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Abstract
Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders
and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits.
We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation,
cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813
participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association
with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10−8 in either analysis were taken forward for
replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and
replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 ×
10−8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them
(rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near
TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10−3) with consistent direction of effect. A further 35
SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409
participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2.
Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The
novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of
potential drug targets for smoking prevention and/or cessation.

Introduction

Smoking is a major risk factor for many diseases, including
common respiratory disorders such as chronic obstructive
pulmonary disease (COPD) [1, 2], cancer [3] and

cardiovascular diseases [4], and is reported to cause 1 in 10
premature deaths worldwide [5]. A greater understanding of
the genetic aetiology of smoking behaviour has the potential
to lead to new therapeutic interventions to aid smoking
prevention and cessation, and thereby reduce the global
burden of such diseases.

Previous genome-wide association studies (GWASs)
identified 14 common SNVs [1, 6–12] (with minor allele
frequency, MAF >0.01) robustly associated with smoking
behaviour-related traits (P < 5 × 10−8). The 15q25
(CHRNA3/5-CHRNB4) region has the largest effect,
explaining ~1% and 4–5% of the phenotypic variance of
smoking quantity [13] and cotinine, a biomarker of
nicotine intake [14], respectively. Overall, genetic loci
identified to date explain ~2% of the estimated genetic
heritability of smoking behaviour [6], which is reported to
be between 40–60% [15–17]. A recent study suggested
that an important proportion (~3.3%) of the phenotypic
variance of smoking behaviour-related traits was
explained by rare nonsynonymous variants (MAF <0.01)
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[18]. Hence, well-powered studies of rare variants are
needed.

To investigate the effect of rare coding variants on
smoking behaviour, we studied 346,813 participants (of
which 324,851 were of European ancestry) from 61 cohorts
(Supp. Tables 1 and 2) at up to 235,116 SNVs from the
exome array. As we had access to UK Biobank, we also
interrogated SNVs present on the UK Biobank and UK
BiLEVE Axiom arrays to identify additional associations
across the genome beyond the exome array. To our
knowledge, these datasets are an order of magnitude larger
than the previous studies [6], and constitute the most
powerful exome-array study of smoking behaviour to date.

Materials and methods

Participants

Our study combined study-level summary association data
from up to 59 studies of European ancestry and two studies
of South Asian ancestry from three consortia (Consortium
for Genetics of Smoking Behaviour (CGSB), GWAS &
Sequencing Consortium of Alcohol and Nicotine use

(GSCAN) and the Coronary Heart Disease (CHD) Exome+
consortium), INTERVAL and UK Biobank. In total, up to
324,851 individuals of European ancestry and 21,962 South
Asian individuals were analysed in the discovery stage
(Fig. 1). Further information about the participating cohorts
and consortia is given in Supp. Table 1 and the Supp.
Material. All participants provided written informed consent
and studies were approved by local Research Ethics Com-
mittees and/or Institutional Review boards.

Phenotypes

We chose to analyse the following four smoking behaviour-
related traits because of their broad availability in existing
epidemiological and medical studies, as well as their bio-
logical relevance for addiction behaviours:

i. Smoking initiation (binary trait: ever vs never
smokers). Ever smokers were defined as individuals
who have smoked >99 cigarettes in their lifetime,
which is consistent with the definition by the Centre
for Disease Control [19];

ii. Cigarettes per day (CPD; quantitative trait: average
number of cigarettes smoked per day by ever smokers);

Fig. 1 Study design including the discovery and replication stages. NB: Gene-based studies, conditional analyses, and replication in African
American ancestry samples not shown here for clarity. *GFG and NAGOZALC studies contributed additional custom content
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iii. Pack-years (quantitative trait; Packs per day x Years
smoked, with a pack defined as 20 cigarettes); years
smoked is typically formed from age at smoking
commencement to current age for current smokers or
age at cessation for former smokers.

iv. Smoking cessation (binary trait: former vs current
smokers).

In UK Biobank, phenotypes were defined using pheno-
type codes 1239, 1249, and 2644 for smoking initiation and
smoking cessation, and 1239, 3436, 3456 for CPD and
pack-years. CPD was inverse normal transformed in the
CHD Exome+, INTERVAL and CGSB studies and cate-
gorised (1–10, 11–20, 21–30, and 31+ CPD) by the
GSCAN studies and UK Biobank (Supp. Table 2). All
studies performed an inverse normal transformation of
pack-years. Summary statistics of study level phenotype
distributions are provided in Supp. Table 1.

Genotyping and quality control

Fifty-nine cohorts were genotyped using exome arrays (up
to 235,116 SNVs) and two (UK Biobank and INTERVAL)
were genotyped using Axiom Biobank Arrays (up to
820,000 SNVs; Supp. Table 2). In total, ~1.06M SNVs
were analysed including ~64,000 SNVs on both the Axiom
and Exome Arrays. Furthermore, two studies (NAGOZALC
and GFG) genotyped their participants using arrays with
custom content, increasing the total number of variants
analysed to 1,207,583 SNVs. Individual studies performed
quality control (QC; Supp. Material, Supp. Table 2) and
additional QC was conducted centrally (i) to ensure alleles
were consistently aligned, (ii) that there were no major
sample overlaps between contributing studies, and (iii)
variants conformed to Hardy–Weinberg equilibrium and
call rate thresholds. We also examined the distribution of
the effect sizes and test statistics across cohorts to ensure the
test statistics were well-calibrated.

Study level analyses

Each study (including the case-cohort studies [20]) under-
took analyses of up to four smoking traits using RAR-
EMETALWORKER [21] or RVTESTS [22] (Supp.
Table 2), which generated single variant score statistics and
their covariance matrices within sliding windows of 1Mb.
CPD and pack-years were analysed using linear models or
linear mixed models. Smoking initiation and smoking ces-
sation were analysed using logistic models or linear mixed
models. All studies adjusted each trait for age, sex, at least
three genetic principal components and any study-specific
covariates (Supp. Table 2). Chromosome X variants were
analysed using the above-described approach, but coding

males as 0/2. This coding scheme ensures that on
average females and males have equal dosages and
so is optimal for genes that are inactivated (due to X
chromosome inactivation) and is valid for genes that
do not undergo X chromosome activation. Males and
females were analysed together adjusting for sex as a
covariate.

Single variant meta-analyses

Fixed effects meta-analyses across the individual con-
tributing studies of single variant associations were under-
taken using the Cochran-Mantel-Haenszel method in
RAREMETAL. Z-score statistics were used in the meta-
analysis to ensure that the association results are robust
against potentially different units of measurement in the
phenotype definitions across studies [23]. We performed
genomic control correction on the meta-analysis results.
Variants with P < 1 × 10−6 in tests of heterogeneity were
excluded. Variants with P ≤ 5 × 10−8 were taken forward for
replication. In addition, rs12616219 was also taken forward
for replication as its P-value was very close to this threshold
(smoking initiation, P= 5.49 × 10−8). None of the rare
SNVs were genome-wide significant, therefore we also took
forward the rare variant with the smallest association P-
value, rs141611945 (P= 2.95 × 10−7; MAF < 0.0001).

Replication and combined meta-analysis of
discovery and replication data

As UK biobank genetic data were released in two phases,
we took the opportunity to replicate findings from the dis-
covery stage in a further 275,596 individuals made available
in the phase two release of UK Biobank genetic data. To
avoid potential relatedness between discovery and replica-
tion samples, the replication samples were screened and
individuals with relatedness closer than second degree with
the discovery sample in the UK Biobank were removed
[24]. Phenotypes were defined in the same way as the dis-
covery samples (described above). Since the exome array
and the UK Biobank Axiom arrays do not fully overlap, we
used both genotyped exome variants (approx. 64,000) as
well as the additional ~90,000 well-imputed exome array
variants from UK Biobank (imputation quality score >0.3)
for replication of single variant and gene-based tests. The
rare ATF6 variant was absent from the UK Biobank array
and is more prevalent in Africans (MAF= 0.01) than Eur-
opeans (MAF= 0.0007). Therefore, replication was sought
in 1,437 individuals of African American-ancestry from the
HRS and COGA studies. Analysis methods for replication
cohorts were the same as for discovery cohorts, including
methods to analyse chromosome X (Supp. Table 2). The
criteria set for the replication were (i) the same direction of

2394 A. M. Erzurumluoglu et al.



effect as the discovery analysis and (ii) P ≤ 0.0045 in the
replication studies (Bonferroni-adjusted for eleven SNVs at
α= 0.05).

Finally, in order to fully utilise all available data, we
carried out a combined meta-analysis of the discovery and
replication samples across the exome array content using
the same protocols mentioned above.

Conditional analyses

To identify conditionally independent variants within pre-
viously reported and novel loci a sequential forward stepwise
selection was performed [25]. A 1MB region was defined
around the reported or novel sentinel variant (500 kb either
side) and conditional analyses performed with all variants
within the region. If a conditionally independent variant was
identified, (P < 5 × 10−6; Bonferroni-adjusted for ~10,000
independent variants in the test region) the analysis was
repeated conditioning on both the most significant con-
ditionally independent variant and the sentinel variant. This
stepwise approach was repeated (conditioning on the variants
identified in current and earlier iterations) until there were no
variants remaining in the region that were conditionally
independent. The same protocol was followed for the novel
SNVs identified in this study.

Gene-based analyses

For discovery gene-based meta-analyses, we utilised three
statistical methods as part of the RAREMETAL package:
the Weighted Sum Test (WST) [26], the burden test [27]
and the Sequence Kernel Association test (SKAT) [28].
EPACTS (v.3.3.0) [29] was used to annotate variants (for
use in gene-based meta-analyses), as recommended by
RAREMETAL. Two MAF cut-offs were used, one used
low-frequency (MAF < 0.05) and rare variants, the second
only used rare variants (MAF < 0.01). Nonsynonymous,
stop gain, splice site, start gain, start loss, stop loss, and
synonymous variants were selected for inclusion. A sensi-
tivity analysis to exclusion of synonymous variants was also
performed. Gene-level associations with P < 8 × 10−7 were
deemed statistically significant (Bonferroni-adjusted for
~20,000 genes and three tests at α= 0.05). To examine if
the gene associations were driven by a single variant, the
gene tests were conducted conditional on the SNV with the
smallest P-value in the gene, using the shared single variant
association statistic and covariance matrices [21, 25].

Mendelian randomization analyses

To evaluate the causal effect of SI and CPD on BMI,
schizophrenia and educational attainment (EA), we con-
ducted Mendelian randomization (MR) analyses using three

complementary approaches available in MR-Base [30]:
inverse variance weighted regression [31], MR-Egger [32,
33], and weighted median [34]. We used both the pre-
viously reported smoking-associated SNVs and the SNVs
from the current report (as provided in Tables 1–3 and
Supp. Table 3) as instrumental variables. The BMI [35],
schizophrenia [36] and educational attainment [37] data
came from previously published publicly available data. To
assess possible reverse causation, we also used outcome
associated SNVs as instrumental variables and conducted
MR analyses using SI and CPD as outcome. We considered
P < 0.05/3= 0.017 as statistically significant (Bonferroni-
adjusted for three traits).

In silico functional follow up of associated SNVs

To identify whether the (replicated) SNVs identified here
affected other traits, we queried the GWAS Catalog [38] (ver-
sion: e91/28/02/2018, downloaded on 01/03/18) for genome-
wide significant (P < 5 × 10−8) associations using all proxy
SNVs (r2 ≥ 0.8) within 2Mb of the top variant in our study.

eQTL lookups were carried out in the 13 brain tissues
available in GTEx V7 [39], Brain xQTL (dorsolateral pre-
frontal cortex) [40] and BRAINEAC [41] databases, all of
which had undergone QC by the individual studies. We did
not perform additional QC on these data. In brief, GTEx
used Storey’s q-value method to correct the FDR for testing
multiple transcripts based upon the empirical P-values for
the most significant SNV for each transcript [43, 42].
BRAINEAC calculated the number of tests per transcript
and used Benjamini–Hochberg procedure to calculate FDR
per transcript using a FDR < 1% as significant.
BRAINxQTL used P < 8 × 10−8 as a cut-off for significance
for any given transcript. SNVs that met the study specific
significance and FDR thresholds, which were in LD (r2 >
0.8 in 1000 Genomes Europeans) with the top eQTL or the
sentinel eQTL for a given tissue/transcript combination
were considered significant. The genes implicated by these
eQTL databases and/or coding changes (e.g., missense and
nonsense SNVs) were put into ConsensusPathDB [44] to
identify whether these genes were over-represented in any
known biological pathways. Replicated missense SNVs
were also put into PolyPhen-2 [45] and FATHMM
(unweighted) [46] to obtain variant effect prediction.

Results

Single variant associations

In the discovery meta-analyses, we identified 15 common
SNVs that were genome-wide significant (P < 5 × 10-8) for
one or more of the smoking behaviour traits, of which 9

Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci 2395
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were novel (Table 1, Supp. Table 3). Seven novel loci were
identified for smoking initiation, one for both CPD and
pack-years and one for smoking cessation (Figs. 1, 2,
Table 1 and Supp. Figure 1). Results for the significant loci
were consistent across participating cohorts and there was at
least nominal evidence of association (P < 0.05) at the novel
loci within each of the contributing consortia (Supp.-
Table 4). Full association results for all novel SNVs
across the four traits are provided in Supp. Table 5. No rare
variants were genome-wide significant; the rare variant
with the smallest P-value was a missense variant in
ATF6, rs141611945 (MAF < 0.0001, CPD P= 2.95 ×
10−7).

Eleven SNVs (including rs12616219 near TMEM182
with P= 5.49 × 10−8, and the rare variant, rs141611945)
were taken forward for replication in independent samples
(Table 1). The latest release of European UK Biobank
individuals not included in the discovery stage (smoking
initiation, n= 275,596; smoking cessation n= 123,851;
CPD n= 80,015; pack-years n= 78,897), was used for
replication of the common variants (Fig. 1). Five of the
common variants replicated (four for smoking initiation and
one with CPD and pack-years) at P < 0.0045. Two coding
variants (rs11539157, rs1190736) were predicted to be
‘probably damaging’ by PolyPhen-2 and FATHMM. The
remaining five SNVs were at least nominally associated
(P < 0.01) in the replication samples and had consistent
direction of effect across discovery and replication. Repli-
cation for the rare variant rs141611945 could not be carried
out in UK Biobank as the SNV nor its proxies (r2 > 0.3)
were available. Thus we initiated replication in African
American samples of the COGA (n= 476) and HRS (n=
961) cohorts (overall MAF≈0.01). The direction of effect
was consistent in the two replication cohorts and consistent
with the discovery meta-analysis but a meta-analysis of the
two replication cohorts yielded a P= 0.28. Further data are
required to replicate this association.

We also performed a meta-analysis combining the dis-
covery and replication samples (up to 622,409 individuals).
LD score regression showed that the λ (intercept) for all
traits was ~1.00, which indicated that confounding factors
inflating the results was not an issue [47, 48]. The combined
analysis identified 35 additional novel SNV-smoking trait
associations, 33 with smoking initiation, one with CPD and
one with smoking cessation at P < 5 ×10-8 (Table 2). We
note that among our four SNVs that did not replicate,
rs216195 (in SMG6) was genome-wide significant in the
combined meta-analysis of discovery and replication studies
(P= 2.41 × 10−9; Table 2).

We also calculated the phenotypic variance explained for
novel and known variants. Results can be found in the
‘Calculation of Phenotypic Variance Explained’ section in
the Supplementary Material.Ta
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Associations at known smoking behaviour loci

We assessed evidence for associations at the 14 SNVs
previously reported for smoking behaviour-related traits.
Seven were genotyped on the exome array and proxies (r2 >
0.3; ±2Mb) were identified for the remaining seven (Supp.
Table 3). All showed nominal evidence of association at

P < 0.05 and six of these were genome-wide significant in
the meta-analysis of the trait for which it was previously
reported (Supp. Tables 3 and 5).

Conditional analyses identified five independent associa-
tions within three previously reported loci and all five repli-
cated (Table 3). At the 19q13 (RAB4B) locus, there were three
variants in or near CYP2A6 associated with CPD

Fig. 2 A concentric Circos plot of the association results for smoking
initiation (SI; outer ring), cigarettes per day (CPD) and smoking ces-
sation (SC; inner ring) for chromosomes 1–22 (Pack-years results,
which can be found in Supp. Figure 1, are omitted for clarity). Each dot
represents a SNV, with the X and Y axes corresponding to genomic
location in Mb and -log10P-values, respectively. Labels show the
nearest gene to the novel sentinel variants identified in the discovery

stage and taken forward to replication. The top signals were truncated at
10−10 for clarity. Novel and previously reported signals are highlighted
in red and dark blue, respectively. Grey rings on the y-axis increase by
increments of 2 (initial ring corresponding to P= 0.001, then 0.00001
etc.); and the outer and inner red rings correspond to the genome-wide
significance level (P= 5 × 10−8) and P= 5 × 10−7, respectively. Image
was created using Circos (v0.65)
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independently of the established variant (rs7937) and each
other: rs8102683 (conditional P= 4.53 × 10−16), rs28399442
(conditional P= 2.63 × 10−12) and rs3865453 (conditional
P= 4.96 × 10−10) and rs28399442 was a low-frequency var-
iant. The same SNVs also showed evidence of independent
effects with pack-years, albeit with larger P-values (P < 5 × 10
−6; Supp. Table 5). At the TEX41/PABPC1P2 locus,
rs11694518 (conditional P= 3.43 × 10−7) was associated
with smoking initiation independently of the established
variant (rs10427255). At 15q25, rs938682 (P= 7.78 × 10−21)
was associated with CPD independently of the established
variant (rs1051730) and (in agreement with a previous report
[49]) is an eQTL for CHRNA5 in brain putamen basal ganglia
tissues in GTEx.

Gene-based association studies

Gene-based collapsing tests using MAF < 0.01 variants, did
not identify any associated genes at the pre-specified P <
8 × 10−7 threshold. Of the top four gene associations, three
were novel (CHRNA2, MMP17, and CRCP) and one was
known (CHRNA5), and had P < 7 × 10−4, with CPD and/or
pack-years (Supp. Table 6). Analyses conditional on the-
variant with the smallest P-value in the gene, revealed
the associations at CHRNA2, MMP17 and CRCP
were due to more than one rare variant (conditional
P < 0.05; Supp. Table 6). In contrast, the CHRNA5
gene association was attributable to a single variant
(rs2229961).

Mendelian randomization analyses

We conducted MR analyses to elucidate the potential
causal impact of SI and CPD on BMI, schizophrenia and
EA using the MR-Egger, median weighted and inverse
variance weighted methods. We found a causal associa-
tion between SI and EA using both the median weighted
and inverse variance weighted methods (P < 0.0001;
Supp. Table 7) but not with MR-Egger (P= 0.2). There
was an association of SI with BMI using MR-Egger only
(P= 0.01; Supp. Table 7), but there was evidence of
horizontal pleiotropy (P= 0.001) and no support from
the other methods. Similarly, increased CPD was only
associated with reduced BMI using the weighted median
approach (P= 0.009) and not the other methods (P >
0.017). We also tested if schizophrenia, EA or BMI
causally influence CPD or SI using SNVs associated with
schizophrenia, EA and BMI, respectively, as instru-
mental variables. No evidence of such reverse causation
was found (Supp. Table 7). These results were consistent
with previous analyses [50]. There was no evidence of a
causal effect of SI on schizophrenia, or CPD on educa-
tional attainment (Supp. Table 7).

Functional characterization of novel loci

Using proxies with r2≥0.8 in 1000 Genomes Europeans, we
queried the GWAS catalogue [38] (P ≤ 5 × 10−8) for pleio-
tropic effects of our novel sentinel SNVs. Two, rs11539157
and rs3001723 were previously associated with schizo-
phrenia [36], suggesting shared biological pathways
between schizophrenia and smoking behaviours (Table 2).
This fits with the known association of smoking with
schizophrenia [51]. Two, rs1514175 and rs2947411 have
previously been associated with BMI [52], and extreme
obesity [53].

eQTL lookups in GTEx V7 (13 Brain tissues with
≥80 samples) [39], Brain xQTL [40] and BRAINEAC [41]
databases revealed that the A allele at rs462779, which
decreases risk of smoking initiation, also decreased
expression of REV3L in cerebellum in GTEx (A allele
P= 4.8x10-8; β=−0.40) and was in strong LD with the top
eQTL for REV3L in cerebellum (r2= 0.86 with rs9487668
in 1000 Genomes Europeans). The smoking initiation-
associated SNV, rs12780116, was an eQTL for BORCS7 in
four brain tissues, and NT5C2 in the cerebellar hemisphere
(A allele P= 4.5 × 10−7; β=−0.32) and the cerebellum
(P= 5.6 × 10−6; β=−0.415; in strong LD with the top
eQTL, r2= 0.97 with rs11191546). The G allele of a second
variant in the region, rs7096169 (intronic to BORCS7 and
only in weak LD with rs12780116, r2= 0.18 in 1000G
Europeans) increases smoking initiation and reduces
expression of BORCS7 and AS3MT in eight brain tissues
(including dorsolateral prefrontal cortex in the Brain xQTL
and was the top BORCS7 eSNP in GTEx in the Cerebellar
Hemisphere, Cerebellum, and Spinal cord cervical-C1). The
same variant also reduced expression of ARL3 in cerebellum
in GTEx (Table 2).

Biological pathway enrichment analyses carried out in
ConsensusPathDB [44] using the genes implicated by the
eQTL databases (Table 2) and/or a coding SNVs (i.e.,
PJA1, GPR101) showed that the (i) pyrimidine metabolism
and (ii) activation of nicotinic acetylcholine receptors
pathways are enriched for these smoking behaviour asso-
ciated genes (false discovery rate <0.01; P < 0.0001).

Discussion

Smoking is the most important preventable lifestyle risk
factor for many diseases, including cancers [3, 54], heart
disease [4, 55] and many respiratory diseases such as COPD
[1, 2]. Not initiating is the best way to prevent smoking-
related diseases and genetics can play a considerable part in
smoking behaviours including initiation. We have per-
formed the largest exome-wide genetic association study of
smoking behaviour-related traits to date involving up to
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622,409 individuals, and identified and replicated five
associations, including two on the X-chromosome
(Table 1). We identified a further 35 novel associations in
a meta-analysis of discovery and replication cohorts
(Table 2). We validated 14 previously reported SNV-
smoking trait associations (Supp. Table 3) and identified
secondary independent associations at three loci, including
three in the 19q13 region (rs8102683, rs28399442, and
rs3865453; Table 3).

Gene-based tests improve power by aggregating effects
of rare variants. While no genes reached our Bonferroni-
adjusted P-value threshold, we identified three candidate genes
with multiple rare variant associations for future replication:
calcitonin gene-related peptide-receptor component (CRCP)
with CPD and CHRNA2 and MMP17 with pack-years (Supp.
Table 6; also see ‘Genes of Interest’ section in Supp. Material).
CRCP’s protein product is expressed in brain tissues amongst
others and functions as part of a receptor complex for a neu-
ropeptide that increases intracellular cyclic adenosine mono-
phosphate levels [56]. MMP17 encodes a matrix
metalloproteinase that is also expressed in the brain and is a
member of the peptidase M10 family, and proteins in this
family are involved in the breakdown of extracellular matrix in
normal physiological processes [57]. Given, we were not able
conclusively to identify rare variant associations, even larger
studies, are required to identify rare variants associated with
smoking behaviours. In addition, phenotypes such as cotinine
levels [58] and nicotine metabolism speed [59] could be inter-
rogated using methods such as MTAG [60] to improve power.

As recommended by UK Biobank, we analysed UK Bio-
bank samples by adjusting for genotyping array because a
subset of (extreme smokers in) UK Biobank were genotyped
on a different array (UK BiLEVE). However, this adjustment
could potentially introduce collider bias in analyses of smok-
ing traits. Given that the UK BiLEVE study is relatively small
compared to the full study, and the genetic effect sizes for
smoking-associated variants are small, we expect the influence
of collider bias to be small [61]. Nevertheless, we performed
sensitivity analyses to assess the impact of collider bias.
Firstly, we performed a meta-analysis excluding the UK
BiLEVE samples, and secondly, we re-analysed UK Biobank
without adjusting for genotype array. As expected, the esti-
mated genetic effects from these additional analyses were very
similar to our reported results suggesting collider bias is not a
concern (Suppl. Table 8).

Follow-up of the replicated SNVs in the literature and
eQTL databases implicated some potentially interesting
genes: NT5C2 is known to hydrolyse purine nucleotides and
be involved in maintaining cellular nucleotide balance, and
was previously associated with schizophrenia [62]. REV3L,
encodes the catalytic subunit of DNA polymerase ζ (zeta)
which is involved in translesion DNA synthesis. Previously,
polymorphisms in a microRNA target site of REV3L were

shown to be associated with lung cancer susceptibility [63].
We showed that decreased expression of REV3L may also
lower the probability of smoking initiation. The SNV,
rs11776293, intronic in EPHX2, was associated with
reduced SI in the combined meta-analysis, and is in LD
with rs56372821 (r2= 0.83), which is associated with
reduced cannabis use disorder [64]. rs216195 (in SMG6)
was genome-wide significant in the discovery and the
combined meta-analysis. SMG6 is a plausible candidate
gene as it was previously shown to be less methylated in
current smokers compared to never smokers [65]. The
combined meta-analysis also identified a rare missense
variant in CCDC141, rs150493199 (MAF < 0.01; Table 2).
Coding variants in CCDC141 were previously associated
with heart rate [66] and blood pressure [67, 68].

Smoking behaviours represent a complex phenotype that
are linked to an array of socio-cultural and familial, as well
as genetic determinants. Kong et al., recently reported that
‘genetic-nurture’ i.e., effects of non-transmitted parental
alleles, affect educational attainment [69]. They also show
that there is an effect of educational attainment and genetic
nurture on smoking behaviour. Four of our sentinel SNVs
(or a strong proxy; r2 > 0.8) were associated with years of
educational attainment [37] (rs2292239, rs3001723 (P <
5 × 10−8), rs9320995 (P= 8.90 x 10−7), and rs13022438
(P= 3.79 × 10−6), in agreement with this paradigm and our
MR analyses indicated that initiating smoking reduced years
in education. Future family studies will be required to dis-
entangle how much of the variance explained in the current
analysis is due to direct versus genetic nurturing effects.

Our study primarily focused on European ancestry, but
we also included two non-European studies but these non-
European studies lacked statistical power on their own to
identify ancestry-specific effects. Therefore, we did not
perform ancestry-specific meta-analyses. Nevertheless, our
results offered cross ancestry replication. One of the asso-
ciations identified in the conditional analyses, rs8102683
(near CYP2A6), confirmed an association with CPD that
was previously identified by Kumasaka et al. in a Japanese
population [70] but this is the first time it was associated in
Europeans (rs8102683 is also correlated with rs56113850
(r2= 0.43), a SNV identified previously by Loukola et al.
[59] in a genetic association study of nicotine metabolite
ratio in Europeans). As more non-European studies become
available, it would be of great interest to perform non-
European ancestry studies, in order to fine-map causal
variants for smoking-related traits.

CPD and pack-years are two correlated measures of
smoking. In the ~40,000 individuals from UK Biobank with
CPD and pack-years calculated, correlation between CPD
and pack-years was 0.640. Interestingly, while pack-years
was inversely correlated with smoking cessation (−0.18)
i.e., the more years a smoker has been smoking the less
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likely they were to cease, CPD was positively correlated
with smoking cessation (0.13) i.e., heavier smokers were
more likely to stop smoking. In contrast, the DBH SNV,
rs3025343, (first identified via its association with increased
smoking cessation [6]) was associated with increased pack-
years (P= 1.29 × 10−14) and increased CPD (P= 2.93 ×
10−9) in our study. The association at DBH also represents
the first time that a SNV has a smaller P-value for pack-
years (n= 131,892) compared to CPD (n= 128,746). These
findings may help elucidate the genetic basis of these cor-
related addiction phenotypes.

We performed the largest exome-wide genetic associa-
tion study of smoking behaviour-related traits to date and
nearly doubled the number of replicated associations to 24
(including conditional analyses) including associations on
the X-chromosome for the first time, which merit further
study. We also identified a further 35 novel smoking trait
associated SNVs in the combined meta-analysis. The novel
loci identified in this study will substantially expand our
knowledge of the smoking addiction-related traits, facilitate
understanding the genetic aetiology of smoking behaviour
and may lead to the identification of drug targets of
potential relevance to prevent individuals from initiating
smoking and/or aid smokers to stop smoking.
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