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Abstract
Multiple lines of evidence suggest that intraplaque (IP) neo-
vascularization promotes atherosclerotic plaque growth, 
destabilization, and rupture. However, pharmacological in-
hibition of IP neovascularization remains largely unexplored 
due to the limited number of animal models that develop IP 
neovessels and the lack of reliable methods for visualizing IP 
angiogenesis. Here, we applied 3D confocal microscopy with 
an optimized tissue-clearing process, immunolabeling-en-
abled three-dimensional imaging of solvent-cleared organs, 
to visualize IP neovessels in apolipoprotein E-deficient 
(ApoE−/−) mice carrying a heterozygous mutation (C1039+/−) 
in the fibrillin-1 gene. Unlike regular ApoE−/− mice, this 
mouse model is characterized by the presence of advanced 
plaques with evident IP neovascularization. Plaques were 
stained with antibodies against endothelial marker CD31 for 
3 days, followed by incubation with fluorescently labeled 

secondary antibodies. Subsequent tissue clearing with di-
chloromethane (DCM)/methanol, DCM, and dibenzyl ether 
allowed easy visualization and 3D reconstruction of the IP 
vascular network while plaque morphology remained intact.

© 2020 S. Karger AG, Basel

Introduction

Atherosclerosis is a progressive inflammatory disease 
that leads to plaque formation at specific sites of the arte-
rial tree [1]. Formation of atherosclerotic plaques typi-
cally starts with the deposition of lipids in the intima, 
followed by endothelial activation and infiltration of 
macrophages and other inflammatory cells into the sub-
endothelial layer. The first grossly visible vascular le-
sions, called fatty streaks, transform into more advanced 
lesions by the migration and proliferation of vascular 
smooth muscle cells, activation of macrophages, and the 
accumulation of lipid-rich necrotic debris. These plaques 
typically have a thick fibrous cap consisting of vascular 
smooth muscle cells and extracellular matrix that enclos-
es a lipid-rich necrotic core [2, 3]. Over time, plaques can 
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become increasingly complex with calcification, ulcer-
ation at the luminal surface, and the presence of small 
neovessels that grow into the lesion from the media of 
the blood vessel wall. Several stimuli inside the plaque 
such as hypoxia and high oxidative stress trigger the for-
mation of such intraplaque (IP) neovessels [4]. Growing 
evidence suggests that IP neovessels are leaky and pro-
mote the entry of several plaque components including 
RBCs, lipids, and inflammatory cells [5], which may ac-
celerate the progression and destabilization of develop-
ing plaques [6, 7]. Along these lines, blocking IP angio-
genesis has been proposed as a novel approach for  
decreasing plaque instability and for limiting cardiovas-
cular risk [8, 9]. Apolipoprotein E-deficient (ApoE−/−) 
mice containing a heterozygous mutation (C1039G+/−) 
in the fibrillin-1 (Fbn1) gene represent a unique mouse 
model of advanced atherosclerosis with human-like 
plaque characteristics such as IP neovascularization [10, 
11]. Unlike other experimental models of atherosclero-
sis, ApoE−/−Fbn1C1039G+/− mice show fragmentation of 
elastic fibers, which facilitates neovessel sprouting from 
the adventitial vasa vasorum into the plaque [12], simi-
larly to what occurs in human plaques. Conventional 
immunohistochemistry is currently the gold standard 
for analysis of plaque composition, yet it does not allow 
an accurate visualization and quantification of such 
neovessels inside the complex structure of the plaque. In 
the present study, we optimized an optical ex vivo clear-
ing method for the visualization of IP angiogenesis in 
ApoE−/−Fbn1C1039G+/− mice, termed immunolabeling-
enabled three-dimensional imaging of solvent-cleared 
organs (iDISCO).

Materials and Methods

Mice
Female ApoE−/−Fbn1C1039G+/− mice were fed a Western-type 

diet (WD) (Altromin, C1000 diet supplemented with 20% milk fat 
and 0.15% cholesterol, #100171) starting at 8 weeks of age. After 
20 weeks on the WD, mice were euthanized with an overdose of 
sodium pentobarbital (250 mg/kg i.p.) and perfused with 20 mL of 
4% paraformaldehyde (PFA) in PBS. Carotid arteries were dissect-
ed and incubated in 4% PFA in PBS overnight. Standard ApoE−/− 
mice that did not contain the C1039+/− mutation (but fed WD for 
20 weeks) were used as negative controls since they develop plaques 
without IP neovascularization. All animal procedures were con-
ducted according to the guidelines from Directive 2010/63/EU of 
the European Parliament on the protection of animals used for 
scientific purposes. Experiments were approved by the ethics com-
mittee of the University of Antwerp.

Immunostaining and iDISCO Clearing
Tissue samples were incubated in permeabilization solution  

(1 × PBS, 0.2% Triton X-100, 0.3 M glycine, and 20% DMSO) over-
night. Samples were then washed for 1 h in 1 × PBS/0.2% Tween-20 
and incubated in blocking buffer (1 × PBS, 0.2% Triton X-100, 10% 
DMSO, and 3% donkey serum) for 8 h, followed by incubation 
with primary rat anti-mouse CD31 antibody (Abcam, ab56299; 10 
μg/mL) in permeabilization buffer (1 × PBS, 0.2% Triton X-100, 
0.3 M glycine, and 20% DMSO) for 72 h. Finally, samples were 
washed 3 times in 1 × PBS and 0.2% Triton X-100 followed by in-
cubation with goat anti-rat Alexa Fluor 546 (Thermo Fisher, 
A11081; 1:500 dilution) for 48 h. For nuclear labeling, the samples 
were incubated with DAPI (Sigma-Aldrich, 5 μg/mL) for 30 min. 
Next, immunolabeled samples were dehydrated in a methanol 
(MeOH) gradient (in PBS) by incubating tissue specimens in 20% 
MeOH (30 min), 50% MeOH (30 min), 70% MeOH (30 min), and 
100% MeOH (overnight). Subsequently, the samples were incu-
bated for 2 h in 66% dichloromethane (DCM)/34% MeOH, and 
then washed twice for 15 min in 100% DCM. Finally, the samples 
were incubated in dibenzyl ether (DBE) until transparency was 
achieved (approximately 3 h).

Confocal Imaging and Histology
Cleared samples were imaged on an inverted Leica TCS SP8 

confocal laser scanning microscope, using a 20×/0.75 HC PL Apo 
objective lens. The samples were positioned in a glass-bottom Petri 
dish and submerged in DBE. DAPI was visualized using a 405-nm 
diode laser, and the Alexa Fluor 546 fluorescence was imaged with 
the 546-nm wavelength of a white light laser. For each sample, an 
image stack (z step size ∼5 μm) with 1,024 × 1,024 pixel resolution 
was captured. Three-dimensional renderings were obtained using 
Leica LAS X 3D visualization software. The Imaris image analysis 
software enabled the specific selection and measurement of the IP 
blood vessels, by applying a new surface rendering based on the 
intensity of the fluorescent signal. Following the imaging, the sam-
ples were embedded in paraffin, cut into 5-μm sections, and stained 
with hematoxylin and eosin (H&E). H&E stains were imaged using 
an Olympus BX43 microscope.

Results and Discussion

We previously reported that the heterozygous muta-
tion C1039G+/− in the Fbn1 gene leads to advanced un-
stable atherosclerotic plaques in ApoE−/− mice, a standard 
mouse model of atherosclerosis [10, 11]. Fbn1 is an extra-
cellular matrix glycoprotein secreted by fibroblasts and 
incorporated into microfibrils. These fibrillin-rich mi-
crofibrils are associated with cross-linked elastin to form 
mature elastic fibers. Mutations in the Fbn1 gene result  
in impaired microfibrillar assembly and deposition, fol-
lowed by fragmentation of elastic fibers. This loss of 
structural integrity of the vessel wall leads to progressive 
dilatation and arterial stiffening, resembling vascular ag-
ing [11]. Fragmentation of the elastic fibers gives rise to 
elastin-derived peptides, which attract monocytes, en-
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hancing the inflammatory reaction in the vessel wall. 
Moreover, extensive neovascularization is observed in 
the brachiocephalic and common carotid arteries of 
ApoE−/−Fbn1C1039G+/− mice fed the WD [12]. These fea-
tures are rarely seen in murine atherosclerosis models but 
are frequently observed in advanced human plaques. IP 
neovessels in ApoE−/−Fbn1C1039G+/− mice on the WD like-
ly arise from the adventitial vasa vasorum and sprout out 
of the media into the plaque [9]. Although the exact role 
of IP neovessels is not exactly understood, it is important 
to note that such structures are immature and leaky. In-
deed, besides being an entry point for leukocytes and li-

ApoE-/-Fbn1C1039G+/-

a

b

ApoE -/- Fbn1C1039G+/- mice ApoE -/- mice 

Elastic fiber fragmentation 

20 weeks Western diet 

Unstable plaques with 
intraplaque angiogenesis 

Stable plaques without 
intraplaque angiogenesis 

Plaque Plaque 
IP neovessels

Strong scattering Less scattering 

Lipid removal Refractive index matching 

3D visualization
intraplaque neovessels

• Fixa�on plaques in 4% PFA (overnight)
• Incuba�on in permeabiliza�on solu�on (overnight)
• Wash in 1x PBS/0.2% Tween-20 (1 hour)
• Incuba�on in blocking buffer (8 hours)
• Rat an�-mouse CD31 an�body in permeabiliza�on solu�on (72 hours)
• Wash 3x in 1x PBS/0.2% Triton X-100
• Goat an�-rat Alexa fluor 546 (48 hours)
• Nuclear labeling with DAPI (30 minutes)

• Dehydra�on in methanol gradient (in PBS)
• Incuba�on in 66% dichloromethane/34% methanol (2 hours)
• Wash 2x in 100% dichloromethane (15 minutes)
• Incuba�on in dibenzyl ether un�l transparency (3 hours)

Immunostaining

iDISCO clearing

Fig. 1. Standard (immuno)histochemical analyses of IP neo-
vascularization in carotid artery plaques (arrows) from 
ApoE−/−Fbn1C1039G+/− mice that were fed a Western diet for 20 
weeks. a Representative low- power micrograph of an H&E-
stained, paraffin-embedded longitudinal section of carotid plaque. 
Scale bar, 100 µm. b Detail of plaque with intraplaque microvessel 
stain for CD31 (boxed area in panel a) Scale bar, 50 μm. IP, intra-
plaque; H&E, hematoxylin and eosin.

Fig. 2. Schematic overview of the different steps required for im-
munostaining and tissue clearing. Solvent-based tissue clearing is 
a three-step process. First, the tissue is dehydrated and lipids are 
removed by sequential incubation in a MeOH gradient (20, 50, 70, 
and 100% methanol in distilled water). Second, the tissue is trans-
ferred to a high refractive index solution where additional lipid 
solvation and clearing occur (66% DCM/34% methanol). Finally, 
the lipid-free tissue sample is placed in a high refractive index 
matching solution (DBE) for further clearing. DCM, dichloro-
methane; DBE, dibenzyl ether; MeOH, methanol.
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poproteins, IP neovessels appear to be a source of eryth-
rocytes and platelets inside the plaque, thereby promot-
ing macrophage activation and plaque destabilization.

Imaging of IP neovascularization is possible in human 
plaques using microvascular imaging and contrast-en-
hanced ultrasonography [13–16], though this approach is 
not feasible (or at least unlikely) in mouse plaques due to 
the extremely small size of the IP neovessels. Hitherto, 
immunohistochemical analysis of paraffin-embedded 
sections remains the only method for evaluating IP angio-

genesis in mouse plaques. Figure 1 shows representative 
(immuno)histochemical stains of IP neovessels in plaques 
of ApoE−/−Fbn1C1039G+/− mice. Because both contrast- 
enhanced ultrasonography and histological analysis of 
plaques are 2D imaging techniques, they have limitations 
regarding the interpretation of the “architecture” of mi-
crovessel circuits in the atherosclerotic plaque. In recent 
years, a technique called “tissue clearing” has reemerged, 
offering an alternative approach for tissue sectioning. 
Nowadays, numerous protocols allow optical clearing 
and detailed 3D imaging of intact organs [17–22].

iDISCO combines immunolabeling of large tissue sam-
ples for volume imaging with 3D imaging of solvent-
cleared organs [23]. iDISCO is an optical clearing method 
that makes biological samples more transparent (“cleared”) 
(Fig. 2) and has been successfully used to image three-di-
mensional structures, including intact mouse organs such 
as the brain, kidney, intestine, eye, and even whole embry-
os [18, 22–25]. Recently, Becher et al. [26] applied the iDIS-
CO technology for 3D profiling of atherosclerotic plaques 
and arterial remodeling after carotid artery ligation. We 
optimized iDISCO for mouse atherosclerotic tissue using 
endothelial cell-specific CD31 antibodies, and we show 
here for the first time a 3D reconstruction of IP neovascu-
larization in carotid plaques of ApoE−/−Fbn1C1039G+/− mice. 
From our experience, the following modifications to the 
iDISCO protocol were essential for obtaining good visual-
ization of neovessels in carotid plaques: (1) high CD31 an-
tibody concentrations (10 μg/mL) were required for best 
imaging results, (2) an overnight incubation step in per-
meabilizing solution for good tissue penetration of the pri-
mary antibody, though we recommend a 72-h incubation, 
and (3) a simple clearing protocol with a mixture of 66% 
DCM and 34% MeOH, followed by incubation in pure 
DCM, and DBE was sufficient to visualize the IP vascular 
network, in contrast to previously published protocols that 
are more labor-intensive [17].

Cleared samples of total organs are typically visualized 
using light sheet microscopy, allowing rapid 3D imaging 
of these large samples [17, 19–21]. Less thick, cleared 
specimens can also be imaged by confocal microscopy, 
and hence benefit from the higher resolution that can be 
obtained [22]. Imaging of cleared segments of the carotid 
arteries by confocal microscopy resulted in visualization 
of the delicate IP neovascularization in carotid plaques of 
ApoE−/−Fbn1C1039G+/− mice and confirmed the labeling of 
IP neovessels and the complete clearing of the carotid ar-
tery segments.

Three-dimensional reconstruction (see online suppl. 
Video 1; see www.karger.com/doi/10.1159/000508449 for 

Fig. 3. Representative 2D visualization of IP neovascularization  
in a single z-stack slide of a carotid artery plaque from 
ApoE−/−Fbn1C1039G+/− mice after CD31 immunohistochemical 
staining and iDISCO clearing. Multiple red-stained CD31-positive 
ECs are detectable inside the plaque (arrows). Scale bar, 50 μm. IP, 
intraplaque; iDISCO, immunolabeling-enabled three-dimension-
al imaging of solvent-cleared organs; EC, endothelial cell.

Fig. 4. IP neovascularization is absent in plaques of ApoE−/− mice. 
A single representative z-stack slide of a plaque in the brachioce-
phalic artery is shown. CD31-positive cells (red) are not present 
inside the plaque, but clearly detectable in the intima. Scale bar,  
50 μm. IP, intraplaque.
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all online suppl. material) and a z-stack (online suppl.  
Video 2) show the high degree of tortuosity and irre-
gularities in the structure of IP neovessels from 
ApoE−/−Fbn1C1039G+/− mice, which is not obvious in single 
plane images of 2D sections (Fig. 3). To evaluate the spec-
ificity of endothelial CD31 staining in IP angiogenesis, we 
also applied this technique to regular ApoE−/− mice that 
develop plaques after being fed the WD, albeit without  

IP neovascularization. The recorded z-stack shows that 
CD31 staining did not occur in carotid plaques of ApoE−/− 
mice (online suppl. video 3), although it was clearly pres-
ent at the luminal endothelial cell layer and in the adven-
titia (Fig. 4). Further analyses of the obtained images dem-
onstrated that the applied technique is not only limited to 
the visualization of the 3D distribution of the IP neovas-
cularization (Fig. 5a). Using 3D analysis software, neoves-
sels entering the plaque can be selectively depicted in the 
3D rendering, and quantitative measurements can be ob-
tained (white area in Fig. 5b). The total volume of IP ves-
sels as shown in Figure 5b was calculated to be 0.068 mm3 
and can be used to compare IP angiogenesis between dif-
ferent plaques. Clearing procedures such as 3D imaging of 
solvent-cleared organs lead to substantial shrinkage and 

ApoE-/-Fbn1C1039G+/-

a

b

Fig. 5. Representative 3D reconstruction of a carotid artery seg-
ment (50 z-stack slides) from ApoE−/−Fbn1C1039G+/− mice after 
CD31 immunohistochemical staining and iDISCO clearing.  
a Multiple red-stained CD31-positive ECs are detectable inside the 
plaque that is bulging the lumen. The 3D reconstruction clearly il-
lustrates the complex distribution of the neovascularization inside 
the plaque (white arrows). b Using 3D analysis software, neoves-
sels entering the plaque can selectively be depicted (gray) in the 3D 
image, and quantitative measurements such as the total of volume 
of the IP vessels can be obtained. Scale bar, 80 μm. IP, intraplaque; 
iDISCO, immunolabeling-enabled three-dimensional imaging of 
solvent-cleared organs; EC, endothelial cell.

ApoE-/-Fbn1C1039G+/-

a

b

Fig. 6. a, b H&E staining and CD31 immunohistochemical  
staining of a carotid artery plaque from a representative 
ApoE−/−Fbn1C1039G+/− mouse after iDISCO clearing, showing that 
the morphology of the plaque and the structure of the neovessels 
(arrows) were not affected by the clearing procedure. Scale bar,  
100 μm. H&E, hematoxylin and eosin; iDISCO, immunolabeling-
enabled three-dimensional imaging of solvent-cleared organs.
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might affect tissue morphology [22, 27]. However, the 
shorter clearing procedure that was used for the carotid 
segments definitely protected the tissue from the effects of 
the clearing process, as the structure of the plaque was not 
altered after clearing. This was confirmed by applying our 
standard 2D histological techniques on the cleared tissues 
after imaging, allowing us to examine the structure and 
composition of the plaque (Fig. 6). Moreover, fluorescent 
labeling of the tissue was preserved after the clearing pro-
cess and paraffin embedding (data not shown) allowing 
re-examination of H&E-stained sections of the paraffin-
embedded tissue by fluorescence microscopy, if needed.

Clearing and 3D imaging of human artery segments 
were not performed in this study and might present cer-
tain challenges and constraints. Considering the thickness 
and composition of human plaques, we expect that the 
described iDISCO procedure for mouse tissue will need to 
be adapted and will become more complex with longer 
incubation times for dehydration and clearing. Because of 
their size, 3D imaging of human plaques will require ded-
icated light sheet microscopy. In addition to the clearing 
procedure limitations that have already been described by 
Ertürk et al. [27], such as that this protocol can only be 
used on fixed tissues and that samples cannot be stored for 
prolonged periods, the toxicity of the organic solutions 
used in our protocol might be an extra limitation. Never-
theless, our protocol is straightforward and reproducible, 
which makes it an effective method for visualizing and 
analyzing neovessels inside atherosclerotic plaques.

In conclusion, this is the first report to apply iDISCO 
technology to atherosclerotic blood vessels, and it pro-
vides a simple, inexpensive, and effective method for vi-
sualizing and reconstructing, in three dimensions, the 
presence of IP neovessels inside these lesions. This could 
be a useful new tool for studies aimed at determining 
whether there is a causal relationship between the pres-
ence of neovessel structures and atherogenesis or between 
angiogenic stimuli and plaque angiogenesis.
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