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Introduction
Antimicrobial drugs constitute a fundamental part of modern medicine. The 
global rise in antimicrobial resistance (AMR), which decreases effectiveness 
of antimicrobial treatments, poses a major threat to global health.1 Optimising 
antimicrobial treatment strategies in patients offer an important direction to 
address this challenge. Infections are currently commonly treated using standard 
empirical protocols, which are designed to obtain broad pathogen coverage.2,3 
Such one-fits-all treatments neglect differences between patients and do not 
regard the causative pathogens. Moreover, there is a lack of consideration of 
the dynamic nature of patient physiological conditions and bacterial pathogens 
evolution within patients. Patients and pathogen characteristics can change 
during the course of an antimicrobial treatment due to for instance changes in 
organ function or development of AMR. Insufficient consideration of variability 
between pathogens and between- or within patients can lead to substantial 
variation in outcomes of standardised treatments, thereby contributing to the 
risk of treatment failure.4 Strategies to further optimise antimicrobial treatments 
for individual patients and causative pathogens are therefore warranted.

The outcome of an infection is not ruled by one single factor, but rather 
by the interplay between the drug, the pathogen, and the patient, i.e. the host. 
To this end, the development of optimised and individualised antimicrobial 
treatment strategies requires a multifaceted approach where these factors, 
and the interactions, are considered.5 It is imperative to obtain a quantitative 
understanding of the drug exposure, i.e. pharmacokinetics (PK), and how this 
relates to the dynamics of drug effect on pathogens, i.e. pharmacodynamics (PD), 
and how the host immune response relates to these PK-PD relationships. To this 
end, this thesis covers three main research themes: antimicrobial PK, bacterial 
evolution and antimicrobial PD, and host response to bacterial infections. 

In order to derive optimised dosing strategies informed by knowledge of 
drug, host and pathogen interactions, quantitative pharmacological modelling 
approaches are essential. Several different modelling techniques are of 
relevance, depending on the specific goals and data availability. Data driven top-
down approaches allow for empirical description of the data. Here, nonlinear 
mixed effects modelling (NLME) or population modelling is commonly used 
to fit observation-time profiles to characterise processes in patient data. Such 
population modelling approaches are valuable to quantify inter-individual 
variability within the population and to identify patient-specific predictors 
which may be used to individualise drug treatment. NLME modelling can also 
be applied to develop semi-mechanistic models, which allow incorporation of 
different degrees of mechanistic knowledge.6 Finally, bottom-up mechanistic 
modelling approaches are constructed fully based on prior knowledge of 
biological and systems-specific properties. Such modelling approaches are 
relevant to explore hypothesis or generate predictions about scenarios where 
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data are not available. In this thesis a range of modelling techniques are used 
to contribute to the development of a quantitative understanding of the drug, 
pathogen, and host interactions that can be used to optimised dosing strategies.

Antimicrobial pharmacokinetics
Pharmacokinetics describes the relationship between drug dose and its 
concertation-time profile in the body. Typically, the PK is characterised for the total 
drug concentration, i.e. the sum of the free concentration and the concentration 
bound to proteins in the plasma. Total drug concentrations in plasma are 
still commonly used to inform dosing strategies of antimicrobials. However, 
it is the concentration of unbound drug at the site of infection that drives the 
antimicrobial effect.7 When designing treatments, plasma protein binding and 
infection site concentration should be considered to ensure adequate efficacy. 
The antimicrobial concentrations in certain tissues, e.g. lung, may greatly differ 
from the plasma concentration.8 Neglecting such discrepancies when designing 
dosing regimens may lead to suboptimal antimicrobial exposure at the infection 
site. Additionally, pathophysiological changes can lead to altered plasma and 
tissue-specific PK in critically ill patients compared to healthy volunteers. 

To enable design of optimised antimicrobial dosing schedules, i.e. how 
much and how often the antimicrobial should be dosed, it is important to 
quantitatively characterise the drug exposure. NLME modelling is used to fit 
concentration-time data to quantify drug absorption, distribution, metabolism, 
and excretion in a population of individuals.9 Such PK models are constructed 
using empirical compartments and generally describe plasma drug disposition. 
Due to the empirical nature of these PK models, they are not well suited for 
predicting tissue concentrations. Instead, tissue concentrations can be more 
effectively predicted using physiologically based PK (PBPK) models.10 PBPK 
models are constructed using a bottom-up approach incorporating known 
physiology using system-specific parameters, which are combined with drug-
specific parameters to predict tissue-specific PK. Altering system-specific 
parameters allows to investigate how changes in the biological system affect PK, 
allowing for example translating PK in healthy individuals to a patients through 
the incorporation of pathophysiological changes. PBPK models thus represent a 
valuable modelling approach to predict infection site PK in patients. 

Bacterial evolution and antimicrobial pharmacodynamics
Pharmacodynamics (PD) describes the relationship between drug concentration 
and drug effects, which include both desired, i.e. efficacy, and undesired effects, i.e. 
toxicity. Antimicrobials drug effects are dynamic as they act on growing and evolving 
bacterial populations. Antimicrobials primarily act by either disrupting bacterial cell 
replication or inducing cell death. At the same time, bacterial pathogens exposed to 
antimicrobial can evolve AMR through mutation and selection.11 In order to effectively 
predict antimicrobial treatment response, characterisation of the direct drug effects 
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is required as well as the adaptive response of bacterial pathogens. In practice, 
this is rarely considered during the design of antimicrobial dosing schedules.

Current approaches to guide and design antimicrobial treatment schedules 
relies on summary metrics, such as the minimum inhibitory concentration 
(MIC). The MIC is the most commonly used metric to quantify the antimicrobial 
susceptibility of bacteria, and represent the concentration that inhibits visible 
growth after a standardised incubation time. Although the MIC is a clinically 
relevant metric, it is derived for only a single time point, typically after 20 hours, 
while underlying antimicrobial PK-PD and infection in a patient are inherently 
dynamic. Shifting towards a more in-depth quantitative characterisation of the 
dynamic interaction between antimicrobials and bacterial pathogens could aid 
in improving treatments and supress AMR development. 

Bacterial resistance evolution is typically studied with in vitro experiments 
using static or stepwise increasing antimicrobial concentrations. Such 
experiments can contribute valuable insight into antimicrobial PD, but also on the 
bacterial population dynamics of AMR evolution. However, these experiments fail 
to capture the effects of the fluctuating antimicrobial concentrations observed in 
patients, i.e. antimicrobial PK. How such differences in antimicrobial exposure 
might affect the resistance development the experiments are designed to study 
is not well understood. Another important aspect are evolutionary trade-offs 
of AMR. In some situations, the development of AMR can lead to evolutionary 
trade-offs, which increase antimicrobial susceptibility to other antimicrobials.12 
This phenomenon is called collateral sensitivity (CS). Exploiting CS could be of 
interest to counter the resistance development. However, the rational design of 
treatments that use the phenomenon of CS remains challenging.

Host immune response to bacterial infections 
During a bacterial infection, the host’s immune response is orchestrated to 
attack invading pathogens. Key to this immune response is the infection-
induced production of host-associated inflammatory biomarkers, such as 
cytokines and other inflammatory proteins e.g. C-reactive protein (CRP) and 
procalcitonin (PCT). These markers may carry important insight into the 
current state of an ongoing infection, which potentially could be utilised to 
guide antimicrobial therapy. Both CRP and PCT are currently used clinically 
as markers for severe bacterial infections. PCT-based treatment algorithms 
to guide antibiotic de-escalation have been shown to reduce mortality and 
unnecessary antimicrobial exposure in septic patients.14 Nonetheless, the 
prognostic value of these markers is still not fully established and their 
potential to further guide antimicrobial treatment remains to be established.13 
Biomarker based treatment monitoring could thus have the potential to 
support individualisation of antimicrobial therapy. However, for a biomarker 
to have a potential as a treatment-response biomarker its dynamics needs to be 
quantitatively characterised and shown to closely follow the infection. Currently, 
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such well-characterised biomarkers with suitable properties are lacking.
Simultaneously considering multiple immune biomarkers might 

provide more insight into the infection than one single marker.15 However, 
the host response to invading bacterial pathogens is complex and not yet well 
understood. Characterising the correlations between biomarkers dynamics 
could aid in uncovering important interactions. Moving beyond correlations and 
simultaneous consideration of the known interactions of key components of the 
immune response could further help to unravel parts of the underlying immune 
mechanisms to infections. A better understanding of these mechanisms may 
aid in finding effective treatments for infection related immune dysregulation, 
which is driving the progression sepsis. 

Integrating the dynamics of relevant host response biomarkers into model 
based treatment strategies allows for individualised treatment monitoring and 
adaptation. Top-down ordinary differential equation based modelling has been 
applied to describe immune biomarker dynamics in several animal species.16–18 
Using a similar approach to human biomarker data would allow for a quantitative 
characterisation, which is currently lacking. Although such models are data 
driven, they could potentially include some mechanistic components. However, 
they are often limited to only characterising a part of the immune response. A 
more holistic description of the immune response could be obtain through the 
use of systems biology or quantitative systems pharmacology models.6,19 Such 
models are constructed using a bottom-up approach, requiring highly specific 
quantitative data to populate the model. Currently, the lack of data availability 
is impeding the development of such models. A qualitative modelling approach, 
such as Boolean modelling, could help to overcome the need of quantitative data 
while still providing a systems level characterisation of the immune response to 
bacterial infections. 20

Thesis outline and scope
Section I: General introduction and outline
Section I outlines the standard antimicrobial therapy and the need 
for updated treatment strategies. In this section, three different 
research themes are defined; antimicrobial PK, bacterial evolution and 
antimicrobial PD, and host response to bacterial infections. Building 
on these research themes, and addressing their current shortcomings, 
the work in this thesis aimed to move toward the development of 
novel model-based treatment strategies to optimise and individualise 
antimicrobial therapy with explicit consideration of AMR development. 

Section II: Pharmacokinetics of antimicrobials
Antimicrobial PK is the focus of Section II, with specific attention on the exposure 
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driving the antimicrobial effect, i.e. unbound drug at the site of infection. In 
Chapter 2, we characterised the total and unbound PK of teicoplanin in critically 
ill children through the use of NLME modelling (Chapter 2). This chapter aimed 
to identify predictors of protein binding and teicoplanin clearance to guide 
teicoplanin treatment in this vulnerable paediatric population. The following 
two chapters zoom in on pulmonary PK. Chapter 3 describes the validation 
of a model predicting lung penetration ratio of anti-infective agents based on 
quantitative structural-property relationships (QSPR). This validation aimed to 
evaluate the predictive performance of the model relating to new classes of anti-
infective agents. An adapted version of the QSPR-based model was incorporated 
into the lung PBPK modelling framework developed in Chapter 4. This chapter 
aimed to investigate the performance of three alternative modelling approaches, 
which allow for prediction of lung specific PK in situations with different 
data availability. The framework was also used to increase the understanding 
of how drug properties and pathophysiology affect pulmonary PK. 

Section III: Bacterial evolution and antimicrobial pharmaco-
dynamics 
Section III is focussed on bacterial evolution and antimicrobial PD. Chapter 
5 aimed to elucidate how, and if, the choice of experimental system impacts 
bacterial evolutionary trajectories. This was evaluated in Klebsiella pneumoniae 
exposed to colistin in three different in vitro systems. Building on a separate set of 
in vitro time-kill experiments with K. pneumoniae, a semi-mechanistic model was 
developed (Chapter 6). This model was used to assess molecular mechanisms 
of resistance to β-lactam antibiotics and β-lactamase-inhibitors with the aim to 
identify the most important treatment targets to overcome resistance. Another 
strategy to suppress AMR development was investigated in Chapter 7, where 
the potential of exploiting evolutionary trade-offs in form of CS was evaluated. 
Here, we derived fundamental design principles of CS-based treatments 
using theoretical simulations. Although CS-based drug cycling regimens have 
been suggested previously, no clinical CS-based regimen has been developed. 
A mathematical framework was developed, which allowed for simulation 
of bacterial growth, kill, and resistance development during antimicrobial 
combination treatments. This approach permitted for the disentanglement of 
the impact of bacterial properties, such as CS and growth rate, on resistance 
development. In Chapter 8, the framework was applied to scenarios 
informed by experimental data of Streptococcus pneumoniae. This chapter 
aimed to evaluate the potential of combination treatments in S. pneumoniae 
and to identify which factors are driving resistance to fluoroquinolones. 

Section IV: Host response to bacterial infections
Section IV includes four chapters covering the host response to bacterial 
infections and the possible use for host response biomarkers for antimicrobial 
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treatment individualisation. In Chapter 9, the current state of biomarker-based 
treatment individualisation is discussed. We also discuss how mathematical 
modelling can aid in advancing such approaches, which was demonstrated 
with an analysis using PCT in septic patients as proof-of-concept. However, the 
high variability relating to treatment and infection make the characterisation of 
host response biomarker dynamics challenging in patients. As a step towards a 
quantitative understanding of the host response to bacterial infections, the Toll-
like receptor 4 mediated pathway was studied in healthy volunteers (Chapter 
10 and 11). Studying a selected part of the host response in healthy volunteers 
reduce variability compared to patients and provide a clear, although limited, 
picture of the response. Specifically, in Chapter 10, the dynamics of a novel 
host response biomarker, presepsin, in response to lipopolysaccharide (LPS) 
are reported. This chapter aimed to characterise presepsin dynamics and how 
it relates to other more established markers to assess presepsin potential as 
a treatment response biomarker. The dynamics of such markers needs to be 
quantitatively characterised to further enable biomarker-based treatment 
monitoring. Chapter 11 aimed to quantitatively describe the dynamics of 
established host response biomarker in healthy volunteers by developing a 
set of mathematical models. To further understand the host response to LPS, a 
Boolean network model was developed in Chapter 12. This model provideed 
insight into the complex immune responds mediated by the Toll-like receptor 4, 
which plays a major role during sepsis. This chapter aimed to explore possible 
treatment targets in sepsis and potential treatment response biomarkers. 

Section V: Summary, conclusions, and perspectives
In Section V, the results generated in previous sections are summarised 
and discussed (Chapter 13). Furthermore, this section outlines the 
future perspective on how to improve antimicrobial treatments on 
the basis of the three research themes of antimicrobial PK, bacterial 
evolution and antimicrobial PD, and host response to bacterial infections.
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