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The aim of this thesis has been to investigate and improve accessibility and uncertainty in
remote sensing and citizen science, so that these techniques can better deliver the desired im-
provements to cost, scale, and reproducibility of water research (Section 1.1.4). Accessibility
was improved by accounting for disability in citizen science (Chapter 2) and by developing
consumer cameras as low-cost instruments for remote sensing by professional and citizen
scientists (Chapters 3, 4, and 6). The uncertainty in measurements by citizen scientists and
measurements from consumer cameras was assessed and reduced (Chapters 2, 3, and 4), as
was the uncertainty in comparing and combining data from different professional instruments
(Chapter 5). Here, a general synthesis, discussion, and future outlook are provided.

The current direction of research in remote sensing of water is towards higher-dimen-
sional data by including a wider wavelength range (UV–NIR), finer spectral sampling, and
polarisation; automation; and more in-depth analysis of uncertainty and information content.

Satellite remote sensing of water has come a long way since its origins in the 1970s,
when Landsat-1 data were used to map ocean currents based on a dynamic range of only 4
ADU [96]. Successive generations of satellite instruments developed by different organisa-
tions, such as the NASA Satellite Ocean Colour programme and Landsat missions and the
EU/ESA Copernicus programme [85, 467], continue to provide high-resolution, high-quality
data. Planned to launch in 2024, the PACE mission will further expand satellite remote sens-
ing of water with its hyperspectral and spectropolarimetric instruments OCI, SPEXone, and
HARP-2. Combined observations from these instruments will enable joint aerosol-water re-
flectance retrieval algorithms, improving the accuracy of both aerosol and water constituent
products. Furthermore, PACE will provide insights into aerosol-water interactions, which
play a key role in global biogeochemical cycles and climate change [86]. Ongoing pre-
launch research includes characterisation of its instruments and capabilities [111, 112, 184],
generation of synthetic data [186], and development of algorithms for data processing and
analysis [185, 188, 421].

Current in-situ instrumentation development is focused on automation of sensors and data
processing to enable autonomous data collection on larger scales and with greater consis-
tency [89,109,117,124,399]. This improves the cross-validation between satellite and in-situ
radiometry and makes it possible to measure high-frequency local time series. Optical mea-
surements are being further integrated with existing networks such as Argo [80], providing
additional information and improving the accuracy of retrieval algorithms [216].

These new developments will be valuable tools for studying the changes occurring in
global waters. Climate change is affecting phytoplankton community compositions [42, 232,
417] and the availability of habitats for aquatic animals [468]. Similar trends are caused by
pollution with nutrients, causing eutrophication and algal blooms [47], and toxins, which
kill organisms and damage ecosystems [69]. Equally important to study are the resulting
feedback mechanisms, such as the role of phytoplankton in carbon capture and export [469,
470]. Increased remote sensing capabilities, in particular wide spatial coverage with high-
frequency observations, combined with a general increase in adoption of remote sensing by
water managers and policymakers, are necessary to meet data requirements for modelling and
understanding the changes occurring in waters worldwide [89, 471].

This chapter places the research described in the previous chapters into the context dis-
cussed above and in Chapter 1. Comparisons between individual results and the existing
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literature are presented in the discussion sections of the respective chapters, and will not be
repeated here. Section 7.1 discusses our research into uncertainty characterisation and miti-
gation. Section 7.2 discusses accessibility and inclusion in remote sensing of water, including
our studies of the Forel-Ule scale and smartphone cameras. In Section 7.3, we discuss the
potential of spectropolarimetry in remote sensing of water and present initial results from
a follow-up project on spectropolarimetric sensing of floating debris. Finally, Section 7.4
presents the general conclusions and recommendations to be drawn from this thesis.

7.1 Uncertainty in remote sensing of water

Formal analysis of uncertainty has historically been underutilised in the remote sensing com-
munity, to the extent that data and products were often distributed without any uncertainty
estimate [88, 106]. Instead, field intercomparisons between different instruments, different
algorithms, or between data and simulations have been the primary method for characteri-
sation of uncertainty [88]. While validation with different instruments is an important step
towards achieving closure (Sections 1.3.4 and 4.4.3), it is fundamentally limited. For ex-
ample, data taken at slightly different times or locations and with different instruments or
setups are never truly identical [409]. Uncertainty and error come from many sources, in-
cluding instability and change in sensor responses, variability in targets due to waves and
similar factors, shot noise, and uncertainty in sensor characterisation and calibration mate-
rials (Section 1.2.1). Advances in instrumentation, such as hyperspectral measurements or
polarimetry, are pointless if measurement error and uncertainty are not appropriately charac-
terised and minimised [144]. Improving our understanding of uncertainty is crucial to making
optimal use of new platforms and technology [87, 238].

Currently, there is a strong push within the community to improve the understanding
and analysis of uncertainty. For example, 2019 saw the release of IOCCG report 18, which
reviewed the current state of affairs and provided numerous recommendations for future re-
search [88]. The FRM4SOC project22 improved the state of the art by standardising pro-
tocols, intercomparing commonly used spectroradiometers, and improving methods for un-
certainty estimation and propagation [92, 97, 108, 110, 114, 120]. Additional recent research
into uncertainty has included standardisation of robust comparison metrics [406, 407] and
terminology [472], identification and quantification of individual contributors to the overall
uncertainty budget [208, 218], and improvements to the visualisation and communication of
uncertainty [278, 473]. The most important recommendation for the future is to treat uncer-
tainty as an integral part of the measurement process, meaning uncertainty and error should
be characterised as comprehensively as possible, reported as consistently as possible, and
propagated as accurately as possible.

In Chapters 3 and 4, we investigated and improved the uncertainty associated with us-
ing consumer cameras as spectroradiometers. By characterising and calibrating the optical
properties of several devices in the same way as professional sensors, we showed that con-
sumer cameras can achieve an accuracy and uncertainty similar to those professional sensors,
when RAW data are used. This was a major improvement on the state of the art, which until
recently had been based on data in the inferior JPEG format. Our calibration methodology
and data have already been adopted by other groups [412,474,475]. While the SPECTACLE
database (Section 3.4.9) unfortunately has not materialised as intended, the associated Python

22Fiducial Reference Measurements for Satellite Ocean Colour, https://frm4soc.org/

https://frm4soc.org/
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package is in active development and has been published on the PyPI repository23.
Since the original publication of Chapter 3 in 2019, the smartphone market has moved

towards increasing the number of cameras per device, which further increases the amount
of calibration data necessary. To facilitate collecting these data, future work will be needed
to improve the accessibility of the SPECTACLE package itself, for example through a web
interface. Future smartphone cameras will likely include more advanced features such as
additional spectral bands and polarisation filters. The SPECTACLE methodology will need
to be expanded to include calibration of the associated optical properties. Some aspects of
calibration that were neglected in this thesis, such as temperature sensitivity, also require
further investigation. Overall, however, we have clearly demonstrated that consumer cameras
are valuable scientific instruments.

There is no single optimal method for uncertainty estimation or propagation, but any
reasonable estimate is better than none. In Chapter 4, two methods for estimating radiomet-
ric uncertainty were compared, namely analytical propagation of the inter-pixel variability
within one image vs. the variability in products derived from different images. The resulting
uncertainty estimates were relatively close, but not identical. Notably, the analytical propa-
gation accounted for uncertainties in calibration materials like the 18% reference grey card,
which affect each measurement in the same way and thus cannot be determined from repli-
cates. On the other hand, analytical propagation to Rrs is not exact (Section 4.A.3), resulting
in an overestimation of the uncertainty in relative quantities like band ratios. Both methods
are ultimately limited in their capacity to handle systematic errors, which are often difficult or
impossible to determine and propagate statistically. These trade-offs apply to any data, and
similar considerations apply to other methods for uncertainty propagation, such as Monte
Carlo simulation and neural networks [88, 110]. Other considerations include the choice be-
tween absolute and relative uncertainty as well as the choice of uncertainty metric, such as
coefficient of variation or interquartile range.

The importance of characterising the uncertainty in calibration materials like the 18%
reference grey card extends beyond our measurements. For example, diffuse reflectance stan-
dards are often used in professional spectroradiometry to estimate Ed in the same way. The
associated uncertainty has been shown to be 1%–6.5%, comparable to the overall uncertainty
from other sources [435]. As recommended in Section 4.4.3, the impact of calibration ma-
terial uncertainty could be reduced by characterising the materials on a large scale [400] or
by issuing standard ones [394]. The same applies to the calibration methods proposed in
Chapters 3 and 6.

Chapter 5 addressed a specific source of systematic error, namely incorrect spectral con-
volution of reflectance. The resulting error in Rrs was up to 5% for consumer cameras, ∼1%
for broad-band satellite sensors, and <1% for narrow-band satellite sensors. As the relative
uncertainty in remote sensing measurements decreases below the current standards of ∼5%
in Rrs [86, 88], these systematic errors become more significant. This is especially true when
they skew validation results. Spectral convolution of reflectance is now more commonly per-
formed correctly [32, 109, 476], but other potential sources of systematic error remain to be
investigated. For instance, hyperspectral data are often convolved to multispectral bands with
a similar bandwidth, effectively convolving the input signal twice, while real narrow-band
filters only convolve once. This discrepancy may affect the results of instrument validation
studies. Future work should investigate this and other potential errors that are based on math-
ematical simplifications.

23https://pypi.org/project/pyspectacle/

https://pypi.org/project/pyspectacle/
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The impact and communication of uncertainty in citizen science were explored in Chap-
ter 2. Specifically, we investigated the effects of colour blindness on Forel-Ule (FU) mea-
surements, combining current research on colour blindness in science [304] and on the FU
scale in general [269,270]. Two forms of colour blindness, deuteranopia and tritanopia, were
found to significantly increase the uncertainty in simulated FU measurements by decreasing
the distinguishability of colour pairs. This previously neglected factor likely affects the data
quality of FU measurements and their value in validation studies. The inferred implications
for inclusivity and participant motivation are discussed in Section 7.2.

Citizen science data are rarely reported with uncertainties. Based on our results, we rec-
ommend that researchers incorporate uncertainty into citizen science by having participants
estimate it themselves, which requires detailed instructions [278, 315], or through post-hoc
analysis. Involving citizen scientists in this way may improve public understanding of scien-
tific uncertainty in general. This, in turn, may improve decision-making and trust in science,
which the COVID-19 pandemic has shown can be somewhat lacking [477, 478].

Finally, our investigations into consumer cameras and spectropolarimetry present op-
portunities to decrease uncertainties in satellite and above-water remote sensing. The main
source of uncertainty in satellite remote sensing of water is the atmospheric correction [208].
Spectropolarimetry provides greater information on atmospheric properties than spectro-
radiometry does, including aerosol particle properties, which can be used to improve the
atmospheric correction. Joint retrieval algorithms for aerosol optical depth (AOD) and water-
leaving radiance are in development, particularly focusing on the PACE mission [187]. The
original iSPEX demonstrated the possibility for citizen scientists to measure AOD [94], and
iSPEX 2 will improve the accuracy of AOD measurements through its dual-beam design and
SPECTACLE-based data processing (Chapter 6). Citizen scientists could be asked through a
push notification to measure AOD during a satellite overpass. Polarisation can also be used to
characterise and reduce sun and sky glint [211, 240], which are major sources of uncertainty
and error in above-water radiometry [120]. These possibilities can be explored with iSPEX 2
after its calibration and validation are complete (Chapter 6) or with similar instruments like
groundSPEX [125]. Glint removal for spot spectroradiometers may also be improved through
combined measurements with low-cost cameras, which can provide real-time wave statistics
and thus improved estimates of the surface reflectivity (Chapter 4). Additionally, low-cost
cameras can be deployed in the field to autonomously obtain long time series with a short
cadence [479, 480].

7.2 Accessibility of water research

Science benefits from being accessible to a wide audience and inclusive of a diverse group
of researchers [481, 482]. Diversity of people provides diversity of ideas, interpretations,
and applications. Improving equity, diversity, and inclusion (EDI) in science has an inherent
social value and increases the quality and quantity of science and its impact on society [482].
While recent years have shown significant improvements to EDI in science, including in
remote sensing, there is still a long road ahead [481]. The increased focus on EDI in science
is part of a wider trend towards equity in society.

Accessibility is affected not only by social factors, but also by economics. As discussed in
Chapter 1, research often requires expensive equipment and specialised training. Economic
disparity means that those who are most affected by environmental changes and pollution are
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often those with the least access to research.
Citizen science, the involvement of non-professionals in the scientific process, has expe-

rienced a boom in the last twenty years [243, 389]. This boom can largely be attributed to
technological innovations such as increased internet and smartphone usage [389,483]. Com-
pared to traditional research conducted by professionals, citizen science provides greater data
collection capabilities through crowdsourcing and increased social relevance through stake-
holder participation and co-creation [95]. Citizen science is often touted as an example of
inclusive science and as a method of empowerment for socially or economically disadvan-
taged people and nations.

However, like professional science, achieving real inclusion and equity in citizen science
remains a challenge. The demographic imbalance seen in professional science is mirrored
among citizen scientists, with the majority of participants belonging to socially privileged
groups [484]. This imbalance is an unintentional result of the way citizen science is coor-
dinated and used by professional researchers from a top-down perspective. In fact, the term
citizen itself and the distinction from professional science influence its perception among the
general public [485]. Translating the increased awareness of EDI into tangible improvements
will require significant efforts in science communication, community engagement, research
planning, and funding allocation [484–486]. However, the results will be worthwhile. Ob-
taining diverse data, for example spanning many different water bodies, requires diverse par-
ticipants. Valorisation of scientific results is also improved by diversity among citizen scien-
tists, since the participants become well-informed stakeholders, who can translate scientific
knowledge into social action [294, 487]. In addition to EDI issues, professionals working
with citizen scientists also need to be more aware and considerate of the citizens’ desires and
well-being [247, 488].

In Chapter 2, we investigated the impact of disability, specifically colour blindness, on
inclusion and motivation in citizen science. Colour blindness was found to reduce the data
quality in Forel-Ule (FU) measurements. Based on previous work and personal experience,
we inferred that participants would be demotivated by the increased difficulty of measuring
and decreased quality of results, leading to a decrease in engagement and thus inclusion.
Since the FU scale represents the true colours of natural waters, it cannot be changed, and we
instead made recommendations regarding data entry forms, manuals, and communication.
For example, allowing participants to enter a range instead of a single value could largely
mitigate the problems associated with colour blindness. Our research has led to an increased
awareness of colour blindness in citizen science and the development of more inclusive tech-
niques [489]. Future work should investigate different forms of disability and strive towards a
general understanding and inclusion of disabled people in citizen science. This would likely
be achieved by involving disabled people in the design of measurement protocols and man-
uals in a form of co-creation. In general, the quality of training materials is improved by
involving participants in their development. It is often impossible for professional scientists
to envision all possible problems, questions, and even unintended use cases that arise when
citizens use their equipment [256, 297, 490].

In Chapters 3, 4, and 6, we investigated the use of smartphone cameras as low-cost remote
sensing instruments. As discussed in Section 7.1, the quality of smartphone radiometric data
was improved to a level comparable to professional sensors. This research improved upon
the existing iSPEX, HydroColor, and EyeOnWater apps [94, 121, 274]. These apps have
been used by professional scientists in lieu of more expensive equipment and by thousands
of citizen scientists [318, 392, 393, 491]. This way, they have made remote sensing of water
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accessible to new audiences.
One of our aims in improving the data quality was to enable more independent research

by citizens. For example, the original iSPEX could only obtain reliable data when multi-
ple people nearby measured at the same time, during a top-down campaign [94]. The re-
sults of Chapter 4 suggest that with our improved methodology, individual citizen scientists
will now be able to observe when and where they want. Additional validation for iSPEX 2
(Section 6.6.1) is ongoing, having been delayed by the COVID-19 pandemic, but we expect
comparable results.

A side effect of using RAW data is the exclusion of some users whose smartphone cam-
eras do not support RAW photography. Several potential users of iSPEX 2 have indicated
that this requirement prohibits them from using the app. Unfortunately, it is up to smartphone
manufacturers to enable this functionality and until that happens, these users are excluded.
We have decided to fully exclude these devices rather than offer a lower-quality JPEG-based
version of the app, to avoid confusion and lower-quality data. Fortunately, increased con-
sumer demand means RAW photography is now available on all new iOS and most new
Android devices, in all price ranges, so this limitation is quickly disappearing.

Smartphone science and smartphone spectroscopy are being used by thousands of peo-
ple, but this is still only a minute fraction of the global population. The literature is rife
with examples, proofs-of-concept, and potential use cases, and even with reviews thereof
[98,143,273,345–351,492–494]. This thesis itself provides several examples. However, none
have made the step towards adoption by millions of users in their daily lives. This discrepancy
can be attributed to a simple lack of demand. Demonstrating a scientifically interesting use
case is not enough to generate commercial interest and investment. For smartphone science
and spectroscopy to progress beyond the proof-of-concept stage, a killer app is necessary, an
application so lucrative that investment and social interest follow naturally [490]. Scientific
use cases for iSPEX 2 are discussed in Section 6.6.2, focused on remote sensing of air and
water. While low-cost in-situ electrochemical sensors are the norm for citizen science of
aerosols [495, 496], iSPEX 2 has the advantage of being more directly comparable and com-
plementary to professional measurements from satellites and AERONET. Combining both
types of low-cost sensor delivers the best of both worlds. In principle, iSPEX 2 can be applied
to any field where visible-light spectroradiometry or spectropolarimetry is used. Potential
commercial use cases include characterisation of paint colour, electric lights, and food fresh-
ness, and detection of contamination and health issues like skin cancer [98, 346, 349, 490].
Future work is necessary to develop these use cases and, by demonstrating the quality and
value of smartphone measurements, identify the killer app.

7.3 Spectropolarimetry of floating debris

Spectropolarimetry plays a prominent role in the future outlook for remote sensing of water.
In an interesting parallel with smartphone science (Section 7.2), despite many scientifically
interesting proof-of-concept studies, polarimetry has not yet been embraced by the wider
community [165]. The upcoming PACE mission, with its SPEXone and HARP-2 instruments,
will provide multiangular hyperspectral polarimetry with global coverage [86], offering many
new opportunities for research [238]. Initially, these will be focused on aerosol and climate
science and on reducing the uncertainty in atmospheric correction algorithms [185,188,421].
Specific areas of interest for water research include the detection and characterisation of coc-
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colithophores [21], oil spills [497], suspended particles [163, 164], and wind and wave con-
ditions [240]. Spectropolarimetry also provides new opportunities for reducing uncertainties
from glint and atmospheric correction (Section 7.1). These use cases also apply to other
satellite instruments, airborne sensors, and terrestrial sensors including iSPEX 2. Scientific
use cases for spectropolarimetry are discussed further in Chapter 6 and in Sections 1.2.3 and
1.3.3.

This section contains the initial results from a study on spectropolarimetry of floating
debris. This work was done as part of the OP3 project24 funded by ESA and led by Shungu
Garaba, Tristan Harmel, and Paolo Corradi. Within OP3, we are investigating the spectropo-
larimetric properties of light scattered by micro- and macroplastics and other floating debris
through radiative transfer simulations [498] and laboratory experiments [476]. The aim of
the project is to determine the value of visible-light spectropolarimetry in a marine debris
observing system [75].

Measurements were conducted during an ESA campaign in the Deltares Atlantic Basin25

from 24 January–4 February 2022. The basin is 75 m long, 8.7 m wide, and 1.3 m deep, with
a maximum water depth of 1.0 m. Its bottom is made of grey concrete and partially covered
in sand. During the campaign, the basin was filled with clear, unaltered tap water. It features
a wave cradle capable of producing waves with a realistic spectrum, similar to natural waves
in the North Sea. Various types of macroplastics and other debris, such as plywood and rope,
were manually thrown into the basin and studied as they floated on the water surface.

Two instruments were used, namely the groundSPEX spectropolarimeter26 and a FLIR
BlackFly BFS-U3-51S5PC-C RGB polarisation camera. GroundSPEX performs snapshot
hyperspectral measurements of radiance and polarisation within its 0.9°-diameter field of
view through the SPEX technique [175], further described in Section 6.2. Its original calibra-
tion in 2011–2014 is described in [125] and laboratory tests indicated that these calibration
data were still valid. A Python implementation27 of the original data processing and demod-
ulation pipeline was used. The BlackFly camera is based on a Sony IMX 250 MYR sensor
with a double Bayer pattern (Section 1.2.2), consisting of a layer of RGB filters and a layer
of polarisation filters (0°, 45°, 90°, and 135°). The calibration of a different camera based
on the monochromatic version of this sensor is described in [499]. The BlackFly data were
processed using the Polanalyser package28. The BlackFly camera was mounted on top of
groundSPEX so that they were roughly aligned. Observations were done at a nadir angle of
40°, following the standard protocol for above-water radiometry [120, 209]. The basin was
illuminated by dozens of fluorescent lights spread across the ceiling, which for safety reasons
could only be turned off during one measurement session. For additional light, a halogen
lamp was positioned next to the instruments and angled toward their field of view, with an
effective azimuth angle of ∼90° and zenith angle of ∼35°.

Initial results from the groundSPEX measurements (Figure 7.1) showed a moderate de-
gree of linear polarisation (0.05 ≤ PL ≤ 0.15) for several types of plastic debris. In Fig-
ures 7.1b–7.1d, PL appears to increase as the total radiance decreases at λ > 700 nm, which
is similar to the Umov effect [500, 501]. The high values of PL seen at λ > 710 nm in Fig-

24Ocean Plastics Polarization Properties, funded through the Discovery Element of the European Space Agency’s
Basic Activities contract no. 4000132037/20/NL/GLC, https://uol.de/en/icbm/marine-sensor-systems/current-proje
cts/ocean-plastics-polarization-properties-op3

25https://www.deltares.nl/en/facilities/atlantic-basin-3/
26Courtesy of RIVM.
27https://github.com/burggraaff/SPEX
28https://github.com/elerac/polanalyser

https://uol.de/en/icbm/marine-sensor-systems/current-projects/ocean-plastics-polarization-properties-op3
https://uol.de/en/icbm/marine-sensor-systems/current-projects/ocean-plastics-polarization-properties-op3
https://www.deltares.nl/en/facilities/atlantic-basin-3/
https://github.com/burggraaff/SPEX
https://github.com/elerac/polanalyser


7

154 Spectropolarimetry of floating debris

ure 7.1a are the result of measurement noise. PL was otherwise approximately spectrally
flat for virtually all types of debris investigated. Because groundSPEX is a spot radiometer
without imaging capabilities, it is difficult to determine the mechanism causing the observed
polarisation. The line features seen in Figures 7.1a and 7.1b were caused by the fluorescent
ceiling lights and are present in most data sets. The offset between the two groundSPEX
channels seen in each panel, most clearly in Figure 7.1a, is due to a difference in transmission
between the two channels and is corrected in the demodulation algorithm, although future
work is necessary to improve the accuracy of this correction.

Similar trends were found with the BlackFly camera. RGB polarimetric images of the
protective foam sample taken roughly simultaneously with the groundSPEX observations
(Figure 7.1d) showed a similar degree of polarisation, namely 0.0 ≤ PL ≤ 0.2 (Figure 7.2).
Comparing the RGB photograph and G-band PL image suggests two primary mechanisms
for polarisation. First, as the foam floated near the water surface, small puddles formed on
top of it, which can be identified in both images. Second, the foam was slightly crinkled,
resulting in diagonal lines that can again be identified in both images. Thus, both the plastic
itself and its interactions with the water surface appear to be sources of polarised light. Both
mechanisms were also seen in images of plastics fully submerged just under the water surface
or floating entirely on top of it. Based on calibration data, it will be possible to match the field
of view of groundSPEX with specific pixels in the BlackFly images to further investigate the
sources of polarisation.

The preliminary conclusion from this measurement campaign is that many types of float-
ing debris impart a measurable polarisation (0.05 ≤ PL ≤ 0.20) on reflected light, making
polarimetry a useful addition to a marine observing system. Both debris itself and its inter-
actions with the water surface seem to induce polarisation. The observed PL represents a
situation where the sensor field of view is entirely filled with debris, which is not realistic
for satellite sensors. Even in garbage patches, floating debris covers a small fraction of the
10 m–10 km satellite pixel footprints. It is unlikely that spectropolarimetric sensors on satel-
lites will be able to distinguish the polarised reflectance of debris from other constituents,
bubbles and whitecaps, specular reflections, and atmospheric signals. Simulations suggest
that small microplastics are more suitable for satellite detection than macroplastics [498].
This limitation does not apply to air- and shipborne sensors, which have much smaller pixel
footprints that can realistically be fully covered by a piece of debris. Thus, we suggest that
polarimetry may be used to aid in the detection of floating debris from airborne platforms
like UAVs and from ships, in particular to better distinguish between debris and water when
the two are similarly bright, and to distinguish between types of debris. Since PL appears to
be largely spectrally flat, hyperspectral measurements are not necessary and an RGB camera
can be used.

Future work on this experiment will include investigating all collected data in more detail,
improving the data processing pipeline, and more precisely determining the uncertainties on
the data and results. Future experiments should focus on adding other constituents such as
phytoplankton, CDOM, suspended minerals, and microplastics to determine the contribution
of debris to the overall reflectance in realistic settings.

Lastly, we have developed a goniometer setup for measuring the bidirectional polarised
reflectance distribution functions (BPDFs) of micro- and macroplastics in a laboratory setting
(Figure 7.3). Using groundSPEX, samples are observed at four instrument elevation angles,
corresponding to the viewing angles of SPEXone and the Mobley protocol [86, 209]. A
laser-driven light source provides broad-spectrum light at arbitrary azimuth and elevation
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Figure 7.2: BlackFly observations of floating protective foam. The data were taken during the same
session as Figure 7.1d, but not simultaneously. The RGB photograph (top left) is not white balanced
and is slightly bluer than true colour. The G-band radiance (top right), PL (bottom left), and φL (bottom
right) images were convolved with a two-dimensional Gaussian with σ = 3 pixels to reduce noise. The
zero-point on φL is arbitrary.
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angles. In the future, polarised input light may be used to measure the full Mueller matrix
(Section 1.2.3). The primary aims of this experiment are to validate BPDF simulations [498]
and to provide the community with additional BPDF data for a wide variety of samples.
Similar work has recently been done on characterising the effects of turbidity and salinity on
the BPDF of water [502, 503] and on determining the BPDFs of various types of land cover
and vegetation [166, 504, 505]. These data are valuable inputs for atmospheric correction
algorithms, (exo)planetary atmosphere models, and vegetation reflectance models [166, 188,
506]. The goniometer setup has been built and is currently being commissioned.

Figure 7.3: Render of the laboratory setup for measuring BPDFs with groundSPEX. The most important
elements and degrees of freedom are indicated. Image courtesy of Remko Stuik.
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7.4 Conclusions and recommendations
This section provides a summary of the primary conclusions and recommendations of this
thesis. A full summary of the thesis, in Dutch and in English, is provided after the bibliogra-
phy.

Conclusions

1. Colour blindness significantly increases the uncertainty on Forel-Ule colour measure-
ments for a significant fraction of users (Chapter 2).

2. Consumer cameras, including smartphone cameras, can perform professional-grade
spectroradiometry when using RAW data (Chapters 3 and 4).

3. Spectral convolution of hyperspectral reflectance is often performed incorrectly, caus-
ing significant systematic errors (Chapter 5).

4. The iSPEX 2 add-on enables accurate spectropolarimetry using smartphone cameras
(Chapter 6).

Recommendations

1. Vague terms like water quality should be replaced with specific quantities like con-
stituent concentrations and inherent optical properties (Chapter 1).

2. Results should always be reported with an uncertainty estimate (Chapters 2, 3, 4, 5,
and 7).

3. To ensure reproducibility and facilitate novel research, data should be published in full,
including raw data and calibration materials (Chapters 2, 4, and 5).

4. To improve accessibility and data quality, citizen science protocols should be co-
created with a diverse group of participants, including people with disabilities (Chap-
ters 2 and 7).

5. To ensure consistency and reproducibility, instruments should be calibrated and char-
acterised using standardised methods, and calibration data should be published (Chap-
ters 3 and 4).

6. To reduce measurement uncertainties, calibration materials should themselves be cali-
brated thoroughly and regularly (Chapter 4).

7. To achieve a realistic uncertainty estimate, multiple methods should be compared, such
as replicate observations and analytical propagation (Chapters 4 and 7).

8. To reduce systematic errors, assumptions about the accuracy of approximations and
mathematical methods should always be challenged or justified (Chapter 5).

9. To ensure future compatibility and optimal accessibility, smartphone science add-ons
should be designed as universally as possible (Chapter 6).

10. To maximise adoption and impact, citizen science tools should be designed with both
top-down and bottom-up research in mind (Chapters 6 and 7).
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