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5 | Biases from incorrect reflectance
convolution
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Reflectance, a crucial earth observation variable, is converted from hyperspectral to multi-
spectral through convolution. This is done to combine time series, validate instruments, and
apply retrieval algorithms. However, convolution is often done incorrectly, with reflectance
itself convolved rather than the underlying (ir)radiances. Here, the resulting error is quantified
for simulated and real multispectral instruments, using 18 radiometric data sets (N = 1799
spectra). Biases up to 5% are found, the exact value depending on the spectrum and band
response. This significantly affects extended time series and instrument validation, and is
similar in magnitude to errors seen in previous validation studies. Post-hoc correction is
impossible, but correctly convolving (ir)radiances prevents this error entirely. This requires
publication of original data alongside reflectance.

https://doi.org/10.1364/OE.391470
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5.1 Introduction

Reflectance, the spectral fraction of light reflected by a surface, is an essential earth obser-
vation (EO) variable. It forms the basis for data products such as chlorophyll and suspended
matter in water [62, 227, 232], and canopy cover and biomass on land [415, 416]. As such,
it is a routine data product for EO satellites, including NASA’s Landsat and ESA’s Sentinel
programmes, and in situ radiometers.

Spectral data are divided into two categories, namely multispectral and hyperspectral.
Multispectral instruments observe in several broad, discrete wavelength bands. Examples
include the Moderate Resolution Imaging Spectrometer (MODIS) and the Visible Infrared
Imaging Radiometer Suite (VIIRS), but also in situ instruments including unmanned aerial
vehicles (UAVs) and even smartphones [281]. Conversely, hyperspectral instruments provide
continuous wavelength coverage with a fine spectral resolution. Examples include the TriOS
RAMSES, Sea-Bird HyperOCR, and ASD FieldSpec field-going spectroradiometers, as well
as the Ocean Color Instrument (OCI) due to fly on the Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission. Hyperspectral data have a finer spectral sampling and, typically,
resolution and thus contain more information than multispectral ones, but depending on the
instrument design, often collect less light in each band, giving a worse signal-to-noise ratio.

Since the current EO landscape is a mixture of both types, it is often desirable to convert
data between the two, typically from hyper- to multispectral. Three common use cases for this
process exist, namely combining time series, instrument validation, and retrieval algorithms.

The first use case is merging and extending time series using different sensors. Long-
term, high temporal resolution time series are necessary to study fundamental biogeochemical
processes and long-term effects [195, 220] such as climate change [417]. Current efforts
focus on merging multispectral time series, on the radiance or reflectance level [91,418,419],
achieving relative errors on reflectance <5% [91, 419], or on the end product level [220,
420]. Future efforts will focus on extending multispectral time series with new hyperspectral
sensors, for example extending MODIS/VIIRS aerosol optical depth (AOD) series with OCI
(PACE) data [421]. This is done by converting hyperspectral data to the multispectral sensor’s
bands, to simulate what the latter would have measured. However, calibration differences
and sensor characterisation imperfections can introduce significant biases, for example up to
0.10 AOD for OCI-MODIS/VIIRS [421].

The second use case is the validation of multispectral (often satellite) data using in situ
hyperspectral sensors. This is done by comparing simultaneous match-up measurements from
both instruments [152]. Validation is done on all products, including normalised radiance
[422], reflectance [415, 418, 423, 424], and derived products such as chlorophyll [220, 223]
and inherent optical properties (IOPs) [424]. Similar validation is done for in situ multispec-
tral sensors, such as UAVs [425] and smartphones [121, 276]. Vicarious calibration simi-
larly involves comparing match-up data, but aimed at determining satellite gain factors [113].
Since vicarious calibration is performed on (normalised) radiance rather than reflectance, it
is outside the scope of this work, though a brief discussion is given in Section 5.2.4.

The third use case is the application of multispectral retrieval algorithms to hyperspec-
tral data. Such algorithms are commonly based on the ratio between spectral bands and are
thus called band-ratio algorithms. For example, band-ratio algorithms relating chlorophyll
to Sentinel-2A (S2A) Multispectral Instrument (MSI) bands have been developed for Viet-
namese [221] and Estonian [62] lakes, the latter with a mean standard error in chlorophyll-a
of 5%. While derived on multispectral data, such algorithms are also applied to hyperspectral
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data, both to derive products and for validation, requiring a spectral conversion. Differences
between these converted data and in situ data have been found [426], which may be due in part
to incorrect treatment of radiometry. It should be noted that instead of a spectral conversion,
often only the central band wavelength reflectance is used [223, 227].

Converting hyperspectral data to multispectral bands is commonly, though not exclu-
sively (see Section 5.2.2), termed spectral convolution. An in-depth description is provided
in Section 5.2, but in short, the hyperspectral data are multiplied by the spectral response
function (SRF) of the multispectral band and the product is integrated. This is done for quan-
tities including radiance [427, 428], optical thickness [428, 429], IOPs [424, 430], vegetation
indices [416], and reflectance [415, 430].

However, reflectance is often convolved incorrectly. As shown in Section 5.2, hyper-
spectral reflectance cannot simply be convolved to simulate what a multispectral instrument
would observe. Instead, the numerator and denominator, (ir)radiances, should be convolved
separately and then divided. This error occurs frequently in the literature, for example
in [62, 121, 221, 227, 276, 415, 416, 418, 420, 423–425, 431, 432], with few works convolv-
ing radiances before division [223, 426, 433].

This work quantifies the error induced by incorrect spectral convolution of reflectance in
each of the three use cases, for a variety of synthetic and real instruments using 18 archival
data sets totaling N = 1799 spectra. To narrow the scope, this work focuses on remote
sensing of ocean colour. However, the principles and methods apply broadly to any fractional
quantity, including other reflectances (soil, vegetation), attenuation coefficients, and degree
of polarisation, as well as spatial convolution [434]. While the existence of this error has
been pointed out previously [430, 433, 435] and quantified at . 1% for a single data set and
sensor [430], a large-scale quantitative assessment has not yet been published.

This work fits into a wider field of EO error analysis. Recent efforts include investigations
into the out-of-band response of EO sensors [115], the impact of differing spectral [433] and
spatial [434] resolutions on satellite match-up analyses, and the impact of hyperspectral SRFs
having a non-zero bandwidth [436]. On the experimental side, significant efforts have gone
into glint removal in above-water radiometry [120, 206, 209] and rigorous characterisation
of instrumental [281, 425] and methodological [152, 435] uncertainties. A broad, in-depth
overview of uncertainties in ocean colour data is provided in the recently published Interna-
tional Ocean Color Coordination Group (IOCCG) report number 18 [88].

Section 5.2 describes the theoretical background of reflectance and spectral convolution.
Section 5.3 describes the data used in this work and the method for quantifying the convolu-
tion error. Results are presented in Section 5.4. Finally, Section 5.5 contains a discussion of
the results and conclusions.

5.2 Theoretical background

5.2.1 Reflectance

Reflectance R is the ratio of upwelling over downwelling (ir)radiance. Radiance L(λ, θ, φ) is
the radiant energy per wavelength λ propagating in a direction (θ, φ), in W m−2 nm−1 sr−1,
while irradiance E(λ) is L integrated over a solid angle, in W m−2 nm−1. The units of R
depend on which ratio is taken. Since this work deals only with wavelength dependence,
(θ, φ) terms are dropped henceforth for clarity.
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Different reflectances can be defined by dividing different (ir)radiances. Examples include
the bi-directional radiance reflectance [415], the non-directional irradiance reflectance [432],
and the uni-directional remote sensing reflectance Rrs used in ocean colour [120,209]. As de-
fined in Equation (5.1), Rrs is the ratio of water-leaving radiance Lw [120] over downwelling
irradiance Ed [97], in units of sr−1. This work focuses on Rrs, but the same mathematics apply
to any reflectance.

Rrs(λ) =
Lw(λ)
Ed(λ)

(5.1)

5.2.2 Spectral convolution
Multispectral data are simulated from hyperspectral data through spectral convolution. As
shown in Equation (5.2), this involves multiplying the hyperspectral data L(λ) by the multi-
spectral band SRF S B(λ), integrating the result over all wavelengths in the band (

∫
λ∈B dλ),

and normalising by the effective bandwidth. In this work, convolved quantities are denoted
by a bar, such as L̄(B) in Equation (5.2). In practice, spectral convolution is often a sum over
discrete L and S B data. The convolution process is shown graphically in Figure 5.1.

L̄(B) =

∫
λ∈B L(λ)S B(λ)dλ∫

λ∈B S B(λ)dλ
(5.2)

Convolving hyperspectral data is really an approximation, due to the finite spectral res-
olution of hyperspectral sensors. As derived in Appendix 5.A, this method is valid if the
full width at half maximum (FWHM) of the multispectral band is at least double that of the
hyperspectral sensor.

Nomenclature

Various names for this process are used in the literature, including convolution or convolving
[97, 152, 276, 415, 416, 418–420, 423, 425, 427, 432, 433, 435, 436], SRF-weighting [429],
simulation [426], and band-averaging [121, 281, 424, 427, 428, 430]. Since it is the most
common term, ‘spectral convolution’ is used in this work. However, it should be noted that
this term may instead refer to smoothing the spectrum with a kernel [99]. Finally, since
neither process involves transforming the SRF, both are actually cross-correlations rather
than convolutions.

5.2.3 Reflectance convolution
Just as the hyperspectral remote sensing reflectance Rrs(λ) is Lw(λ) over Ed(λ), the convolved
R̄rs(B) is L̄w(B) over Ēd(B). Both are calculated as in Equation (5.2) and then divided, as
shown in Equation (5.3). Convolving (ir)radiances to calculate a band-average reflectance
will be referred to in this work as working in radiance space or L-space, and the result as
R̄L

rs(B). Mathematically, this is the correct method for convolving Rrs to simulate multispec-
tral data.

R̄L
rs(B) =

L̄w(B)
Ēd(B)

=

∫
λ∈B Lw(λ)S B(λ)dλ∫
λ∈B Ed(λ)S B(λ)dλ

(5.3)
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Instead, one might simply convolve Rrs itself. This will be referred to as working in
reflectance space or R-space and the result as R̄R

rs(B). The expression for R̄R
rs(B) is given in

Equation (5.4).

R̄R
rs(B) =

∫
λ∈B Rrs(λ)S B(λ)dλ∫

λ∈B S B(λ)dλ
=

∫
λ∈B

Lw(λ)
Ed(λ) S B(λ)dλ∫

λ∈B S B(λ)dλ
(5.4)

Working in R-space is incorrect, as shown in Figure 5.1 and the following example. First,
let the SRF S B(λ) be a boxcar response of 1 for 0 ≤ λ ≤ 1 and 0 elsewhere. Then all inte-
grals need only be evaluated for those wavelengths and the SRF bandwidth is 1. Second, let
Lw(λ) = eeλ and Ed(λ) = e−eλ. Such spectra are not physical but demonstrate the mathemat-
ical principles well. As shown in Equations (5.5) and (5.6), R̄L

rs(B) ≈ 15 and R̄R
rs(B) ≈ 42

differ significantly.

R̄L
rs(B) =

∫ 1
0 eeλdλ∫ 1

0 e−eλdλ
≈

5.2
0.3
≈ 15 (5.5)

R̄R
rs(B) =

∫ 1
0

eeλ

e−eλ dλ

1
=

∫ 1

0
e2eλdλ ≈ 42 (5.6)

5.2.4 General rule
Convolution is a useful tool, but the order of operations is not always intuitive. A general
rule of thumb can be used, which applies to any kind of convolution (spectral or spatial)
when converting high- to low-resolution (spectral or spatial) data. For other purposes, such
as smoothing, reflectance itself can be transformed.

As a rule of thumb, only quantities the lower-resolution sensor would observe can be con-
volved. This includes the at-sensor (ir)radiance (in physical units [435]) but not reflectance
and derived products. Propagation of in situ radiances, through surfaces when measured un-
derwater [120] or through the atmosphere for vicarious calibration [113], must occur prior
to convolution to accurately simulate the radiance at a multispectral sensor. Simplifications
may be necessary [115, 428, 437] but should be mathematically justified. Finally, hyperspec-
tral upwelling radiance Lu, measured in- or above-water, should be converted to Lw [120]
before convolution when comparing it to multispectral Lw.

5.3 Methods
Archival data sets containing (ir)radiance and reflectance data were used to test the principles
described in Section 5.2 and quantify the errors resulting from working in R-space rather than
L-space. All analysis was done using custom Python scripts, available from GitHub18.

5.3.1 Radiometric data
18 archival radiometric data sets were used [37, 438–451], totaling N = 1799 spectra. Data
were sourced from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) [241]

18https://github.com/burggraaff/reflectance_convolution

https://github.com/burggraaff/reflectance_convolution
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and PANGAEA19. Only data sets including either the original radiometric data or Rrs and
Lw or Ed were used. In most cases, the given Rrs and Ed were used and Lw = RrsEd was
reconstructed. This reduced the amount of post-processing, such as glint removal, that was
necessary. All spectra used in the further analysis are shown in Figure 5.2. An overview of
the data and post-processing is provided in Appendix 5.B.

Small imperfections in the resulting data, such as residual atmospheric bands in Rrs (Fig-
ure 5.2), are no problem. For this work, it is only necessary to obtain a set of realistic spectra,
not to determine IOPs. Negative Rrs were removed since they are not physical but instead
the result of measurement error or over-correction of glint; this is no problem for the same
reason.

500 1000
Wavelength [nm]

0
1
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3

E d

500 1000
Wavelength [nm]

0.00
0.02
0.04
0.06
0.08

L w
All spectra (N = 1799)

500 1000
Wavelength [nm]

0.00
0.02
0.04
0.06
0.08

R r
s

500 1000
Wavelength [nm]

0
500

1000
1500

N

400 500 600 700 800 900 1000
Wavelength [nm]

0.000
0.002
0.004
0.006
0.008

R r
s

Figure 5.2: All radiometric data used in this work, in SI units. N(λ) is the number of spectra that include
wavelength λ. The bottom left panel is a zoom on the top right one. Individual spectra are plotted with
high transparency.

5.3.2 Spectral convolution

Spectral convolution was implemented in the custom Python library described above. The
radiometric data were interpolated to the SRF wavelengths. If the radiometric data and SRF
wavelengths did not overlap fully, the convolution was only done if the integral of the SRF
over the non-overlapping wavelengths was ≤5% of its total integral. The integration was done
using the SciPy implementation of Simpson’s rule in the integrate.simps function [398].

In each experiment, data were convolved in both L- and R-space, and the resulting re-
flectances were compared in absolute and relative terms. The absolute difference is ∆R̄rs =

R̄R
rs(B) − R̄L

rs(B), meaning a positive ∆R̄rs corresponds to an overestimation in R-space. The
relative difference was normalised to R̄L

rs(B), and set to 0% if R̄L
rs(B) = 0 sr−1. All spectra

were treated separately, enabling a statistical analysis of the difference on varying input spec-
tra. Due to the finite spectral resolution of the hyperspectral data, some data sets could not be
convolved with some multispectral SRFs (see Appendix 5.A).

19https://pangaea.de/

https://pangaea.de/
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5.3.3 Spectral response functions

Synthetic

The dependence of ∆R̄rs on band location and width was investigated by generating vari-
ous synthetic boxcar and Gaussian filters. Both are common approximations of real SRFs
[416,430]. Boxcars were evaluated on wavelengths with an non-zero response, Gaussians on
wavelengths from 320–800 nm. For both, a 0.1 nm step size was used to properly sample
narrow bands. Central wavelengths between 330–809 nm (1 nm steps) and FWHMs of 6–65
nm (1 nm steps) were used, representative of real multispectral instruments (Section 5.3.3).

Real instruments

The behavior of ∆R̄rs for real multispectral instruments, namely eleven satellite instruments
and three low-cost sensors, was also investigated. A selection of these is shown in Fig-
ure 5.3. Panchromatic bands were not used as they are intended for spatial sharpening, not
reflectance measurements. Only bands fitting the radiometric data (within 320–1300 nm)
were used. The satellite instruments were the Enhanced Thematic Mapper Plus (ETM+)
aboard Landsat 7 [452], Operational Land Imager (OLI) aboard Landsat 8 [453], Coastal
Zone Color Scanner (CZCS), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), MODIS
aboard Aqua and Terra, Medium Resolution Imaging Spectrometer (MERIS), VIIRS aboard
Suomi NPP [454], MSI aboard S2A/B [455], and the Ocean and Land Colour Instrument
(OLCI) aboard Sentinel-3A/B (S3A/B) [456]. These are all commonly used to measure Rrs.
The low-cost sensors were one UAV, the DJI Phantom Pro 4, and two smartphones, the iPhone
SE and Samsung Galaxy S8 [281]. Such sensors have become popular in their own right as
they can provide radiance data, if radiometrically calibrated [121,281,425], but also serve as
proxies for new cubesat sensors such as the Planet Labs RapidEye and Dove series.

The radiometric response and SRF may be affected by mechanical and electronic effects,
including satellite launch and sensor drift, as well as by viewing angle and electronic cross-
talk. Using up-to-date calibration data from the instrument developer negates these problems.
Here, the SRFs recommended by instrument developers or in literature were used, represen-
tative of what is done in the wider literature.

0.33
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1.00
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F

ETM+, OLI,
SPECTACLE

SeaWiFS, Suomi NPP/
VIIRS, Aqua/MODIS

S2A/MSI, MERIS,
S3A/OLCI
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1.00
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Figure 5.3: Selected spectral response functions (SRFs) of real sensors used in this work, labelled from
top to bottom. For this plot, each SRF was normalised to a maximum of 1.
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5.3.4 Retrieval algorithm propagation
Finally, the error induced by R-space convolution was propagated through several retrieval
algorithms. These were the polynomial OCx chlorophyll-a (Chl-a) algorithms [220] for
MODIS (OC6, OC3), SeaWiFS (OC4), MERIS (OC4), VIIRS (OC3), and CZCS (OC3),
the exponential Ha+17 S2A/MSI Chl-a algorithm [221], and the polynomial Lymburner+16
(LL+16) OLI total suspended matter (TSM) algorithm [420]. These are representative of
most multispectral retrieval algorithms in the literature, which differ only in bands used or
coefficient values.

Equation (5.7) describes OCx, with [Chl-a] in mg m−3, ai instrument-specific empirical
coefficients, and λB, λG the instrument’s blue and green bands. The Ha+17 algorithm is
given in Equation (5.8), with B3, B4 the Rrs in the respective S2A/MSI bands. The LL+16
algorithm is given in Equation (5.9), with G, R the Rrs in the OLI Green and Red bands, and
TSM in mg L−1.

log10 ([Chl-a]) = a0 +

4∑
i=1

ai

[
log10

(
Rrs(λB)
Rrs(λG)

)]i

(5.7)

[Chl-a] = 0.80 exp
(
0.35

B3
B4

)
(5.8)

TSM = 3957
(G + R

2

)1.6436

(5.9)

For each input spectrum, both R̄L
rs and R̄R

rs were propagated through each algorithm and
the results were compared, analogous to the R̄rs comparison described in Section 5.3.2.

5.4 Results

5.4.1 Simulated instruments

The reflectance convolution error ∆R̄rs was calculated for the synthetic SRFs described in
Section 5.3.3. As an example, Figure 5.4 shows ∆R̄rs as a function of central wavelength
λc and FWHM for the seaswir-a (see Table 5.1) data. The sign and magnitude of the error
depend on the input spectrum. For example, the local minima around 400 and 520 nm cor-
respond to local maxima in the derivative Ed spectrum dEd/dλ. Similarly, the local maxima
at 480 nm correspond to a local minimum in dEd/dλ. Furthermore, the magnitude of ∆R̄rs

increases with wider FWHMs. This is expected since Ed, Lw, and Rrs are less spectrally flat
over a wider spectral range [430].

Rather than a random error around a median of 0, the difference is a systematic bias in
either direction. This is especially clear in Figure 5.4 at λc ≤ 460 nm. Being a bias, it needs
to be corrected rather than simply incorporated into an error budget. This will be discussed
in Section 5.5.

Similar trends were found in the other data sets and with the Gaussian SRFs. For the latter,
the λc–∆R̄rs relation was similar to boxcars with the same FWHM, but larger in magnitude
and smoother. This is due to the Gaussian wings covering more of the spectrum than the
boxcar’s sharp edges. For example, for λc = 420 nm, ∆R̄rs = (−1.5±0.2)% for a 30 nm boxcar
and (−3.8 ± 0.4)% for a 30 nm Gaussian, error bars indicating the 5%–95% range, for the
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Figure 5.4: Relative reflectance convolution error (Section 5.3.2) in the seaswir-a data with boxcar
filters of varying FWHM, as a function of central wavelength λc. Lines indicate the median error for
each filter, shaded areas the 5%–95% range.

seaswir-a data. Finally, the same boxcar filter applied to the tarao data gave ∆R̄rs(420 nm) =

(+0.01 ± 0.02)%. This value is much smaller since the tarao spectra are smoother than the
seaswir-a ones; a similar trend was seen across all data sets. These differences highlight the
importance of determining this error for each filter and data set, as an ensemble correction is
impossible.

5.4.2 Real instruments

∆R̄rs was also calculated using the real SRFs described in Section 5.3.3. For example, Fig-
ure 5.5 shows the distribution of ∆R̄rs across all data for the five OLI bands. As with the
synthetic sensors, ∆R̄rs is typically a bias in one direction rather than a random error and
its magnitude and sign depend on the input spectrum. For example, in the OLI Blue band
∆R̄rs > 0 for 77% (1380/1799) of spectra while in Green ∆R̄rs < 0 for 80% (1444/1799).
Furthermore, a similar trend for larger errors with wider bands was seen, for example in the
OLI Green band (λc = 562 nm, FWHM = 57 nm) ∆R̄rs = (−0.2+0.4

−0.9)% while in the similar
S3A/OLCI Oa6 band (λc = 560 nm, FWHM = 10 nm) ∆R̄rs = (−0.00+0.03

−0.05)%. No significant
differences were found between paired instruments such as S3A/OLCI and S3B/OLCI. Some
multispectral band-data set combinations are technically invalid (Appendix 5.A); however,
these need not be excluded from these overall statistics, as they do not affect the observed
trends.

Comparing the convolution error between data sets, as in Figure 5.6 for the OLI Green
band, again revealed significant differences. Depending on the data, ∆R̄rs was a systematic
underestimation (tarao ∆R̄rs = (−0.7 ± 0.2)%), overestimation (seaswir-r ∆R̄rs = (+0.2 ±
0.1)%), or a random error around 0 (orinoco ∆R̄rs = (+0.1+0.3

−0.5)%). This is similar to what
was observed in Section 5.4.1 and again shows that the error must be quantified separately
for each filter and data set.

Low-cost sensors

Finally, the SPECTACLE low-cost sensors [281] are particularly interesting due to their broad
bands. The convolution error in their RGB bands, using all data, is shown in Figure 5.7.
Interestingly, ∆R̄rs was largest in the relatively narrow R bands, possibly due to the shapes
of the input spectra or the multi-peaked SRFs [281]. Overall, the large magnitude of ∆R̄rs
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Figure 5.5: Reflectance convolution error in the OLI bands using all data. The boxplots show the
error distribution across the data, with an orange median line, first–third quartile boxes, and 5%–95%
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Figure 5.6: Reflectance convolution error in the OLI green band for each data set. The boxplots repre-
sent the error distribution within each data set as in Figure 5.5.

(down to −5% in the R bands) highlights the importance of correct spectral convolution for
these sensors.

5.4.3 Retrieval algorithms
Finally, the reflectance convolution error was propagated through the retrieval algorithms
described in Section 5.3.4. The results for the smf-a data set are shown in Figure 5.8. As in
the previous sections, the propagated error in Chl-a and TSM was a bias of a few percent.
Its sign varied by data set and by algorithm; for example, for the seaswir-a data, VIIRS OC3
underestimated Chl-a (∆Chl-a = −1.4+0.7

−0.3%) while CZCS OC3 overestimated it (∆Chl-a =

+0.8+0.3
−0.1%). The magnitude of the error was consistently on the percent level for all data sets

and algorithms. These results are representative for most band-ratio algorithms, as discussed
in Section 5.3.4.

5.5 Discussion & conclusions

In this work, the effects of incorrectly convolving reflectance when simulating multispectral
data (Section 5.2) were investigated. While this error has been pointed out previously [430,
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Figure 5.8: Propagated convolution error in the Chl-a (OCx, Ha+17) and TSM (LL+16) retrieval al-
gorithms (Section 5.3.4), using the smf-a data set. The boxplots represent the error distribution within
each data set as in Figure 5.5.

433, 435], it still commonly occurs in the literature (see Section 5.1). Only one quantitative
analysis was found, in which for one data set and one sensor the difference was found to
be .1% and neglected [430]. However, this result cannot be generalised to all data sets and
sensors, as shown in this work.

Significant errors, up to several percent, in the remote sensing reflectance (∆R̄rs) were
found for all data sets and sensor bands (Sections 5.4.1 and 5.4.2). The error was largest
near features in the input spectra, particularly peaks in the derivative of Ed (dEd/dλ), and for
sensors with wide FWHMs, especially low-cost sensors (Section 5.4.2). For example, in the
narrow (FWHM ≈ 10 nm) OLCI bands, |∆R̄rs| . 0.1%, while in the wide (FWHM > 50 nm)
R bands of low-cost sensors, |∆R̄rs| > 5% for >5% of the spectra. Furthermore, the magnitude
and sign of ∆R̄rs differed significantly between data sets due to varying spectral shapes.

Since uncertainty requirements are typically ±5% for satellite-derived Rrs, and even
stricter for validation data [88], errors on this scale are significant. Moreover, the error was
typically a bias, causing a systematic over- or underestimation of R̄rs and derived products.
Preventing such biases is crucial to obtain representative data [88]. Finally, the convolution
error is important simply due to its prevalence in the literature [62, 121, 221, 227, 276, 415,
416, 418, 420, 423–425, 431, 432].

If not prevented, the convolution error will create dubious patterns in combined time
series. Depending on the data set and sensor, the convolution error is similar to or larger
than errors found in existing band-shifting algorithms for combining multispectral time series
[91, 419]. With the launch of PACE, for which time series extension is a primary goal [421],
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this effect must be accounted for to achieve desired uncertainty requirements [88, 433].
Similarly, incorrect reflectance convolution in instrument validation leads to systematic

over- or undercorrections. For example, reflectances from the HydroColor smartphone app
have been validated using WISP [121] and HyperSAS [276] data, convolved in R-space,
finding significant errors and biases. Biases of −9.5× 10−4 to +1.3× 10−4 sr−1 were found in
the WISP comparison; in Section 5.4.2, the convolution error caused biases on the order of
10−4 sr−1 for 5%–14% of spectra, varying per band. Errors in the HyperSAS comparison were
on the percent level, similar to the errors up to 5% found in Section 5.4.2. Interestingly, in
both studies the convolved data underestimated the multispectral data, as would be expected
from the negative biases found in this work. This suggests that the convolution error may
have contributed a significant part of the error in both studies. However, a direct comparison
is difficult due to differing input spectra, as shown in Figure 5.6, and band responses. Thus,
the error in these cases cannot definitively be attributed to incorrect convolution. Additionally,
many other factors causing significant errors in low-cost sensor data are known [281].

This importance for validation also applies to satellites. For example, in [424], systematic
underestimations up to 1% were found in band-average R̄rs (compared to hyperspectral Rrs)
convolved in R-space with the OLI, MSI, and ETM+ SRFs. This is similar to, and may be
explained by, the reflectance convolution error found for these sensors in Section 5.4.2 and
shown in Figures 5.5 and 5.6. The same study found no significant errors in convolved VIIRS
and OLCI reflectance, agreeing with the correlation between FWHM and error demonstrated
in Section 5.4.1.

Conversely, the effects on retrieval algorithms are minor. The convolution error in Chl-
a and TSM algorithms (Section 5.4.3) was on the percent level. Since errors in satellite-
retrieved Chl-a can be up to 500% [232], a bias of a few percent can safely be neglected.
Typical TSM errors are less extreme but still significantly larger than the ≤1% found here
[227, 420]. While only a few algorithms were tested, as discussed in Section 5.3.4, these
results are representative for most band-ratio algorithms. While many studies opt to use only
the central band wavelength, not the full SRF [223, 227], in which case the convolution error
does not occur, comparing narrow- and wide-band data that way introduces similar problems,
described in [430].

Prevention of the convolution error is straight-forward while post-hoc correction is not.
As explained in Section 5.2, simply convolving (ir)radiances instead of reflectance prevents
the error from occurring, and is the only mathematically correct procedure. Of course this
requires the original data to be available, which is not always true. Post-hoc correction is
impossible since the error is highly variable across different sensors and data sets. When
lacking original data, the reported uncertainty may simply be increased by a few percentage
points [430] but this fails to account for systematic biases. An estimate may be made, for ex-
ample by reconstructing Lw from a reported Rrs and simulated Ed, but this introduces further
assumptions.

To this end, it is recommendable that published data sets, intended for satellite validation,
contain not only products such as reflectance but also the raw data, at-sensor (ir)radiance
data, and calibration data. This way, the convolution error can be avoided. Furthermore, it
would greatly increase the amount of data available for other studies requiring radiometric
data, such as those into glint removal [206]. Finally, publication of original data, as well as
sensor characteristics, allows for traceability, which is crucial for quality control [88].

While this work focused on the remote sensing reflectance Rrs using ocean colour data,
the principles and conclusions are broadly applicable. A general rule of thumb on convolution
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practice is given in Section 5.2.4. In short, the principles outlined in this work are relevant
to the simulation of low-resolution data from high-resolution data. This includes all types of
reflectance, as well as other divisional quantities such as attenuation coefficients and degree
of polarisation. Furthermore, it includes all types of convolution, including spectral and
spatial. In all cases, a correct order of operations is crucial to prevent systematic errors. Any
simplifications should be justified mathematically, not made at whim.

5.A Validity of spectral convolution

Consider a source radiance spectrum Lsrc(λ), observed by a hyperspectral sensor with N
bands. The spectral radiance arriving at the sensor L(λ) is the product of the source spectrum
and any atmospheric effects. However, the data used in this work were recorded in or only a
few meters above the source, so atmospheric effects can safely be ignored:

L(λ) ≈ Lsrc(λ) (5.10)

The hyperspectral sensor records the radiance in bands h = 1, 2, ...,N, with central wave-
lengths λh. Each band h has its own SRF S h(λ), and the radiance recorded in band h, Lh, is
the spectral convolution of the at-sensor spectrum L(λ) with S h(λ). The integral is evaluated
over all wavelengths; for clarity, this is not written explicitly in this section. The denominator
in Equation (5.11) corrects for the spectral (or ‘quantum’) efficiency of the sensor in band h.

Lh =

∫
L(λ)S h(λ)dλ∫

S h(λ)dλ
(5.11)

The resulting spectrum measured by the hyperspectral sensor, LH(λ), consists of the indi-
vidual band spectra:

LH(λ) = L1, L2, ..., LN =

∫
L(λ)S 1(λ)dλ∫

S 1(λ)dλ
,

∫
L(λ)S 2(λ)dλ∫

S 2(λ)dλ
, ...,

∫
L(λ)S N(λ)dλ∫

S N(λ)dλ
(5.12)

S h affects L(λ) in two ways. The first is to lower it due to the spectral efficiency of the
sensor. This is described by an overall SRF S H(λ); dividing the data by S H(λ) corrects for
this. The second effect is to smoothen the data: since in practice S h is never a delta function,
band h records not only the radiance at its central wavelength λh but also at other wavelengths
where S h(λ) > 0.

The smoothening can be described as a cross-correlation (?) between the observed ra-
diance S H(λ)L(λ) and a bandwidth function G. In reality, each band will have a slightly
different Gh, for example due to stray light; however, for simplicity, here G is assumed to be
the same for all bands. Then LH(λ) can be described as in Equation (5.13).

LH(λ) =
(S H L) ?G

S H
(λ) (5.13)

Now consider a multispectral band M with SRF S M(λ). Following the same logic, Equa-
tion (5.11) gives the radiance recorded in band M, LM , as in Equation (5.14).
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LM =

∫
L(λ)S M(λ)dλ∫

S M(λ)dλ
(5.14)

However, when simulating multispectral data from hyperspectral data, the original radi-
ance L(λ) is not available. Instead, the recorded hyperspectral radiance LH(λ) is used. This
means that in practice, one does not calculate LM as in Equation (5.14) but an approximation
LH

M , as in Equation (5.15).

LH
M =

∫
LH(λ)S M(λ)dλ∫

S M(λ)dλ
=

∫
(S H L)?G

S H
(λ)S M(λ)dλ∫

S M(λ)dλ
(5.15)

The approximation LH
M ≈ LM holds in two cases. The first is if LH(λ) ≈ L(λ), that is if

Equation (5.16) holds. From information theory it follows that this is true if G is significantly
narrower than typical features in L(λ).

(S H L) ?G
S H

(λ) ≈ L(λ) (5.16)

The second case where LH
M ≈ LM holds is when the multispectral band M is significantly

wider than G and typical features in L(λ). Then, any radiance redistributed from λh to sur-
rounding wavelengths in LH(λ) is still captured in the integral

∫
LH(λ)S M(λ)dλ, and the value

of the integral is the same.
Ed has narrow line features, as does Lw by extension. Hyperspectral (ir)radiance sensors

typically undersample these features [97, 120], so Equation (5.16) does not hold in practice.
However, the second case does hold, if M is significantly wider than the hyperspectral

band (or G). The Nyquist-Shannon theorem provides, to first order, a requirement: LH
M ≈ LM

if the FWHM of M is at least twice that of the hyperspectral data. Then, hyperspectral data
LH(λ) adequately approximate the original radiance L(λ) for spectral convolution purposes.

5.B Radiometric data
Table 5.1 lists the radiometric data sets used in this work. Some of these contain unphysical
data due to measurement errors, environmental effects, and instrumental problems [206, 431,
437]. This appendix describes how the data were filtered and homogenised before processing.

First, all spectra were converted to SI units. Second, negative Rrs values were clipped
to 0 if −10−4 < Rrs(λ) < 0 as this is within typical measurement errors; spectra with any
Rrs(λ) ≤ −10−4 were removed wholly. For as11, 5 spectra with negative Rrs were removed.
For cariaco, 230 spectra missing Rrs and 11 missing Ed values were removed, as were 64
spectra with negative and 1 spectrum with unphysically high (>0.8) Rrs. For clt-a, 6 spectra
with negative Rrs were removed. For clt-s, the spectra within 3-minute windows suggested
in the accompanying documentation were averaged and Lw was calculated from Lu and Lt

following the Mobley protocol [209]; 19 spectra with missing and 36 with negative Rrs were
removed. For gasex, wavelengths λ > 710 nm were removed due to incomplete data. For
he302, 3 spectra with Rrs(800 nm) ≥ 0.003 were removed as outliers; the original authors
noted the difficulty in normalising these data [206]. For msm213-h, Lw was used to recon-
struct Ed; 179 spectra with missing data were removed, as were spectra with unphysically
large jumps in Ed, namely 21 with |Ed(λ1) − Ed(λ2)| ≥ 0.2 and |Ed(λ2) − Ed(λ3)| ≥ 0.2 and 1
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with |Ed(λ1) − Ed(λ2)| ≥ 0.35, with λ1, λ2, λ3 subsequent wavelengths. For orinoco, 1 spec-
trum with negative Rrs was removed. For sabor-s, which contains polarised and unpolarised
spectra, only the latter were used and the wavelength range was clipped to 358–749 nm be-
cause of incomplete and noisy data elsewhere. For seaswir-a, the provided plaque radiance
Ld was used to calculate Ed = πLd [209], assuming a plaque reflectance of Rg ≈ 1 [431];
no units were given for these data, so the resulting Ed spectra were divided by 105 to be in
line with the others. ‘Water reflectance’ Rw was provided instead of Rrs; comparing [431]
and [209] showed that Rrs = Rw/π. Finally, 35 spectra with missing Ed and 39 with neg-
ative Rrs were removed. For seaswir-r, Rw was similarly converted to Rrs and 2 spectra
with negative Rrs were removed. For sop4, the provided Lu and Ls were used to calculate
Rrs following the Mobley protocol [209] for simplicity [206]. The Rrs spectra were then
normalised by subtracting Rrs(750 nm) [209] and the results used to re-calculate Lw. Next,
885 spectra with unphysical max(Ed(λ)) < 0.01 were removed and the wavelength range
cropped to 360–750 nm to remove noisy data. Spectra with unphysical features were then
removed, namely 23 with |Rrs(λ1) − Rrs(λ2)| ≥ 0.005 and |Rrs(λ2) − Rrs(λ3)| ≥ 0.005 and 3
with Ed(400 nm) − Ed(405 nm) > 0.01; finally, 289 spectra with negative Rrs were removed.
The remaining data sets (sabor-h, sfp, rsp, taram, and tarao) required no post-processing.
For sfp, only the mean Rrs spectra were used.
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