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Consumer cameras, especially on smartphones, are popular and effective instruments for
above-water radiometry. The remote sensing reflectance Rrs is measured above the water
surface and used to estimate inherent optical properties and constituent concentrations. Two
smartphone apps, HydroColor and EyeOnWater, are used worldwide by professional and
citizen scientists alike. However, consumer camera data have problems with accuracy and
reproducibility between cameras, with systematic differences of up to 40% in intercompar-
isons. These problems stem from the need, until recently, to use JPEG data. Lossless data, in
the RAW format, and calibrations of the spectral and radiometric response of consumer cam-
eras can now be used to significantly improve the data quality. Here, we apply these methods
to above-water radiometry. The resulting accuracy in Rrs is around 10% in the red, green,
and blue (RGB) bands and 2% in the RGB band ratios, similar to professional instruments
and up to 9 times better than existing smartphone-based methods. Data from different smart-
phones are reproducible to within measurement uncertainties, which are on the percent level.
The primary sources of uncertainty are environmental factors and sensor noise. We conclude
that using RAW data, smartphones and other consumer cameras are complementary to pro-
fessional instruments in terms of data quality. We offer practical recommendations for using
consumer cameras in professional and citizen science.

https://doi.org/10.3389/frsen.2022.940096
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4.1 Introduction

The remote sensing reflectance Rrs(λ) is an apparent optical property that contains a wealth of
information about the substances within the water column [2]. In above-water radiometry, Rrs

is measured using one or more (spectro)radiometers deployed above the water surface [120].
The absorption and scattering coefficients and concentrations of coloured dissolved organic
matter (CDOM), suspended particulate matter, and prominent phytoplankton pigments such
as chlorophyll-a (chl-a) can be determined from Rrs [234]. Due to spectral range and long-
term stability requirements, the equipment necessary for accurate measurements of Rrs is
often expensive. High costs limit the uptake and, therefore, impact of these instruments.

Consumer cameras have long been seen as a low-cost alternative or complement to pro-
fessional instruments [102]. Work in this direction has mostly focused on hand-held digital
cameras, which measure the incoming radiance in red-green-blue (RGB) spectral bands typ-
ically spanning the visible range from 390–700 nm [323]. Uncrewed aerial vehicles (UAVs
or drones) and webcams have similar optical properties, often contain the same sensors, and
are also increasingly used in remote sensing [281]. Consumer cameras have been used to
retrieve CDOM, chl-a, and suspended mineral concentrations through above-water radio-
metry [34, 323]. They are particularly useful for measuring at small spatial scales, short
cadence, and over long time periods [386, 387].

Smartphones are especially effective as low-cost sensing platforms thanks to their wide
availability, cameras, and functionalities including accelerometers, GPS, and wireless com-
munications. They are already commonly used in place of professional sensors in labo-
ratories [56, 388]. However, what smartphones truly excel at is providing a platform for
citizen science in the field [94, 389]. There is a vibrant ecosystem of applications (apps)
using the smartphone camera for environmental citizen science purposes [273]. Some use
additional fore-optics to measure hyperspectrally [284, 390], while most use the camera as it
is [121,274,391]. Smartphone science apps are also commonly used for educational purposes
and in professional research [318, 392, 393].

Two apps are currently widely used for above-water radiometry, namely HydroColor
[121] and EyeOnWater [274]. HydroColor measures Rrs in the RGB bands using the Mob-
ley protocol [209], guiding the user to the correct pointing angles with on-screen prompts.
Through an empirical algorithm based on the red band of Rrs, the app estimates the turbidity,
suspended matter concentration, and backscattering coefficient of the target body of water.
EyeOnWater uses the WACODI algorithm [285] to determine the hue angle α of the water,
representing its intrinsic colour. From α it also estimates the Forel-Ule (FU) index, a dis-
crete water colour scale with a century-long history [306]. α and the FU index are reasonable
first-order indicators of the surface chl-a concentration and optical depth [10].

While these apps and other consumer camera-based methods provide useful data, im-
provements to the accuracy and reproducibility are necessary to derive high-quality end prod-
ucts. Validation campaigns have consistently found the radiance, Rrs in the RGB bands, and
hue angle from consumer cameras to be well-correlated with reference instruments, but of-
ten with a wide dispersion and a significant bias. For Rrs, the mean difference between
smartphone and reference match-up data is typically ≥0.003 sr−1 or ≥30%, but varies wildly
between studies [121, 276, 391, 394]. As an extreme example, Malthus et al. found no cor-
relation at all between HydroColor and reference Rrs data [275], albeit under challenging
observing conditions. The typical accuracy in α is around 10° or 1–2 FU [275,285,391,395].
Differences in Rrs between smartphones can be as large as 40% [276]. The uncertainties,
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as well as the differences between smartphones and reference instruments, in observed op-
tical properties and derived water constituent concentrations are often even greater than
40% [275, 396, 397], although this may be explained in part by differences in inherent op-
tical properties and observing conditions between study sites.

A major source of uncertainty in existing methods is the use of the JPEG data format. Un-
til recently JPEG was the only format available to third-party developers on most smartphones
and other consumer cameras. JPEG data are irreversibly compressed and post-processed for
visual appeal, at the cost of radiometric accuracy and dynamic range. Most importantly,
they are very non-linear, meaning a 2× increase in radiance does not cause a 2× increase
in response [281]. Instead, in a process termed gamma correction or gamma compression,
the radiance is scaled by a power law. The non-linearity of JPEG data is a significant con-
tributor to the uncertainty in Rrs obtained from consumer cameras and apps such as Hydro-
Color [275, 281, 394]. Some approaches, including WACODI, attempt to correct for non-
linearity through an inverse gamma correction [285, 394]. This inverse correction cannot be
performed consistently because the smartphone JPEG processing differs between smartphone
brands, models, and firmware versions [281].

A secondary source of uncertainty are the spectral response functions (SRFs) of the
cameras. Because exact SRF profiles are laborious to measure and are rarely provided by
manufacturers, it is often necessary to use simplified SRFs and assume them to be device-
independent [121, 285]. However, the SRFs of different cameras actually vary significantly
[281].

The quality of consumer camera radiometry can be improved significantly by using loss-
less data, in the RAW format, and camera calibrations. RAW data are almost entirely unpro-
cessed and thus are not affected by the uncertainties introduced by the JPEG format. Fur-
thermore, through calibration and characterisation of the radiometric and spectral response,
consumer cameras can be used as professional-grade (spectro)radiometers [281].

In this work, we assess the uncertainty, reproducibility, and accuracy of calibrated smart-
phone cameras, using RAW data, for above-water radiometry. By comparing in situ observa-
tions from two smartphone cameras and two hyperspectral instruments, we test the hypothesis
that the new methods decrease the uncertainty and increase the reproducibility and accuracy
of data from consumer cameras. To our knowledge, this is the first time that the new methods
have been applied or assessed in a field setting.

Section 4.2 describes the data acquisition and processing as well as the performed ex-
periments. The results are presented in Section 4.3. In Section 4.4, we discuss the results,
compare them to the literature, and present some recommendations for projects using smart-
phones. Finally, the conclusions of the analysis are presented in Section 4.5.

4.2 Methods

Smartphone and reference data were gathered on and around Lake Balaton, Hungary, from
3–5 July 2019. Lake Balaton is the largest (597 km2) lake in central Europe, with a mean
depth of only 3.3 m, and is well-studied. It has a high concentration of suspended mineral
particles and appears very bright and turquoise (bluish-green) to the eye (Figure 4.1, further
discussed in Section 4.2.1). Due to inflow from the Zala river, the western side of the lake is
richer in nutrients than the eastern side. The adjacent Kis-Balaton reservoir is hypereutrophic
with chl-a concentrations up to 160 mg m−3. More detailed descriptions of this site are given
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Lu Lsky Ld

Figure 4.1: Example iPhone SE images of Lu, Lsky, and Ld, taken at Lake Balaton on 3 July 2019 at
07:47 UTC. Little wave motion is visible on the water surface in Lu, while Lsky shows patchy cloud
coverage. The conditions seen here were representative for the entire campaign.

in [27, 264].
Two smartphones were used, an Apple iPhone SE and a Samsung Galaxy S8, and two

hyperspectral spectroradiometer instruments were used as references. The reference instru-
ments were a set of three TriOS RAMSES instruments mounted on a prototype Solar-tracking
Radiometry (So-Rad) platform [123] to maintain a favorable viewing geometry throughout
the day, and a hand-held Water Insight WISP-3 spectroradiometer [126]. The spectral and
radiometric calibration of the smartphones is described in [281]; manufacturer calibrations
were used for the So-Rad and WISP-3.

Data processing and analysis were done using custom Python scripts based on the NumPy
[312], SciPy [398], and SPECTACLE [281] libraries, available from GitHub15. The smart-
phone data processing pipeline supports RAW data from most consumer cameras. The pro-
cessing of the reference and smartphone data is further discussed in Sections 4.2.2–4.2.4, the
analysis in Sections 4.2.5 and 4.2.6.

4.2.1 Data acquisition
Observations were performed on 3 July 2019 from the Tihany-Szántód ferry on eastern Lake
Balaton, performing continuous transects around 46°53’00”N 17°53’43”E, facing southwest
before 10:00 UTC (12:00 local time) and northeast afterwards. Data were also acquired on 4
July in the Kis-Balaton reservoir at 46°39’41”N 17°07’45”E and on 5 July on western Lake
Balaton at 46°45’15”N 17°15’09”E, 46°42’25”N 17°15’53”E, 46°43’59”N 17°16’34”E, and
46°45’04”N 17°24’46”E. The So-Rad, which was mounted on the ferry, was only used in
the morning on 3 July; the two smartphones and WISP-3 were used at all stations. All data,
including a detailed station log, are available from Zenodo16.

The upwelling radiance Lu, sky radiance Lsky, and either downwelling radiance Ld (smart-
phones) or downwelling irradiance Ed (references) were measured. The So-Rad and WISP-3
data were hyperspectral, the smartphones multispectral in different RGB bands [281]. A

15https://github.com/burggraaff/smartphone-water-colour
16https://dx.doi.org/10.5281/zenodo.4549621

https://github.com/burggraaff/smartphone-water-colour
https://dx.doi.org/10.5281/zenodo.4549621
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Brandess Delta 1 18% gray card was used to measure Ld, which is discussed in Section 4.2.3.
The observations on 3 and 5 July were done under a partially clouded sky (Figure 4.1), which
introduced uncertainties in Lsky and Rrs by increasing the variability of the sky brightness and
causing cloud glitter effects on the water surface [209]. Simultaneous measurements from
different instruments were affected in the same way, meaning an intercomparison was still
possible. However, for measurements taken farther apart in time and space, the match-up
error may be significant. On 4 July, the sky was overcast.

Following standard procedure [120, 209], the smartphone observations were performed
pointing 135° away from the solar azimuth in the direction furthest from the observing plat-
form and 40° from nadir (Lu, Ld) or zenith (Lsky). The smartphones were taped together and
aligned in azimuth by eye and in elevation using the tilt sensors in the iPhone SE, to approxi-
mately 5° precision. Example smartphone images are shown in Figure 4.1. The same viewing
geometry is used in HydroColor, but not EyeOnWater [275]. The reference observations were
performed in the same way, following standard procedure for the respective sensors [90,126].

The So-Rad and WISP-3 each recorded Lu, Lsky, and Ed simultaneously while the smart-
phones took sequential Lu, Ld, and Lsky images within one minute. Using the SPECTACLE
apps for iOS and Android smartphones [281], the iPhone SE took one RAW image and one
JPEG image simultaneously, and the Galaxy S8 took 10 sequential RAW images per expo-
sure. The exposure settings on both smartphones were chosen manually to prevent saturation
and were not recorded, but were kept constant throughout the campaign.

In total, 304 and 453 sets of WISP-3 and So-Rad spectra, respectively, and 28 sets each of
iPhone SE and Galaxy S8 images were obtained. For the WISP-3, one set of spectra (5 July
at 10:35:51 UTC) was manually removed because it appeared excessively noisy. Six sets of
smartphone data were discarded due to saturation.

4.2.2 Reference data processing
Rrs spectra were calculated from the WISP-3 and So-Rad data (Figure 4.2). For the WISP-3,
the Mobley method [209] shown in Equation (4.1), with a sea surface reflectance factor of
ρ = 0.028, was used. Wavelength dependencies are dropped for brevity. The value of ρ =

0.028 was chosen for the WISP-3 and smartphone data processing (Section 4.2.3) to enable
a direct comparison to HydroColor, which uses the same value [121]. Given the brightness
of Lake Balaton, the relative magnitude of ρLsky compared to Lu was small (typically <5% in
the WISP-3 data) for any value of ρ around 0.03, and thus the effect of a small difference in ρ
on Rrs was negligible. The So-Rad data, having a wider spectral range, were processed using
the three-component (3C) method, which subtracts an additional glint term ∆ and determines
ρ empirically from a spectral optimisation [210, 399].

Rrs =
Lu − ρLsky

Ed
(4.1)

The general appearance of the reflectance spectra (Figure 4.2) is that of a broad peak
around 560 nm. On the short wavelength side of this peak, absorption by phytoplankton
and CDOM suppresses Rrs to approximately 25% of the peak amplitude. Towards longer
wavelengths, the effects of increasing absorption by water are clearly seen around 600 nm and
beyond 700 nm, and Rrs reaches near-zero amplitude at the edge of the visible spectrum. The
reflectance is ultimately skewed towards blue-green wavelengths, giving the water a turquoise
appearance. A minor absorption feature of chl-a and associated accessory pigments is visible
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Figure 4.2: Reference Rrs spectra derived from measurements on and around Lake Balaton. There is a
difference in normalisation between the two data sets, which is discussed in Section 4.4.3.

around 675 nm. Sun-induced chl-a fluorescence is visible at 680–690 nm in the WISP-3
spectra taken on 4 and 5 July, but not the WISP-3 or So-Rad spectra taken on 3 July.

4.2.3 Smartphone data processing
The RAW smartphone images were processed using a SPECTACLE-based [281] pipeline
(Figure 4.3). The images were first corrected for bias or black level, which shifts the pixel
values in each image by a constant amount. On the Galaxy S8, the nominal black level
was 0 analogue-digital units (ADU), while on the iPhone SE it was 528 ADU or 13% of
the dynamic range, as determined from the RAW image metadata and validated experimen-
tally [281]. Next, a flat-field correction was applied, correcting for pixel-to-pixel sensitivity
variations. The sensitivity varies by up to 142% across the iPhone SE sensor [281], although
in the central 100 × 100 pixels, the variations are only 0.2% on the iPhone SE and 1.6% on
the Galaxy S8. A central slice of 100 × 100 pixels was taken to decrease the uncertainties
introduced by spatial variations across the image [121]. The central pixels were then de-
mosaicked into separate images for the RGBG2 channels, where G2 is the duplicate green
channel present in most consumer cameras [281]. The RGBG2 images were flattened into
lists of 10 000 samples per channel and normalised by the effective spectral bandwidths of
the channels, determined from the SRFs [281]. The mean radiance was calculated per chan-
nel, after which the G and G2 channels, which have identical SRFs, were averaged together.
Finally, Rrs was calculated from Lu, Lsky, and Ld using Equation (4.2) [209]. Like for the
WISP-3 (Section 4.2.2) and in HydroColor, a constant ρ = 0.028 was used. Rre f is the gray
card reference reflectance, nominally 0.18.

Rrs =
Lu − ρLsky

π
Rre f

Ld
(4.2)

For Rre f , a Brandess Delta 1 18% gray card was used by manually holding it horizontal
in front of the camera. The nominal reflectance of Rre f = 18% was verified to within 0.5
percent point in the smartphone RGB bands by comparing spectroradiometer measurements
of Ld on a similar gray card to cosine collector measurements of Ed. Angular variations in
Rre f were found to be .1 percent point for nadir angles of 35°–45° in a laboratory experiment
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Figure 4.3: Smartphone data processing pipeline, from RAW images to multispectral Rrs. The example
input images are those from Figure 4.1. Some processing steps have been combined for brevity. The
histograms show the distribution of normalised pixel values in the central 100 × 100 pixels for the
RGBG2 channels separately (coloured lines, G and G2 combined) and together (black bars). The order
of elements in L and Rrs is RGB.
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with the iPhone SE. This value is similar to previous characterisations of different consumer-
grade gray cards [400]. To account for these factors as well as fouling, an uncertainty of
σRre f = 0.01, or 1 percent point, was used in our data processing. This does not account for
systematic errors (Section 4.4.3).

Unlike EyeOnWater, which selects multiple sub-images from different parts of each im-
age, our pipeline only used a central slice of 100×100 pixels. The use of sub-images was not
necessary since all images were manually curated and sub-imaging has been shown to have
little impact on the data quality [275]. The 100 × 100 size was chosen to minimise spatial
variations, but a comparison of box sizes from 50–200 pixels showed that the exact size made
little difference. For example, the mean radiance typically varied by <0.4%, less than the typ-
ical uncertainty on the radiance estimated from each image (Section 4.3.1). Furthermore, the
signal-to-noise ratio (SNR) varied by <3% for Lu and Ld but up to 19% in Lsky due to the
patchy cloud coverage.

The iPhone SE JPEG data were processed using a simplified version of the RAW pipeline,
lacking the bias and flat-field corrections and G-G2 averaging. Smartphone cameras perform
these three tasks internally for JPEG data [281]. The processing was repeated with an addi-
tional linearisation step, like in WACODI and EyeOnWater, to determine whether linearisa-
tion improves the data quality. Following WACODI, the default sRGB inverse gamma curve
was used, although this curve has already been shown to be poorly representative of real
smartphones [281].

The uncertainties in the image data, determined from the sample covariance matrix of
the 10 000 pixels per channel per image, were propagated analytically as described in Sec-
tion 4.A. The pixel values were approximately normally distributed (Figure 4.3). Significant
correlations between the RGBG2 channels were found. For example, the iPhone SE Lsky

image from 3 July 2019 at 07:47 UTC had a correlation of rRG = 0.68 between R and G,
while in the 08:01 image this was only rRG = 0.09. The observed correlations were likely
due to spatial structures in the images [140], such as patchy clouds for Lsky and waves for
Lu. In larger data sets, the presence of strong correlations could be used as a means to filter
out images that are not sufficiently homogeneous. The propagated uncertainties in Rrs were
typically 5–10% of the mean Rrs and similarly correlated between channels. For example,
the 07:47 data had correlations in Rrs of rRG = 0.67, rRB = 0.57, and rGB = 0.72.

4.2.4 Colour

In addition to absolute Rrs in the RGB bands, several relative colour measurements were
investigated, namely RGB band ratios, hue angle, and FU index.

The band ratios were calculated as specific combinations of Rrs bands. For simplicity in
notation, the ratios are expressed as, for example, G/R instead of Rrs(G)/Rrs(R). Following
the literature, the numerators and denominators were chosen as G/R, B/G, and R/B. The G/R
ratio is sensitive to water clarity and optical depth [391]. B/G is sensitive to the chl-a con-
centration [323], at least in water types where phytoplankton covaries with other absorbing
substances. Finally, the R/B ratio is particularly sensitive to broad features such as CDOM
absorption, as well as the concentration of scatterers (turbidity, suspended matter concentra-
tions), as described in [34, 323].

To calculate the hue angle, the data were first transformed to the CIE XYZ colour space.
CIE XYZ is a standard colour space representing the colours that a person with average colour
vision can experience [101]. The reference data were spectrally convolved with the XYZ
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colour matching functions [401]. The spectral convolution was applied directly to Rrs, since
Rrs represents the true colour of the water [283]. For the smartphone data, transformation
matrices calculated from the smartphone camera SRFs (Section 4.B) were used [402, 403].
These matrices are given in Equations (4.3) and (4.4). The uncertainties on the matrix ele-
ments were not included since this would require a full re-analysis of the raw SRF data [404],
which is outside the scope of this work. The resulting colours were relative to an E-type (flat
spectrum, x = y = 1/3) illuminant.

MiPhone S E
RGB→XYZ =

0.5709 0.2452 0.1839
0.3760 0.4346 0.1894
0.0439 0.0913 0.8648

 (4.3)

MGalaxy S 8
RGB→XYZ =

0.5611 0.1451 0.2938
0.3944 0.2391 0.3666
0.0231 0.0416 0.9353

 (4.4)

From XYZ, the chromaticity (x, y) and hue angle α were calculated as shown in Equa-
tions (4.5) and (4.6). Chromaticity is a normalisation of the XYZ colour space that removes
information on brightness [101]. The FU index was determined from α using a look-up ta-
ble [10, 306]. The uncertainties in Rrs were propagated analytically into XYZ and (x, y), as
described in Section 4.A. However, further propagation into α was not feasible, since the
linear approximation of Equation (4.6) breaks down near the white point (x, y) = (1/3, 1/3),
especially with highly correlated x and y [405].

x =
X

X + Y + Z
y =

Y
X + Y + Z

(4.5)

α = arctan2 (y − 1/3, x − 1/3) mod 2π (4.6)

4.2.5 Replicate analysis
The Galaxy S8 data were taken in sets of 10 sequential replicates per image (Section 4.2.1).
The variability between these replicates was analysed to assess the uncertainty in smartphone
data.

The processing chain described in Section 4.2.3 was applied to each image from each set,
resulting in 10 measurements per channel of Lu, Lsky, and Ld. Rrs was calculated from each
combination of images, resulting in 1 000 values. From these, the band ratios, α, and FU
were calculated.

The relative uncertainty in Lu, Lsky, Ld, Rrs, and the band ratios was estimated through
the coefficient of variation σ

µ
, σ being the standard deviation and µ the mean value. Because

α and FU have arbitrary zero-points, relative uncertainties are not applicable to them, and σ
was instead used to estimate the absolute uncertainty.

4.2.6 Match-up analysis
Simultaneous data taken with the various sensors were matched up and compared. There were
27 pairs of iPhone SE and Galaxy S8 images, taken on average 50 s apart. On the ferry, which
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had an average speed of 8 km/h, a 50 s delay corresponded to a distance along the transect
of approximately 120 m. The smartphone images were also matched to reference spectra
taken within a 10-minute time frame, resulting in 1–41 reference spectra per match-up. The
reference Rrs spectra were convolved to the smartphone RGB bands by first convolving the
reference radiances [283]. For match-ups with multiple reference spectra per smartphone
image, the median value of each variable in the reference spectra was used, with the standard
deviation as an estimate for the uncertainty. For match-ups with a single reference spectrum
per smartphone image, the uncertainty was instead estimated as the median uncertainty on
the multiple-spectrum match-ups, for each variable. Match-up reference spectra with large
uncertainties, for example relative uncertainties of >10% in Rrs, were not discarded because
these represent common measurement scenarios.

The match-up data were compared using the metrics shown in Equations (4.7)–(4.10).
Here P,Q are any two data sets with elements pi, qi; cov(P,Q) is their covariance; σP, σQ

are the standard deviations in P and Q, respectively; Medi is the median evaluated over the
indices i; and sgn is the sign function. The RGB channels were treated as separate samples,
as were the three band ratios.

r =
cov(P,Q)
σPσQ

(4.7)

M = Medi (|qi − pi|) (4.8)

ζ = exp
[
Medi

(∣∣∣∣∣ln qi

pi

∣∣∣∣∣) − 1
]

(4.9)

B = sgn
[
Medi

(
ln

qi

pi

)]
×

[
exp

(∣∣∣∣∣∣Medi

(
ln

qi

pi

)∣∣∣∣∣∣
)
− 1

]
(4.10)

The Pearson correlation r and median absolute deviationM are well-known [406, 407].
The median symmetric accuracy ζ and signed symmetric percentage biasB, both expressed as
a percentage, are recent introductions, which we chose to use for their robustness, symmetry,
and ability to span multiple orders of magnitude in the data [406]. r expresses the degree
of linear correlation between variables, from −1 to 1, but is sensitive to outliers and the data
range.M and ζ measure the typical random error or dispersion between variables in absolute
and relative terms, respectively. Both are robust to outliers. B is similar to ζ but measures
the bias towards over- or underestimation. The covariance, standard deviations, and median
calculated in r andM were weighted by wi = 1

σ2
pi +σ

2
qi

. ζ and B are unweighted.
The FU indices were also compared by the number of matches [395, 407], considering

both full (∆FU = 0) and near-matches (∆FU ≤ 1). The typical uncertainty on human obser-
vations is 1 FU [280].

5–95% confidence intervals (CIs) on the metrics were estimated by bootstrapping over
pairs of (pi, qi), and wi if applicable. Bootstrapping involves randomly resampling the data
with replacement, mimicking the original sampling process [408]. This was necessary to
account for the relatively small size of our data set, which increases the effects of outliers,
even on robust metrics like M or ζ. The bootstraps were evaluated with 9 999 resamples,
sufficient to obtain consistent results matching the analytical formula for CIs on unweighted
r to 4 decimals [408].

Some data were also compared through a linear regression (y = ax + b with parameters
a, b), to convert data to the same units or account for normalisation differences. The regres-
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sion was done through the scipy.odr function for orthogonal distance regression, which
minimises differences and accounts for weights on both axes. The same process was used to
fit a power law (y = axb) in the JPEG data comparison (Section 4.3.4).

4.3 Results

4.3.1 Replicate analysis
The Galaxy S8 replicate analysis showed that among the radiances, Lu had the largest relative
variability with a quartile range (QR, the 25–75% percentile range of variability among the
sets of replicate observations) of 1.8–5.8%, followed by Lsky with 1.1–3.4%, and Ld with
0.4–1.2% (Figure 4.4). Lu and Lsky were affected primarily by cloud and wave movement,
shaking of the camera, and movement of the ferry on 3 July. Therefore, the variability in Lu

and Lsky was largely methodological in nature, as discussed further in Section 4.4.1. Since Ld

was measured on a bright, stable gray card, it was not affected by the above factors, and its
variability best represented the radiometric stability of the smartphone camera.

The RGB Rrs varied by 1.9–8.1%, while the Rrs band ratios only varied by 0.5–1.9%.
The difference can be explained by correlations between channels. For example, wave move-
ments between successive images affected all three RGB channels of Lu equally, changing
the individual Rrs values, but having little effect on their ratios. The same held true for other
environmental variations and camera stability issues.

Finally, there was a variability in hue angle α of 2.1°–6.8° and in FU index of 0.19–0.62
FU. The variability distributions of α and FU index did not have the same shape because the
hue angle difference between successive FU indices varies greatly.

The variability between replicates represents the typical uncertainty associated with ran-
dom effects on our data. However, there are some caveats. First, systematic effects such as
an error in Rre f would affect successive measurements equally, and not cause random vari-
ations. Second, the uncertainty in individual images may be larger due to spatial structures,
which the uncertainty propagation described in Section 4.2.3 does account for. Both of these
issues explain differences between the replicate and propagated uncertainties in our data. For
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Figure 4.4: Variability in radiance, Rrs, and colour between replicate Galaxy S8 images. The boxes
show the distribution, among 27 individually processed sets of 10 replicates, of the variability between
replicate images. The orange lines indicate the medians, the boxes span the quartile range (QR), the
whiskers extend to 1.5 times the QR, and circles indicate outliers. Up to two outliers per column fell
outside the y-axis range.



4

86 Results

example, the propagated uncertainty in individual images was 6.6–9.0% for RGB Rrs and
4.5–7.0% for the band ratios. While the exact uncertainties will differ between campaigns,
sites, and even smartphones, the trends seen here can be generalised.

As a point of comparison, the uncertainty QRs for the spectrally convolved WISP-3 data
in the Galaxy S8 match-up (Section 4.3.3), were 4.2–38% in Lu, 4.8–14% in Lsky, 2.5–30%
in Ed, 2.6–7.2% in RGB Rrs, 0.7–2.9% in Rrs band ratios, 0.4°–2.8° in α, and 0–0.46 in FU.
While the Galaxy S8 and WISP-3 variability cannot be compared 1:1 due to differences in
data acquisition and processing and in the uncertainty estimation, the order of magnitude of
the uncertainties in the Galaxy S8 and WISP-3 reference data was the same.

4.3.2 Smartphone comparison
There was a strong correlation, r = 0.94 (CI 0.90, 0.96), between the iPhone SE and Galaxy
S8 radiances (Figure 4.5). Due to differences in exposure settings, both cameras measured
radiance in different, arbitrary units (a.u.). After re-scaling the Galaxy S8 data through a
linear regression (Section 4.2.6), the median absolute deviation was M = 0.39 (CI 0.29,
0.52) in iPhone SE units and the median symmetric accuracy was ζ = 6.9% (CI 5.1%, 8.7%).
The value of ζ was comparable to the variability between replicate images (Section 4.3.1).

The Rrs match-ups between the two smartphones, in both RGB (Figure 4.6) and band
ratios (Figure 4.7), showed excellent agreement. The data were strongly correlated, with
r = 0.98 (CI 0.95, 0.99) for RGB and r = 0.99 (CI 0.99, 1.00) for band ratio Rrs. The typical
difference in RGB Rrs was M = 0.0010 (CI 0.0005, 0.0013) sr−1 or ζ = 5.5% (CI 3.8%,
8.2%). For band ratios, the typical difference was M = 0.032 (CI 0.026, 0.035), unitless,
and ζ = 2.9% (CI 2.3%, 3.7%). Both values of ζ are consistent with Section 4.3.1, as is
the observation that band ratios are more reproducible than RGB Rrs. Finally, the signed
symmetric percentage bias in RGB Rrs, B = −2.7% (CI −7.0%, −1.8%), was smaller than
the typical uncertainty. There was no significant offset in the band ratios, with B = −1.1%
(CI −1.8%, +0.7%).

The agreement in α and FU was poorer but still similar to the expected uncertainties
(Figure 4.8). The typical difference was M = 8.3° (CI 5.0°, 11°) in α and M = 1 (CI 0,
2) in FU index. 33% (CI 15%, 48%) of the match-up pairs had the same FU index, 59%
(CI 37%, 74%) had a difference ∆FU ≤ 1. The wide CIs are due to the relatively small
number (N = 27) of match-ups. The data did not span the full range of α, but were mostly
concentrated into two clusters, around 50° (FU 14–16, greenish brown) and 90° (FU 8–9,
bluish green). Interestingly, while the 90° cluster was centred roughly on the 1:1 line, the 50°
cluster fell entirely underneath it. However, due to the small N and the uncertainties on the
data, it is difficult to say whether this was significant.
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Figure 4.9: Examples of smartphone vs. reference Rrs match-ups at different stations. The solid lines
show the reference spectrum, with uncertainties in gray. The RGB dots show the smartphone data, with
error bars indicating the effective bandwidth (horizontal) and Rrs uncertainty (vertical). In some panels,
the vertical error bars are smaller than the data point size.

4.3.3 Smartphone vs. reference comparison

A total of 72 pairs of smartphone vs. reference match-up spectra were analysed, four of which
are shown in Figure 4.9. There were 27 match-ups between the WISP-3 and each smartphone
and 9 between the So-Rad and each smartphone. Except for the normalisation difference that
was also present between the So-Rad and WISP-3 (Figure 4.2, discussed in Section 4.4.3),
there was good agreement between the instruments (Figure 4.9).

The full statistics of the match-up analysis are given in Table 4.1. The correlation between
smartphone and reference radiance was r ≥ 0.71 in all pairs of instruments (Figure 4.10). The
median symmetric accuracy ζ ranged between 12–19%, larger than the typical uncertainties
and the value from the smartphone vs. smartphone comparison. This larger difference in
observed radiance is not surprising, since the smartphone vs. reference match-ups typically
differed more in time and location than the smartphone vs. smartphone match-ups. No sig-
nificant differences in the match-up statistics between the individual RGB bands were found.

The RGB Rrs data were strongly correlated between smartphone and reference sensors
(r ≥ 0.94 for the WISP-3) and showed a relatively small dispersion, although with a nor-
malisation difference in the WISP-3 comparisons (Figure 4.11), similar to that between the
WISP-3 and So-Rad data (Figure 4.2). To negate the normalisation issue, the smartphone data
were re-scaled based on a linear regression (Section 4.2.6) for the smartphone vs. WISP-3
RGB Rrs comparison. The So-Rad and smartphone data were compared 1:1. The typical
differences in Rrs, then, were on the order of 10−3 sr−1 for the So-Rad and 10−4 sr−1 for the
WISP-3, differing mostly due to their different ranges. The difference in range of Rrs also
decreased the correlation coefficient r for the So-Rad comparisons. In the four smartphone
vs. reference Rrs comparisons, ζ was between 9–13%, twice the value seen in the smartphone
vs. smartphone comparison but similar to the differences between smartphone and reference
radiances.

The agreement between smartphone and reference Rrs band ratios was better than the
agreement in RGB Rrs (Figure 4.12). In all four band ratio comparisons, the correlation was
near-perfect (r ≥ 0.97), and the typical differences (1.1% ≤ ζ ≤ 3.8%) were consistent
with the uncertainties in the data. The WISP-3 normalisation difference did not affect this
comparison since it divided out.

The agreement in α and FU was not as good as that in L and Rrs, like in the smartphone
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N r,M(α) M ζ, ∆FU = 0 B, ∆FU ≤ 1
WISP-3

iP
ho

ne
SE

L 162 0.71 0.009 19% −7.8%
(0.57, 0.80) (0.007, 0.010) (15%, 24%) (−11%, +0.21%)

Rrs 81 0.97 0.0014 sr−1 22% −22%
(0.91, 0.99) (0.0001, 0.0063) (18%, 27%) (−28%, −20%)

Rrs 81 0.97 0.0004 sr−1 9.7% +1.9%
(regr.) (0.90, 0.99) (0.0001, 0.0025) (6.7%, 13%) (−1.1%, +4.8%)
Band
ratios

81 0.98 0.013 1.9% +0.25%
(0.97, 0.99) (0.009, 0.019) (1.2%, 2.7%) (−0.61%, +0.87%)

α, FU 27 9.4° 1 FU 26% 59%
(6.3°, 12°) (1, 2) (7.4%, 41%) (37%, 74%)

G
al

ax
y

S8

L 162 0.75 0.009 19% −3.2%
(0.66, 0.83) (0.007, 0.011) (15%, 24%) (−7.5%, +2.5%)

Rrs 81 0.94 0.0025 sr−1 31% −31%
(0.75, 0.98) (0.0013, 0.0072) (24%, 35%) (−36%, −25%)

Rrs 81 0.93 0.0007 sr−1 13% +5.9%
(regr.) (0.70, 0.97) (0.0005, 0.0041) (9.2%, 14%) (+3.2%, +11%)
Band
ratios

81 0.98 0.010 1.7% +0.04%
(0.96, 0.99) (0.007, 0.012) (1.1%, 2.0%) (−0.59%, +0.68%)

α, FU 27 16° 2 FU 19% 48%
(11°, 21°) (1, 4) (3.7%, 33%) (26%, 63%)

So-Rad

iP
ho

ne
SE

L 54 0.87 0.006 13% −4.7%
(0.75, 0.94) (0.004, 0.007) (8.4%, 16%) (−12%, −0.01%)

Rrs 27 0.70 0.004 sr−1 13% +12%
(0.49, 0.86) (0.003, 0.005) (9.9%, 16%) (+6.5%, +14%)

Band
ratios

27 0.97 0.013 3.8% +0.82%
(0.95, 0.98) (0.006, 0.042) (0.98%, 5.6%) (−1.3%, +1.6%)

α, FU 9 11° 1 FU 11% 89%
(6.1°, 13°) (1, 1) (0%, 33%) (34%, 100%)

G
al

ax
y

S8

L 54 0.83 0.005 12% −5.4%
(0.69, 0.93) (0.003, 0.007) (9.2%, 16%) (−12%, +1.4%)

Rrs 27 0.75 0.003 sr−1 8.5% +6.4%
(0.49, 0.87) (0.002, 0.005) (5.5%, 13%) (−0.08%, +9.1%)

Band
ratios

27 0.99 0.004 1.1% +0.36%
(0.98, 0.99) (0.003, 0.009) (0.42%, 2.4%) (−0.35%, +0.45%)

α, FU 9 16° 1 FU 11% 56%
(12°, 23°) (1, 2) (0%, 33%) (11%, 78%)

Table 4.1: Summary of the smartphone vs. reference match-up analysis. The values between parenthe-
ses indicate the 5–95% CI determined from bootstrapping. N is the number of matching observations;
the other metrics are described in Section 4.2.6. M(L) is in units of W m−2 nm−1 sr−1. For the WISP-3,
Rrs was compared 1:1 and with a linear regression (regr.).
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Figure 4.10: Comparison between iPhone SE and spectrally convolved WISP-3 radiance measurements.
The RGB channels are shown in their respective colours, with different symbols for Lu and Lsky. The
statistics in the text box are relative to the regression line. We note that this regression line cannot
be used as a general absolute radiometric calibration for the iPhone SE due to the arbitrary choice of
exposure settings.

intercomparison (Section 4.3.2). For each smartphone, there were only N = 27 WISP-3
match-ups and even fewer So-Rad ones, making the CIs wide and the interpretation difficult.
The difference between the WISP-3 and iPhone SE was slightly larger than in the smartphone
comparison, at M(α) = 9.4° (CI 6.3°, 12°) and M(FU) = 1 (CI 1, 2). The Galaxy S8 and
WISP-3 differed more, at M(α) = 16° (CI 11°, 21°) and M(FU) = 2 (CI 1, 4). The cause
for this difference is unclear but may simply be an artifact of the small number of match-ups;
the Galaxy S8 also differed more in RGB Rrs but not in the band ratios. Both smartphones
performed similarly in the FU match-ups, with 19–26% of the match-ups agreeing fully and
48–59% to within 1 FU, although these figures had particularly wide CIs.
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4.3.4 JPEG data

28 sets of JPEG images from the iPhone SE, taken simultaneously with the RAW images,
were analysed and compared to the RAW and reference data.

The relationship between JPEG and RAW radiances was highly non-linear (Figure 4.13).
Each RGB channel had a different best-fitting power law, with exponents ranging from
0.477±0.005 for B to 0.949±0.013 for R. Due to differences between the RAW and JPEG data
processing, the power law exponents are not equivalent to sRGB gamma exponents [281].
Figure 4.13 also shows the significant dispersion of the data around the power law curves.
Comparing the RAW and re-scaled JPEG data yielded ζ ranging from 8.9% (CI 7.5%, 11%)
for B to 38% (CI 29%, 43%) for R.

The JPEG vs. RAW Rrs match-ups agreed better, particularly in the band ratios. The
RGB Rrs were strongly correlated, with r = 0.92 (CI 0.84, 0.97), but the JPEG data showed a
large, consistent overestimation of B = +52% (CI +39%, +59%). Comparing Rrs through a
linear regression removed this offset, although a significant dispersion of ζ = 15% (CI 12%,
21%) remained. Conversely, the Rrs band ratios were more similar with r = 0.97 (CI 0.95,
0.98),M = 0.033 (CI 0.023, 0.042), and ζ = 4.9% (CI 3.6%, 6.8%).

Finally, the agreement in α and FU was similar to the smartphone vs. smartphone and
smartphone vs. reference comparisons. M was 11° (CI 3.6°, 14°) in α and 1 (CI 0, 2) in FU.
39% (CI 18%, 54%) of match-up pairs had the same FU index, while 61% (CI 39%, 75%)
agreed to within 1 FU.
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Figure 4.13: Comparison between RAW- and JPEG-based iPhone SE radiance measurements. The axes
are in different units due to differences in exposure settings and normalisation. The RGB channels are
shown in their respective colours, with different symbols for Lu, Lsky, and Ld. The coloured lines show
the best-fitting power law for each channel.
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The agreement between JPEG and reference data was notably worse than between RAW
and reference data. While the JPEG vs. reference radiance match-ups appeared to follow a
single linear relationship, rather than the multiple power laws seen in the JPEG vs. RAW
comparison, they were only weakly correlated, with r = 0.39 (CI 0.22, 0.52) in the JPEG vs.
WISP-3 comparison. The dispersion around the regression line was ζ = 31% (CI 26%, 41%),
1.6× larger than for the RAW data.

The JPEG data consistently overestimated Rrs compared to the references, and were
widely dispersed. In the JPEG vs. WISP-3 comparison, B = +17% (CI +10%, +19%), al-
though this was reduced to B = +1.1% (CI −7.3%, +5.8%) when comparing to a regression
line instead of the 1:1 line, as in Section 4.3.3. However, the dispersion remained significant
atM = 0.0039 (CI 0.0018, 0.0047) sr−1 or ζ = 21% (CI 12%, 24%), withM 9× as much as
for the RAW data, and ζ 2.1×.

The JPEG band ratios deviated from the WISP-3 by >2.5× as much as the RAW data,
withM = 0.032 (CI 0.023, 0.041) and ζ = 5.5% (CI 3.7%, 6.4%). The So-Rad comparison
showed a similarly stark difference. However, while this represents a serious reduction in
performance, a typical difference of 5.5% is still relatively small.

It was only in α and FU that the JPEG vs. reference and RAW vs. reference agreements
were similar. M(α) in the JPEG vs. WISP-3 comparison was even marginally better at 7.1°
(CI 5.0°, 11°); in the JPEG vs. So-Rad comparison it was 13° (CI 3.8°, 16°), almost identical
to Table 4.1. M(FU) and the fraction of FU matches were also similar, atM(FU) = 1 (CI 1,
2), with 26% (CI 7.4%, 41%) full and 59% (CI 37%, 74%) partial FU matches between the
JPEG and WISP-3 data. The agreement between JPEG and reference α and FU is discussed
further in Section 4.4.3.

The effectiveness of an sRGB linearisation applied to the JPEG data, like in WACODI,
was also investigated (Section 4.2.3). In α and FU, the main outputs from WACODI, the
linearisation had very little effect. In the JPEG vs. WISP-3 comparison,M(α) changed from
7.1° (CI 5.0°, 11°) originally to 7.0° (CI 5.4°, 9.4°) with linearisation. In radiance and Rrs,
the linearisation made all comparison metrics significantly worse.

4.4 Discussion

4.4.1 Uncertainty
The uncertainty of the smartphone data as derived from replicate measurements (Section 4.3.1)
is comparable to that of professional spectroradiometers. This was shown by the compari-
son with WISP-3 replicate measurements, which had a variability similar to, and in some
cases larger than, the Galaxy S8. In general, the uncertainty from instrumental effects, ex-
cluding environmental factors and photon noise, in professional spectroradiometer data is
around 1% [92]. In field data, the typical uncertainty is 1–7% [110]. The Galaxy S8 replicate
variability, which was 0.4–1.2% (Ld), 1.1–3.4% (Lsky), and 1.8–5.8% (Lu), falls within this
range.

The same is true for the smartphone Rrs uncertainty, both in RGB (1.9–8.1%) and in
band ratios (0.5–1.9%). Rrs is typically measured with an uncertainty of 5% at blue and
green wavelengths [88] and this is the target for satellites like PACE [86]. The 5% target
also applies to narrower bands than the smartphone SRFs and to waters considerably darker
than Lake Balaton, which increases the influence of sensor noise. The reduced uncertainty in
band ratios is well-known and can be attributed to correlated uncertainties dividing out [146].
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Propagated into the mineral suspended sediment (MSS) algorithm described in [34], for R/B
ranging from 1.0–1.4, a 2% uncertainty in R/B results in a relative MSS uncertainty of only
1%. In the chl-a algorithm from [323], a 2% uncertainty in B/G induces a relative chl-a
uncertainty of 9%. This level of uncertainty is well within the desired limits for many end
users [88].

Finally, the uncertainty of the Galaxy S8 α (2.1°–6.8°) and FU index (0.19–0.62 FU)
estimates is similar to the uncertainty of satellite and human measurements as well as the
existing EyeOnWater app. Through propagation from Rrs, Pitarch et al. found uncertain-
ties on SeaWiFS-derived α of 6°–18° [10], although it is difficult to compare these values
due to the vastly different water types examined. Furthermore, propagated and replicate-
based uncertainty estimates may vary significantly due to differences in sensitivity to various
factors (Section 4.3.1). A more representative comparison point is the standard deviation of
3.15° among replicate EyeOnWater observations by Malthus et al. [275], which falls squarely
within the range found in this work. The similarity in uncertainty is interesting because Eye-
OnWater is based on JPEG data, not RAW. However, since we did not take replicate JPEG
images, a direct comparison in uncertainty between JPEG and RAW could not be made. The
accuracy of JPEG and RAW data, including α and FU index, is compared in Section 4.4.3.
The uncertainty of 0.19–0.62 FU is 5.3–1.6× better than human measurements, which have a
typical uncertainty of 1 FU with perfect colour vision [280].

Since the use of RAW data eliminates virtually all smartphone-specific sources of uncer-
tainty [281], the primary remaining sources are those that apply to all (spectro)radiometers
as well as environmental factors. For a thorough overview of the former, we refer the reader
to [106, 110]; for the latter, to [88]. Read-out noise, thermal dark current, and digitisation
noise are negligible for well-lit smartphone images [281]. Since Ld was measured on a stable
target, its variability of 0.4–1.2% between replicates can be ascribed mostly to sensor noise
(Section 4.3.1). Sensor noise scales with the square root of the number of photons, so the
induced uncertainty will be larger in darker conditions such as overcast days, highly absorb-
ing waters, and low solar elevation angles. In practice, smartphone observations under dark
conditions will require longer exposure times or multiple images to attain similar levels of
uncertainty. The impact of sun glint, which is estimated from Lsky, on the uncertainty in Rrs is
also larger for darker waters. The sensitivity of smartphone cameras to temperature variations
and polarisation is unknown, although the latter is expected to be negligible unless special
fore-optics are used [284]. Because our data were gathered in a single 3-day campaign, long-
term sensor drift is unlikely to have had any effect; in general, sensor drift does not affect
relative measurements like Rrs and α. Environmental factors, such as the patchy clouds that
were present during our campaign (Figure 4.1), likely contributed the bulk of the uncertainty
in Lsky and Lu. These environmental factors also affected the reference measurements and are
inherent to above-water radiometry.

4.4.2 Reproducibility

As there are hundreds of different smartphone models, reproducibility between devices is
key. This is a major problem with HydroColor, as reported to us directly by users and as re-
ported in the literature. For example, HydroColor measurements of Rrs with different smart-
phones regularly differ by as much as 50% or 0.005 sr−1 [121,276]. This is largely due to the
use of JPEG data, which are processed differently on every smartphone model, leading to a
wide variety of errors and uncertainties that cannot be reliably corrected [281]. On the other



4

96 Discussion

hand, Goddijn et al. reported smaller differences (4% ± 4%) between JPEG data from two
high-quality digital cameras [323], suggesting that some of the problems may be specific to
smartphones.

In Section 4.3.2, we showed that with RAW data and camera calibrations, excellent agree-
ment and thus reproducibility between smartphones can be achieved. Near-simultaneous
iPhone SE and Galaxy S8 measurements of radiance and Rrs were nearly perfectly correlated
(r ≥ 0.94), and their dispersion could be explained by the uncertainties in the individual mea-
surements. The typical difference in Rrs was 0.0010 (CI 0.0005, 0.0013) sr−1 or 5.5% (CI
3.8%, 8.2%), both major improvements over HydroColor. In fact, the dispersion in radiance
between the two smartphones, ζ = 6.9% (CI 5.1%, 8.7%), is only slightly larger than that
between professional instruments in a similar experiment [92].

On the contrary, the smartphone JPEG processing algorithm was found to be poorly
constrained and highly inconsistent between the RGB channels (Section 4.3.4). Moreover,
the internal JPEG processing in the smartphone is re-tuned every time a camera session is
started [281]. Combined, the differences between channels and between sessions highly limit
the reproducibility of JPEG-based measurements of radiance and Rrs. As discussed below,
white-balancing further reduces the reproducibility of JPEG-based Rrs band ratios and hue
angles. Finally, the JPEG processing algorithms differ between manufacturers, further re-
ducing the reproducibility of JPEG data between devices [281]. Due to limitations in the
SPECTACLE app in 2019, we did not collect Galaxy S8 JPEG data in this study, meaning
a direct comparison between the RAW vs. RAW and JPEG vs. JPEG reproducibility could
not be performed. Reproducing JPEG data from the RAW data was not possible, due to the
aforementioned proprietary smartphone algorithms.

Differences in smartphone SRFs set some minor fundamental limits on the reproducibility
between different cameras [331]. However, since most natural waters have broad and smooth
spectra, this should only lead to minor differences. In theory, JPEG data do not have this
problem because they are always in the sRGB colour space [285], but in practice the various
proprietary colour algorithms cause larger differences in JPEG data than in RAW [281]. Fur-
thermore, to account for illumination differences, JPEG data are white-balanced, changing
the relative intensity of each channel. The re-normalisation directly reduces the accuracy of
band ratio and hue angle measurements and is difficult to correct post-hoc [281, 391]. The
white-balance setting may be locked between exposures [121,323], but this does not guaran-
tee consistency between different devices. Finally, due to differences in field-of-view between
cameras, the central slice of 100 × 100 pixels does not always subtend the same solid angle.
In future work, it may be advisable to use a constant solid angle rather than a constant pixel
slice [121].

4.4.3 Accuracy

In Section 4.3.3, we compared smartphone and reference data to determine the accuracy of
the smartphone data, but this comes with important caveats. While each instrument measured
Lu and Lsky, they did not do so in exactly the same way, having differences in field of view,
spectral response, spectral resolution, and time and location. While the smartphones mea-
sured Ld on a gray card, the references measured Ed with a cosine collector. Due to these
differences, the true ‘ground truth’ value of each measurand is not known [106, 409]. The
reference data can be used to approximate the true values and achieve closure [234], but one
must be aware of the uncertainties and systematic errors that may be present. Additionally,
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one must exercise caution when comparing different metrics, such as the median symmet-
ric accuracy ζ and the mean percentage deviation, which measure the same quantity but are
calculated differently and on different data.

The WISP-3 and So-Rad Rrs spectra were similarly shaped, but differently normalised
(Section 4.2.2). Both were similar to spectra from previous work in shape, with the So-Rad
more similar in magnitude [27,264]. Normalisation differences and offsets have been seen in
previous comparisons between the WISP-3 and other instruments [92, 126], so we felt confi-
dent in using a linear regression to re-scale Rrs in the smartphone vs. WISP-3 comparisons.
In fact, since each smartphone Rrs measurement was based on three images from the same
camera, rather than from three separate sensors like the WISP-3, and the gray card reference
was independently verified, we can be more confident in the normalisation of the smartphone
Rrs than that of the WISP-3, at least for the particular unit and calibration settings used dur-
ing our campaign. These results suggest that smartphones and other low-cost cameras could
be used to provide closure when there is tension between data from professional instruments
(Section 4.4.5).

Considering the above, the level of closure between smartphone and reference data was
comparable to intercomparisons between professional radiometers to within a factor of 2–
3. The dispersion ζ in radiance was relatively large at 12–19%, 2–3× that reported in a
comparison of hyperspectral instruments on a single, stable platform [92], but as discussed
previously, our radiance measurements were particularly affected by environmental factors
and were taken at slightly different times and positions between instruments. Patchy clouds
can increase the dispersion in radiance match-ups by a factor of 10 or more [126]. In Rrs, the
typical difference was on the order of 10−4–10−3 sr−1 or 9–13%. Comparing hyperspectral
radiometers, Tilstone et al. found mean differences between sensors on the order of 10−3

sr−1 or 1–8%, with outliers up to 13% [114]. A comparison between WISP-3 and RAMSES
sensors under cloudy conditions, similar to ours, found differences in Rrs of 20–30% [126].

Most importantly, the smartphone and reference measurements of Rrs band ratios agreed
to within 2% in three out of four comparisons. The difference was only larger in the iPhone
SE vs. So-Rad comparison, at 3.8%. Since band ratios are what most inversion algorithms
for inherent optical properties and constituent concentrations are based on, it is the band ratio
accuracy that determines the usefulness of smartphones as spectroradiometers. An accuracy
and uncertainty of around 2% is well within most user requirements (Section 4.4.1).

The accuracy of the JPEG data was considerably worse (Section 4.3.4). In Rrs, the dis-
persion in the JPEG vs. WISP-3 comparison was 0.0039 (CI 0.0018, 0.0047) sr−1 or 21%
(CI 12%, 24%), which is in line with previous validation efforts for HydroColor [121, 276]
and other JPEG-based methods [391, 394]. AtM = 0.032 (CI 0.023, 0.041) and ζ = 5.5%
(CI 3.7%, 6.4%), the same is true for the Rrs band ratios [276]. The RAW data performed
better on each of these metrics, most notably by 9× for the RGB Rrs and 2.5× for the band
ratios. These results do not completely invalidate previous JPEG-based methods nor Hydro-
Color specifically [275], but demonstrate the significant increase in accuracy and decrease in
uncertainty obtained by using RAW data.

The results for the hue angle α and FU index were less conclusive. While at first glance
the dispersion of approximately 10° or 1 FU appears to be in line with previous studies
[275, 285, 395], our measurement protocol (Section 4.2.1) did not follow the EyeOnWater
protocol exactly, so the results cannot be compared directly to the aforementioned validation
efforts. Additionally, our data only contained 27 smartphone vs. WISP-3 match-ups and
even fewer for the So-Rad, with little diversity. Lastly, hue angles derived from narrow-band
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multispectral satellite data have been shown to differ systematically by several degrees, up
to 20° in extreme cases, compared to hue angles derived from hyperspectral data [10, 410].
This effect may also be present in the smartphone data and a correction term in the hue angle
algorithm may be necessary [411]. This work used the original hue angle algorithm, which
is based only on the SRFs [402], to enable a comparison between RAW and JPEG data and
between the current study and previous works, particularly the WACODI algorithm [285].
We recommend that future work be done to investigate the magnitude of the hue angle bias
in consumer camera data. Interestingly, there was little difference in accuracy between the
RAW- and JPEG-derived hue angles and FU indices. It is unclear whether this is because the
method is inherently robust to JPEG-induced errors [285], although Gao et al. have suggested
that it is not [391]. More data, from more diverse waters, will be necessary to compare the
accuracy of RAW- and JPEG-based hue angles and FU indices.

A potentially important source of systematic error is the 18% gray card. While the gray
card used here did not deviate significantly from Rre f = 18% (Section 4.2.3), this may not be
true in general. Since many smartphone radiometry projects are aimed at citizen scientists,
who may purchase a wide variety of gray cards and may not always use them correctly, this
presents an important possible source for error. Even a small difference in Rre f can signifi-
cantly bias Rrs. One possible solution to this problem is to issue or recommend standardised
gray cards [391]. Characterising the most popular gray cards is another possibility [400],
which may itself be done through citizen science. The use of relative quantities like band
ratios negates this problem.

4.4.4 Recommendations
Based on previous work and the results discussed above, several recommendations can be
made. Some are specific to smartphones, but most apply in general to above-water radiometry
with consumer cameras since the cameras in most smartphones, digital cameras, UAVs, and
webcams are extremely similar [281].

RAW data provide professional-grade radiometric performance and should be used when-
ever possible. Most consumer cameras now support this natively and many smartphone apps
provide this capacity. Within the MONOCLE17 project, a universal smartphone library for
RAW acquisition and processing is in development. In the future, apps like HydroColor
may simply import this library and use RAW data without further work from the user. The
SPECTACLE Python library (Section 4.2.3) provides this functionality on PCs.

Few calibration data are necessary for above-water radiometry. Our processing pipeline
contains bias and flatfield corrections, demosaics the data to the RGBG2 channels, and nor-
malises by the SRF spectral bandwidths (Figure 4.3). RAW files from virtually all cameras
contain metadata describing the bias correction and demosaicking pattern. The flatfield cor-
rection requires additional data, which can be obtained through do-it-yourself methods [281],
but may also be neglected at little cost in accuracy because its effect is typically small (0.2%
for the iPhone SE and 1.6% for the Galaxy S8) in the central 100 × 100 pixels. The flat-field
correction is more important in approaches that require a wider field-of-view like the multi-
ple gray card approach [391]. The bandwidth normalisation divides out in the calculation of
Rrs and thus is only necessary to obtain accurate radiances. The SRFs are also required to
accurately calculate α and convolve hyperspectral data in validation efforts, but may be ap-
proximated by standard profiles [121]. Low-cost smartphone spectrometers and other novel

17https://monocle-h2020.eu/

https://monocle-h2020.eu/
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methods will soon enable on-the-fly SRF calibrations [284, 412].

As discussed in [281], it is important to accurately record exposure settings. In the current
study, the exposure settings were not recorded, so it is not possible to combine our data with
data from other studies, taken with different settings. The most important exposure settings
are ISO speed and exposure time, which strongly affect the observed signal, but are not
recorded accurately in the image metadata (EXIF). The settings must therefore be recorded
by the user or the app. Since ISO speed does not affect the signal-to-noise ratio (SNR), a
constant value maybe used. Longer exposure times increase the SNR but run the risk of
saturation. Ideally, an automatic exposure time is determined and recorded for each image; if
this is not possible, a single value may be used.

Algorithms to retrieve inherent optical properties from smartphone-based Rrs measure-
ments are best based on band ratios since they are the most precise, reproducible, and accu-
rate. Algorithms based on absolute Rrs in RGB [121,391] are more susceptible to uncertainty
and systematic errors. Because the RGB SRFs are broad and overlapping, some narrow spec-
tral features like pigment absorption peaks cannot be distinguished, and retrieval algorithms
require tuning to specific sites [34]. In edge cases where spectral features fall on wavelengths
where SRFs vary significantly between devices, the reproducibility of retrieval algorithms
between devices may also vary. For example, the iPhone SE and Galaxy S8 B-band SRFs
differ greatly between 550–600 nm [281]. Algorithms that use spectrally distinct peaks, for
example to retrieve chl-a concentrations, should be unaffected. Distinguishing between chl-a
and CDOM, which both absorb in the B and G bands, may require a three-band algorithm
that also estimates the backscattering coefficient bb from the R-band [228]. Alternative colour
spaces like relative RGB [34,386], hue-saturation-intensity [388], and CIE L*a*b* [230] are
also worth exploring. Potential algorithms may be identified through spectral convolution of
archival Rrs spectra [283].

4.4.5 Outlook

The findings presented in this work extend to other methods for smartphone (spectro)radiometry
and to most consumer cameras. This study was performed as a precursor to the field valida-
tion for the iSPEX 2 smartphone spectropolarimeter [284]. The uncertainty, accuracy, and
reproducibility of iSPEX 2 data will be comparable to what was found in this study, although
longer exposure times will be necessary to attain similar photon counts. The low uncertainty
and high accuracy of the Rrs band ratios is particularly promising since iSPEX 2 will measure
hyperspectrally across the visible range, enabling many such algorithms. Also applicable to
iSPEX 2 are some of the limitations found in this work, primarily the dependence on a gray
card and the question of sensitivity in low-light conditions.

There is also potential for low-cost cameras, like webcams and UAV cameras, to augment
professional spectroradiometers. Removal of the direct sun glint remains challenging, requir-
ing assumptions about the spectrum and wave statistics [120,210]. Low-cost camera images,
taken simultaneously with the spectra, could be used to determine the wave statistics akin
to [413] but for individual exposures. A similar system, which flags spectra if the associated
image has saturated pixels, was already demonstrated in [414], and there are further oppor-
tunities for image-based anomaly detection. Finally, low-cost cameras can serve as simple
validation checks for other sensors, for example to identify normalisation problems.
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4.5 Conclusions

In this work, we have assessed the performance of smartphones as multispectral above-water
radiometers. We have extended the existing smartphone-based approaches by using RAW
data, processed through the SPECTACLE method for calibration of consumer cameras [281].
Using field data gathered under realistic observing conditions on and around Lake Balaton,
we have analysed the uncertainty, reproducibility, and accuracy of above-water radiometry
data taken with smartphone cameras. Furthermore, by comparing RAW and JPEG data, we
have determined to what extent our new method improves upon existing work.

The uncertainty of the smartphone data, determined from replicate observations, was on
the percent level and was comparable to professional radiometers. The typical uncertainty
on Rrs band ratios was 0.5–1.9%, leading to percent-level uncertainties in retrieved inherent
optical properties and constituent concentrations. This level of uncertainty falls within the
desired limits for many end users.

The reproducibility between smartphones was excellent, representing a significant im-
provement over existing methods, in some cases nearly tenfold. Any differences in the data
between smartphones could be explained by measurement uncertainties.

The accuracy of smartphone data, as determined from match-ups with reference instru-
ments, was comparable to professional instruments. The typical difference between smart-
phone and reference instruments was 10−4–10−3 sr−1 or 9–13% in RGB Rrs, and 0.004–0.013
or 1.1–3.8% in Rrs band ratios. These differences were an improvement of 9× and 2.5×,
respectively, over JPEG data.

Based on the findings of this study, we recommend the use of RAW data for above-water
radiometry with smartphones by professional and citizen scientists alike. We further recom-
mend that retrieval algorithms be based on Rrs band ratios rather than absolute RGB Rrs.
Potential algorithms may be identified through spectral convolution of archival hyperspectral
data. The conclusions and recommendations described above extend to other consumer cam-
eras and to hyperspectral approaches like iSPEX 2. Future work should focus on determining
the limitations of consumer cameras, primarily in terms of sensitivity, and exploring oppor-
tunities for complementary use of consumer cameras and professional spectroradiometers.

4.A Uncertainty propagation

As discussed above, significant correlations were found between channels in the smartphone
data, as well as between images within one data set. To account for this, the inter-channel
and inter-image covariances were incorporated into the uncertainty propagation.

4.A.1 Covariance and correlation

First, the mean radiances were combined into a single vector L, containing 12 elements,
corresponding to each channel in each image. The radiance vector L for the 07:47 data set is
given in Equation (4.11). The elements of L are in analogue-digital units (ADU) nm−1. To
save space, L is shown in its row vector form LT .
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LT =
[
Lu(R) Lu(G) Lu(B) Lu(G2) Lsky(R) Lsky(G) Lsky(B) Lsky(G2) Ld(R) Ld(G) Ld(B) Ld(G2)

]
=

[
5.10 8.58 5.05 8.59 5.19 9.71 9.60 9.73 7.28 10.53 7.63 10.54

]
(4.11)

The radiance vector L has a corresponding covariance matrix ΣL. The diagonal elements
of ΣL contain the variances of individual elements of L, namely σ2

Lu(R), σ
2
Lu(G), . . . , while

the off-diagonal elements contain the covariances, namely σLu(R)Lu(G), σLu(R)Lu(B), . . . , all in
units of ADU2 nm−2. The covariance matrix corresponding to Equation (4.11) is given in
Equation (4.12). The rows and columns are in the same order as the elements of L, with
σ2

Lu(R) and σ2
Ld(G2) in the top left and bottom right corners, respectively.

ΣL =



0.043 0.003 0.002 0.003 0.006 0.007 0.007 0.007 0.003 0.002 0.002 0.004
0.003 0.050 0.002 0.004 0.002 0.006 0.004 0.001 0.004 0.009 0.003 0.003
0.002 0.002 0.033 0.002 −0.002 −0.004 0.004 −0.004 0.003 0.003 0.007 0.003
0.003 0.004 0.002 0.047 0.004 0.007 0.005 0.009 0.003 0.003 0.003 0.010
0.006 0.002 −0.002 0.004 0.114 0.101 0.075 0.108 −0.003 −0.007 −0.006 −0.007
0.007 0.006 −0.004 0.007 0.101 0.195 0.103 0.151 −0.002 −0.003 −0.007 −0.013
0.007 0.004 0.004 0.005 0.075 0.103 0.142 0.107 −0.004 −0.007 0.001 −0.005
0.007 0.001 −0.004 0.009 0.108 0.151 0.107 0.206 −0.004 −0.010 −0.008 −0.008
0.003 0.004 0.003 0.003 −0.003 −0.002 −0.004 −0.004 0.066 0.007 0.007 0.008
0.002 0.009 0.003 0.003 −0.007 −0.003 −0.007 −0.010 0.007 0.068 0.007 0.013
0.002 0.003 0.007 0.003 −0.006 −0.007 0.001 −0.008 0.007 0.007 0.056 0.010
0.004 0.003 0.003 0.010 −0.007 −0.013 −0.005 −0.008 0.008 0.013 0.010 0.073


(4.12)

It is often easier to think in terms of correlation r, which is dimensionless and ranges from
−1 to 1. The correlation between two quantities is simply their covariance normalised by
their individual uncertainties: rxy =

σxy

σxσy
. r = 0 implies no correlation is present, while r = 1

and r = −1 imply a perfect positive and negative correlation, respectively. When applied
to a covariance matrix, this yields a correlation matrix R. The matrix RL corresponding to
Equation (4.12), is shown in Equation (4.13). The diagonal elements of RL are always 1 and
the matrix is always symmetric.

RL =



1.00 0.05 0.06 0.08 0.09 0.07 0.09 0.08 0.06 0.04 0.04 0.07
0.05 1.00 0.06 0.09 0.02 0.06 0.05 0.01 0.07 0.16 0.06 0.05
0.06 0.06 1.00 0.05 −0.03 −0.05 0.06 −0.05 0.06 0.06 0.16 0.07
0.08 0.09 0.05 1.00 0.06 0.07 0.06 0.09 0.05 0.05 0.07 0.16
0.09 0.02 −0.03 0.06 1.00 0.68 0.59 0.71 −0.03 −0.08 −0.07 −0.08
0.07 0.06 −0.05 0.07 0.68 1.00 0.62 0.75 −0.02 −0.03 −0.07 −0.11
0.09 0.05 0.06 0.06 0.59 0.62 1.00 0.63 −0.04 −0.07 0.01 −0.05
0.08 0.01 −0.05 0.09 0.71 0.75 0.63 1.00 −0.04 −0.09 −0.07 −0.07
0.06 0.07 0.06 0.05 −0.03 −0.02 −0.04 −0.04 1.00 0.11 0.11 0.12
0.04 0.16 0.06 0.05 −0.08 −0.03 −0.07 −0.09 0.11 1.00 0.11 0.19
0.04 0.06 0.16 0.07 −0.07 −0.07 0.01 −0.07 0.11 0.11 1.00 0.15
0.07 0.05 0.07 0.16 −0.08 −0.11 −0.05 −0.07 0.12 0.19 0.15 1.00


(4.13)
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4.A.2 Averaging the G and G2 channels
The G and G2 channels in each image were averaged because these bands have the same
spectral response function. This was done by multiplying L with a simple transfer matrix as
shown in Equation (4.14); M is shown in Equation (4.15).

LRGB = ML (4.14)

M =



1 0 0 0 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1/2 0 1/2 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1/2 0 1/2
0 0 0 0 0 0 0 0 0 0 1 0


(4.15)

Since Equation (4.14) is a simple linear transformation, the propagation of ΣL to ΣLRGB

is a simple matrix multiplication with M and its transpose, as shown in Equation (4.16). In
the special case that all covariances are 0, this reduces to the well-known sum-of-squares
equation.

ΣLRGB = MΣLMT (4.16)

For illustration, the resulting radiance vector LRGB and correlation matrix RLRGB are shown
in Equations (4.17) and (4.18), respectively.

LT
RGB =

[
Lu(R) Lu(G) Lu(B) Lsky(R) Lsky(G) Lsky(B) Ld(R) Ld(G) Ld(B)

]
=

[
5.10 8.59 5.05 5.19 9.72 9.60 7.28 10.54 7.63

]
(4.17)

RLRGB =



1.00 0.09 0.06 0.09 0.08 0.09 0.06 0.07 0.04
0.09 1.00 0.07 0.05 0.09 0.07 0.08 0.19 0.09
0.06 0.07 1.00 −0.03 −0.05 0.06 0.06 0.09 0.16
0.09 0.05 −0.03 1.00 0.74 0.59 −0.03 −0.10 −0.07
0.08 0.09 −0.05 0.74 1.00 0.67 −0.03 −0.10 −0.07
0.09 0.07 0.06 0.59 0.67 1.00 −0.04 −0.08 0.01
0.06 0.08 0.06 −0.03 −0.03 −0.04 1.00 0.15 0.11
0.07 0.19 0.09 −0.10 −0.10 −0.08 0.15 1.00 0.17
0.04 0.09 0.16 −0.07 −0.07 0.01 0.11 0.17 1.00


(4.18)

4.A.3 Remote sensing reflectance

The remote sensing reflectance Rrs, in units of sr−1, was calculated from Lu, Lsky, and Ld

using Equation (4.2). This equation applies to each band individually, meaning that for ex-
ample Rrs(R) only depends on Lu(R), Lsky(R), and Ld(R). However, since there were non-zero
covariances between bands and between images, these were propagated through to Rrs.



4

Above-water radiometry with calibrated smartphone cameras 103

Rrs =
Lu − ρLsky

π
Rre f

Ld
(4.2 rev.)

While the reference reflectance Rre f was assumed to be a constant Rre f = 0.18 in each
band, it had its own uncertainty σRre f = 0.01, which was also propagated through to Rrs.
This was done by appending its uncertainty to ΣLRGB , as shown in block matrix form in Equa-
tion (4.19).

Σ
Rre f

LRGB
=

[
ΣLRGB 0

0 σ2
Rre f

]
(4.19)

Since Equation (4.2) is not a simple linear transformation, a linear approximation was
used in the uncertainty propagation, as shown in Equation (4.20). This is similar to Equa-
tion (4.16), but using the Jacobian matrix of Equation (4.2). This approximation is valid for
functions that are locally well-approximated by a linear function.

ΣRrs = JRrsΣ
Rre f

LRGB
JRrs

T (4.20)

The Jacobian matrix JRrs contains all first-order derivatives of Rrs in each band, as shown
in Equation (4.21).

JRrs =


∂Rrs(R)
∂Lu(R)

∂Rrs(R)
∂Lu(G)

∂Rrs(R)
∂Lu(B)

∂Rrs(R)
∂Lsky(R)

∂Rrs(R)
∂Lsky(G)

∂Rrs(R)
∂Lsky(B)

∂Rrs(R)
∂Ld(R)

∂Rrs(R)
∂Ld(G)

∂Rrs(R)
∂Ld(B)

∂Rrs(R)
∂Rre f

∂Rrs(G)
∂Lu(R)

∂Rrs(G)
∂Lu(G)

∂Rrs(G)
∂Lu(B)

∂Rrs(G)
∂Lsky(R)

∂Rrs(G)
∂Lsky(G)

∂Rrs(G)
∂Lsky(B)

∂Rrs(G)
∂Ld(R)

∂Rrs(G)
∂Ld(G)

∂Rrs(G)
∂Ld(B)

∂Rrs(G)
∂Rre f

∂Rrs(B)
∂Lu(R)

∂Rrs(B)
∂Lu(G)

∂Rrs(B)
∂Lu(B)

∂Rrs(B)
∂Lsky(R)

∂Rrs(B)
∂Lsky(G)

∂Rrs(B)
∂Lsky(B)

∂Rrs(B)
∂Ld(R)

∂Rrs(B)
∂Ld(G)

∂Rrs(B)
∂Ld(B)

∂Rrs(B)
∂Rre f


=


Rre f

πLd(R) 0 0 −ρRre f

πLd(R) 0 0 −Rrs(R)
Ld(R) 0 0 Rrs(R)

Rre f

0 Rre f

πLd(G) 0 0 −ρRre f

πLd(G) 0 0 −Rrs(G)
Ld(G) 0 Rrs(G)

Rre f

0 0 Rre f

πLd(B) 0 0 −ρRre f

πLd(B) 0 0 −Rrs(B)
Ld(B)

Rrs(B)
Rre f

 (4.21)

For illustration, the resulting Rrs, its covariance matrix ΣRrs , and its correlation matrix
RRrs are shown in Equations (4.22) and (4.23), respectively. Evidently, there are strong cor-
relations between the RGB channels in Rrs. The uncertainty in Rre f is particularly important;
halving its value to σRre f = 0.005 approximately halves the off-diagonal elements of RRrs .

Rrs
T =

[
Rrs(R) Rrs(G) Rrs(B)

]
=

[
0.039 0.045 0.036

]
(4.22)

ΣRrs =

9.0 5.5 4.4
5.5 7.5 5.1
4.4 5.1 6.6

 × 10−6 RRrs =

1.00 0.67 0.57
0.67 1.00 0.72
0.57 0.72 1.00

 (4.23)

4.A.4 Band ratios
The calculation of the G/R, B/G, and R/B Rrs band ratios was straightforward and the Jaco-
bian matrix approximation was used again. This is shown in Equation (4.24). We assumed
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this approximation to be valid here due to the small range of our data and relatively small
uncertainties in Rrs.

JRrs,br =


∂(G/R)
∂R

∂(G/R)
∂G

∂(G/R)
∂B

∂(B/G)
∂R

∂(B/G)
∂G

∂(B/G)
∂B

∂(R/B)
∂R

∂(R/B)
∂G

∂(R/B)
∂B

 =

−
G/R2 1/R 0
0 −B/G2 1/G

1/B 0 −R/B2

 (4.24)

The resulting band ratio vector Rrs,br for the 07:47 UTC data and its covariance and
correlation matrices ΣRrs,br and RRrs,br are shown in Equations (4.25) and (4.26).

Rrs,br
T =

[
G/R B/G R/B

]
=

[
1.2 0.79 1.1

]
(4.25)

ΣRrs,br =

 4.5 −0.54 −3.5
−0.54 1.6 −1.7
−3.5 −1.7 5.6

 × 10−3 RRrs,br =

 1.00 −0.20 −0.69
−0.20 1.00 −0.57
−0.69 −0.57 1.00

 (4.26)

4.A.5 Chromaticity and hue angle
Since the colour space transformation from RGB to XYZ was a simple linear transformation,
so was the uncertainty propagation, analogous to Equation (4.16). As discussed in the main
paper, the uncertainties on the elements of the transformation matrices were ignored here. The
results for the 07:47 data are shown in Equations (4.27) and (4.28). The resulting correlations
were very strong, particularly for Rrs(X) and Rrs(Y), due to the spectral overlap between the
XYZ colour-matching functions amplifying the existing correlations in Rrs(RGB).

Rrs,XYZ
T =

[
Rrs(X) Rrs(Y) Rrs(Z)

]
=

[
0.040 0.041 0.037

]
(4.27)

ΣRrs,XYZ =

6.5 6.3 5.2
6.3 6.2 5.3
5.2 5.3 6.2

 × 10−6 RRrs,XYZ =

1.00 0.98 0.81
0.98 1.00 0.85
0.81 0.85 1.00

 (4.28)

The resulting uncertainties were further propagated analytically into (x, y) chromaticity,
again using the Jacobian matrix approximation as shown in Equations (4.29) and (4.30).

Rrs,xy =
[
x y

]
=

[
X

X+Y+Z
Y

X+Y+Z

]
(4.29)

JRrs,xy =

 Y+Z
(X+Y+Z)2

−X
(X+Y+Z)2

−X
(X+Y+Z)2

−Y
(X+Y+Z)2

X+Z
(X+Y+Z)2

−Y
(X+Y+Z)2

 (4.30)

The results for the 07:47 data are shown in Equation (4.31) and (4.32)

Rrs,xy
T =

[
x y

]
=

[
0.34 0.35

]
(4.31)

ΣRrs,xy =

[
2.7 1.2
1.2 1.3

]
× 10−5 RRrs,xy =

[
1.00 0.65
0.65 1.00

]
(4.32)
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The uncertainty propagation from (x, y) to hue angle α is problematic. α itself is cal-
culated using Equation (4.6), giving α = 71° for the 07:47 data. The associated Jacobian
matrix is given in Equation (4.33) and can be applied, giving an uncertainty of σα = 4° in the
example.

α = arctan2 (y − 1/3, x − 1/3) mod 2π (4.6 rev.)

Jα =
[

−(y−1/3)
(x−1/3)2+(y−1/3)2

x−1/3
(x−1/3)2+(y−1/3)2

]
(4.33)

However, for (x, y)→ (1/3, 1/3), the assumption underpinning this method, namely that the
transformation can be locally approximated by a linear one, breaks down. This can result in
extremely large uncertainty estimates, such as α = (89 ± 59)° for the 2019-07-03 12:32 UTC
Galaxy S8 data, where (x, y) = (0.3334, 0.3409). For this reason, the uncertainty in α is better
estimated from replicate observations rather than this analytical propagation.

4.B Smartphone RGB to XYZ transformation

The RGB to XYZ transformation matrices for the iPhone SE and Galaxy S8 were calculated
by determining the locations of the RGB primary vectors in XYZ space, following https:
//www.ryanjuckett.com/rgb-color-space-conversion/. This process was implemented in
Python and integrated into the SPECTACLE module, available from https://github.com/mon
ocle-h2020/camera_calibration.

The transformation matrix MRGB→XYZ had the RGB primary vectors, rXYZ , gXYZ ,bXYZ , as
its columns, as shown in block matrix form in Equation (4.34).

MRGB→XYZ =
[
rXYZ gXYZ bXYZ

]
(4.34)

First, the RGB SRFs were convolved with the CIE XYZ colour matching functions
(CMFs) to give r′XYZ , g

′
XYZ ,b

′
XYZ . This is shown in Equation (4.35), where S R,G,B is the SRF

for the RGB bands, and x̄, ȳ, z̄ are the CMFs. λ dependencies are dropped for clarity. The
integrals were evaluated numerically from 390–700 nm.

r′XYZ =


∫

S R x̄dλ∫
S Rȳdλ∫
S Rz̄dλ

 g′XYZ =


∫

S G x̄dλ∫
S Gȳdλ∫
S G z̄dλ

 b′XYZ =


∫

S B x̄dλ∫
S Bȳdλ∫
S Bz̄dλ

 (4.35)

The normalisation of r′XYZ , g
′
XYZ ,b

′
XYZ was arbitrary, and they needed to be re-normalised

to the desired E-type illuminant white point wXYZ =
[
1 1 1

]T
. First, the corresponding

vectors in xyz chromaticity were calculated as shown in Equation (4.36).

rxyz =
r′XYZ∑

XYZ

r′XYZ

gxyz =
g′XYZ∑

XYZ

g′XYZ

bxyz =
b′XYZ∑

XYZ

b′XYZ

(4.36)

Similarly, the following held for the column vectors of MRGB→XYZ :

https://www.ryanjuckett.com/rgb-color-space-conversion/
https://www.ryanjuckett.com/rgb-color-space-conversion/
https://github.com/monocle-h2020/camera_calibration
https://github.com/monocle-h2020/camera_calibration
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rXYZ = rxyz

∑
XYZ

rXYZ gXYZ = gxyz

∑
XYZ

gXYZ bXYZ = bxyz

∑
XYZ

bXYZ (4.37)

Combining Equations (4.34) and (4.37) led to the following:

MRGB→XYZ =

[
rxyz

∑
XYZ

rXYZ gxyz

∑
XYZ

gXYZ bxyz

∑
XYZ

bXYZ

]
(4.38)

=

rx gx bx

ry gy by
rz gz bz




∑
XYZ

rXYZ 0 0

0
∑
XYZ

gXYZ 0

0 0
∑
XYZ

bXYZ


(4.39)

The unknowns in the diagonal matrix on the right were determined by defining the white
point w to be an eigenvector of MRGB→XYZ with eigenvalue 1, as shown in Equation (4.40).

MRGB→XYZw = w (4.40)

rx gx bx

ry gy by
rz gz bz




∑
XYZ

rXYZ 0 0

0
∑
XYZ

gXYZ 0

0 0
∑
XYZ

bXYZ


111

 =

111
 (4.41)

rx gx bx

ry gy by
rz gz bz




∑
XYZ

rXYZ∑
XYZ

gXYZ∑
XYZ

bXYZ


=

111
 (4.42)



∑
XYZ

rXYZ∑
XYZ

gXYZ∑
XYZ

bXYZ


=

rx gx bx

ry gy by
rz gz bz


−1 111

 (4.43)

Since all elements on the right-hand side of Equation (4.43) were known, the elements
on the left-hand side could be calculated. Finally, plugging these back into Equation (4.39)
resulted in the RGB to XYZ transformation matrix. The resulting matrices for the iPhone SE
and Galaxy S8 are provided in the main paper.
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