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8 Conclusions and Outlook

Specialists in any field intuitively exploit experience when approaching new
optimization problems. Experience allows us to propose better initial solutions
and settings for optimization algorithms than starting without any information
about the target problem. As a consequence, transferring experience allows us
to accelerate the convergence of optimization problems and improve the quality
of the optimized designs. However, if performed in an unsystematic fashion
and by a small team of engineers, the exploitation of experience is limited and
biased by the expertise of the team. Therefore, to exploit experience transfer in
engineering optimization more efficiently, a systematic approach for learning
a transferrable notion of experience is required, which starts by defining a
method for representing different problem domains.

Engineering optimization data are high-dimensional, unstructured and have
no canonical representation. Thus, classical machine learning algorithms have
limited capability for abstracting engineering models into a common represen-
tation. However, a novel class of algorithms has been recently introduced, the
so-called geometric deep learning (GDL), which extends the applications of
machine learning to unstructured (geometric) data. In particular, point-based
autoencoders are suitable for learning distributed low-dimensional representa-
tions of computer aided engineering (CAE) models. Furthermore, by sampling
designs in the latent space, these autoencoders can perform as shape-generative
models for automated frameworks. Hence, applying GDL techniques on en-
gineering data is a promising approach for learning representations of CAE
models for an experience-based engineering optimization framework, which
is the main subject of this dissertation.

In the remainder of this chapter, the conclusions drawn from the findings of
the research that led to this dissertation are presented (Section 8.1). Also, in
Section 8.2, potential directions for future research that builds up on the work
presented in this dissertation are discussed.
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8.1 Conclusions

As the representation of CAE data is not canonical, a first step for learning
design features from CAE data is to define which combination of data type and
methods are the most suitable for the task. Hence, in Chapter 3, a review of
the state of the art on geometric data and geometric deep learning is presented,
which answers RQ1: “How is geometric data defined in the context of design

optimization problems?”. In the context of this dissertation, the term geometric

data refers to mathematical representations of 3D objects, which are utilized in
simulation-based design optimization problems. The most widespread geomet-
ric representation in engineering is the polygonal mesh, which is utilized for
simulating the performance of 3D designs. However, learning shape-generative
models based on non-isomorphic meshes is a challenge and currently available
approaches have limited generative capabilities.

Differently, 3D point clouds represent objects of different topology with
more flexibility and their manipulation requires less processing effort than
polygonal meshes. Therefore, from the reviewed representations, 3D point
cloud data are the most suitable for learning compact representations of CAE
models, which addresses the question “How can compact representations of

3D designs for engineering optimization be learned from CAE data?” (RQ2).
Furthermore, based on the review on GDL techniques, point-based deep au-
toencoders learn distributed representations of high-dimensional data and have
shown promising results as shape-generative models for 3D objects. There-
fore, in this research, an autoencoder is utilized for learning compact latent
representations of 3D point clouds sampled from CAE models.

In Chapter 4, an architecture of a 3D point cloud autoencoder (PC-AE-
Rios) is proposed for learning design representations of CAE models. The
shape-generative performance of PC-AE-Rios is comparable to state-of-the-
art point-based networks and scalable to higher-dimensional models (105

points) than typically utilized in the literature. It is also shown that learning
on organized point clouds using the mean-squared distance (MSD) between
corresponding points as loss function improves the quality of the shapes
generated by the PC-AE-Rios. Furthermore, learning on organized point clouds
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requires lower computational effort, preserves the capability of PC-AE-Rios
to process unorganized point clouds after the training, and allows to generate
simplified meshes (water-tight, genus-0) on the output point clouds.

In a first-of-its-kind framework for evolutionary design optimization using
point cloud autoencoders (Section 4.6), the performance of PC-AE-Rios is
compared to free-form deformation (FFD) in a set of target-shape matching
optimizations (TSMOs). The experiments show that PC-AE-Rios is a suitable
representation for design optimization and more efficient than FFD for gener-
ating shapes within the learned space of features. In extrapolation scenarios,
as expected for machine learning models, the performance of PC-AE-Rios is
less consistent and the quality of the generated objects decreases.

However, the TSMO experiments show that the features learned by PC-
AE-Rios relate to the regions occupied by the designs, which leads to the
question “What is the geometric interpretation of the features learned by the

selected deep-generative method?” (RQ3). To answer this question, a novel
feature visualization technique for 3D point cloud autoencoders is proposed
(Section 5.2). The method exploits the properties of the 1D convolutional
layers, which are utilized in the encoder of PC-AE-Rios, and projects the
obtained activations onto the input 3D point cloud representation as color
maps. Since the latent variables are obtained by processing the activations
through a max-pooling operator, the regions in the point clouds that yield the
highest activations correspond to the geometric structure of highest relevance
to the visualized feature.

The proposed feature visualization method is utilized to evaluate the repre-
sentations learned by PC-AE-Rios with respect to: Variations in the training
data, shift-invariance, and the density with which the training data occupies dif-
ferent regions of the input space. Based on the results, the following geometric
interpretation for the latent features learned by PC-AE-Rios is proposed, which
answers RQ3: The latent features represent the occupancy of fixed irregular

volumes in the input space of PC-AE-Rios by the input shape, which indicate

regions of design variations observed in the training data. Hence, the features
vary with the position, orientation and scale of the input shape. Furthermore,
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by increasing the dimensionality of the latent space, the volumes mapped by
the latent variables become more refined, which improves the learning of shape
details and, consequently, the quality of the generated models, as observed in
the experiments.

To interpret the characteristics of the learned latent variables from a more
practical perspective, the following question is stated: “What are the advan-

tages of learning design representations using a deep-generative model with

respect to other suitable data-driven techniques?” (RQ4). To answer RQ4, in
Section 5.2, PC-AE-Rios is compared to PCA-based design representations
as a data-driven representation for design optimization problems. The repre-
sentations are compared based on three criteria: Data reconstruction quality,
sensitivity of the output shapes to variations of the learned features, and capa-
bility to generate shapes through combinations of features. The main outcome
of the experiments is that PC-AE-Rios learns a more diverse set of degrees of
freedom, which allows one to modify local geometric features more efficiently
than PCA-based representations. This property provides an advantage in non-
linear design optimization problems that require local design modifications,
e.g., the optimization of the aerodynamic downforce of vehicle designs, as
also shown in the same chapter.

Once the architecture and capabilities of PC-AE-Rios are better understood,
the following question targets the initial vision of an experience-based opti-
mization framework: How can the design space learned by deep generative

models be utilized to transfer knowledge between design optimization prob-

lems? (RQ5). To answer this question, a novel multi-task design optimization
(MTO) framework is proposed, where the latent space of PC-AE-Rios is uti-
lized to map the design features of 3D shapes utilized in different optimization
problems to a common search space. In the framework, the multi-factorial
optimization algorithm (MFEA) is adapted from the literature [68] and the
proposed feature visualization technique is utilized for selecting the design
features to be adapted and shared across the optimization tasks.

Based on a set of benchmark and vehicle aerodynamic design MTO prob-
lems, it is shown that PC-AE-Rios is a suitable method for mapping multiple



8.1. Conclusions 155

design spaces to a common representation. Furthermore, by combining fea-
tures of different designs in the latent space, which is interpreted as transfer
of knowledge between tasks, the framework allows to accelerate and improve
the solution of the optimization tasks. Although the problems are solved si-
multaneously, the experiment shows that PC-AE-Rios is a feasible approach
for learning a transferrable representation of past optimized designs. These
past solutions are biased by the designers’ experience that can be utilized in
new optimization problems, as targeted by the envisioned experience-based
optimization framework. Nevertheless, the margin of improvement is limited
by effects of negative knowledge transfer, which is not addressed in the present
research.

Finally, despite the performance in the previous experiments, PC-AE-Rios
generates output representations with low state-of-readiness for engineer-
ing simulations. Hence, “How can the gap between the research on deep-

generative models and their implementation for real-world engineering prob-

lems be narrowed?” (RQ6). To address this challenge, a novel deep-generative
model that builds upon the architecture of PC-AE-Rios is proposed: Point2FFD.
The novel architecture combines a shape classifier and an FFD operator to the
decoder of PC-AE-Rios, which predicts the deformation of simulation-ready
mesh templates instead of the coordinates of mesh vertices.

In a set of experiments, it is shown that Point2FFD generates more realistic
designs than obtained with PC-AE-Rios. Furthermore, compared to state-of-
the-art point cloud (variational) autoencoders, Point2FFD provides competitive
trade-off between accuracy and computational effort, despite the complexity
of the network. In a set of vehicle aerodynamic optimization problems that
compare Point2FFD to PC-AE-Rios, it is shown that Point2FFD improves the
optimization performance (over 25% for the utilized shapes) and generates
designs with characteristics that are in line with engineering solutions observed
in similar problems.
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8.2 Future Work

The contributions of the works in this dissertation cover a limited scope of
the research on experience-based computation and cooperative intelligence
for engineering systems. Thus, several challenges remain unsolved and the
methods proposed in the present research have potential to be improved and
adapted to a wider range of applications.

One of the limitations for further developing GDL methods for engineering
is that the literature lacks engineering-tailored data sets. ShapeNetCore [23]
allowed us to advance the state of the art, but the available information on the
model properties is too limited for engineering tasks, e.g., mass properties and
aerodynamic performance. Recently, a data set of car hood models has been
proposed [173], which is a step towards the proposed direction, but data sets
with more complex objects and different types of data are still missing.

In line with the data set generation, the deep-generative models proposed in
this research learn exclusively on geometric data. Yet, the synergies between
optimization problems depend also on the domain of the optimization rather
than exclusively the geometric properties. Hence, enabling these methods to
learn simulation data, e.g., flow and stress fields, along with the geometries has
potential to increase the efficiency in the knowledge transfer between problems
in different domains, such as from fluid dynamics to structural analyses. The
currently available methods still depend on Euclidean representations [161],
are defined in 2D domains [85] or learn based only on physical properties [63].

At last, neither of the methods proposed in this dissertation address the pre-
cision with which the shapes are modified. Event though the deep-generative
models excel in design exploration, many engineering design tasks require
the design modifications to be handled within a certain tolerance of values,
which is not discussed in this work. Hence, a proper evaluation on the preci-
sion provided by the architectures and proposal of modifications to allow the
deep-generative models to learn a latent space that accounts for design con-
straints are potential directions for improving the performance of the discussed
methods.


