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Abstract
Objectives: Receiver operating characteristic (ROC) curves show how well a risk prediction model discriminates between patients with
and without a condition. We aim to investigate how ROC curves are presented in the literature and discuss and illustrate their potential
limitations.

Study Design and Setting: We conducted a pragmatic literature review of contemporary publications that externally validated clinical
prediction models. We illustrated limitations of ROC curves using a testicular cancer case study and simulated data.

Results: Of 86 identified prediction modeling studies, 52 (60%) presented ROC curves without thresholds and one (1%) presented an
ROC curve with only a few thresholds. We illustrate that ROC curves in their standard form withhold threshold information have an un-
stable shape even for the same area under the curve (AUC) and are problematic for comparing model performance conditional on threshold.
We compare ROC curves with classification plots, which show sensitivity and specificity conditional on risk thresholds.

Conclusion: ROC curves do not offer more information than the AUC to indicate discriminative ability. To assess the model’s perfor-
mance for decision-making, results should be provided conditional on risk thresholds. Therefore, if discriminatory ability must be visual-
ized, classification plots are attractive. � 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction predictions based on the values of the predictors included
Clinical risk prediction models to predict the risk of
having (diagnostic research) or developing (prognostic
research) an event are being published in increasing
numbers. These models provide individual risk
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in the model [1]. Evaluating predictive performance is an
important step in determining a model’s potential useful-
ness. One key aspect of performance is discrimination, the
ability to separate those with and without an event by
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What is new?

Key findings
� Published studies evaluating the performance of a

clinical prediction model commonly present
receiver operating characteristic (ROC) curves
without including threshold information.

� ROC curves have an unstable shape and can result
in problematic and potentially misleading model
comparison by a risk threshold.

What this adds to what was known?
� ROC curves add little information on discrimina-

tory ability to the area under the curve (AUC),
particularly when the curve does not include
thresholds.

What is the implication and what should change
now?
� We recommend focusing on the AUC to indicate

discriminative ability and reporting sensitivity
and specificity at clinically relevant thresholds to
report the potential of the model for decision-
making.

� When a visualization of performance for decision-
making is desired, we argue that classification plots
are more informative than ROC curves, as they
show sensitivity and specificity conditional on risk
thresholds.

predicting higher risks for patients with the event than pa-
tients without.

Discrimination performance is often visualized using a
receiver operating characteristic (ROC) curve [2e4].
ROC curves show classification performance conditional
on consecutive thresholds, but do not show the thresholds
themselves. The ROC curve can be summarized by the area
under the curve (AUC) to quantify discrimination. The
AUC estimates the probability that a model can correctly
discriminate between randomly selected individuals with
and without the event.

The aim of a prediction model is typically to identify
patients who have sufficiently increased risk to warrant
receiving a given treatment or intervention [5]. A risk
threshold is thus specified. Although thresholds are often
chosen in a pragmatic data-driven way based on a desired
combination of sensitivity and specificity, the threshold it-
self has a decision-analytic meaning. The risk threshold
has a direct relationship with the relative cost of false pos-
itives and false negatives [6]. For example, if we decide
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that patients should be treated when their risk of an event
is 10% (odds 1:9), our decision implies that correctly
treating one patient with the event justifies unnecessarily
treating at most nine patients without the event. Choosing
a clinically relevant risk threshold depends on the context,
such as the target population and specific treatment or
intervention.

As ROC plots in their standard form do not show thresh-
olds, they cannot be used to assess model performance con-
ditional on the risk threshold. This severely limits the
interpretability of ROC curves. We therefore argue that
ROC curves in their standard form add little information
to the AUC, as was highlighted in the TRIPOD Explanation
and Elaboration document [7].

In this study, we investigate whether and how ROC
curves are presented in peer-reviewed publications that
externally validate clinical risk prediction models. We
assess and illustrate the limitations of ROC curves using
a case study and simulated data. We compare the ROC
curve with an alternative, the classification plot.
2. Methods

2.1. The ROC curve and AUC

To use a multivariable risk prediction model to select pa-
tients for an intervention, a classification threshold needs to
be specified using the estimated risk. Risks below the risk
threshold imply test negative (or low risk) and above the
threshold imply test positive (or high risk) (Table 1). In
practice, a low threshold results in high sensitivity (high
true positive rate) and low specificity (high false positive
rate). A high threshold results in low sensitivity and high
specificity. Lower risk thresholds imply lower relative costs
of false positives vs. false negatives [6].

ROC curves display the true positive rate (y-axis)
against the false positive rate (x-axis) for each possible
threshold. The better the model discriminates, the more
the ROC curve approaches the upper left corner of the plot.
A model with no discriminative ability has a true ROC
curve that lies on the diagonal line.

The AUC quantifies the model’s discriminative ability.
For dichotomous outcomes, the AUC is equivalent to the
concordance probability or ‘c-statistic’, which is the prob-
ability that the model estimates higher risks for patients
with the event than patients without the event [8e10]. A
model that perfectly discriminates between patients with
and without an event would have an AUC of 1 (the theoret-
ical maximum), whereas a model with no ability to discrim-
inate between such patients would have an AUC of 0.5. The
TRIPOD reporting guideline for clinical prediction models
recommends reporting the AUC and its confidence interval
(CI) [11].

A convenient method for obtaining a CI for the AUC is
the logit transform method, which produces asymmetric



Table 1. Definitions of terms used in this study

Term Explanation

(Risk)
threshold

Value of the estimated risk that is used to classify patients as test positive (increased risk of the event or target condition) or test
negative.

Sensitivity Proportion/percentage of patients with the event or target condition that are classified as test positive. Also called the true positive
rate.

Specificity Proportion/percentage of patients without the event or target condition that are classified as test negative. Also called the true
negative rate.

False positive
rate

Proportion/percentage of patients without the event or target condition that are classified as test positive. Calculated as
1dspecificity.

AUC The area under the ROC curve. For binary outcomes (event vs. no event), the AUC equals the c-statistic, which is the probability
that a random patient with the event has a higher estimated risk than a random patient without the event or target condition.
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intervals that do not exceed 1 [12,13]. Both the time hori-
zon and the presence of censored observations should be
considered for time-to-event data [14,15]. Naive calcula-
tions of true and false positive rates for a chosen threshold
can be misleading as some of the censored observations
would have had events if follow-up was longer. It is feasible
to construct ROC curves and calculate AUCs/c-statistics
that are conditional on follow-up time [16], but this might
further complicate interpretation [14,15,17e19].
2.2. Classification plots

Classification plots can also be used to visualize discrim-
ination. They show the true and false positive rates by risk
thresholds, explicitly allowing the reader to evaluate how
the sensitivity and false positive rate (or specificity) change
with thresholds. Examples of such plots already exist in the
literature [20]. Fig. 1 shows hypothetical classification plots
for various AUCs and event rate scenarios (i.e., the
outcome prevalence or incidence, as appropriate).
2.3. ROC curves in the literature

To gain insight into commonly used methods in the liter-
ature, we performed a full-text search of external validation
studies of clinical prediction models based on logistic
regression for binary outcomes. We ran a pragmatic litera-
ture search in MEDLINE (July 12, 2018) to identify studies
that mentioned ‘‘external validation’’ and ‘‘model’’ in the
title. We extracted data on the use of ROC curves and the
AUC (Table 2; Appendix Table A.1).
2.4. Illustrative case study

We illustrate the limitations of ROC curves using a case
study. We used data from a previous study on patients with
metastatic nonseminomatous testicular cancer who were
treated with chemotherapy [21,22]. After chemotherapy,
retroperitoneal lymph nodes can either still contain rem-
nants of the metastases (mature teratoma or viable cancer)
or only contain benign necrosis. Surgical lymph node resec-
tion can provide certainty and remove metastatic remnants,
but should be avoided when lymph nodes only contain
benign necrosis.

We developed and validated a clinical prediction model
to predict the presence of metastatic remnants, using malig-
nancy as a binary outcome. We used data from 544 patients
to develop the model and data from 550 patients to exter-
nally validate the model [22]. Malignancy was present in
299 (55%) patients in the development data set and in
370 (67%) patients in the validation data set. We built a
baseline model with three predictors: the maximal diameter
of the residual mass, percentage reduction in mass size after
chemotherapy, and presence of teratoma elements in the
primary tumor. We also built an extended model, which
added the presence of elevated alpha-fetoprotein levels
and elevated human chorionic gonadotropin levels to the
baseline model.

2.5. Simulated data

We used two sets of simulated data to illustrate the char-
acteristics and limitations of ROC curves.

Simulation setting A
In the first setting, we considered a binary outcome with

an event rate of 22%: the event is observed in 22% of pa-
tients and not observed in the remaining 78%. The outcome
was predicted through a predictor with an underlying
normal distribution (mean 1, variance 1) that had a true
AUC of 0.74. We simulated data sets with sample sizes
of 50 (11 events on average), 100 (22 events), 250 (55
events), and 500 (110 events). We used the data to investi-
gate the variability and stability of ROC curves.

Simulation setting B
One ROC curve completely ‘dominates’ another when it

has a higher AUC, and the ROC curves do not ever cross.
The dominant model has a higher sensitivity at every spec-
ificity level and a higher specificity at every sensitivity level
than the other model. However, the dominant model may
not have both higher sensitivity and higher specificity when
the same risk threshold is used for both models [23]. In
practice, the dominant model often has lower sensitivity



Fig. 1. Theoretical classification plots for scenarios determined by AUCs (0.6, 0.75, or 0.9) and outcome event rate (10% or 50%). The curves
assume normally distributed linear predictors.
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and higher specificity (or vice versa) than the other model
at certain risk thresholds [23]. Although counterintuitive,
the decrease in one metric is compensated for by the in-
crease in the other metric, thus increasing the overall
discriminatory ability of the model with higher AUC.
ROC curves do not expose this counterintuitive behavior.
Even when risk thresholds are indicated on the curves, this
issue is not easily appreciated.

To illustrate this ROC curve limitation, we simulated a
data set of 100,000 patients, of which 50,000 had the event
(event rate 50%). We assumed two uncorrelated predictive
markers. Both markers were normally distributed with
mean 0 and variance 1 in patients without the event, and
normally distributed with mean 0.8 and variance 1 in pa-
tients with the event. We compared a model with one
marker (true AUC 5 0.71) to a model with both markers
(true AUC 5 0.79).
3. Results

3.1. Literature search

The pragmatic literature search identified 86 published
studies that externally validated a clinical prediction model.
Thirty-three of the studies (38%) did not present ROC
curves, of which six also did not report the AUC
(Table 2). Fifty-two of the studies (60%) presented ROC
curves without a threshold on the curve. In one of these
52 studies, the authors presented a ‘binary’ ROC curve of
dichotomized predictions after applying one risk threshold.



Table 2. Results of the literature search

Search: Studies that externally validate a logistic regression model

Studies included in our assessment 86

Publication year

2002e2010 14 (16%)

2011e2015 26 (30%)

2016 17 (20%)

2017 18 (21%)

2018 11 (13%)

Evaluation of the use of ROC curves and
AUCs

The ROC curve without thresholds, with
AUC

52 (60%)

The ROC curve with multiple thresholds
shown, with AUC

1 (1%)

No ROC curve or AUC 6 (7%)

No ROC curve, with AUC 27 (31%)
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Only one study (1%) presented ROC curves with multiple
thresholds.

3.2. Case study: single model

Using case study data, we constructed and externally
validated a baseline model of three predictors to predict
the presence of metastatic remnants of testicular cancer, us-
ing malignancy as a binary outcome. The AUC of the exter-
nally validated baseline model was 0.77 (95% CI 0.73 to
0.81). Fig. 2A shows the accompanying ROC curve. Using
a risk threshold of 0.2 (20%), previously suggested as clin-
ically reasonable, resulted in a sensitivity of 99% (95% CI
97 to O99%) and specificity of 7% (95% CI 3 to 10%)
[21]. We selected three risk thresholds (0.2, 0.3, and 0.4)
to indicate on the ROC curve (Fig. 2B).

Fig. 3A shows the classification plot for the same model,
including 95% CIs for the selected thresholds. The sensi-
tivity and false positive rate for each threshold value are
shown below the plot. Other statistics could also be dis-
played, such as the positive and negative predictive values
or the diagnostic odds ratio.

3.3. Case study: model comparison

ROC curves are often used to compare the discrimina-
tion performance of clinical prediction models [24].
Fig. 2C shows ROC curves for the baseline and extended
testicular cancer models. To compare discrimination, we
can compute a CI for the difference in c-statistics (AUCs)
using DeLong’s method, although the method is biased in
certain circumstances [12,25,26]. The AUC of the exter-
nally validated extended testicular cancer model was 0.80
(95% CI 0.77 to 0.84). The difference in AUC between
the two models was 0.03 (95% CI �0.01 to 0.08).

Sensitivity and specificity are usually compared at one
or more thresholds, using the same risk thresholds for both
models. At a 20% risk threshold, the extended testicular
cancer model had a sensitivity of 99% (95% CI 97% to
100%) and a specificity of 16% (10% to 21%). The
extended model had 0.3% (95% CI �0.9% to 1.5%) greater
sensitivity and 8.9% (95% CI 4.2% to 13.6%) greater spec-
ificity than the baseline model.

As ROC curves do not align clinical prediction models
by risk thresholds, they do not allow direct comparison
by thresholds [27]. We can show the thresholds on the
curves (Fig. 2D), but the plot quickly becomes cluttered
as more thresholds are added.

Classification plots can show comparative results for two
clinical prediction models (Fig. 3B), allowing performance
to be directly compared by thresholds. Detailed results,
including CIs for selected thresholds, can be shown in a ta-
ble. Software to create classification plots is available, for
example, in the ROCR [28] and rmda [20] packages for
R. We have also developed an R function to produce clas-
sification plots, allowing the user to select a range of perfor-
mance statistics (plotted on the curve and/or printed below
the plot) (Appendix file B.1 and available on GitHub via
https://github.com/janverbakel/ClassificationPlot). The
function allows users to plot pointwise 95% CIs at their
thresholds of interest.
3.4. Simulated data: variability of ROC curves

Fig. 4 shows how the ROC curves from simulation
setting A vary with sample size. The variability was enor-
mous for n 5 50 and remained considerable even at
n 5 500. Although uncertainty is inevitable in any data
set, ROC curves have a source of variation that the AUC
does not. Two curves for the same prediction model evalu-
ated on two samples from the same target population can
have the same AUC, but very different shapes. This adds
complexity without adding useful information.

To illustrate the issue, Appendix Fig. A1 repeats Fig. 4
but shows 100 curves with an AUC of 0.75. The ROC
curves vary considerably even with a sample size of 500,
implying that we require very large samples to obtain stable
curves. Appendix Fig. A2 shows the ROC curve for the
baseline model from the case study with a 95% confidence
band for the curve based on Mart�ınez-Camblor’s method
[29] and 95% CIs for sensitivity and specificity at selected
thresholds. The confidence band for the curve is wider than
the CIs for the thresholds of interest. Confidence bands for
the whole ROC curve integrate the uncertainty of sensi-
tivity and specificity at every possible threshold, which
adds up and causes wide bands.

Classification plots also suffer from sampling variability
in their shape. To illustrate, Appendix Fig. A3 shows the clas-
sification plots for the ROC curves from Fig. 4. However, we
are usually not interested in the full curve. As deciding
whether a patient should receive an intervention is a binary
decision, we are usually interested in the pointwise CIs for
one or more clinically relevant thresholds (cf Fig. 3).

https://github.com/janverbakel/ClassificationPlot
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Fig. 2. Visualizing the discriminatory ability of the baseline and extended models for testicular cancer using ROC curves: (A and B) baseline model
alone or (C and D) comparing the baseline and extended models, (A and C) without and (B and D) with risk thresholds.

Fig. 3. Classification plots showing sensitivity (true positive rate, TPR) and false positive rate (FPR) by threshold for (A) the baseline testicular can-
cer model (with 95% pointwise confidence intervals of TPR and FPR for risk thresholds of 20%, 30%, 40%) or (B) both the baseline and extended
testicular cancer models.
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Fig. 4. Effect of increasing sample size (n) on the variability and shape of the ROC curve. We considered a normally distributed risk prediction
model with a true AUC of 0.74 for predicting the presence of an event with a true event rate of 22%. For each of four sample sizes, 100 data sets
were simulated and their corresponding ROC curves plotted. At lower sample sizes, ROC curves are more rough and variable than at high sample
sizes.
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3.5. Simulated data: model comparison can be
misleading using ROC curves

Two models were generated for simulation setting B.
The model with two markers had an ROC curve that was
dominant over the ROC curve from the model with one
marker (Fig. A2). However, the classification plot shows
that the dominant model did not have a better sensitivity
and false positive rate at every threshold (Fig. A4).

Comparing the two models developed using the case
study data set shows a similar result (Fig. 3). However, that
data set had a smaller sample size and hence relatively
more random variation.
4. Discussion

We have shown that published studies about prediction
models commonly present ROC curves without adding
threshold information. We argued that ROC curves without
thresholds provide no more information than the AUC if we
are interested in the discriminative ability of a prediction
model. We also illustrated several shortcomings of ROC
curves: ROC curves (a) do not automatically show
threshold information, (b) have highly unstable shapes
(even when holding the AUC constant), (c) offer limited
ability to compare two models conditional on thresholds,
and (d) give potentially misleading results when comparing
models where one ROC curve dominates the other.

The performance of risk prediction models for decision-
making has to be conditional on a risk threshold to fix
misclassification costs. Researchers must therefore present,
at minimum, thresholds alongside ROC curves [27,30,31].
However, ROC curves remain inefficient even when a few
thresholds are added to the plot. ROC curves only provide
information for the added thresholds and do not have space
for many thresholds. They also do not allow easy compar-
ison of the performance of two models for the same
threshold.

An alternative to the ROC curve is the classification plot,
which explicitly shows classification performance condi-
tional on thresholds. Admittedly, classification plots are
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more complex because they require two lines instead of
one, but offer the advantages of considering many thresh-
olds and allowing easier evaluation of sensitivity and spec-
ificity by thresholds. Classification plots and ROC curves
exhibit similar levels of variability, which is notably large
in small samples. However, a single risk threshold is usu-
ally used when a model is used for decision-making in a
specific setting. Although the particular threshold can vary
by setting, a limited set or range of clinically relevant
thresholds is usually of interest. Pointwise CIs are usually
sufficient, instead of confidence bands for the full curve.
Classification plots can easily be restricted to the range of
thresholds of interest.

Our work should be interpreted within a wider context.
Calibration and clinical utility are increasingly recognized
as performance aspects that are at least as important as
discrimination [32]. Calibration refers to the reliability of
the risk estimates and can be poor even when discrimina-
tion is good. When externally validating a prediction
model, we recommend using calibration curves to investi-
gate whether the model is calibrated [33]. Clinical utility
refers to a model’s value for clinical decision-making.
Common approaches for evaluating clinical utility are
decision-curve analysis and relative utility [20,34e37].
These approaches avoid conducting a full-scale cost-effec-
tiveness study. More detailed descriptions of these aspects
of performance are beyond the scope of this study. Howev-
er, we argue that visualizations of calibration and clinical
utility are usually more relevant than visualizations of
discrimination. When a risk threshold is used to identify
high-risk patients from a model, calibration helps to deter-
mine whether the classification works as intended. For
example, if risks are overestimated, the risk threshold iden-
tifies more high-risk patients than planned.

This study referred to the situation in which a novel
marker is added to a prediction model. Specific measures
and visualizations are available for this situation, which were
beyond the scope of this study [30]. For example, research
on added markers has focused on the potential increase in
discrimination when the novel marker is added, rather than
calibration or utility assessments [38]. In that context, it is
worth mentioning that the classification plot has links with
integrated discrimination improvement (IDI) [39]. The area
under the sensitivity curve equals the mean predicted risk
of event for events, whereas the area under the false positive
rate curve equals the mean predicted risk of event for non-
events. The difference between these areas is known as the
discrimination slope [40]. If a new marker is added, the dif-
ference between discrimination slopes of the model with and
without the marker is known as the IDI.

The study of biomarkers is a related area to that of multi-
variable prediction models. Although a detailed discussion
of the value of ROC curves for biomarker studies is beyond
the scope of this study, we mention a few considerations
here. Biomarkers are often measured on different scales,
making comparisons at the same threshold difficult. A
comparison at the same risk threshold would be possible af-
ter modeling the marker on its own or in combination with
other predictors. However, biomarkers are often investi-
gated for their potential role in multivariable clinical pre-
diction models [41]. In these situations, we suggest that
the AUC alone is sufficient to summarize the biomarker’s
discriminative ability and that the difference in AUC is suf-
ficient to compare biomarkers. Investigators can also eval-
uate a biomarker’s value as a standalone criterion to
identify patients who need additional testing. They will
then be interested in the model’s ability to classify a patient
based on a threshold biomarker value. The choice of a
threshold can be illustrated with ROC curves, even when
taking misclassification costs into account [42,43]. For
the actual derivation of an optimal threshold, however, an
ROC curve is not useful. Many claim that an optimal
threshold corresponds to the point on the ROC curve that
is closest to the upper left corner [44,45]. However, this
threshold is often suboptimal from a clinical perspective,
as it does not consider clinically relevant costs of false pos-
itive and false negative classifications [46]. Alternatively,
sensitivity is often compared at a fixed level of specificity,
or vice versa. Such comparisons do not require an ROC
curve. This approach implies the use of different risk
thresholds for the two models, implying inconsistent defini-
tions of a high-risk patient, which conflicts with rational
decision-making [6].

To conclude, ROC curves are limited because they sup-
press threshold information and can greatly vary in their
shape. Instead, we recommend focusing on the AUC to
summarize discriminatory ability. When the impact on
decision-making is of interest, performance at one or a
few clinically relevant risk thresholds should be reported
(with pointwise CIs). When discriminatory ability must
be visualized, classification plots are attractive.
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Fig. 1. Theoretical classification plots for scenarios determined by AUCs (0.6, 0.75, or 0.9) and outcome event rate (10% or 50%). The curves
assume normally distributed linear predictors.

172 J.Y. Verbakel et al. / Journal of Clinical Epidemiology 130 (2021) 171e173



Fig. 4. Effect of increasing sample size (n) on the variability and shape of the ROC curve. We considered a normally distributed risk prediction
model with a true AUC of 0.74 for predicting the presence of an event with a true event rate of 22%. For each of four sample sizes, 100 data sets
were simulated and their corresponding ROC curves plotted. At lower sample sizes, ROC curves are more rough and variable than at high sample
sizes.
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