
Studies into interactive didactic approaches for learning
software design using UML
Stikkolorum, D.R.

Citation
Stikkolorum, D. R. (2022, December 14). Studies into interactive didactic
approaches for learning software design using UML. Retrieved from
https://hdl.handle.net/1887/3497615
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3497615
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3497615


Part I

Introduction, Context and
Problem Statement





Chapter1
Introduction – Challenges in
Software Design Education

In this chapter we introduce the research context, our main objective and research
questions. Further we present our research methods. In addition, we provide an
overview of the structure of this dissertation. Furthermore this chapter concludes
with an overview of the published work that this dissertation is based on as well as
work that was published during the research period of this dissertation.

1.1 Problem Context – Education in Software Design

Software Engineering (SE) is a rapidly changing discipline. Software developers have to
respond and adapt to constantly changing hardware and implementation platforms in
a society with increasing challenges [94]. Therefore, software developers are challenged
to create increasingly complex systems. The effective development and maintainability
of such complex systems requires well thought out designs.

Software designs are the ‘blueprints’ for the system that is going to be delivered.
The designs lay the foundation for later implementation steps. Software designs are
expressed with software models. They are the means for communicating designs.
In software engineering it is common to use visual representations for models. A
collection of diagrams that focus on different views of a system (e.g. structure and
behaviour) represent the system’s model.



4 Introduction – Challenges in Software Design Education

After its introduction in the 1990’s the Unified Modelling Language1 (UML) became
the de facto standard for the modelling of software designs, and most universities
started introducing UML in the classroom at the end of the 1990’s. UML integrated the
notations of the Booch method [20], object-oriented modelling technique (Rumbaugh
et al.) [115] and object-oriented software engineering (OOSE, Jacobson) [58] into one
language. UML consists of a collection of diagrams that visually express (parts of) a
system’s model. From this set, class diagrams are the most used diagrams for modelling
software designs.

Even when students have an understanding of the syntax of a modelling language,
the application of the language for creating a software design remains challenging. In
particular software design is considered to be a difficult problem solving task, because
it heavily depends on abstraction skills [69]. Students are constantly challenged to
identify concepts from the problem domain and translate them to software artefacts.
This, combined with the different views and abstraction levels that models can have,
makes the understanding and application of modelling techniques challenging for
students.

Educators face challenges at different levels:

• motivate and engage students in their courses,

• facilitate and use appropriate tools, and

• give feedback to students at the right level at the right time.

For helping educators to overcome the above mentioned challenges, we focus in our
research on the involvement of education in the development of students’ reasoning
skills, students’ software design strategies and the use of appropriate modelling and
learning tools during software design tasks.

1.2 Background - UML, Design Principles, Tools, Agile Devel-
opment and Theories of Education and Learning

This section discusses UML, the use of modelling tools, the application of common
software design principles during software design, the increasing popularity of agile
development and theories of education and learning.

1https://www.uml.org

https://www.uml.org


Background - UML, Design Principles, Tools, Agile Development and Educational Theories 5

Figure 1.1: Simplified diagram overview of UML 2.5.



6 Introduction – Challenges in Software Design Education

Figure 1.2: A UML class diagram in low detail and in high detail

1.2.1 Unified Modelling Language

UML is widely taught at universities and can be considered as the de facto standard
for object-oriented modelling in SE courses. The universities that were involved in the
studies that are discussed in this dissertation also use UML as their standard language
for modelling during software development (analysis and design).

UML consists of several diagrams that can be used during analysis and design in
software development methodologies. The diagrams describe mainly two types of
views: structural views and behavioural views (see Figure 1.1).

The most commonly used diagrams from the Structure Diagram set are: the Class Dia-
gram and the Component Diagram. From the Behaviour Diagram set the most commonly
used are: the Use Case Diagram, the Activity Diagram, the State Machine Diagram
and the Sequence Diagram [35]. In this research we mainly focus on the structural
perspective of the design which is typically presented through class diagrams.

Class diagrams describe the (internal) structure of problem domains during analysis or
software systems during design. In this dissertation we focus on the design phase(s).
The diagram structure consists of related classes that can have attributes and operations.
Eventually classes can be programmed with object-oriented software languages such
as C++, Java or for example C#. Class diagrams are considered to be the blueprint of
(parts of) the to-be system. Depending on the development stage or purpose of the
diagram, a class diagram can have a low amount of detail or a high amount of detail.
Figure 1.2 shows an example of a low detailed and high detailed class diagram of the
same system.



Background - UML, Design Principles, Tools, Agile Development and Educational Theories 7

1.2.2 Software Design Principles

In software development certain design principles are applied. A software design
principle is a guideline for decision making during software development. Eventually
it supports several benefits, such as:

• organised software (e.g. readable code)

• maintainable software

• changeable and extensible software

• less software bugs

In general such principles steer away from bad design constructions and thus aim to
contribute to a better quality of the software.

An overview of key works in the field of software engineering that explicitly discuss
design principles [20, 88, 73] are presented in Figure 1.3. The overview also shows the
design principles that we consider as a generic design principle. These design princi-
ples do not only apply to object-oriented design but also to other design paradigms
and software design in general.

In our research we use design principles as a basis for measuring students’ design
skills (see Chapter 2) and to evaluate the quality of their software design models. In
this dissertation the following design principles play an important role:

• abstraction – define the conceptual boundaries (outside view) of an object by
focusing on the characteristics of that object related to the context of a problem.
This separates the object’s expected behaviour from its implementation.

• modularity – split your software into separate units that are responsible for a
specific task.

• low coupling – try to create less dependencies as possible to other software units.
This lowers the amount of modifications in other (related) units when a unit has
to be modified.

• high cohesion – software units should fulfil tasks and contain data that belong
together.

We believe that this collection of principles constitutes a generic basis of the large
collection of design principles. Moreover these principles are not specific to any
programming language or paradigm.



8 Introduction – Challenges in Software Design Education

1982

2000

2005

Abstraction*
Encapsulation
Modularity*
Hierarchy*

Booch et al.Typing
Concurrency
Persistence

Creator 
Information Expert 
Low Coupling*
Controller 
High Cohesion* 

Indirection 
Polymorphism
Protected Variations 
Pure Fabrication

General Responsibility Assignment Software Principles - GRASP Larman

Single-responsibility principle
Open-closed principle
Liskov substitution principle

S.O.L.I.D Martin

Interface segregation principle
Dependency Inversion Principle

* generic(non object-oriented) design principle

Figure 1.3: An overview of the widely known software design principles.

Unfortunately an optimal design is not achieved by optimising all principles individu-
ally. For example: lowering the coupling could result in lower cohesion. The challenge
for software designers is to make design decisions that create an optimal balance of the
applied design principles. Mastering this skill requires training and experience.

1.2.3 Tooling

There is an ongoing discussion going on about the use of (modelling) tools in education.
Examples of topics of these discussions are: the difficulty of using tools, tools support
and standard industry tools versus tailored tools for education [2, 83]. In our research
we have looked at industrial modelling tools and educational tools (including serious
games) or a combination of both (see Chapters 3 and 4)



Background - UML, Design Principles, Tools, Agile Development and Educational Theories 9

1.2.4 Agile Software Development

In the past decades, there is an increasing popularity of evolutionary development
methodologies such as agile. Instead of assuming that the set of requirements is
clear from the start of a project, agile processes plan for very frequent feedback from
stakeholders on the direction of the project. Openness to change is central to the way
that agile development processes are organised. The consequence of such a flexible
approach is that also the design process should be organised in such a flexible and
incremental way. This requires for example the ability to evolve designs instead
of ‘freezing’ a design from the start of a project. We explored whether designing
software in an agile way contributes to the understanding of design concepts and to
the understanding of design concepts in relation to the different software development
phases (see Chapter 11).

1.2.5 Theories of Education and Learning

In this section we discuss related theoretical background on education and learning in
general and related to software engineering. Based on the educators’ challenges that
were mentioned in Section 1.1 we discuss the following topics: course creation and the
levels of learning, student motivation and didactic forms.

Creation of Courses and Learning levels Educators have to consider different mat-
ters when creating programs and courses within these programs. Matters such as:

• The main learning objectives of a program.

• The main learning objectives of a course.

• Smaller learning goals for lectures, workshops or other didactic moments.

• The order of courses and topics within courses.

• The increasing competence (e.g. knowledge and skills) levels (e.g. complexity).

• The prior knowledge of the students.

In addition, the field of software engineering develops constantly. Therefore programs
are constantly subject to change.

Different taxonomies are supporting educators all over the world for designing learning
programs. The following three are well know and most applied:



10 Introduction – Challenges in Software Design Education

• Bloom’s Taxonomy of Educational Objectives (revised by Anderson in 2001)
[70] – a taxonomy that consists of three hierarchical models related to a domain:
cognitive (knowledge-based), affective (emotion-based), psycho motor (action-
based). The levels per domain build upon each other. The cognitive domain
model is most used by educators for creating their courses. Later Anderson et
al. revised the taxonomy. Amongst other things they added a dimension to
knowledge, the kind of knowledge: factual, conceptual, procedural and meta-
cognitive. This is the version that most people refer to as Bloom’ taxonomy

• Fink’s Taxonomy of Significant Learning [38] – a taxonomy that is not hierar-
chically organised. Each element in the taxonomy interacts with one and other.
Like Bloom, Fink also has an affective part, but integrates this in the model. In
addition Fink also recognises the importance of the meta-cognitive knowledge
level.

• Wiggings and McTighe’s Six Facets of Understanding [161] – like Fink a non
hierarchical framework that is student centred. By examining six facets of under-
standing this should give a holistic picture of a student’s understanding about a
certain topic. The facets are examined with the help of questions to the student
(e.g. ‘What are examples of ... ?’ or ‘How might ... feel about ... ?’). You could
say that this framework also integrates the affective area that Bloom handles as a
separate domain.

Because of its popularity and the fact that the universities that collaborated with us
in our studies also use Bloom’s Taxonomy we chose to stay with Bloom’s cognitive
domain taxonomy.

Student Motivation As mentioned in Section 1.1 there is a challenge in motivating
students for learning software design. Irvine maps several theories that are related
to motivation in education onto two major theories: expectancy-value and intrinsic-
extrinsic motivation [57]. Expectancy-value theory states that peoples’ motivation
depends on the belief that they have for being successful in a certain task and the
value the task has for them. Intrinsic-extrinsic motivation theory states that people are
motivated because: they are inherently interested in something or enjoy it; or, it leads
to a distinct outcome (e.g. is/feels rewarded on success).

Literature shows [57] that when students are engaged in learning because of intrinsic
motivation they develop a positive attitude toward the topic that was learned. While
software design is an ever evolving discipline it is important for professionals to keep
their knowledge and skills up to date. Intrinsically motivated students would become
the life long learners that the industry needs.



Background - UML, Design Principles, Tools, Agile Development and Educational Theories 11

It seems that intrinsic motivation can be influenced by educators. Positive feedback
could enhance a student’s motivation, while negative feedback would reduce it.

When people experience flow (an intense state, when a student is fully immersed in a
task and enjoys it highly) it has an enormous positive impact on learning. Flow is the
result of the balance between skills and challenge. An optimal situation is when skills
and challenge are similar. When aware educators can use this for developing material.
Flow is also a well-know term in games. Educational games could therefore be a good
means of educating students.

In this research we explored the use of games and gamification and tailored tooling in
relationship with students’ intrinsic motivation and live long learning.

Didactic Forms In 2007 researchers state that constructivism (Piaget, later Papert:
constructionism) is the most popular approach in computer science education [86].
Currently this is still the case. Although many didactic approaches are used, they
mostly have their origins in constructivism.

In general constructivism states that learning occurs when students are actively in-
volved in the process of gaining knowledge. The practical approach that computer
science programs offer fits the idea of active learning.

Researchers observed a shift from traditional teaching towards a more active and
practical approach. In general the following approaches are used in the field of software
engineering [87]:

• traditional – classroom teaching and lab sessions (constrained assignment under
supervision of a TA and/or lecturer).

• learning by doing – experience of clash of theory and practice by taking on a
project.

• case study – investigation of a real-life problem that is recorded in one or several
sources (e.d. documents, video’s, etc.)

• problem- / outcome based learning(PBL) – a practical problem as driver for the
learning process.

Based on a literature review in the field of teaching computational thinking (k-12
and university level) the researchers show that in the reviewed studies the following
approaches stand out: game-based learning, collaborative learning, problem-based
learning and project based learning as an answer on the need for another approach of



12 Introduction – Challenges in Software Design Education

teaching in this area [56]. The authors describe computational thinking as ‘a process of
problem-solving’. We see problem solving as an elementary skill for software design.

The didactic forms that were applied in the cases that this dissertation discusses were
mainly practical and were aimed for training problem solving skills and for revealing
students’ reasoning to themselves and to the researchers.

1.3 Problem Statement

Several researchers point out that a large number of students have difficulties with
(object-oriented) modelling during analysis and design of software systems [69, 50, 122,
62]. Students have to elicit concepts from the problem domain, transfer the concept
of this domain to the solution space and propose software structures that should
lead to maintainable software. These tasks require abstract reasoning skills and these
skills seem to be difficult to teach. It is not well understood what the hurdles are in
students reasoning while creating software designs. In this dissertation we explore the
characteristics of students’ learning in order to improve our educational approaches.

Some initial thoughts about the sources of the difficulties students face are:

• Modelling can be done in different phases of software development such as
during analysis and design. During analysis students explore and model the
problem. They are required not to ‘think’ about implementation details and see
the ‘big picture’. In contrast, when they are designing a solution they have to
introduce implementation details into their designs. For students (and novice
software developers) it is difficult to stay away from implementation. Especially
when the solution domain is familiar for them. In addition it is also difficult for
them to be aware of the development phase they are in. The fact that in software
development the same UML notation (although with detail difference) is used
for modelling in different phases confuses students.

• Modelling languages introduce the possibility of having multiple views of soft-
ware systems (e.g. structural view and behavioural views, but also object view
versus class/concept view). This seems a great feature, but is challenging for
students. Identifying important concepts in the problem domain and creating
extensible designs already requires a lot of abstraction power of the brain. Switch-
ing between views requires a high memory load for related diagrams (e.g. state
machine diagrams that relate to instances (objects) from class diagrams).

• Modelling languages introduce different levels of abstraction. UML for example
offers compressed versions of notations (e.g. a class without any detail, only the



Research Objective and Research Questions 13

name) and applies diagrams on different ‘zoom levels’ of a system (e.g. sequence
diagrams on system levels and sequence diagrams on object level). We observe
that students have difficulties to distinguish between abstraction levels and their
purpose.

• A difference between modelling and programming is that with programming
students have the possibility of continuous feedback by means of testing and
compilation. This may positively affect the motivation for programming. With
modelling this is not the case. Although it is possible to model in high detail,
because of the general nature of (in our case) UML there is a gap between the
model and the implementation. An executable model is therefore mostly not
possible. We are aware of model driven environments such as low/no code
platforms where the model is the implementation. But they are often developed
for a specific problem (context).

Now and even more in the future, we depend on and trust software systems. At the
same time these systems are not only growing in size, but also in complexity. Students
should be well prepared and capable of handling these complexities. To keep future
systems maintainable, modelling should play an important role [94].

1.4 Research Objective and Research Questions

This section presents the main research objective followed by the research questions of
this dissertation.

The main objective of this dissertation focuses on how to improve our approaches in
software design education:

Main Objective How can we improve the ways of teaching software design?

Not a lot research has been done on the particular topic of software design education,
therefore we are motivated to contribute to this.

Education can be explored in many different ways. In our research we focus on the
understanding of students’ reasoning and decision making. This dissertation discusses
three aspects of the educational process of students:

1. students’ comprehension of software design,

2. students’ motivation for learning software design, and



14 Introduction – Challenges in Software Design Education

3. the learning process of students during software design tasks.

In support of the Main Objective the following research questions are defined:

RQ1 Can we assess how good students are at designing software?

RQ2 What guidance do students need to improve their understanding of designing
software?

RQ3 How can we increase the motivation and engagement of students for learning
software design?

Section 1.6 presents an overview that maps the chapters of this dissertation onto the
research questions.

1.5 Research Approach

The research questions of this dissertation are answered with the use of empirical
research. Empirical research gains knowledge by means of observation and exper-
imentation. Empirical comes from the ancient Greek word for experience: έμπειρία
(empeiría). Empirical research methods typically study real-world phenomena, such
as human activities. Empirical research is being applied in several kinds of scientific
fields, such as physics, psychology and medicine.

In the field of software engineering (SE) this research type is relatively young. Perry
et al. discussed the state of empirical research in the SE domain in the year 2000 [102]
and stated it to be relatively immature. Two years later Kitchenham et al. suggested
preliminary guidelines for empirical research in the field of software engineering [65].
They suggested guidelines for six basic topic areas: experimental context, experimental
design, conduct of the experiment and data collection, analysis of the results, presenta-
tion of the results, and interpretation of the results. Two examples of guidelines from
Kitchenham et al. are:

If the research is exploratory, state clearly and, prior to data analysis, what questions
the investigation is intended to address and how it will address them – experimental
context

Define the process by which the subjects and objects were selected – experimental
design



Research Approach 15

Currently empirical research is embraced more widely. The International Conference
on Model Driven Engineering Languages and Systems (MODELS) publishes empirical
work and has hosted the International Workshop on Human Factors in Modelling that was
initiated to be a venue for empirical research involving human factors in modelling.
Empirical work is also published by The International Conference on Software Engineering
(ICSE). This conference also organises the International Workshop on Conducting Empirical
Studies in Industry. Other parties that embrace empirical studies in software design are:
The Computer Science Education Research Conference (CSERC) and Special Interest Group
Computer Science Education (SIGCSE)

In an empirical research, the collected data is analysed qualitatively or quantitatively,
depending on the chosen method. The methods that were used for our research were
experiments and case studies.

In this dissertation our main subjects are students. We investigate students’ learning
activities. An empirical approach is therefore suitable.

1.5.1 Experiment

An experiment is set up to measure a specific effect that was caused by the change of
an (independent) variable. In most experiments the researcher wants to test his/her
prediction (hypothesis). Data collection can be done with the use of a survey, or with
measurements. Quantitative analysis is dominant in the experiment research method.
In our research the experiments did not take place in a laboratory, they were field
experiments. The experiment method is used in Chapters 2, 5, and 9.

1.5.2 Case Study

In a case study a group or person is studied in a particular situation. The researcher
has an observing role. The data collection is often done by interviewing the subjects or
let them ‘think aloud’ [81]. Qualitative analysis is dominant in case study researches.
Often the analysis is used to create a theory or provoke a discussion. The case study
method is used in Chapters 3, 7, and 8.

1.5.3 Mixed Methods

Some studies require a combination of qualitative and quantitative analysis: mixed
methods. The mixed methods approach is used in Chapters 6, and 11.



16 Introduction – Challenges in Software Design Education

Software Design Skills

Measuring Software Design Skills [CH2]

Developing better 
ways of teaching 
software design

Recommendations 
for Teaching 

Software Design

logging function 
of tool used for

Students’ Common Difficulties [CH6]

Students’ Design Strategies [CH5]

Learning from Peer Reflection [CH7]

Student Guidance and Feedback

feedback
on difficulties
and strategies

RQ2
The Use of Teaching Assistants [CH8]

Automated Grading [CH9]

Automated Feedback [CH10]iterative 
approach 
used for

performance
RQ1

Engage Students in Agile Modelling [CH11]

Student Engagement

motivation

RQ3
Gamification of Software Design [CH3]

O
nline M

odelling Tool [C
H

4]

active learning
online learning

Tooling

Figure 1.4: Overview of the research themes and their corresponding chapters.

1.6 Contribution and Dissertation Structure

This research contributes to the improvement of software design education. The
contribution is five-fold. First this dissertation provides a method for assessing students’
software design skills. Evidence is found for: i) measuring the learning yield of
students during a software design course and ii) the relation between abstract reasoning
performance and the performance of students on software design tasks.

Second we identified engaging educational approaches and tools for learning software
design. We showed this by using gamification and the integration of modelling in agile
software development processes. We developed a modelling tool that enables on-line
learning and equipped the research with the possibility to investigate larger groups of
study subjects.

Thirdly our research contributes to the collection of common design strategies and dif-
ficulties in students’ reasoning processes. With the use of the investigated educational
approaches we gained insights in the type of guidance or feedback students need and
we are able to make recommendations to lecturers in the field of software engineering.

Fourthly we explored the automation of grading and feedback for providing direct
and/or on demand feedback for students. Based on the results of our approach that
uses machine learning for grading we conclude that the models of the experiment were
not accurate for 10 point grading, but may be used as a rough quality indicator of the
quality of a software design. We developed a feedback agent module for WebUML to
explore automated guiding when students perform software design tasks. Based on



Contribution and Dissertation Structure 17

the early findings, we see a future for integrating feedback agents into future learning
environments.

Lastly, with our findings we aim to contribute to research approaches and tools for
studying students doing software design.

Figure 1.4 shows the set of ideas and approaches we have developed. We started
off with a tool for assessing student’s knowledge of software design (using classical
multiple choice testing). As a complement, we moved into the area of monitoring and
assessing students while doing design. In that area, we found that feedback during the
doing of design is a good aid in learning; i.e. instead of assessing for the purpose of
grading, we looked into assessing for the purpose of providing feedback and thereby
enhancing the learning. In line with this theme, we also looked into enhancing the
engagement of students in the learning of software design. In addition Figure 1.4
illustrates the relationships between the contribution themes and the chapters of this
dissertation. Some chapters relate to previous chapters. This is also illustrated in the
figure.

The structure of the remainder of this dissertation is as follows:

Part II - Software Design Comprehension

Chapter 2 – An Instrument for Measuring Design Skills The main objective of
this chapter is i) to create an instrument that assess students’ software design
skills and ii) investigate the relation between abstract thinking abilities of
students and performance of software design tasks. (supports RQ1)

Part III - Tooling

Chapter 3 – Exploring the Application of Game-Based Learning in Software
Design Education The main objective of this chapter is to explore the in-
fluence gamification has on the engagement of students in software design
activities. (supports RQ3)

Chapter 4 – WebUML - a UML Class Diagram Editor for Research and Online
Education The main objective of this chapter is to present our on-line UML
editor. The editor is a research instrument that was needed to conduct
the several experiments that are discussed in the different chapters of this
dissertation.

Part IV - Student Guidance and Feedback

Chapter 5 – Strategies of Students Performing Design Tasks The main objec-
tive of this chapter is to reveal common strategies students use to solve their
software design tasks. (supports RQ2)



18 Introduction – Challenges in Software Design Education

Chapter 6 – Uncovering Common Difficulties of Students Learning Software
Design The main objective of this chapter is to uncover difficulties students
have during a software design task. (supports RQ2)

Chapter 7 – Teaching of Agile UML Modelling: Recommendations from Stu-
dents’ Reflections The main objective of this chapter is to distil students
difficulties in the process of analysis and design modelling by analysing
their peer-reflections. From the distilled difficulties recommendations for
the guidance of software engineering students are presented (supports RQ2)

Chapter 8 – Evaluating Didactic Approaches used by Teaching Assistants for
Software Analysis and Design using UML The main objective of this chap-
ter is to create a profile for teaching assistants that are involved in the
education of software design courses. (supports RQ2)

Chapter 9 – Towards Automated Grading of UML Class Diagrams with Ma-
chine Learning The main objective of this chapter is to explore the applica-
tion of machine learning for automated grading of class diagrams. (supports
RQ2)

Chapter 10 – An Online Educational Agent: Automated Feedback for Design-
ing UML Class Diagrams The main objective of this chapter is to explore
the application of automated feedback during software design tasks with a
didactic software agent.(supports RQ2)

Part V - Student Engagement

Chapter 11 – A Workshop for Agile Modelling The main objective of this chap-
ter is to explore the integration of UML modelling in an agile development
process in order to engage students in software modelling. (supports RQ3)

Part VI - Reflection

Chapter 12 – Conclusion and Future Work The closing chapter of this disserta-
tion discusses recommendations based on pitfalls and practices of software
design education, conclude this research and propose future work.

1.7 Publications

Below we list a chronological list of publications that were (co-)authored during this
doctoral research:

1. Dave R. Stikkolorum, Michel R.V. Chaudron, and Oswald de Bruin. The art
of software design, a video game for learning software design principles. In
Gamification Contest MODELS’12 Innsbruck, 2012



Publications 19

2. Hafeez Osman, Arjan van Zadelhoff, Dave R. Stikkolorum, and Michel R.V.
Chaudron. UML class diagram simplification: what is in the developer’s mind?
In Proceedings of the Second Edition of the International Workshop on Experiences and
Empirical Studies in Software Modelling, page 5. ACM, 2012

3. Dave R. Stikkolorum, Claire Stevenson, and Michel R.V. Chaudron. Assessing
software design skills and their relation with reasoning skills. In EduSymp 2013.
CEUR, vol. 1134, paper 5, 2013

4. Seiko Akayama, Marion Brandsteidl, Birgit Demuth, Kenji Hisazumi, Timothy C
Lethbridge, Perdita Stevens, and Dave R. Stikkolorum. Tool use in software
modelling education: state of the art and research directions. In the Educators’
Symposium co-located with ACM/IEEE 16th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2013), 2013

5. Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty HC
Cheng, Philippe Collet, Benoit Combemale, Robert B France, Rogardt Heldal,
James Hill, et al. The relevance of model-driven engineering thirty years from
now. In Model-Driven Engineering Languages and Systems, pages 183–200. Springer,
2014

6. Dave R. Stikkolorum, Birgit Demuth, Vadim Zaytsev, Frédéric Boulanger, and
Jeff Gray. The MOOC hype: Can we ignore it? In Reflections on the current use
of massive open online courses in software modeling education. MODELS Educators
Symposium, EduSymp, 2014

7. Dave R. Stikkolorum, Truong Ho-Quang, and Michel R.V. Chaudron. Revealing
students’ UML class diagram modelling strategies with WebUML and LogViz.
In Software Engineering and Advanced Applications (SEAA), 2015 41st Euromicro
Conference on, pages 275–279. IEEE, 2015

8. Bilal Karasneh, Dave R. Stikkolorum, Enrique Larios, and Michel R.V. Chaudron.
Quality assessment of UML class diagrams. In Proc. Educators’ Symp at MoDELS,
2015

9. Dave R. Stikkolorum, Truong Ho-Quang, Bilal Karashneh, and Michel R.V. Chau-
dron. Uncovering students’ common difficulties and strategies during a class
diagram design process: an online experiment. In Educators Symposium 2015, co-
located with the ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems, 2015

10. Dave R. Stikkolorum and Michel R.V. Chaudron. A workshop for integrating
UML modelling and agile development in the classroom. In Proceedings of the
Computer Science Education Research Conference 2016, pages 4–11. ACM, 2016



20 Introduction – Challenges in Software Design Education

11. Dave R. Stikkolorum and Michel R.V. Chaudron. Teaching of agile uml modelling:
Recommendations from students’ reflections. In Proceedings of the 20th Ibero-
American Conference on Software Engineering, Buenos Aires, Argentina, 2017

12. Dave R. Stikkolorum, F. Gomes de Oliveira Neto, and Michel R.V. Chaudron.
Evaluating didactic approaches used by teaching assistants for software analysis
and design using uml. In Proceedings of the 3rd European Conference of Software
Engineering Education, ECSEE’18, pages 122–131, New York, NY, USA, 2018. ACM

13. Boban Vesin, Aleksandra Klašnja-Milićević, Katerina Mangaroska, Mirjana Ivanović,
Rodi Jolak, Dave Stikkolorum, and Michel Chaudron. Web-based educational
ecosystem for automatization of teaching process and assessment of students.
In Proceedings of the 8th International Conference on Web Intelligence, Mining and
Semantics, pages 1–9, 2018

14. Dave R. Stikkolorum, Peter van der Putten, Caroline Sperandio, and Michel R.V.
Chaudron. Towards automated grading of uml class diagrams with machine
learning. In BNAIC/BENELEARN, 2019

15. Goda Jusaite, Pim Sanders, Damani Lawson, Koen van Polanen, Hani Al-Ers, and
Dave R. Stikkolorum. Improving the quality of online collaborative learning for
software engineering students. In International Academic Conference on Teaching,
Learning and E-learning, pages 8–15, 2020

16. Marcella Veldthuis, Matthijs Koning, and Dave R. Stikkolorum. A quest to engage
computer science students:using dungeons & dragons for developing soft skills.
In Proceedings of the Computer Science Education Research Conference 2021. ACM,
2021

In addition, the author has chaired symposia and conferences in the area of Modelling
and Education :

1. Birgit Demuth and Dave R. Stikkolorum, editors. Proceedings of the MODELS
Educators Symposium co-located with the ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2014), Valencia, Spain,
September 29, 2014, volume 1346 of CEUR Workshop Proceedings. CEUR-WS.org,
2014

2. Ebrahim Rahimi and Dave R. Stikkolorum, editors. CSERC ’19: Proceedings of
the 8th Computer Science Education Research Conference, New York, NY, USA, 2019.
Association for Computing Machinery

3. Dave R. Stikkolorum and Ebrahim Rahimi, editors. CSERC ’20: Proceedings of
the 9th Computer Science Education Research Conference, New York, NY, USA, 2020.
Association for Computing Machinery



Publications 21

4. Dave R. Stikkolorum and Ebrahim Rahimi, editors. CSERC ’21: Proceedings of the
10th Computer Science Education Research Conference, New York, NY, USA, 2021.
Association for Computing Machinery

5. Dave R. Stikkolorum and Ebrahim Rahimi, editors. CSERC ’22: Proceedings of the
11th Computer Science Education Research Conference, New York, NY, USA, 2022.
Association for Computing Machinery




