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Abstract

Traumatic brain injury (TBI) is currently classified as mild, moderate, or severe TBI by trichotomizing the Glasgow Coma

Scale (GCS). We aimed to explore directions for a more refined multidimensional classification system. For that purpose,

we performed a hypothesis-free cluster analysis in the Collaborative European NeuroTrauma Effectiveness Research for

TBI (CENTER-TBI) database: a European all-severity TBI cohort (n = 4509). The first building block consisted of key

imaging characteristics, summarized using principal component analysis from 12 imaging characteristics. The other

building blocks were demographics, clinical severity, secondary insults, and cause of injury. With these building blocks,

the patients were clustered into four groups. We applied bootstrap resampling with replacement to study the stability of

cluster allocation. The characteristics that predominantly defined the clusters were injury cause, major extracranial injury,

and GCS. The clusters consisted of 1451, 1534, 1006, and 518 patients, respectively. The clustering method was quite

stable: the proportion of patients staying in one cluster after resampling and reclustering was 97.4% (95% confidence

interval [CI]: 85.6–99.9%). These clusters characterized groups of patients with different functional outcomes: from mild

to severe, 12%, 19%, 36%, and 58% of patients had unfavorable 6 month outcome. Compared with the mild and the upper

intermediate cluster, the lower intermediate and the severe cluster received more key interventions. To conclude, four

types of TBI patients may be defined by injury mechanism, presence of major extracranial injury and GCS. Describing

patients according to these three characteristics could potentially capture differences in etiology and care pathways better

than with GCS only.

Keywords: classification; clustering; GCS; prospective

Background

The global burden of traumatic brain injury (TBI) is

high: it is a leading cause of injury-related death and disabil-

ity.1 Although the rates vary among countries, TBI is estimated to

be responsible for *300 hospital admissions and 12 deaths per

100,000 persons per year in Europe.2 TBI is currently classified

using the baseline Glasgow Coma Scale (GCS).3 Although there is

variation,4 TBI is usually divided according to GCS scores 3–8

(severe), 9–12 (moderate), and 13–15 (mild).

The current classification, based on only GCS, does not fully

capture the multidimensionality of TBI.5,6 TBI is defined as an

alteration in brain function, or other brain pathology, following an

external force.7 However, the manifestation of TBI is heteroge-

neous: a variety of pathoanatomical lesions can be present as the

result of a multitude of trauma mechanisms.5 A novel multi-

dimensional classification of TBI could potentially be used for

improving the efficiency of care pathways. Additionally, the clas-

sification could increase understanding of the divergent clinical

courses of TBI patients.
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This study aimed to explore directions for a more refined mul-

tidimensional classification system, capturing the heterogeneity

throughout the entire spectrum of TBI severity. For that purpose, a

hypothesis-free cluster analysis was performed.

Methods

Study population

Data from the Collaborative European NeuroTrauma Effec-
tiveness Research for TBI (CENTER-TBI) was used for this
analysis. This prospective cohort study comprised 4509 patients
with all-severity TBI. The patients were included in 59 centers from
18 countries across Europe. Inclusion criteria were a clinical di-
agnosis of TBI, presentation within 24 h, and clinical indication for
computed tomographic (CT) scanning. The exclusion criterion of
CENTER TBI was pre-existing neurological disease. For this
study, the total CENTER TBI cohort was used. The study design
was previously published.8 Version 1.0 of the database was used.

Variable selection

The cluster analysis was hypothesis free, as we did not assume
any relationship, weights, or importance among the variables, or a
role such as exposure, confounder, or outcome. However, to arrive
at a set of variables to be used by the algorithm, a starting point was
that the classification should be implementable, including charac-
teristics that are generally available at any emergency department.
Additionally, we wanted to use prognostically relevant character-
istics: the characteristics of which the International Mission for
Prognosis and Analysis of Clinical Trials in TBI (IMPACT) and
Corticosteroid Randomization After Significant Head Injury
(CRASH) prediction models are composed.9,10 Finally, we in-
cluded variables describing the mechanism of injury.

The prognostic and mechanistic relevant variables were aggre-
gated in ‘‘building blocks’’: groups of variables describing similar
information of a patient. The building blocks that were used for the
exploratory clustering were: (1) demographics: age; (2) clinical
severity: baseline GCS score, baseline pupil score, and major ex-
tracranial injury (defined as an abbreviated injury scale [AIS] >3 in
a body region other than neck and head); (3) second insults: hyp-
oxia and hypotension in the emergency department; (4) cause of
injury: road traffic incident (RTI), all falls, violence, or suicide, or
other; and (5) imaging characteristics: all imaging characteristics
available in the database, which are the presence of epidural he-
matoma, subdural mixed density collection, skull fracture, subacute
subdural hematoma, midline shift (> 5 mm), traumatic subarach-
noid haemorrhage, any mass lesion, intraventricular hemorrhage,
subdural hematoma, or cisternal compression. Imaging character-
istics were obtained through a central reviewing process.11

Clustering

First, the key imaging characteristics were extracted. The im-
aging characteristics comprised 12 binary variables, which are not
easily handled by a clustering algorithm. Therefore, to increase
efficiency of the clustering algorithm, we described all those binary
variables using principal components: the primary principal com-
ponent is a continuous variable capturing the most information
across the included variables. The second principal component
captures somewhat less, and subsequent principal components
capture progressively less. The PCAmixdata package was used,
because this version of a PCA can handle non-continuous data.12

Consecutively, the first four principal components (dimensions)
were included in the clustering algorithm. We included four prin-
cipal components, because these described the majority (> 70%) of
the variability in the imaging characteristics. Although principal
components themselves are not clinically applicable, they can be
easily calculated from all binary imaging variables.

The selected clinical and injury severity variables (n = 8), to-
gether with the four imaging dimensions were included in a clus-
tering algorithm. The cluster package was used. First, the metric on
which the data are grouped is calculated. Because we are using both
categorical and numerical data, the Gower’s distance was calcu-
lated with the daisy function.13 Using this distance metric, four
clusters in the data were identified using the partition around me-
doids (pam) function.

Table 1. Baseline Characteristics Used

for the Clustering, as Well as the Six Month Outcome

In k-mode clustering n = 4509 Missing

Age (median [IQR]) 50 [30, 66] 0.0
Injury cause (%) 3.7

RTI 1682 (38.7)
Fall 2024 (46.6)
Other 343 (7.9)
Violence/suicide 293 (6.7)

GCS Motor (median [IQR]) 6.0
[5.0, 6.0]

2.5

GCS Score (median [IQR]) 15.0
[10.0, 15.0]

4.0

Pupils (%) 5.8
Both reactive 3802 (89.5)
One reactive 164 (3.9)
None reactive 281 (6.6)

ED hypoxia (%) 299 (7.0) 5.6
ED hypotension (%) 297 (6.9) 4.7
Major extracranial injurya (%) 668 (14.8) 0.0

PCA before clustering

Axonal injury (%) 324 (9.4) 23.2
Contusion (%) 1087 (31.4) 23.2
Subdural hematoma subacute chronic (%) 17 (0.5) 23.2
Traumatic subarachnoid hemorrhage (%) 1531 (44.2) 23.2
Epidural hematoma (%) 373 (10.8) 23.2
Subdural hematoma acute (%) 943 (27.2) 23.2
Skull fracture (%) 1266 (36.6) 23.2
Subdural collection mixed density (%) 82 (2.4) 23.2
Cisternal compression (%) 494 (14.3) 23.2
Midline shift (%) 380 (11.0) 23.2
Mass lesion (%) 579 (16.7) 23.2
Intraventricular hemorrhage (%) 453 (13.1) 23.2
Stratum (%) 0.0

ER 848 (18.8)
Admission 1523 (33.8)
ICU 2138 (47.4)

6 month outcome

GOSE (%) 15.7
1 475 (12.5)
2b 370 (9.7)
4 110 (2.9)
5 198 (5.2)
6 401 (10.6)
7 725 (19.1)
8 1520 (40.0)

aDefined as non-head Abbreviated Injury Scale (AIS) ‡3.
bGOS-E 2 and 3 are combined into 2.
IQR, interquartile range; RTI, road traffic incident; GCS, Glasgow

Coma Scale; ED, emergency department; PCA, principal component
analysis; ER, emergency room; ICU, intensive care unit; GOS-E, Glasgow
Outcome Scale–Extended
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Clustering studies with mixed data may optimize the silhouette
value to arrive at an optimal number of clusters.14 It is a measure of
the similarity to its own cluster (cohesion), compared with other
clusters (separation).

Stability of the clustering was assessed using the same variables
and a bootstrapping procedure to repeatedly resample with re-
placement and recluster the patients. The proportion of patients
who stayed in a cluster after resampling was calculated per repe-
tition. The median and 95% credibility interval, defined by the 2.5th
to the 97.5th percentile, was calculated with 999 repetitions.

To assess the importance of the clustering variables, we used
multinomial regression. The independent variables of this regression
were the four clusters, and the dependent variables were the clustering
variables. We assumed linear effects, and we did not allow for any
statistical interaction. The partial Nagelkerke R2 was calculated for
each variable by comparing the Nagelkerke R2 of the model without
the variable to the Nagelkerke R2 of the model with the variable.

Cluster description

The clusters were described based on the clustering variables.
Additionally, gender, motor GCS score, as well as clinical course
characteristics (receiving intracranical pressure [ICP] monitoring,
intracranial or extracranial surgery, length of intensive care unit
[ICU] stay) were described across the clusters. We then examined
the outcome of the patients within the clusters.

First, the 6 months Glasgow Outcome Scale – Extended (GOS-
E) was used to describe the functional outcome. The GOS-E score
was imputed exactly at 180 days, using a multi-state model.
Subsequently, outcomes among the clusters were compared, and
used to rank the clusters based on the proportion of favorable
outcomes in the following order: ‘‘mild,’’ ‘‘upper intermediate,’’
‘‘lower intermediate,’’ or ‘‘severe.’’ This order resembles the GOS-
E, in which ‘‘lower’’ refers to the more severe category (e.g.:
‘‘lower severe disability’’ vs. ‘‘upper severe disability’’). The
clusters were named accordingly to enable easier interpretation of

FIG. 1. The importance of the variables to identify the four
clusters, quantified by the partial Nagelkerke R2 value of the
multinomial model predicting class. The R2 is a measure for
the proportion of the variation in outcome (class) explained by
the predictors (the clustering variables). Imaging is displayed,
which is the first principal component (PC 1) of the imaging
characteristics.

FIG. 2. Outcome of the four clusters. The stacked bar chart shows the distributions of Glasgow Outcome Scale – Extended (GOS-E) in
the four identified clusters. Color image is available online.
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the characteristics of clusters. Second, using all baseline charac-
teristics in a logistical regression model, the predicted probability
of 6 months unfavorable outcome (GOS-E < 5) was calculated. The
observed and predicted probabilities were compared to assess the
calibration of the model within the four clusters.

Further, the most important classification strategies, as defined
by the partial R2, were used to describe the patients. The GOS of all
combinations of possible characteristics was visually assessed.

Finally, we assessed whether the baseline characteristics in-
cluded in the clustering algorithm were prognostically relevant.
Ordinal logistical regression with GOS-E as outcome variable was
used. The area under the receiver operating characteristic (ROC)
curve was used to describe the discrimination of the models. The
following models were compared:

1. GCS

2. GCS + most important clustering variables (defined by the

partial R2)

3. GCS + pupils + age (core version of the IMPACT model15)

All analyses were performed using R (R Core Team (2013). R: A
Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing: Vienna, Austria). The published
code can be found on https://github.com/ErasmusCMB/CENTER-
TBI/blob/master/code_classification_TBI.R.

Results

The 4509 patients in the CENTER-TBI study were on average

50 (interquartile range [IQR]: 30–66) years old, and predominantly

male (67%). The most important causes of injury were road traffic

incident (RTI) (39%) and incidental falls (47%). The majority of

patients were classified as having mild TBI: the median GCS in the

cohort was 15 (IQR: 10–15) (Table 1).

Imaging characteristics

The first four dimensions of the principal component anal-

ysis (PCA) explained 68% of the variation in all imaging

Table 2. The Characteristics of the Four Clusters

Cluster Mild Upper intermediate Lower intermediate Severe
n = 1451 1534 1006 518

Age (median [IQR]) 38 [24, 53] 61 [42, 73] 57 [42, 70] 40 [25, 57]
Male (%) 1000 (68.9) 909 (59.3) 708 (70.4) 405 (78.2)
Injury cause (%)

RTI 1095 (78.2) 0 (0.0) 194 (20.2) 393 (79.1)
Fall 0 (0.0) 1354 (91.3) 617 (64.2) 53 (10.7)
Other 138 (9.9) 90 (6.1) 91 (9.5) 24 (4.8)
Violence/suicide 168 (12.0) 39 (2.6) 59 (6.1) 27 (5.4)

GCS Motor (median [IQR]) 6 [6, 6] 6 [6.0, 6.0] 6 [4.0, 6.0] 1 [1, 4]
GCS Score(median [IQR]) 15 [14, 15] 15 [14, 15] 13 [8, 15] 3 [3,7]
Pupils (%)

Both reactive 1298 (94.7) 1339 (93.1) 829 (87.8) 336 (67.9)
One reactive 30 (2.2) 45 (3.1) 38 (4.0) 51 (10.3)
None reactive 42 (3.1) 54 (3.8) 77 (8.2) 108 (21.8)

ED hypoxia (%) 60 (4.4) 59 (4.0) 57 (6.1) 123 (25.4)
ED hypotension (%) 76 (5.4) 51 (3.5) 45 (4.8) 125 (25.8)

Major extracranial injury (%) 145 (10.0) 87 (5.7) 52 (5.2) 384 (74.1)
Subdural hematoma Subacute chronic (%) 2 (0.2) 9 (0.8) 6 (0.8) 0 (0.0)
Traumatic subarachnoid hemorrhage (%) 269 (24.0) 302 (25.7) 640 (83.6) 320 (80.4)
Epidural hematoma (%) 77 (6.9) 55 (4.7) 169 (22.1) 72 (18.1)
Subdural hematoma acute (%) 130 (11.6) 206 (17.5) 428 (55.9) 179 (45.0)
Skull fracture (%) 232 (20.7) 216 (18.4) 584 (76.2) 234 (58.8)
Subdural collection mixed density (%) 8 (0.7) 30 (2.5) 34 (4.4) 10 (2.5)
Cisternal compression (%) 39 (3.5) 92 (7.8) 220 (28.7) 143 (35.9)
Midline shift (%) 28 (2.5) 94 (8.0) 180 (23.5) 78 (19.6)
Mass lesion (%) 34 (3.0) 113 (9.6) 328 (42.8) 104 (26.1)
Intraventricular hemorrhage (%) 66 (5.9) 64 (5.4) 150 (19.6) 173 (43.5)
Axonal injury (%) 77 (6.9) 51 (4.3) 78 (10.2) 118 (29.6)
Contusion (%) 49 (4.4) 0 (0.0) 765 (99.9) 273 (68.6)

ICP monitoring (%) 99 (6.9) 92 (6.0) 245 (24.5) 308 (59.9)
Intracranial surgery (%) 75 (5.2) 116 (7.6) 214 (21.4) 116 (22.4)
Extracranial surgery (%) 129 (9.0) 49 (3.2) 37 (3.7) 134 (25.9)
LOS (median [IQR]) 5 [2, 12] 4 [2, 10] 11 [6, 23] 31 [18, 47]
LOICUS (median [IQR]) 0 [0, 2] 0 [0, 1] 3 [0, 10] 15 [7, 24]
Stratum (%)

ED 361 (24.9) 440 (28.7) 46 (4.6) 1 (0.2)
Admission 603 (41.6) 660 (43.0) 258 (25.6) 2 (0.4)
ICU 487 (33.6) 434 (28.3) 702 (69.8) 515 (99.4)

IQR, interquartile range; RTI, road traffic incident; GCS, Glasgow Coma Scale; ED, emergency department; ICP, intracranial pressure; LOS, length of
stay; LOICUS, length of ICU stay; ICU, intensive care unit.
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characteristics. In the first dimension, the dimension explaining

most of the variability in all imaging characteristics (34%), the

most important imaging characteristics were the absence or pres-

ence of traumatic axonal injury, midline shift, and subdural mixed

density (Fig. S1).

Clustering analysis

We restricted the number of clusters to four for easy interpre-

tation, and thereby used a silhouette value similar to the maximum

silhouette value (0.21 with 3, 0.24 with 4, and 0.25 with 5). The

most important building blocks of the clusters were injury cause,

major extracranial injury, and GCS, respectively: the partial R2,

indicating relative importance in the clusters, were 13%, 5%, and

2%, respectively. The key imaging characteristics and age also

were relatively important clustering characteristics (Fig. 1).

The clustering method was quite stable: the proportion of pa-

tients staying in one cluster after resampling and reclustering was

97% (95% CI: 86–100%). Four examples of resampling and re-

cluster iterations are shown in Figure S2.

From mild to severe, 12%, 19%, 36%, and 58% of patients had

unfavorable outcome in the four clusters (Fig. 2). The same pattern

was seen for mortality, where 1%, 4%, 8%, and 17% mortality rates

were observed. Based on the model with the IMPACT variables

fitted on the data, the severe cluster had 1.5 times worse functional

outcome than expected (calibration intercept: 0.4, 95% CI: 0.2–0.6;

observed to expected ratio 1.5; Fig. S3). From mild to severe, the

four clusters consisted of 1451, 1534, 1006, and 518 patients re-

spectively (Table 2).

The mild and the severe cluster consisted of younger patients

(median of 38 [24–53] and 40 [25–57] years old, compared with

61 [42–73] in the upper intermediate cluster and 57 [42–70] in

the lower intermediate cluster). In these younger patients, the

trauma was predominantly caused by road traffic incidents, in-

stead of incidental falls. The lower intermediate and the severe

cluster consisted of patients with a median GCS <15, and more

unreactive pupils.

The different clusters were also characteriezd by different care

pathways and disease evolutions. In the severe cluster, 515 (99%)

patients were admitted to the ICU, whereas only 702 (70%) of the

patients in the lower intermediate cluster were admitted to the ICU.

Compared with the mild and the upper intermediate cluster, the

lower intermediate and the severe cluster received more key in-

terventions, such as ICP monitoring, intracranial surgery, and

extracranial surgery. However, the severe cluster consisted of

more patients requiring extracranial surgery: 134 (26%) versus 37

(3.7%) in the lower intermediate cluster. Although the length of

(ICU) stay was longer in the lower intermediate and severe

cluster, the length of (ICU) stay was longest in the severe cluster:

the median length of ICU stay was 15 (IQR: 7– 24) days in the

severe cluster, whereas in the lower intermediate cluster, the

median was 3 (IQR: 0–10); the length of hospital stay was on

average 30.5 (IQR: 18–47) days in the severe cluster, compared

with a median length of hospital stay of 11 (IQR: 6–23) days in the

lower intermediate cluster. Although some of the patients in the

upper intermediate and the mild cluster were admitted to the ICU,

the median ICU length was 0 (IQR 0–2 for the mild cluster, and

0–1 for the upper intermediate cluster).

All these characteristics are also presented for the current clas-

sification based on GCS in Table S1. In comparison to the four

clusters, the groups based on GCS scaled less well with demo-

graphic differences and cause of injury: the median age was 46

(IQR: 25–64) in the severe group, 53 (IQR: 34–69) in the moderate

group, and 51 (IQR 31–67) in the mild group. The proportions of

road traffic accidents were 47%, 36%, and 35% in the three groups,

respectively. The treatment intensity and presence of imaging ab-

normalities differed across the three groups.

Based on the most important clustering variables, the patients

were described again on outcome (Fig. 3). The distribution of GOS-

E scores was mainly different for patients with lower GCS scores.

FIG. 3. The proposed classification system for traumatic brain injury (TBI) and their observed Glasgow Outcome Scale – Extended
(GOS-E) scores. The classification is based on the characteristics that mostly defined the clustering algorithm. The black line in the
stacked bar chart indicates the border of unfavorable and favorable. Color image is available online.
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The largest group consisted of low energy (no road traffic incident),

mild (GCS 13–15) TBI with major extracranial injury (1125

[25%]). The smallest groups were high energy moderate (GCS 9–

12) and severe (GCS <9) TBI without major extracranial injury: 44

(1%) and 80 (2%) patients, respectively.

For the prediction of functional outcome, the model with only

GCS had an area under the ROC curve of 0.72 (95% CI 0.71–0.72).

Adding major extracranial injury and cause of injury (as most

relevant clustering variables), did not improve the discrimination of

the model. In contrast, adding age and pupils did increase the area

under the ROC curve to 0.75 (95% CI 0.74–0.75).

Discussion

This study was a hypothesis-free exploration of cluster analy-

sis in TBI to inform development of a new, multidimensional

classification for TBI. We clustered TBI patients into four groups.

The most defining building blocks of the clustered groups were

injury cause, major extracranial injury, and GCS. With these

three most defining characteristics, patients could be classified

into 12 groups, ranging from high energy mild TBI with major

extracranial injury, to low energy severe TBI without major ex-

tracranial injury.

FIG. 4. Two exemplary patients: an elderly patient who fell, and a younger patient who was in a road traffic accident. Their predicted
risk of 6 month mortality and 6 month unfavorable outcome is similar in both cases. These figures are made from: http://www.tbi-impact
.org/?p=impact/calc. Color image is available online.
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Our proposed classification might capture differences in required

treatment approaches, irrespective of differences in prognosis. Pa-

tients with similar risk of outcome could still require different

treatment approaches.16 As an illustration, an elderly patient with

multiple comorbidities who fell at home might, according to the

IMPACT model, be at equal risk of dying and unfavorable outcome

within 6 months compared with a younger patient with TBI caused

by a road traffic incident (Fig. 4).15 Even though their risk would be

equal, they would need different approaches of care: our study

suggests that the first patient would more likely require intracranial

surgery and would have a relatively short ICU stay, and the latter

would require extracranial surgery and ICP monitoring with a long

ICU stay.

Additionally, the characteristics identified by our study relate to

care pathways. This is because they are already used to hand over

trauma patients. This is the experience in our hospitals. A possible

reason is that the widely used format for handovers, the Situation,

Background, Assessment, Recap/Rx (S-BAR),17 dictates including

background information: this is typically described by the mecha-

nism of injury, and whether the patient has major extracranial in-

jury. Clinical experience has led to the description of these

characteristics, because they apparently impact care pathways.

Describing TBI patients based on energy of trauma and major

extracranial injury potentially may capture etiological differences

and could possibly improve the development of new treatments and

subsequent clinical trials in the TBI field. It has been suggested that

the traditional classification of TBI is one of the causes of a history

of negative trials in TBI.5,18 A classification that better integrates

the pathological differences in the heterogeneous TBI patient

population could enable more focused, and therefore potentially

more positive, trials.

It could be argued that imaging characteristics, which we in-

cluded in our analysis, are not always available at the emergency

department: only selected TBI patients should be scanned, to avoid

unnecessary oncogenic risk of radiation, costs, and productivity

loss.19 However, in contrast to novel biomarkers, or characteristics

visible on magnetic resonance imaging (MRI) scan, CT charac-

teristics are usually available. Moreover, imaging characteristics

are key to discerning different TBI pathologies, such as epidural

versus subdural hematoma. Our aim was to explore a classification

that better describes the variation in TBI pathologies. Therefore, it

was considered essential to include this type of information.

The fact that this study has applied hypothesis-free analyses in a

large TBI database is both a limitation and a strength. On the one

hand, a data-driven approach to clustering could lead to poor

generalizability. Moreover, critique on clustering algorithms often

involves low interpretability of the clusters, because they are not

based on pre-existing subject knowledge.20 In our case, the clus-

tering approach revitalized the importance of describing patients

using major extracranial injury and mechanism of injury. This is in

contrast with previous research, which mainly has focused on a

prognostic, instead of a mechanistic, description of TBI patients.1

Another limitation is that we did not take biomarker profiles into

account. Currently, there is not enough knowledge about longitu-

dinal biomarker profiles. Implementing these profiles could im-

prove the classification, and more research is necessary to know

what precisely should be included in such a classification.

Finally, another limitation of our study is that the current anal-

ysis is biased toward classifying more severe injuries. The majority

of the used variables are known to be prognostically relevant for

moderate to severe TBI.9 Further, ICU patients were preferentially

included in the core CENTER-TBI database. This resulted in a

somewhat selected TBI sample. However, 2310 (51%) of the pa-

tients in our sample were non-ICU patients. Moreover, most het-

erogeneity is to be expected among those patients with severe TBI.5

Therefore, it can be argued that analyzing a cohort with an over-

representation of the most heterogeneous subgroup can assist in

better characterizing the disease. However, we recognize that other

variables might be more appropriate for clustering milder TBI

patients.

Conclusion

After unsupervised, hypothesis-free clustering, four clusters

were identified, which were mainly defined by injury mechanism,

presence of major extracranial injury, and GCS. Describing pa-

tients with these three characteristics could potentially capture

more differences in etiological and care pathway aspects than based

on GCS alone. Our proposed classification should be validated and

extended upon; in particular, we feel that biomarkers could play an

important role.
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