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A B S T R A C T

Background: Proteomics is expected to provide novel insights in the underlying pathophysiology of type 2
diabetes mellitus. In the present study, we aimed to identify and biochemically characterize proteins associated
with diabetes mellitus in a Qatari population.
Methods: In a diabetes case-control study (175 cases, 164 controls; Arab, South Asian and Philippine ethnicities),
we conducted a discovery study to screen 1141 blood protein levels for associations with diabetes mellitus.
Additional analyses were done in controls in relation to Hb1Ac, and biochemical characterization of the main
findings was performed with metabolomics (501 metabolites). We performed two-sample Mendelian
Randomization to provide evidence of potential causality using data from European descent of the DIAGRAM
consortium (74,124 cases of diabetes mellitus and 824,006 controls) for the identified proteins for T2D and
Hb1Ac.
Results: After accounting for multiple testing, 30 protein levels were different (p-values< 8.6e−5) between cases
and controls. Of these, a higher Hb1Ac in controls was associated with a lower IGFBP-2 level (p-value = 4.1e−6).
IGFBP-2 protein level was found lower among cases compared with controls across all ethnicities. In controls,
IGFBP-2 was associated with 21 metabolite levels, but specifically connected to the metabolite citrulline in
network analyses. We observed no evidence, however, that the association between IGFBP-2 and diabetes
mellitus was causal.
Conclusions: We specifically identified IGFBP-2 to be associated with diabetes mellitus, although with no evi-
dence for causality, which was specifically connected to citrulline metabolism.

1. Introduction

The prevalence of type 2 diabetes mellitus (T2D) has increased
substantially during the last few decades, and has become a major cause
of morbidity and mortality [1]. Many of the cases of T2D can be pre-
vented with changes in lifestyle, such as increased physical activity and
compliance to a healthier diet [1–3]. Therefore, much of the current
research efforts have been devoted to identify biological markers for
early detection as well as biological targets for treatment and preven-
tion [1,4–6].

With efforts from the DIAbetes Genetics Replication and Meta-

analysis (DIAGRAM) consortium, in a current sample of approximately
900,000 individuals of European descent, over 240 genetic risk loci
have been identified to increase the risk of T2D, explaining 18% of the
genetic heritability enhancing the potential for clinical translation [6].
However, direct clinical translation is complicated without knowledge
of the translated protein concentrations in relation to T2D. Previously,
proteomics analyses have been shown to be an effective way of linking
genetic information to disease outcomes [5]. In early proteomics stu-
dies, tissue biopsies were used, and provided valuable novel insights of,
for example, the role of mitochondrial proteins in muscle tissues in
relation to insulin resistance [7]. Due to technological advances, high
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throughput proteomics data has become increasingly available in co-
hort settings [8], and can be used for the identification of novel bio-
markers for disease as well as provide further insights in the patho-
physiological mechanisms of T2D [9,10].

We hypothesize that a proteomics assessment of T2D will provide us
with additional insights that will contribute to our understanding of the
pathophysiological mechanisms in T2D. Within the present study, we
conducted a protein-wide association study on T2D in a Qatari popu-
lation, without a specific predefined hypothesis. On the basis of the
proteins identified in T2D, we performed further characterization using
metabolomics to identify involved biochemical pathways and used a
Mendelian Randomization approach to provide evidence of potential
causality [11] using instrumental variables derived from published
genome-wide association studies on proteomics [12].

2. Methods

2.1. Study setting and design

The present study was embedded in the Qatar Metabolomics Study
on Diabetes, a cross-sectional case-control study in which a total of 374
participants were enrolled. The study was realized as a collaboration
between the Dermatology Department of the Hamad Medical
Corporation (HMC) and the Weill Cornell Medical Collage-Qatar. The
design of the study was approved by the Institutional Review Boards of
the HMC and Weill Cornell Medical College-Qatar (Research Protocol
Number 11131/11). Written informed consent was obtained from all
study participants.

Study participants were enrolled for study participation between
February and June 2012 at the Dermatology Department of HMC in
Doha, Qatar. Inclusion criteria were a primary form of T2D (cases) and
an absence of major systemic disorders (controls). Data on five included
participants was excluded due to incomplete records, leaving a total
original sample of 176 cases and 193 controls. Of the initial 193 con-
trols, 12 had a glycosylated hemoglobin (HbA1c) greater than 6.5% and
were classified as cases, which gives a final sample of 188 T2D cases
and 181 controls. No matching was performed based on age, sex and
ethnicity as it has been previously shown that matching gives similar
results as after statistical adjustment for covariates but significantly
reduced the statistical power [13,14].

2.2. Phenotyping

Information on age, sex, and T2D history were obtained through
questionnaires at the study center. Using standardized protocols,
trained researchers determined lightly clothed weight to the nearest
decimal with an electronic scale (SECA Scale 813) and height without
shoes to the nearest decimal using a stadiometer (SECA Mobile
Stadiometer 217). Body mass index (BMI; in kg/m2) was calculated by
dividing weight (in kg) by squared height (in meters). Blood samples
were generally taken in non-fasting state between 1:00 and 3:00 p.m.
HbA1c was determined at the Department of Laboratory Medicine and
Pathology of HMC (Cobas 6000; Roche Diagnostics). Estimated
Glomerular filtration rate (eGFR) was calculated using the Cockcroft-
Gault formula [15].

2.3. Proteomics measurements

The SOMAscan platform [8] was used to quantify protein levels in
non-fasting plasma samples at the WCM-Q proteomics core. No samples
were excluded. Protocols and instrumentation were provided and cer-
tified using reference samples by SomaLogic Inc. Experiments were
conducted under supervision of SomaLogic personnel. Briefly, un-
depleted EDTA-plasma was diluted into three dilution bins (0.05%, 1%,
and 40%) and incubated with bin-specific collections of bead-coupled
SOMAmers in a 96-well plate format. Subsequent to washing steps,

bead-bound proteins are biotinylated and complexes comprising bioti-
nylated target proteins and fluorescence-labelled SOMAmers are pho-
tocleaved off the bead support and pooled. Following recapture on
streptavidin beads and further washing steps, SOMAmers are eluted and
quantified as a proxy to protein concentration by hybridization to
custom arrays of SOMAmer-complementary oligonucleotides. Based on
standard samples included on each plate, the resulting raw intensities
are processed using a data analysis work flow including hybridization
normalization, median signal normalization and signal calibration to
control for inter-plate differences. Using this platform, a total of 1141
proteins were measured.

2.4. Metabolomics measurements

Metabolite level quantification was performed in non-fasting plasma
samples from all study participants. Within 6 h after sample collection,
all samples were centrifuged at 2500 g for 10 min, aliquoted, and stored
at −80 °C. Metabolic profiling was achieved using ultrahigh-perfor-
mance liquid-phase chromatography and gas chromatography separa-
tion, coupled with tandem mass spectrometry at Metabolon, Inc. using
established procedures [16]. Metabolite levels were scaled by run-day
medians, log transformed, and subsequently z-scored (mean = 0,
standard deviation = 1).

2.5. Statistical analyses

Characteristics of the study population were assessed separately for
T2D cases and controls, and presented as means (with standard de-
viation), number (with percentage), or median (with interquartile
range; for skewed population characteristics only).

Prior to the statistical comparisons between T2D cases and controls,
all protein levels were ln2-transformed to approximate a normal dis-
tribution. This transformation was found to be most suitable to ap-
proximate a normal distribution for most protein levels investigated in
the present study.

Primary comparisons between T2D cases and controls were con-
ducted using multivariable linear regression analyses adjusted for age,
sex, and body mass index. We used the R-based GeneNet package to
provide insights in the protein networks and of the networks of the
identified proteins [17], which is based on the partial correlations be-
tween the proteins. To prevent selection bias based on T2D status, we
conducted the network analyses in controls only. As identified differ-
ences in protein levels between T2D cases and controls could be either a
cause as well as a consequence of the disease, we repeated the analyses
on Hb1Ac in controls only. We assumed that identified proteins present
in both analyses are more likely to be in the pathophysiological
pathway. Robustness of the associations with T2D of these proteins was
further studied across the different ethnicities present in our study
population, and with additional adjustment for eGFR. Furthermore, for
these proteins, we calculated the partial correlations on T2D.

Of the protein(s) identified with our efforts, we studied the asso-
ciated metabolic pathways using the metabolomics data. Analyses were
performed using linear regression analyses, adjusted for age, sex and
body mass index in controls only to prevent biased results. GeneNet was
used to provide insights in the networks of metabolites directly con-
nected to the protein being explored [17].

Protein and metabolite levels are frequently interrelated.
Conventional correction for multiple testing (e.g., Bonferroni) is
therefore likely to be too stringent. Based on the data of the present
study, we calculated the number of independent protein/metabolite
levels being tested, based on methodology that has been previously
described by Li et al. [18], which takes into account the correlation
between the protein/metabolite levels. Considering the number of in-
dependent levels, we corrected the results for multiple testing with
Bonferroni based on the number of independent tests.

All statistical analyses were performed using the R statistical
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package (version 3.6.1., www.r-project.org/) and with use of the R-
based GeneNet and ggplot2 packages [17,19].

2.6. Mendelian Randomization analyses on type 2 diabetes mellitus

In order to examine whether the most promising proteomics find-
ings from our observational findings are causal risk factors, we con-
ducted two-sample Mendelian Randomization, as previously described
[20,21]. As exposures, we selected genetic instruments for the proteins
from publicly available summary statistics data of a GWAS done in
3301 individuals of European descent [12]. As genetic instruments, we
selected all independent (R2 < 0.001) variants with a p-value <
1e−5. As outcome, we used publicly available summary statistics data
from a European-ancestry meta-analysis of 32 cohorts including 74,124
cases of T2D and 824,006 controls [6].

For the statistical analyses, we used the well-established methods
for two-sample MR analyses; namely inverse-variance weighted (IVW),
MR-Egger and median-weighted analyses (MWA), as previously de-
scribed [20]. The IVW method assumes all genetic instruments are valid
and only associate with the study outcome through the exposure. These
latter two methods for two-sample MR analyses were specifically de-
veloped to test and/or take into account potential bias due to the pre-
sence of directional pleiotropy by invalid instrumental variables, and
especially MR Egger has a significant reduction in statistical power
[22,23]. Analyses were conducted using the TwoSampleMR package
implemented in R statistical software [24].

3. Results

3.1. Characteristics of the T2D cases and controls

After exclusion of individuals with missing data on protein levels,
the total study sample comprised 175 T2D cases and 164 controls
(Table 1). Compared with the control population, T2D cases were on
average older (53.1 [SD = 9.8) versus 40.6 [SD = 12.2] years), com-
prised more women (56 versus 45%) and had on average a higher BMI
(30.6 [SD = 6.5] versus 27.6 [SD = 5.4] years).

3.2. Comparison in protein levels between T2D cases and controls

Out of the 1141 protein levels measured in our study population
(protein network of the 750 strongest partial correlations displayed in
Fig. 1A/B), 584 levels were uncorrelated making us to use a multiple
testing-corrected alpha of 8.6e−5. After accounting for multiple testing
and adjustment for sex, age and body mass index, 30 proteins levels
were found to be different between T2D and controls (Fig. 1C). Of
these, 12 protein levels (e.g., MIA, Adiponectin, Apo-B, and IGFBP-2/6)
were lower in T2D cases compared to controls and 18 protein levels
(e.g., sE-Selectin, C2/7, and IL-19) were higher in T2D cases compared

to controls. The summary statistics of all proteins in relation to T2D can
be found in Supplementary Table 1. Based on the 30 identified proteins
and the 20 highest partial correlations (range: 0.19–0.47), 22 proteins
could be mapped to one out of the five identified protein subnetworks
in controls (Fig. 1D).

In the sample of 164 controls, we identified 7 protein levels asso-
ciated with HbA1c (Fig. 2A). Of these, IGFBP-2 was the only protein
level that was also observed in the case-control comparison. Notably, a
higher Hb1Ac was associated with lower IGFBP-2 levels (−0.50 [SE:
0.10] IGFBP-2 on a Ln2 scale per 1 mmol/L increase in Hb1Ac; p-
value = 4.1e−6). In addition, the lower levels of IGFBP-2 in T2D cases
compared to controls were consistently observed across the four dif-
ferent ethnic groups in our study population (Fig. 2B). Additional ad-
justment of the association between IGFBP-2 and T2D for eGFR did not
materially change the study results (results not shown). The partial
correlation of IGFBP-2 on T2D was 0.22 (p = 4.1e−5) in the model
adjusted for age, sex, and BMI.

3.3. Metabolomics characterization of IGFBP-2 in controls

Based on the proteomics findings and sensitivity analyses in with
Hb1Ac and across the ethnic groups, we took only IGFBP-2 forward to
the follow-up metabolomics characterization.

Of the 501 metabolites measured in our study population, 303 were
uncorrelated and we therefore used a multiple testing-corrected alpha
of 1.7e−4. In control participants, 20 metabolites were associated with
blood IGFBP-2 level, independent of sex, age and body mass index. Of
these, 8 were positively associated (e.g., pseudouridine and citrulline)
and 12 were negatively associated (e.g., leucine, oxovalerate and hy-
droxyisobutyrate) with the level of IGFBP-2 in blood (Fig. 3A). The
summary statistics of all metabolites in relation to IGFBP-2 in control
participants can be found in Supplementary Table 2. Based on the 20
identified metabolites associated with IGFBP-2 and the 20 highest
partial correlations (range: 0.20–0.71), all could be mapped in one of
the 6 identified subnetworks. (Fig. 3B). However, only 1 metabolite was
directly connected to IGFBP-2 in the network analysis, notably citrul-
line (partial correlation = 0.21). All other networks did not show
connections to IGFBP-2; these results remained similar when we al-
lowed more than 20 edges (results not shown).

3.4. Mendelian Randomization analyses on type 2 diabetes mellitus

Of the proteins that were studied, IGFBP-2 was further explored in
the Mendelian Randomization analyses on T2D. A total of 16 in-
dependent and nonpalindromic SNPs were used as genetic instruments
(p-value < 1e−5; no SNPs with p-value < 5e−8). With IVW, we ob-
served no evidence for a causal association between IGFBP-2 and T2D
(odds ratio: 1; 95%CI: 0.96, 1.04; p-value = 0.97). No mutual different
results were observed with MR-Egger or MWA, and there were no in-
dications for bias caused by directional pleiotropy.

4. Discussion

We aimed to identify blood protein concentrations in relation to
T2D in a Qatari population using a protein-wide approach, and to
further characterize our main findings using metabolomics and
Mendelian Randomization. We identified 30 proteins that had different
mean levels in T2D cases and controls, of which IGFBP-2 level was also
associated with Hb1Ac in controls, independent of obesity. In follow-up
analyses performed in controls, IGFBP-2 was associated with the levels
of 20 metabolites, of which citrulline was directly connected to IGFBP-2
in network analyses. However, in our two-sample Mendelian
Randomization analyses, we did not find evidence that IGFBP-2 level
was causally associated with the risk of developing T2D. Collectively,
our findings suggest IGFBP-2 is a protein associated with the risk of
developing T2D and is associated with early glycaemic disturbances,

Table 1
Characteristics of cases with diabetes mellitus and controls in the Qatar
Metabolomics Study on Diabetes.

T2D cases (N = 175) Controls (N = 164)

Age in years, mean (SD) 53.1 (9.8) 40.6 (12.2)
Women, N (%) 98 (56) 73 (45)
BMI in kg/m2, mean (SD) 30.6 (6.5) 27.6 (5.4)
eGFR, median (IQR) 104 (84, 130) 117 (102, 138)
Metformin, N (%) 109 (62) –
Ethnicity, N (%)
- Arab 88 (50.3) 100 (61.0)
- Indian 68 (38.9) 37 (22.6)
- Philippines 12 (6.9) 21 (12.8)
- Mixed 7 (4.0) 6 (3.7)

Abbreviations: BMI, body mass index; IQR, interquartile range, N, number of
participants, SD, standard deviation; T2D, type 2 diabetes mellitus.
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although evidence of causality could not be provided at this point.
The 30 identified proteins that had different mean levels in T2D

compared with controls comprised multiple known protein markers.
For example, adiponectin has been observed frequently in relation to
T2D [25], but causality has not been established [26]. Adiponectin, as
well as the closely connected gelsolin, are both secreted by the visceral
adipose tissue [27]. Counterintuitively, high concentrations of ApoB

have been associated with increased risk of incident T2D, independent
of classical lipid risk factors [28], but we found lower concentrations in
T2D cases compared to controls. Although we did not have information
on treatment adherence, findings could be either influenced by the
treatment of the T2D case or because of the comorbidities and com-
plications caused by the T2D. Similarly, the higher concentrations of
several of the immune markers (e.g., IL-19), complement factors (e.g.,

Fig. 1. Differences in protein concentrations between T2D cases and controls.
A) Based on the 1141 proteins measured in the study sample, we selected the 750 strongest partial correlations. These were visualized in the displayed network. B)
Distribution of the 750 strongest partial correlations. Partial correlations in the network range between 0.06 and 0.20. C) Differences can be interpreted as the
differences between T2D cases and controls on a Ln2-scale. The difference between cases and controls are presented on the x-axis; the -log(p-value) of the statistical
comparison in protein concentration between T2D cases and controls is presented on the Y-axis. Black dots are proteins that were statistically significant after
correction for multiple testing with Bonferonni based on 584 uncorrelated proteins. Analyses were adjusted for age, sex and body mass index. D) Based on the 30
identified proteins with diabetes mellitus, we selected the 20 strongest partial correlations. This resulted in 5 subnetworks containing at least 2 proteins and covering
22 proteins.
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Fig. 2. Follow-up analyses in individuals without diabetes and across ethnic groups.
A) The data presented on the x-axis can be interpreted at the mean difference in protein level on an Ln2 scale per 1 mmol/L increase in HbA1c. the -log(p-value) of the
associations is presented on the Y-axis. Black dots are proteins that were statistically significant after correction for multiple testing with Bonferonni based on the
number of independent comparisons (notably 584 proteins). Grey dots are proteins that did not reach the level of statistical significance. Analyses were adjusted for
age, sex, and body mass index. B) IGFBP-2 levels across the different ethnic groups in the study population are presented as IGFBP-2 residuals adjusted for age, sex
and body mass index. Data presented as the median with interquartile range. Controls are presented in red and cases are presented in blue. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Association and network analysis between IGFBP-2 level and metabolite levels.
A) The data presented on the x-axis can be interpreted at the mean difference in metabolite level in SD per SD increase in IGFBP-2 level. The -log(p-value) of the
associations is presented on the Y-axis. Black dots are proteins that were statistically significant after correction for multiple testing with Bonferonni based on the
number of independent comparisons (notably 303 metabolites). Grey dots are proteins that did not reach the level of statistical significance. Analyses were adjusted
for age, sex and body mass index. B) Based on the 20 identified metabolites that were associated with IGFBP2 level, we selected the 20 strongest partial correlations.
This resulted in 5 subnetworks covering all 20 metabolites including IGFBP2 itself.
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C7), and soluble adhesion molecules (e.g., sE-Selectin) could be in-
dicative of a higher cardiovascular risk profile or cardiovascular com-
plications rather than in the causal path in the pathogenesis of T2D. The
comparison between cases and controls therefore provided mixed in-
sights of causes and consequences of T2D.

From our protein-wide association analyses, we specifically identi-
fied IGFBP-2 as being associated with T2D and early (long term) gly-
caemic disturbances in individuals without T2D. Recently, IGFBP-2
level has been demonstrated to have an inverse association with T2D,
similar as in our study [10,29], as well as with insulin resistance [30].
The biochemical pathways in which IGF binding proteins are involved,
notably somatotropic signalling, has been implicated to be involved in
insulin signalling and a beneficial ageing process [30,31]. IGFBP-2, as
well as the closely connected IGFBP-6, showed specifically high binding
affinity to IGF-II [32], although this protein was not present in our used
proteomics platform and could not be explored in our study. Previously,
IGFBP-2 has been found to be inversely associated with body mass
index, and as a potential target for obesity prevention [33–36]. Also,
IGFBP-2 has been found to be in part regulated by leptin [35]. We
found, independent of body mass index, an association with lower le-
vels of IGFBP-2 in T2D cases. Interestingly, the concentration of IGFBP-
2 can be increased by dietary intake as well as by physical exercise
[37–39]. Collectively, these results suggest that IGFBP-2 concentrations
can be modified using lifestyle interventions, although current evidence
is still based on rather extreme conditions. Additional studies are
therefore required to increase our understanding of IGFBP-2 in cardi-
ometabolic health and disease in the general population.

In controls, IGFBP-2 was associated with multiple metabolites,
among which several have been observed frequently in relation to T2D,
such as the branched-chain amino acids (valine and leucine) [40].
However, in our network analyses, we found that IGFBP-2 was speci-
fically connected to the metabolite citrulline. Other metabolites are
therefore only associated with IGFBP-2 level, but unlikely to share a
similar biological process/pathway. Citrulline is an amino acid that has
been previously implicated to enhance hepatic insulin sensitivity [41],
and muscle protein synthesis [42]. To the best of our knowledge, there
is no literature available further examining the role of IGFBP-2 in ci-
trulline metabolism/signalling. Future research should elucidate the
biological meaning of this finding.

Our Mendelian Randomization analyses did not indicate that the
association we found between IGFBP-2 and T2D was causal using ge-
netic variants as instruments that have been previously suggestively
associated with IGFBP-2 level [5]. It is likely that future GWAS on
protein levels will be done with more statistical power, and these are
likely to identify more and stronger genetic instruments. Although our
Mendelian Randomization analysis was done with suggestive genetic
instruments [43], the statistical power is lower and the genetic instru-
ments can contain instruments that are false-positively associated with
IGFBP-2. However, it is of interest to note that genetic variation in
IGFBP2 has not been identified in relation with T2D, even not in the
most recent European-ancestry genome-wide association study of the
DIAGRAM consortium comprising 74,124 T2D cases and 824,006
controls [6]. This results indicates that there is no eQTL for IGFBP-2
present in relation to T2D. Counterintuitively, methylation of the
IGFBP-2 gene has been associated with an increased risk of incident
T2D [29]. However, it is important to note that DNA methylation is
dynamic and similar limitations with respect to causality apply as with
the interpretation of conventional epidemiological analyses. Therefore,
the exact function of IGFBP-2 in T2D should be further explored in
follow-up studies.

The present study had a few limitations to address. The blood
samples from the study participants were taken at a random time point
during the afternoon. It is currently unknown to what extend proteins
measured on our platform exhibit a circadian rhythm or to what extend
they are influenced by external factors, such as physical activity and
food intake. However, we previously identified robust associations with

proteomics and metabolomics within this study sample [4,5,44–46].
Likely, this has resulted in an increased variability in the data and has
resulted in reduced statistical power. Proteins with a lower effect size or
with strong circadian rhythm have therefore likely been missed in our
study. Furthermore, our used case population is heterogenous with
respect to treatment (although the majority of our study population
took metformin), and disease duration and severity. For example, pre-
vious results showed that metformin increases IGFBP-2 mRNA expres-
sion levels [35]. Also, to evaluate the prognostic value of IGFBP-2 in
clinical practice, prospective studies are warranted [10]. In addition,
the Mendelian Randomization analysis that we conducted used genetic
instruments that might have been too weak to observe any statistical
evidence of a causal association.

In summary, in the present protein-wide association study on T2D,
we identified levels of several proteins to be different between T2D
cases and controls, independent of obesity. However, only IGFBP-2 was
also detectable in relation to early disturbances in glucose levels in
controls. Although causality of this finding could not be demonstrated,
IGFBP-2 was associated with multiple known T2D-related biochemical
pathways. The specific connection with citrulline is of interest in
follow-up studies. Therefore, our study provides novel insights in the
development of T2D and its progression.
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