2. Close up of 

CD90+/CD31- cells (in red; Vulcan Red; TRITC-channel; plasma membrane staining) that are in close 

proximity of CD31+ endothelial cells (in green; AF488; FITC-channel; plasma membrane and cell 

junction staining) in vasa vasora. Nuclei are DAPI-stained (in blue). 

 

 

 

  

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 16, 2022



 

Figure S7.4: H1. Close up of FSP-1+ cells (in red; Vulcan Red; TRITC-channel, nucleus and 

cytoplasm staining) are in close proximity of single CD31+ endothelial cells (in green; AF488; FITC-

channel; plasma membrane and cell junction staining) in vasa vasora. Nuclei are DAPI-stained (in 

blue). 
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Figure S7.5: H1. Close up of single FAP+ cells (in red; Vulcan Red; TRITC-channel, nucleus and 

cytoplasm staining) that are in close proximity of CD31+ endothelial cells (in green; AF488; FITC-

channel; plasma membrane and cell junction staining) in vasa vasora. Nuclei are DAPI-stained (in 

blue). 
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Figure S8. Role for EndoMT/ stem cells in vascular pathology. 

 

Figure S8.1: A. Double IHC staining of CD31 (in blue) and Vimentin (in red) on LFA. The inserts 

(B/C) show solitary double Vimentin+/CD31+ cells in the vicinity of the vasa vasora (in purple; 

arrows).   
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Figure S8.2: D. Double IHC staining of CD34 (in blue) and Vimentin (in red) on LFA. The inserts (E/F) 

show solitary double Vimentin+/CD34+ cells in the vicinity of the vasa vasora (in purple; arrows).   
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Figure S9. Fibrocytes in luminal vascular repair sites.   

 

 

Figure S9.1: A. Healed Rupture (HR) stained by Movat pentachrome. Plaque consolidation (wound 

healing process) is characterized by a spindle-shaped mesenchymal-rich (B; nuclei in red) and 

proteoglycan-rich matrix (B; green-blue) cap covering the fibrotic remnants of the former cap (A; 

yellow region). C. Confocal images of spindle-shaped double Vimentin+ (in green; AF488)/ CD45+ (in 

red; AF647) in the proteoglycan-rich granulation tissue.  C1. Shows single channel information for 

Vimentin and C2 shows single channel information for CD45.  
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Figure S9.2: D. Late Fibroatheroma (LFA) double IHC stained for Vimentin (in red) and CD45 (in 

blue). E. In the cap of LFA, both spindle shaped double Vimentin+/CD45+ (arrow) cells and round-

shaped double Vimentin+/CD45+ (stars) are present.   
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Figure S9.3: F. Fibrocalcific Plaque (FCP) double IHC stained for Vimentin (in red) and CD45 (in 

blue). E. In the neo-intima of FCP, both spindle shaped double Vimentin+/CD45+ (arrow) cells and 

round-shaped double Vimentin+/CD45+ (stars) are present.   
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Figure S10. Subset of elongated Smemb+ are synthetic. 

 

Figure S10: A. Late Fibroatheroma (LFA) section double IHC stained for Smemb (in red) and P4HB 

(in blue). Most Smemb+ elongated cells in the cap and shoulder region were found to also express 

the synthetic marker P4HB, but single Smemb+ elongated cells were also present in these regions 

(B; arrows).  
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Figure S11. Spatial distribution of h1-Calponin in progressive atherosclerosis.   

 

Figure S11.1: A. Adaptive Intimal Thickening (AIT) section double IHC stained for αSMA (in red) and 

h1-Calponin (in blue). In AIT, they show complete colocalization (B; in purple), except from the vasa 

vasora which are often single αSMA+ (A; in red).  
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Figure S11.2: A. Late Fibroatheroma (LFA) section double IHC stained for αSMA (in red) and h1-

Calponin (in blue). In LFA, there is a dissociation of the staining pattern for αSMA and h1-Calponin in 

the cap/shoulder region, reflected by single h1-Calponin-/ αSMA+ cells (in red).  
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Figure S12. Tropomyosin, Telokin and Paxillin are not contractile cell specific.  

  

Figure S12.1: A. Triple staining of Tropomyosin (in magenta; AF647; Cy5-channel), Vimentin (in 

green; AF488; FITC-channel) and CD45 (in red; Vulcan Red; TRITC-channel) in the adventitia. The 

three left inserts show the single channel information for Tropomyosin (B), Vimentin (C) and CD45 

(D), counterstained by Dapi (in blue). The vast majority of Tropomyosin+ cells were triple positive for 

Tropomyosin+/Vimentin+/CD45+. 
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Figure S12.2: F. Triple staining of Telokin (in magenta; AF647; Cy5-channel), Vimentin (in green; 

AF488; FITC-channel) and CD45 (in red; Vulcan Red; TRITC-channel) in the adventitia. The three left 

inserts show the single channel information for Telokin (G), Vimentin (H) and CD45 (I), counterstained 

by Dapi (in blue). The vast majority of Telokin+ cells were triple positive for Telokin+/Vimentin+/CD45+.  

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 16, 2022



 

Fig S12.3: A. Triple staining of Paxillin (in magenta; AF647; Cy5-channel), Vimentin (in green; AF488; 

FITC-channel) and CD45 (in red; Vulcan Red; TRITC-channel) in the adventitia. The three left inserts 

show the single channel information for Paxillin (B), Vimentin (C) and CD45 (D), counterstained by 

Dapi (in blue). Although the vast majority of Paxillin+ cells in the adventitia were triple positive for 

Paxillin+/Vimentin+/CD45+, single Vimentin+ cells were also present (A). 
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Figure S13. αSMA challenged as all-inclusive contractile marker.  

 

Figure S13.1: A. Adaptive Intimal Thickening (AIT) section double IHC stained for αSMA (in red) and 

Tropomyosin (in blue). In AIT, single αSMA+ cells (arrows in B) are present in the intima, as well as in 

the outer media. In the inner and medial media, all elongated cells are double αSMA+/Tropomyosin+ 

(in purple), but Tropomyosin is expressed in varying degrees (C. arrows: αSMAhigh/Tropomyosinlow).   
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Figure S13.2: A. Late Fibroatheroma (LFA) section double IHC stained for αSMA (red) and 

Tropomyosin (blue). While in the media Tropomyosin and αSMA show complete overlap (C), in the 

cap and shoulder regions in LFA both single αSMA+ cells and single Tropomyosin+ cells are present 

(B; arrows).  
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Figure S14. Excluded synthetic and pro-inflammatory IHC markers. 

 
Figure S14.1: IHC Stainings of Collagen-I (Rabbit IgG), MBS502155, MyBioSource. In FCP 

tissue, significant non-specific staining was present, regardless of protein block usage and use of 

either a heat retrieval (A. Tris-EDTA, dilution 1:400) or an enzyme retrieval (C. Pepsin, dilution 1:400), 

similarly for AAA tissue (E. Tris-EDTA, dilution 1:400; G. Pepsin, dilution 1:400).  
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Figure S14.2: IHC Stainings of Collagen-I (Goat IgG), C7510-17K, USBIO. In AAA tissue, and 

even more outspoken in FCP tissue (E. Citrate, dilution 1:250), significant non-specific staining was 

present, regardless of protein block usage and use of either a heat retrieval (A. Citrate, dilution 1:250) 

or an enzyme retrieval (C. Pepsin, dilution 1:250).    
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Figure S14.3: IHC Stainings of Pro-collagen-I (Rat IgG1), clone MAB1912, Millipore. In EFA 

tissue, regardless of antigen heat retrieval pH (A. Tris-EDTA, dilution 1:500; B. Citrate, dilution 1:500), 

there was little to no signal. However, in positive controls (C. AAA tissue, Tris-EDTA, dilution 1:500), a 

lot of non-specific staining was present, especially in lymphocyte infiltrates.   
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Figure S14.4: IHC Stainings of Pro-collagen-I (Mouse IgG1), clone PC8-7, Abnova. In EFA 

tissue, regardless of antigen heat retrieval pH (A. no retrieval, dilution 1:300; C. Tris-EDTA, dilution 

1:300; E. Citrate, dilution 1:300), no protein expression was detected, confirmed by absence of 

staining in positive controls (H. AAA, no retrieval, dilution 1:300; I. AAA, Tris-EDTA, dilution 1:300). In 

contrast, in higher concentrations (G. dilution 1:100, EFA, no retrieval) there was significant 

background staining.  
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Figure S14.5: IHC Staining of Osteopontin (Goat IgG), AF1433, R&D Systems. A.  (PIT 

(Pathological Intimal Thickening) tissue, Tris-EDTA, dilution 1:400). B. As Osteopontin is an ECM-

protein (arrows), it is less convenient for cell phenotyping.  
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Figure S14.6: IHC Staining of Fibronectin (Mouse IgG1), clone FBN11, Thermofisher. A (LFA 

tissue, no retrieval, dilution 1:900). B. As Fibronectin is an ECM-protein (arrows), it is less convenient 

for cell phenotyping.  
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Figure S14.7: IHC staining of Laminin (Rabbit IgG), ab11575, Abcam. A. (Thin-cap Fibroatheroma 

tissue (advanced atherosclerosis), no retrieval, dilution 1:200). B. As Laminin is an ECM-protein 

(arrows), it is less convenient for cell phenotyping.   
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Figure S14.8: IHC staining of CRBP-1 (Rabbit IgG), ab11575, Abcam. In EFA (Early 

Fibroatheroma; advanced atherosclerosis) and AAA, no CRBP-1 signal was present, regardless of 

high primary antibody concentration and various antigen retrieval (A.EFA, Tris-EDTA, 1:30; C. EFA, 

Citrate, 1:30; E. EFA, Pepsin, 1:30; G. AAA, Tris-EDTA, 1:30; I. AAA, Citrate, 1:30; K. AAA, Pepsin, 

1:30).  
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Figure S14.9: IHC stainings (n=1) of PDGFR-α (Rabbit IgG), ab61219, Abcam. Although 

PDGFR-α is expressed on the cell membrane, nuclear staining was observed (arrows in B 

(Citrate, dilution 1:400) and D (Tris-EDTA, dilution 1:400)). A small number of studies326,327 

has reported nuclear localization of the PDGFR-α, but those observations are based on 

IHC/IF, which makes it questionable whether it is really localized in the nucleus or whether it 

is background staining.    
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Figure S14.10: IHC Stainings of Phospho-NFκB p65 (Mouse IgG1), clone MCFA30, 

ThermoFisher.  Although AAA is typically highly infiltrated by immune cells, there was weak staining 

of NFκB, regardless several antigen retrievals (A. Citrate, dilution 1:100; C. Tris-EDTA, dilution 1:100; 

E. Pepsin, dilution 1:100). In higher concentrations, more background staining was observed (I. Tris-

EDTA, dilution 1:50). As NFκB is expressed intracellularly, the contribution of 0,1% Triton X-100 in 

PBS was also tested, although most nuclei are dissected in the 4 µ-sections (G. Citrate, Triton X-100, 

dilution 1:100; K. Pepsin, Triton X-100, dilution 1:100). However, more background (cytoplasmatic) 

staining was present if Triton X-100 was applied.   
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Figure S14.11: IHC Stainings of Phospho-NFκB 105 (Mouse IgG1), 178F3, Cell Signaling 

Technology.  

Although AAA is typically highly infiltrated by immune cells, there was weak staining of NFκB, 

regardless several antigen retrievals (A. Tris-EDTA, dilution 1:100; C. Citrate, dilution 1:100; E. 

Pepsin, dilution 1:100). In higher concentrations, more background staining was observed (K. Tris-

EDTA, dilution 1:50). As NFκB is expressed intracellularly, the contribution of 0,1% Triton X-100 in 

PBS was also tested, although most nuclei are dissected in the 4 µ-sections (G. Tris-EDTA, Triton X-

100, dilution 1:100; I. Citrate, Triton X-100, dilution 1:100). However, more background 

(cytoplasmatic) staining was present if Triton X-100 was applied.  
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Figure S14.12: IHC Stainings of MCP-1 (Mouse IgG2b), 23002, R&D Systems.  

Weak to no staining of MCP-1 in infiltrates of AAA tissue, regardless antigen retrieval (A. Tris-EDTA, 

dilution 1:100; B. Pepsin, dilution 1:100) and high primary antibody concentration (C. Tris-\/EDTA, 

dilution 1:50).  
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Figure S15. Illustration of inflammatory cells in atherosclerosis.   

 

Figure S15.1: A. Double IHC staining for T-cells (CD4/CD8 co-staining; in red) and macrophages 

(CD68; in brown) in AIT reference sample (early atherosclerosis). B. Close up of T-cells (arrows) in 

the intima and C. close up of macrophages (arrows) in the adventitia.  
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Figure S15.2: D. Double IHC staining for T-cells (CD4/CD8 co-staining; in red) and macrophages 

(CD68; in brown) in LFA reference sample (progressive atherosclerosis). E. Close up of T-cells (left 

arrow) and macrophages (right arrow) in cap area. F. Close up of macrophages (left arrow) and T-

cells (right arrow) in adventitia.   
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Figure S15.3: G. Double IHC staining for T-cells (CD4/CD8 co-staining; in red) and macrophages 

(CD68; in brown) in FCP reference sample (end-stage atherosclerosis). H. Close up of macrophages 

in the neo-intima. I. Close up of macrophages (left arrow) and T-cells (right arrow) in the adventitia.   
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