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Abstract 
Ingested nanomaterials are exposed to many metabolites that are produced, modified or 
regulated by members of the enteric microbiota. The adsorption of these metabolites 
potentially affects the identity, fate and biodistribution of nanomaterials passing the 
gastrointestinal tract. Here, we explore these interactions using in silico methods, 
focusing on a concise overview of 170 unique enteric microbial metabolites which we 
compiled from the literature. First, we construct quantitative structure-activity 
relationship (QSAR) models to predict their adsorption affinity to 13 metal 
nanomaterials, 5 carbon nanotubes and 1 fullerene. The models could be applied to 
predict log k values for 60 metabolites, and were particularly applicable to ‘phenolic, 
benzoyl and phenyl derivatives’, ‘tryptophan precursors and metabolites’, ‘short-chain 
fatty acids’ and ‘choline metabolites’. The correlations of these predictions to biological 
surface adsorption index descriptors, indicated that hydrophobicity-driven interactions 
contribute most to the overall adsorption affinity, while hydrogen-bond interactions 
and polarity/polarizability-driven interactions differentiate the affinity to metal and 
carbon nanomaterials. Next, we use molecular dynamics (MD) simulations to obtain 
direct molecular information for a selection of vitamins that could not be assessed 
quantitatively using QSAR models. This showed how large and flexible metabolites can 
gain stability on the nanomaterial surface via conformational changes. Additionally, 
unconstrained MD simulations provided excellent support for the main interaction 
types identified by QSAR analysis. Combined, these results enable assessing the 
adsorption affinity for many enteric microbial metabolites quantitatively and support 
the qualitative assessment of an even larger set of complex and biologically relevant 
microbial metabolites to carbon and metal nanomaterials.  
 
Keywords: Gut microbiota; Nanoparticles; Biomolecular corona; Molecular dynamics 
simulation; QSAR. 
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2.1 Introduction 
The gastrointestinal tract harbors a dense community of viruses, archaea, bacteria, fungi 
and protozoa, collectively termed the enteric microbiota. In humans, the enteric 
microbiota constitute a similar order of magnitude of cells as all host cells combined 
(Sender et al. 2016). Altogether, these enteric microbiota members have been estimated 
to comprise nearly a factor 1000 more genes than the host (Tierney et al. 2019). Using 
this large set of genes, enteric microbes compete and cooperate with one another (Coyte 
et al. 2019), and interact with the host (Ruan et al. 2020). As part of all of these 
interactions, enteric microbes produce and excrete, modify and regulate metabolites. 
Many of these metabolites become available in the intestinal lumen, where they function 
as antimicrobial agents, signaling molecules and substrates (Krautkramer et al. 2021). 

For over a decade, biomolecules have been shown to play a key role in the behavior 
and toxicity of engineered nanomaterials (ENMs) (Nel et al. 2009; Chen and Riviere 
2017). Many biomolecules, and proteins in particular, have been found to associate with 
the large surface area of ENMs, forming a shell of biomolecules referred to as the 
‘biomolecular corona’ (Monopoli et al. 2012) or ‘ecological corona’ (Nasser et al. 2019) 
from a biomedical or ecological perspective, respectively. By changing or masking the 
surface properties of ENMs, biocoronae can affect the colloidal stability (Gebauer et al. 
2012) and identity (Walczyk et al. 2010) of ENMs. The principles that govern the 
biocorona-mediated recognition of ENMs are increasingly well understood (Dawson 
and Yan 2021). Nevertheless, environmental metabolites, including many other 
metabolites than proteins, affect the biodistribution and toxicity of ENMs in a yet 
unpredictable fashion. 

When ENMs are ingested, they will be exposed to the myriad of enteric microbial 
metabolites that are available in the intestinal lumen. Consequently, they may acquire 
enteric microbial metabolites in their biocoronae. Several specific interactions between 
microbial metabolites, the ENM surface, and biological membranes and receptors have 
already been found to affect the fate and biodistribution of ENMs. In bacterial cultures, 
for example, bacterial flagellin was found to reduce the colloidal stability of nanosilver, 
thereby decreasing its antimicrobial activity (Panáček et al. 2018). Furthermore, 
conjugation of latex nanoparticles with invasin, a bacterial surface protein, has been 
shown to facilitate the uptake of these particles across the intestinal epithelium of rats 
(Hussain and Florence 1998). Other research investigating the interactions of microbial 
metabolites with ENMs mostly focused on complex mixtures of environmentally 
relevant biomolecules, such as extracellular polymeric substances (Fulaz et al. 2019), or 
employed the properties of specific microbial biomolecules to develop ENMs that 
function as biosensors or nanocarriers (Yan et al. 2008; Chen et al. 2014a; 
Thepphankulngarm et al. 2017). Less specific physisorption processes between enteric 
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microbial metabolites and ENMs, that do not concern specific interaction targets, like 
receptors, and include other metabolites than proteins, have barely been investigated. 
Here, we focus on the potential contribution of this understudied set of enteric 
microbial metabolites to biocorona formation onto ingested ENMs in the intestinal 
lumen. 

In the present study, we construct models and generate data to initiate the 
assessment of the role of enteric microbial metabolites in biocorona formation onto 
ingested ENMs. Firstly, we compile a concise overview and categorization of 
metabolites that are available in the intestinal lumen for biocorona formation. This is 
based on a literature review. Subsequently, we employ the biological surface adsorption 
index (BSAI) theory to construct a set of quantitative structure-activity relationship 
(QSAR) models to predict adsorption affinities for enteric microbial metabolites to 
various metal and carbon ENMs. In addition to this statistical approach to studying 
nano-bio interactions at low computational cost, we perform a computationally-
demanding free-energy analysis based on molecular dynamics (MD) simulations. For 
these investigations based on physical modeling, we focus on a selection of vitamins that 
cannot be assessed using current QSAR models, to obtain direct molecular information 
on characteristics of nano-bio interactions that need to be considered for these 
microbial metabolites. Ultimately, this could be used to improve current QSAR models. 
Additionally, through a combination of QSAR investigations and classical and 
unconstrained MD simulations, we explore what interaction types are key to the 
adsorption of enteric microbial metabolites to metal and carbon ENMs. Overall, we 
anticipate that the results of these investigations support the qualitative and quantitative 
assessment of biologically relevant adsorption interactions between enteric metabolites 
and ingested ENMs. 
 

2.2 Results and discussion 

2.2.1 Inventory of enteric microbial metabolites 
We base this study on a literature search, generating a concise overview of metabolites 
that are produced or regulated by gastrointestinal microbiota. Ten reviews on intestinal 
microbial metabolism were selected for this inventory (Ruan et al. 2020; Defaye et al. 
2020; Douglas 2020; Fiori et al. 2020; Martin et al. 2020; Sauma and Casaccia 2020; Shah 
et al. 2020; Silva et al. 2020; Wu et al. 2020; Xing et al. 2020), following the procedure 
described in the Methods section. This led to a total of 170 unique enteric microbial 
metabolites. These microbial metabolites were assigned to 13 different functional or 
structure-based metabolite categories, adopting the categorization conventions from the 
cited literature. The metabolite categories (with abbreviations specified between 
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brackets) included ‘microbe-associated molecular patterns (MAMPs)’, ‘vitamins’, 
‘short-chain fatty acids (SCFAs)’, ‘primary bile acids (PBAs)’, ‘secondary bile acids 
(SBAs)’, ‘conjugated bile acids (CBAs)’, ‘tryptophan precursors and metabolites 
(Tryptophan)’, ‘polyamines’, ‘choline metabolites (Choline)’, ‘neurotransmitters’, ‘lipids 
and lipid precursors (Lipid)’, ‘phenolic, benzoyl and phenyl derivates (Phenolic)’, and 
‘proteins/enzymes’ (Table 2.1). Most of the identified enteric microbial metabolites were 
categorized as ‘phenolic, benzoyl and phenyl derivates’ (24 metabolites), followed by 
‘MAMPs’ (23 metabolites) , ‘tryptophan precursors and metabolites’ (17 metabolites), 
‘SBAs’ (16 metabolites), ‘lipids and lipid precursors’ (13 metabolites), 
‘proteins/enzymes’ (12 metabolites), ‘vitamins’ (11 metabolites), ‘SCFAs’ (8 
metabolites), ‘CBAs’ (7 metabolites), ‘neurotransmitters’ (6 metabolites), ‘choline 
metabolites’ (6 metabolites), ‘polyamines’ (4 metabolites), and ‘PBAs’ (2 metabolites). 
Acetylcholine and 5-hydroxytryptamine were assigned to the categories ‘tryptophan 
precursors and metabolites’ and ‘neurotransmitters’. The remaining 21 metabolites that 
had not been assigned to any of these categories, were listed as ‘Other’.  

Given the large metabolic potential and high intra- and interindividual variation of 
the enteric metabolome (Tierney et al. 2019), the actual set of available enteric microbial 
metabolites is likely large and diverse. In order to decide if the selected reviews 
represent an adequate proportion of this diversity in available enteric microbial 
metabolites, we determined the percentage of new metabolites that were identified with 
including increasing numbers of reviews in the inventory (Fig. 2.1). The first three 
reviews that were included (Defaye et al. 2020; Douglas 2020; Shah et al. 2020), reported 
80.5 % (137 metabolites) of the 170 identified microbial metabolites. The next two 
reviews that were included (Ruan et al. 2020; Xing et al. 2020), contributed 14.1 % (24 
metabolites) of the total number of unique metabolites, and the final five reviews (Fiori 
et al. 2020; Martin et al. 2020; Sauma et al. 2020; Silva et al. 2020; Wu et al. 2020) 
contributed only 5.3 % (9 metabolites) of the total number of identified metabolites. 
This saturation in the total number of identified metabolites suggests that sufficient 
reviews were included in the inventory. Moreover, the metabolites included in the first 
three reviews represented all of the 13 metabolite categories. This may result from the 
conserved functional capacity of the enteric metabolome (Tian et al. 2020), and predicts 
that any metabolite that is not included in the inventory, will likely be functionally and 
structurally equivalent to the metabolites included in our study. For this reason, we 
decided that the 170 considered metabolites represented sufficient diversity in enteric 
microbial metabolites for our further analyses. 
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Table 2.1: Overview of the enteric microbial metabolites included in this study.  

Category Metabolites Description 

Microbe-associated 
molecular patterns 

N-formylated peptides, lipoteichoic acid, 
peptidoglycan, lipopeptides, 
lipopolysaccharides, glucans, mannans, 
chitins, capsular polysaccharides, 
muramyldipeptide 

Conserved components of microbial 
cells that can elicit innate immune 
responses upon recognition by pattern-
recognition receptors. 

Vitamins menaquinone-4, cobalamin, biotin, folate, 
thiamine, riboflavin, pyridoxine, niacin, 
pantothenic acid, 5,10-
methenyltetrahydropteroylglutamate, 
mono-/polyglutamylated folate. 

B vitamins (B1-3,5,6,8,9,12), vitamin K2 
and vitamin H. 
Organic micronutrients that are 
essential to the host, but cannot be 
synthesized by the host. 
 

Short-chain fatty 
acids 

acetic acid, propionic acid, 2-
methylpropionic acid, butyric acid, 
isobutyric acid, hexanoic acid, valeric acid, 
isovaleric acid, methylbutyric acid 

Fatty acids with fewer than six carbon 
atoms that are produced by gut 
microbiota in the colon from 
indigestible fibers, which subsequently 
can be adsorbed by the host. 

Primary bile acids cholic acid, chenodeoxycholic acid 
 

Cholesterol-derived molecules that are 
synthesized in the liver, secreted into 
the duodenum following conjugation 
with glycine or taurine residues, and 
resorbed in the ileum. 

Secondary bile acids 12-dehydrocholate, 7-ketodeoxycholic acid, 
7-dehydrochenodeoxycholate, 3-
dehydrocholic acid, 3-
dehydrochenodeoxycholic acid, isocholic 
acid, isochenodeoxycholic acid, lithocholic 
acid, deoxycholic acid, allolithocholic acid, 
allodeoxycholic acid, ursocholic acid, 
ursodeoxycholic acid, hyocholic acid, 
hyodeoxycholic acid, 7-oxolithocholic acid 

Bile acids synthesized from primary-bile 
acids by gut microbiota in the colon. 
Functions of bile acids include the 
elimination of cholesterol, the 
emulsification of lipophilic vitamins and 
modulation of immune responses. Bile 
acids can interact with Farnesoid X 
receptor and G-protein coupled bile-
acid receptor 1. 

Conjugated bile 
acids 

taurocholic acid, glycocholic acid, 
taurohyocholic acid, taurochenodeoxycholic 
acid, glycochenodeoxycholic acid, 
glycodeoxycholic acid, taurodeoxycholic 
acid 

Amphiphatic molecules that are 
derived from primary and secondary 
bile acids in the liver following 
conjugation with glycine or taurine 
residues.  

Tryptophan 
precursors and 
metabolites 

N-acetyltryptophan, indoleacetic acid, 
indoleacetylglycine, indole, indoxyl sulfate, 
indole-3-propionic acid, melatonin, 
melatonin 6-sulfate, 5-hydroxyindole, 5-
hydroxytryptamine, indoleacrylic acid, 
indoleethanol, tryptamine, 3-methylindole, 
indole-3-carboxylate, acetylcholine 

Small indole-based molecules, 
synthesized from the amino acid 
tryptophan, acquired through digestion 
of dietary protein in the small 
intestines. Many tryptophan 
metabolites can interact with the aryl 
hydrocarbon (AhR) receptor, affecting 
immunity, tissue regeneration and 
intestinal barrier integrity. 

Polyamines putrescine, cadaverine, spermidine, 
spermine 

Organic polycationic molecules 
comprising three or more amino 
groups. Polyamines can interact with 
negatively charged molecules such as 
DNA, RNA and proteins. 

Choline metabolites methylamine, dimethylamine, 
trimethylamine, trimethylamine-N-oxide, 
dimethylglycine, betaine 

Small, water soluble metabolites of 
choline, some of which are associated 
with cardiovascular disease and 
atherosclerosis. 

Neurotransmitters 5-hydroxytryptamine, noradrenaline, 
gamma-aminobutyric acid, dopamine, 
norepinephrine, acetylcholine, histamine, 5-
hydroxytryptamine 

Metabolites that can transmit signals 
from neurons to adjacent target cells 
by binding synaptic receptors. 
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Phenolic, benzoyl 
and phenyl 
derivatives 

benzoate, hippurate, phenylacetate, 
phenylpropionate, 3-hydroxycinnamate, 2-
hydroxyhippurate, 3-hydroxyhippurate, 2-
hydroxybenzoate, 3-hydroxybenzoate, 4-
hydroxybenzoate, 4-hydroxyphenylacetate, 
3-hydroxyphenylpropionate, 4-
hydroxyphenylpropionate, 3,4-
dihydroxyphenylpropionate, 4-cresol, 4-
cresyl sulfate, 4-cresyl glucuronide, 
phenylacetylglutamine, phenylacetylglycine, 
phenylpropionylglycine, cinnamoylglycine, 
4-ethylphenyl sulfate, phenol, s-equol 

Aromatic molecules, not designated to 
any of the above categories, containing 
one or multiple phenol, benzoyl or 
phenyl groups. 

Lipids and lipid 
precursors 

sphingomyelin, cholesterol, 
phosphatidylcholine, 
phosphoethanolamines, triglycerides, 
sphingolipids, linoleic acid, caproic acid, 
endocannabinnoids 

Fats and fatty acids, phospholipids and 
steroids which cannot be designated to 
any of the above categories.  

Proteins/ enzymes microbial anti-inflammatory molecule, 
bacteriocins, α-haemolysin, Amuc_1100, 
serine protease, serpins, lactocepin 

Large biomolecules comprising one or 
multiple polypeptide chains, i.a. 
functioning as anti-inflammatory 
agents, toxins, proteases and protease 
inhibitors.  

Other methanol, ethanol, formate, succinate, 
lysine, glucose, urea, α-ketoisovalerate, 
creatine, creatinine, imidazole propionate, 
hydrogen peroxide, reactive aldehyde, 
quorum sensing molecules, D-lactate, 
mycolactone 

Molecules that cannot be classified in 
any of the above metabolite 
categories.  

 

 

  
Figure 2.1: Total number of unique enteric microbial metabolites identified upon including 

increasing numbers of reviews in the inventory. Primary bile acids (‘gray’), secondary bile acids 
(‘white’) and conjugated bile acids (‘gray’) are stacked (bottom-up).  
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2.2.2 QSAR models for log k predictions 
In the next two parts of our study, we investigate the adsorption affinity of the identified 
enteric microbial metabolites (Table 2.1) to metal and carbon ENMs using QSAR 
models and MD simulations. Proteins were excluded from these analyses, because their 
three-dimensional folding properties require different physical modeling approaches. 
For the QSAR models, we focus on the 19 ENMs that have been characterized by Chen 
et al. (2014b), including 13 metal ENMs, 5 carbon nanotubes and 1 fullerene (Table 2.2). 
The core materials of the metal ENMs include aluminum hydroxide oxide (AlO(OH)), 
silver (Ag), barium sulfate (BaSO4), silicon dioxide (SiO2), titanium dioxide (TiO2), zinc 
oxide (ZnO), and zirconium(IV)oxide (ZrO2).  
 
 

Table 2.2: Overview of the nanomaterials included in the present study. a)  

Type Name Core 
material 

Surface coating  Diameter 
(nm) b) 

Length 
(μm) b)  

SSA 
(m2/g) c) 

Metal 
nano-
material 

AlOOH AlO(OH) None 37 NA 47 

TiO2_NM105 TiO2 None 21 NA 51 

ZnO_NM110 ZnO None 80 NA 12 

SiO2_Amino SiO2 Amino groups 15 NA 200 

SiO2_Phosphat SiO2 Phosphate  15 NA 200 

Ag200_PVP Ag Polyvinylpropylene 134 NA 4.5 

BaSO4_NM220 BaSO4 Polymer  32 NA 41 

Ag50_Citrat Ag Citrate 20 NA 30 

SiO2_Naked SiO2 None/hydroxyl 15 NA 200 

ZrO2_Amino ZrO2 Amino groups 10 NA 105 

ZrO2_TODacid ZrO2 Trioxadecanoic acid  9 NA 117 

ZrO2_PEG ZrO2 Polyethyleneglycol 
(PEG600) 

9 NA 117 

SiO2_PEG SiO2 Polyethyleneglycol 
(PEG500) 

15 NA 200 

Multi-
walled 
carbon 
nanotube 

sMWCNT Carbon None 8-15  0.5-2 95 

MWNT_OH Carbon Hydroxyl  
(3.7 % wt -OH) 

8-15 ~50 95 

MWNT Carbon None 8-15 ~50 95 

MWNT_COOH_
20nm 

Carbon Carboxyl  
(2 % wt -COOH) 

10-20 10-30 95 

MWNT_COOH_
50nm 

Carbon Carboxyl  
(0.73 % wt -COOH) 

30-50 10-20 95 

Fullerene FullrC60 Carbon None 1 NA 98 

a)  Reprinted (adapted) with permission from Chen et al. (2014b). Copyright (2014) American Chemical Society; b) Dimensions 
refer to the primary particle size of nanomaterials. The outer diameter of carbon nanotubes is indicated; c) SSA, specific 
surface area. 
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We consecutively apply two QSAR models for each of the ENMs to predict log k 
values. The first model that we apply is the BSAI model established by Xia et al. (2010), 
which uses Abraham’s molecule descriptors [E,S,A,B,V] and corresponding 
nanodescriptors [r,p,a,b,v] to predict the adsorption affinity for biomolecules to ENMs 
following:  

 log ki = c + Ei·r + Si·p + Ai·a + Bi·b + Vi·v,  i = 1, 2, 3, …, n  (eq 2.1) 

where c is the adsorption constant; Ei is the excess molar refraction; Si is the effective 
solute dipolarity and polarizability; Ai is the effective solute hydrogen-bond acidity; Bi is 
the effective solute hydrogen-bond basicity; Vi is the McGowan characteristic volume; 
and n is the number of biomolecules included. The nanodescriptors [r,p,a,b,v] weigh the 
contributions of interactions between biomolecules and the ENM surface resulting from 
lone-pair electrons (Ei·r), polarity/ polarizability (Si·p), hydrogen-bond acidity (Ai·a), 
hydrogen-bond basicity (Bi·b), and hydrophobicity (Vi·v). We adopted the 
nanodescriptors derived by Chen et al. (2014b), which have been corrected for the 
effects of interactions between probe molecules, using Langmuir model extrapolations. 

We applied the BSAI model (eq 2.1) to a set of molecules (~2000 molecules) for 
which the required Abraham’s molecule descriptors [E,S,A,B,V] have been determined 
experimentally (Bradley et al. 2014). However, these molecules only include 18 out of 
the 170 enteric microbial metabolites. Because open-source toolkits for 
cheminformatics such as Chemistry Development Kit (CDK; http://cdk.github.io/) and 
RDKit (https://www.rdkit.org) cannot derive Abraham’s molecule descriptors from the 
molecular structure of the metabolites, we used the log k predictions from the BSAI 
model to build a second QSAR model for each of the ENMs. We exclusively used 
molecular descriptors from CDK as the descriptors for these second QSAR models. As a 
result, these models could be applied to predict log k values based on the molecular 
structure of enteric microbial metabolites. In the remainder, we refer to the two QSAR 
models as ‘BSAI models’ (eq 2.1), and ‘CDK models’ (Table 2.3, Table S7 and Table S9). 
Furthermore, we refer to nanodescriptor ‘r’ as ‘re’, and to nanodescriptor ‘p’ as ‘ps’, to 
avoid confusion with the Pearson correlation coefficient (r) and statistical p-values, 
respectively. The subscripts for these nanodescriptors were selected based on their 
corresponding Abraham molecule’s descriptors E and S. 

Since the CDK models only function as a means to apply BSAI models to molecules 
without known Abraham’s molecule descriptors, we omit a detailed discussion of the 
descriptors that are included in CDK models (Table S2). Nevertheless, it is worth noting 
that the first descriptor in all models (ALogP, XLogP, AMR and ATSp1), explaining 
most of the variance in log k predictions, correlates with the Abraham’s molecule 

http://cdk.github.io/
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descriptor V (ρ = 0.66, 0.60, 0.96, and 0.90, respectively, p<0.001; Fig. S1). This is 
consistent with the large contribution of Abraham’s molecule descriptor V in BSAI 
models (Xia et al. 2010), and reflects the importance of interactions between 
hydrophobic sites of biomolecules and hydrophobic regions on the ENM surface. Xia et 
al. confirmed this experimentally for MWCNTs, obtaining a significant correlation 
between the log k measurements for probe compounds and their log Ko/w values (Xia et 
al. 2010). 

Table 2.3: CDK models for the prediction of the log k adsorption affinity of metabolites to metal 
and carbon nanomaterials.  

ENM Model R 2
train

a) R 2
validate

a) AD b) 

Ag50_Citrat log k ~ 2.39+ 0.40·ALogP – 0.54·Fsp3 + 0.37·khs.sOH – 
0.04·WTPT.4 – 0.004·ATSm1  0.82 0.83 0.94 

Ag200_PVP log k ~ 2.63 + 0.30·ALogP + 0.32·khs.sOH – 0.01·nAtom 
– 0.25·Fsp3 + 0.22·nAcid 

0.71 0.77 0.93 

AlOOH log k ~ 1.79 + 0.49·ALogP + 0.45·nHBDon – 0.57·Fsp3 + 
0.004·ATSm1 – 0.41·nBase 

0.83 0.84 0.93 

BaSO4 
log k ~ 1.73 + 0.30·ALogP + 0.03·nAtomP + 
0.23·nHBDon + 0.004·ATSm1 + 0.11·nSmallRings 

0.86 0.86 0.92 

FullrC60 log k ~ 0.15 + 0.79·ALogP – 0.14·khs.aasC + 
1.53·khs.sssSiH – 0.0001·WPATH – 0.63·khs.aasN 

0.91 0.90 0.94 

sMWCNT log k ~ 1.76 + 0.003·ATSp1 + 0.09·nAtomP – 
0.39·khs.ssssC + 0.33·khs.sBr – 0.13·khs.sOH 0.88 0.93 0.93 

MWNT_COOH_
20nm 

log k ~ – 0.81 + 0.12·AMR – 1.18·Fsp3 + 0.02·ATSm4 + 
0.53·MDEO.11 + 0.17·khs.aaaC 0.94 0.97 0.93 

MWNT_COOH_
50nm 

log k ~ – 0.005 + 0.11·AMR – 0.15·nRotB – 0.14·C1SP3 + 
0.006·TopoPSA + 0.19·khs.aaaC 0.97 0.98 0.93 

MWNT_OH log k ~ – 0.35 + 0.005·ATSp1 + 0.18·nAtomP – 
0.60·khs.ssssC + 0.60·khs.sBr + 0.23·nHBDon 0.92 0.96 0.94 

MWNT log k ~ 1.53 + 0.004·ATSp1 – 0.65·khs.ssssC + 
0.06·nAtomP + 0.44·MDEO.11 – 0.18·khs.sOH 0.91 0.94 0.94 

SiO2_Amino log k ~ 1.71 + 0.50·ALogP + 0.36·nHBDon – 0.41·nBase 
+ 0.31·nAcid – 0.90·khs.sssSiH 0.85 0.87 0.93 

SiO2_Naked log k ~ 2.40 + 0.40·XLogP – 0.49·Fsp3 + 0.35·khs.sOH – 
0.07·Kier2– 0.21·khs.ssNH 0.80 0.82 0.92 

SiO2_PEG log k ~ 1.58 + 0.49·XLogP – 0.0004·fragC + 
0.41·nHBDon – 0.26·khs.ssssSi – 0.42·nBase 0.77 0.77 0.94 

SiO2_Phosphat log k ~ 1.93 + 0.48·ALogP + 0.37·nHBDon – 0.22·Fsp3 – 
0.35·nBase + 0.30·nAcid 

0.84 0.86 0.93 

TiO2 
log k ~ 1.96 + 0.40·ALogP + 0.36·nHBDon – 0.52·Fsp3 + 
0.41·SCH.7 – 0.004·ATSm1 

0.85 0.86 0.93 

ZnO log k ~ 1.62 + 0.54·ALogP + 0.41·nHBDon – 0.41·nB–se - 
0.32·Fsp3 + 0.95·khs.sssSiH 

0.86 0.87 0.94 

ZrO2_Amino log k ~ 1.71 + 0.53·ALogP + 0.37·khs.sOH – 
0.0002·ATSp5 + 1.09·khs.sssSiH + 0.30·nAcid 

0.79 0.83 0.94 

ZrO2_PEG log k ~ 2.22 + 0.60·ALogP + 0.45·khs.sOH – 0.07·Kier1 + 
0.34·Fsp3 + 1.14·khs.sssSiH 0.77 0.80 0.95 

ZrO2_TODacid log k ~ 1.61 + 0.46·XLogP + 0.41·khs.sOH – 
0.002·ECCEN + 0.22·khs.ssssSi – 0.36·nAcid 0.74 0.79 0.92 

a) Adjusted R2 values are presented for the training set (R2
train) and for the validation set (R2

validate); b) AD, applicability domain; fraction 
of compounds from the training and validation set that are within the applicability domain thresholds of Williams plots (Fig. S6).  
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2.2.3 Applicability domain of the QSAR models 

The set of enteric microbial metabolites that can be analyzed using the QSAR models 
depends on the chemical space that can be described by the molecules that were used to 
train the BSAI and CDK models. For all models, we determined this applicability 
domain (AD) using Insubria graphs. Instead of cross-validated residuals, which are used 
to construct Williams plots, these graphs present model predictions against the diagonal 
hat values of the model’s design matrix (Fig. 2.2) (Gramatica et al. 2012). All molecules 
with a hat value smaller than the critical hat value (h*), as defined in the Methods 
section, and with predicted values within predefined thresholds, are considered to be 
within the AD of QSAR models. Some researchers exclusively apply the h* threshold to 
define the AD of QSAR models (Wang et al. 2017; Banjare et al. 2021). In this case, the 
AD derived using Insubria graphs shows high similarity to the AD based on 
Mahalanobis distances (Fig. S3). 

The AD thresholds that are applied to BSAI models, determine how many 
molecules are available for the construction of CDK models. To investigate the effects 
thereof, we built CDK models using BSAI model predictions that were selected using 
three different AD approaches, as exemplified in Fig. 2.2. For the first AD approach, we 
applied both the h* threshold and thresholds for the predicted log k value, defined by 
the mean (x̄) and standard deviation (σ) of log k predictions for probe molecules (x̄ ± 
3·σ) (Fig. 2.2a). These probe compounds are the 23 out of the 25 compounds that were 
used by Chen et al. (2014b) to derive the BSAI model, which are present in the data set  
 

Figure 2.2: Thresholds for the applicability domain of BSAI models. Three different approaches are 
shown, using the naked SiO2 BSAI model as an example. a) Thresholds defined by the predicted 
log k values (x ̄ ± 3·σ) of probe compounds (white circles) and the critical hat value (h* = 0.78). b) 

Thresholds set by h* only. c) No thresholds. 
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with known Abraham descriptors (Bradley et al. 2014; Table S3). For the second AD  
approach, we only applied the h* threshold (Fig. 2.2b). For the third approach, we 
applied no AD thresholds (Fig. 2.2c). This resulted in a total number of 701 molecules 
(h* and log k thresholds), 1525 molecules (h* threshold) and 1996 molecules (no 
thresholds) that could be used to build CDK models. 

For all AD approaches, CDK models that were built at the cross-validation ratio of 
80/20 (training set/validation set) explained most of the variance in log k predictions 
from the BSAI models (Table S5, S6, S8). According to the Williams plots (Fig. S6, S8, 
S12), over 93% of the training and validation compounds fell within the AD of CDK 
models for each of the AD thresholds (Table S5, S6, S8). We noted some deviation from 
normality of model residuals in Q-Q plots, potentially introducing bias to the standard 
error of estimates (Schmidt and Finan 2016). No issues were identified for the 
remaining model assumptions.  

When comparing CDK models from each of the AD approaches, the best fit 
between BSAI and CDK models in terms of log k predictions for the training set and the 
validation set was obtained for CDK models that were built without AD thresholds for 
BSAI model predictions (Table 2.3; R2

train=0.71-0.97; R2
validate=0.77-0.98), followed by 

CDK models that were built with the h* threshold only (Table S8-9; R2
train= 0.75-0.90; 

R2
validate=0.75-0.95), and CDK models that were built with the h* and log k thresholds 

(Table S6-7; R2
train= 0.65-0.83; R2

validate=0.64-0.86). The same trend was obtained for the 
AD of CDK models. The largest set of enteric microbial metabolites was within the AD 
of all CDK models that were built without AD thresholds (60 metabolites), followed by 
the AD of all CDK models that were built with the h* threshold only (51 metabolites), 
and the AD of all CDK models were built with the h* and log k thresholds (38 
metabolites) (Table 2.4, Table S4). These trends show that both the fit, in terms of R2 
values, and the applicability of CDK models, as determined using Insubria graphs, 
improve when these models are built based on a larger number of BSAI predictions. 
Although this favors the application of CDK models that are built without BSAI 
thresholds, this introduces the risk of basing CDK models on incorrect BSAI 
predictions. Nevertheless, given the strong correlation (ρ>0.96) between predictions of 
CDK models from each of the BSAI AD approaches (Fig. S2), we describe the results of 
CDK models that were built without applying BSAI AD thresholds in the main text, and 
include the results of the other CDK models in the Supporting Information. We only 
describe results that are supported by models from each of the AD approaches, unless 
specifically stated otherwise. 

The applicability of CDK models, as determined based on h*, shown in Insubria 
graph of Fig. S7, Fig. S9, and Fig. S13, was dependent on metabolite category (Table 
2.4). The models could be applied to all ‘SCFAs’, and most ‘tryptophan metabolites’,  
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Table 2.4: Number of enteric microbial metabolites within the applicability domain of all CDK 
models.  

Metabolite category a) 
Total number of 
metabolites 

h* and log k BSAI 
model thresholds b) 

h* BSAI model 
threshold b) 

No BSAI 
thresholds b) 

Microbe-associated 
molecular patterns 21 0 0 0 

Vitamins 11 1 1 1 

Short-chain fatty acids 8 8 8 8 

Bile acids 25 0 0  0 

Tryptophan precursors 
and metabolites 17 8 9 14 

Polyamines 4 0 0 0 

Choline metabolites 6 0 4 4 

Phenolic, benzoyl and 
phenyl derivatives 24 18 17 19 

Lipids and lipid 
precursors 13 0 0 1 

Neurotransmitters 6 0 1 1 

Other 20 3 11 12 

Total 155 38 51 60 

a) Proteins were excluded prior to building CDK models; b) Columns specify the thresholds applied for the BSAI model. For all 
CDK models, the h* threshold was applied, as shown in the corresponding Insubria graphs of Fig. S7, S9 and S13. 

 
‘choline metabolites’, and ‘phenolic, benzoyl and phenyl derivatives’. The models were 
less applicable to the metabolite categories ‘neurotransmitters’, ‘vitamins’, and ‘lipids 
and lipid precursors’. For these categories, the models could only be applied to 
histamine (or gamma-aminobutyric acid in h* threshold models), niacin, and linoleic 
acid. The CDK models could not be applied to any of the ‘MAMPs’, ‘bile acids’ and 
‘polyamines’. These categories comprise large metabolites, which can adopt different 
spatial conformations, and molecules with rich surface functionalities, including many 
hydroxyl- or amino-groups per metabolite. This is in agreement with the limitations of 
the BSAI model, which cannot successfully describe surface interactions of 
biomolecules with certain degrees of flexibility in bonds, cannot differentiate between 
the different isomeric spatial conformations of biomolecules, and are not applicable to 
biomolecules with diverse moieties and functional groups, like phosphate, 
thiophosphoryl groups, and nitrile bonds (Chen and Riviere 2017; Chen et al. 2016). For 
biomolecules with these characteristics, MD simulations can be used to study ENM 
surface interactions at higher computational cost. This could potentially lead to the 
identification of descriptors that can increase the AD of QSAR models (Chen and 
Riviere 2017; Chen et al. 2016). In the final part of our study, we apply these simulations 
to investigate what kind of interactions differentiate the adsorption behavior of vitamins 
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that are within or outside the AD of QSAR models (Fig. 2.4-2.6). Vitamins were 
specifically selected for these investigations, rather metabolites of the other categories 
that are outside of the AD of CDK models, because they include relatively small 
molecules in terms of number of atoms, but comprise diverse structural properties. This 
allows to perform more simulations within a given computational time, thereby 
obtaining more diverse molecular information. 
 
2.2.4 Log k predictions from the QSAR models 

In the following comparison between the adsorption affinities for microbial metabolites 
to metal and carbon ENMs, we focus on the core set of 60 metabolites that are included 
in the AD of QSAR models for all ENMs (Table 2.4). The AD of the individual models 
was larger, as determined based on h*, shown in the Insubria graphs presented in Fig. 
S7, Fig. S9 and Fig. S13. The sizes thereof ranged from 77 metabolites (‘SiO2_PEG’ 
model) to 120 metabolites (‘FullrC60’ model), and can be found in the Supporting 
Information for more detailed investigations on specific ENMs (Table S4).  

Metal and carbon ENMs could clearly be distinguished based on log k predictions 
for the enteric microbial metabolites. Moreover, we found a remarkable distance 
between log k predictions for the Buckminster fullerene (C60) and predictions for all 
other ENMs (Fig. 2.3a; Fig. S10a, Fig. S14a). This is in line with other unique interaction 
properties of C60 fullerenes, which may act like hydrophobic organic molecules, by 
adsorbing to larger biomolecules, either individually, or in aggregated form, potentially 
changing properties of these larger biomolecules (Song et al. 2011). For this reason, log 
k predictions for the fullerene will be discussed separately below. All nanodescriptors 
except for re (F1,13= 0.34, p>0.05) correlated with log k-based distances between ENMs, 
as detected by distance-based redundancy analysis (Fig. 2.3a). For the three 
nanodescriptors with the most significant correlations, namely a (F1,13=29.32; p=0.001), 
b (F1,13=22.18; p=0.001) and ps (F1,13=28.35; p=0.001), this result was supported by the 
CDK models built using the different AD approaches for the BSAI model (Fig. S10a, 
Fig. S14a). This indicates that in particular hydrogen-bond interactions and interactions 
resulting from the polarity and polarizability of metabolites distinguish the adsorption 
affinities for enteric microbial metabolites to ENMs. Although hydrophobicity-driven 
interactions contribute most to the overall predicted adsorption affinity for enteric 
microbial metabolites to ENM surfaces, these interactions explain less of the differences 
in log k predictions between metal and carbon ENMs (F1,13=7.57; p=0.013) than the 
hydrogen-bond interactions, and interactions driven by polarity and polarizability. 
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Figure 2.3: Differences between log k predictions for enteric microbial metabolites to metal 
nanomaterials, carbon nanotubes, and fullerenes. Subplot a) depicts the results of distance-based 
redundancy analysis, correlating the five nanodescriptors [re,ps,a,b,v] to distances between the log 
k predictions for each of the 5 carbon nanotubes (red circles), the fullerene (green circle), and each 
of the 13 metal nanomaterials (blue circles). Subplots b) to i) depict log k predictions for: lipids and 

lipid precursors (b); tryptophan metabolites (c); phenolic, benzoyl and phenyl derivatives (d); 
vitamins (e); neurotransmitters (f); short-chain fatty acids (g); choline metabolites (h); and other 

enteric metabolites (i). The number of metabolites per category (n) is indicated between brackets. 
Asterisks and letters indicate significant differences. Abbreviations: neurotransm., 

neurotransmitters; n.s., not significant; *, p<0.05; ***, p=0.001. 

 
For metabolites of most categories, predicted log k values were highest for carbon 

nanotubes, followed by metal ENMs and fullerenes (Fig. 2.3b-i; Fig. S10b-i; Fig. S14b-i). 
By exception, predicted log k values for ‘choline metabolites’ were similar for metal 
ENMs and carbon nanotubes (median (interquartile range (IQR)) log k = 1.55 (1.34-
1.77) and 1.70 (0.30-2.03), respectively, p > 0.05), and predicted log k values for ‘SCFAs’ 
were higher for metal ENMs than for carbon nanotubes (median (IQR) log k = 2.61 
(2.38-2.88) and 2.19 (1.50-2.54), respectively, p<0.001) (Fig. 2.3g, Fig. S10g, Fig. S14g). 
This suggests that acidic groups experience stronger interactions with metal ENMs than 
with carbon nanotubes. This is consistent with the results of our distance based 
redundancy analysis (dbRDA), identifying a highly significant contribution of 
nanodescriptor a to log k-based distances between metal ENMs and carbon nanotubes 
(Fig. 2.3a, Fig. S10a, Fig. S14a). Accordingly, computational and experimental 
investigations for citrate and other carboxylic acids showed that specifically the 
carboxylate groups of these molecules interact with Au and Fe3O4 ENMs (Al-Johani et 
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al. 2017; Monti et al. 2017; Zhang et al. 2019). In contrast, and in line with our results, 
the QSAR models developed by Roy et al. (2019) predict a negative impact of C-O 
groups and aliphatic primary alcohols on the adsorption affinity for organic pollutants 
to carbon nanotubes. Notably, this did not result in higher log k estimates for 
‘tryptophan precursors and metabolites’ and ‘phenolic, benzoyl and phenyl derivatives’ 
to metal ENMs than to carbon nanotubes. Although both of these categories comprise 
biomolecules with acidic functional groups, the QSAR models predicted significantly 
higher log k values for these categories to carbon nanotubes (median (IQR) log k = 5.50 
(4.75-6.43) and 4.64 (3.88-5.33), respectively) than to metal ENMs (median (IQR)) log k 
= 3.23 (2.91-3.48) and 3.05 (2.66-3.33), respectively) (Fig. 2.3c-d; Fig. S10c-d; Fig. S14c-
d). Nevertheless, in contrast to ‘SCFAs’ and ‘choline metabolites’, which solely consist of 
small aliphatic biomolecules, ‘tryptophan precursors and metabolites’ and ‘phenolic, 
benzoyl and phenyl derivatives’ comprise unsaturated (poly)cyclic molecules. This 
suggests that π-π stacking interactions contribute more to the interaction between these 
molecules and ENMs than the interactions of acidic functional groups. We further 
investigate the relative contributions of such different interaction types to the 
adsorption affinity for enteric metabolites to ENMs by way of unconstrained MD 
simulations as discussed below.  
 
2.2.5 Molecular dynamics simulations: a case study 

In the final part of our study, we perform MD simulations to investigate what 
distinguishes ENM interactions of metabolites that are within or outside of the AD of 
QSAR models. A recent study by Comer et al. (2015) that focuses on calculating the 
adsorption affinity of about 30 small aromatic compounds to carbon nanotubes, forms 
an inspiration and starting point for this investigation. Using a computational protocol 
that is very similar to ours, the authors identified an excellent correlation (r ≥	0.9) 
between calculated and measured values for the complete set of compounds. Rather 
than restricting ourselves to π-π stacking interactions that are important for MWCNT, 
we also consider the extended interaction network between a metal substrate (SiO2) and 
biologically relevant molecules like vitamins. We even go one step beyond a direct 
comparison between adsorption affinities, and conduct a proof of principle aimed at 
rationalizing which of the nanodescriptors obtained by QSAR analysis contribute to key 
interactions identified using unconstrained MD. The small set of vitamins, including 
thiamine, pyridoxine, biotin and folate, was selected because of the significant spread in 
the predicted log k values by QSAR. Moreover, the set was selected to represent 
different structural properties, such as different numbers of aromatic rings (1-3), 
differences in charge (0 or +1), and different numbers of acidic and basic functional 
groups. Finally, the set included vitamins that are outside the AD of QSAR models for  



  Enteric microbial metabolite adsorption |       
 

 

 49 

49 

 

Figure 2.4: Comparison of adsorption affinities for four vitamins with different structural properties 
as determined by QSAR and MD simulation to SiO2 (a,c) and multiwalled carbon nanotubes 
(MWCNTs) (b,d). Insubria graphs a) and b) present the applicability of QSAR models for the 

vitamins. Subplots c) and d) present Pearson correlations (r) between QSAR and MD results for the 
vitamins including thiamine (solid line) or excluding thiamine (dotted line). 

 
SiO2 (biotin and folate), as well as vitamins that are within this AD (thiamine, 
pyridoxine), for comparison (Fig. 2.4a). All of the four vitamins are inside of the AD of 
the sMWCNT model (Fig. 2.4b), while only thiamine and biotin are within the AD of 
the MWNT model. For this reason, log k predictions from the sMWCNT model are 
used for comparison with log k values determined by classical MD simulations for 
MWCNT. In the remainder, our MD-derived (log kMD) values, calculated using eq 2.2, 
are directly compared to the QSAR predictions (log kQSAR).  

The results for the four vitamins can be found in Fig. 2.4c-d, and illustrate the 
significance of our direct comparison. In the case of SiO2, log kQSAR and log kMD results  
should be compared with caution, because two out of the four vitamins are outside of 
the AD of the QSAR models, and because log kQSAR predictions from models that were 
derived using the alternative AD approaches, correlate differently with the MD results 
(Fig. S11c, Fig. S15c). For the comparison of MWCNT results, we note that the presence 
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of a datapoint with high leverage (folate) results in high R2 values. Nonetheless, we find 
that the computed log kMD and predicted log kQSAR values feature the same orders of 
magnitude and show a reasonable, but non-significant correlation (rSiO2=0.40 and 
rMWNT=0.84; p > 0.05). In both cases, we find that excluding thiamine improves the 
correlation between log kMD and log kQSAR results (rSiO2>0.99, pSiO2=0.02 and rMWNT=0.96; 
p > 0.05). While this discrepancy for thiamine is hard to pinpoint to a single cause, it 
may well be due to the usual choice in our MD approach to exclude electronic 
polarizability (Huang et al. 2014) since thiamine has an explicit +1 charge. In particular, 
a previous study of Wu et al. (2007) supports our suggestion that polarizability effects 
are essential for this particular vitamin. The study focused on the controlled release of 
thiamine hydrochloride with mesoporous silica tablets and showed that the pH of the 
medium affects thiamine release. For reasons of computational efficiency, state of the 
art force fields in classical MD only consider fixed atomic charges that are determined 
prior to simulation via more resolved (and costly) methods like density functional 
theory. While polarizable force fields have been developed and applied to study various 
phenomena, including adsorption on graphene surfaces (Hughes et al. 2014), it is 
difficult to assess beforehand if the substantial computational cost of including 
polarizability will lead to greater accuracy. In our limited case study, the improved 
correlation between QSAR and MD methods in terms of log k values when charged 
vitamins are omitted, indicates that it merits including polarizable force fields in MD 
simulations for charged enteric microbial metabolites. Next, we performed 
unconstrained MD to evaluate key interactions for vitamins inside of as compared to 
vitamins outside of the AD of QSAR models.  

The interaction energies between SiO2 and each vitamin molecule were separated 
into Lennard-Jones (LJ) and electrostatic contributions (Fig. 2.5a), where LJ is a 
combination of very short-ranged repulsion due to the overlap of the electron clouds 
and longer-ranged van der Waals attraction via induced dipoles. The vitamin size is 
accounted for by its radius of gyration rgyr. We observe that the most dominant 
interaction for all vitamins is of a LJ type, except for thiamine. Folate (rgyr = 0.57 nm) 
has the highest LJ contribution, irrespective of its low log k value, while the smaller 
pyridoxine (rgyr = 0.24 nm) has the lowest LJ contribution but the highest log k value. In 
the case of thiamine (rgyr = 0.36 nm), electrostatic (Coulomb) interactions dominate, 
which can be due to the explicit +1 charge that is present on the thiamine molecule.  
To further investigate the relation between dominant interactions and log k values, we 
additionally considered the hydrogen bonding between these molecules and the SiO2 
slab. Using interatomic distances, we identified different chemical groups for each
vitamin that are observed to form hydrogen bonds with the ENM surface during the 500 
ns simulation, considering a cutoff of 0.24 nm to the SiO2 surface (Fig. 2.5b). Time 
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evolution plots for these hydrogen bond interactions are included in the Supporting 
Information (Fig. S4). Both pyridoxine and folate form on average 2-3 hydrogen bonds 
with the SiO2 slab. However, considering the increased size of folate (rgyr = 0.57 nm), it 
may also exhibit effects of steric hindrance while interacting with the slab. Different 
configurations extracted from the unbiased MD simulation pathway (Fig. 2.5c,d) 
showed a perturbed conformation, i.e. a bent folate, while its smaller size enables 
pyridoxine (rgyr = 0.24 nm) to lie parallel to the slab without bending. As the smaller 
molecule does not need to adapt its conformation to the slab geometry, the hydrogen 
bonding gains stability, rendering pyridoxine more probable of forming hydrogen 
bonds with SiO2 than folate. Overall, pyridoxine sits on the slab while folate undergoes 
several conformational changes to stabilize around the SiO2 slab: see some of the 
simulation snapshots of folate and pyridoxine with SiO2 shown in Fig. 2.5c-d. This is 
fully in line with the QSAR predictions, which infer that hydrogen bond acidity and 
basicity play a dominant role in the adsorption affinity of these vitamins for SiO2.  
 
 

 
Figure 2.5: a) Lennard-Jones and Coulombic contributions for all the considered vitamin molecules 

with a SiO2 surface. b) Hydrogen bond forming groups (in red and blue) identified on the four 
vitamin molecules. Simulation snapshots portray different configurations for c) pyridoxine and d) 

folate during the 500 ns molecular dynamics simulation. The positions of interacting chemical 
groups are indicated with dashed lines. The carbon, oxygen, nitrogen, sulfur and hydrogen atoms 

are shown in pale yellow, red, blue, yellow, and white, respectively. 
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Finally, to investigate the conformational space sampled by each molecule, we 
performed cluster analysis over all 500 ns MD trajectories. As a condition for defining a 
new cluster, we considered a difference of 0.25 nm in the root mean square 
displacement (RMSD, corrected for the center of mass drift). As can be expected, only a 
single cluster was identified for the small and rigid vitamins: thiamine, pyridoxine, and 
biotin. In contrast to this finding, we identified five different clusters for the longest 
vitamin folate. Exemplary conformations taken from each cluster are shown in Fig. S5 
of the Supporting Information. 

Overall, adsorption affinities determined using all-atom MD were found to agree 
well with values predicted by QSAR modeling for several complex molecules. The 
benefit of molecular simulation is that it provides molecular insight into the nature of 
the principal interactions between these molecules and a relevant ENM, enabling a 
more fundamental understanding. Moreover, in silico determination of adsorption 
affinities can be useful for part of the materials spectrum where experimental 
measurement is complicated, expensive or even ruled out, that is, to generate reliable 
training data for the computationally much more efficient (nano)QSAR in that part of 
the spectrum. We particularly see this limited case study as a showcase for the potential 
of physical modelling in this work field and for unraveling correlations that are not 
clarified in the QSAR approach. We believe that a broader application of this approach 
will help experimentalists and nanotoxicologists to further improve the applicability of 
QSAR and to better understand the affinity of biologically relevant molecules on the 
various ENM surfaces. In particular, although being computationally very costly 
compared to QSAR, MD simulation is an ecofriendly and cost-effective technique for 
performing affinity analysis prior to or even replacing in vitro experiments. 
 

2.2.6 Examples for future perspectives 
For future perspectives, the combination of 1) the biological functions of enteric 
microbial metabolites; 2) their predicted adsorption affinities to metal and carbon 
ENMs; 3) key interaction types inferred from QSAR models and MD simulations; and 
4) the direct molecular information obtained from MD simulations, can be used to 
rationalize what biologically relevant interactions could occur between ingested ENMs 
and microbial metabolites in the gastrointestinal tract. In this section, we present two 
relevant examples to illustrate this rationale. We note that these examples focus on 
hypotheses that are based on the current understanding of the enteric microbial 
metabolome. Following the same principles, our results can be employed to rationalize 
what adsorption interactions may occur for enteric microbial metabolites that are yet to 
be discovered. 
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The first example focuses on the hypothesis that ingested ENMs can sequester 
essential SCFAs via the adsorption of these metabolites to the ENM surface, thereby 
causing nutrient deficiencies. As presented in Table 2.1, these fatty acids are synthesized 
by microbiota in the colon from indigestible fibers. Malfunction of intestinal microbiota 
can result in low availability of beneficial SCFAs, possibly causing intestinal 
inflammation (Venegas et al. 2019). Especially under these conditions, it is relevant to 
consider the potential adsorption of SCFAs to ENMs that are administered orally to 
treat or prevent intestinal inflammation (Xia et al. 2017, Qin et al. 2021, Zhu et al. 2019). 
In the case of SCFAs, which are within the AD of QSAR models, our QSAR predictions 
can readily be used to assess this. Log k predictions for SCFAs were significantly higher 
to metal ENMs than to carbon ENMs, indicating that the adsorption-driven 
sequestration of SCFAs forms a larger concern for metal ENMs than for carbon ENMs. 
Nevertheless, the results for more lipophilic metabolites put this into perspective, 
showing that the overall predicted adsorption affinities for SCFAs are relatively low to 
both carbon and metal ENMs. 

The second example focuses on the hypothesis that active resorption of microbial 
metabolites can facilitate the transfer of ENMs across the gut epithelium when resorbed 
metabolites are adsorbed to ENMs. Such interactions have been demonstrated for 
vitamin B12 (Thepphankulngarm et al. 2017), but can also be expected for secondary and 
conjugated bile acids (Table 2.1). In contrast to SCFAs, bile acids are not in the AD of 
the QSAR models. In this case, the key interaction types and molecular information 
obtained from MD simulations can be used to assess their adsorption affinity 
qualitatively. First, bile acids are large, amphiphatic molecules. Given the key 
contribution of hydrophobicity-driven interactions to the overall adsorption affinity for 
metabolites, the hydrophobic face of these molecules can be expected to interact with 
the ENM surface, resulting in relatively high adsorption affinities for these molecules to 
both metal and carbon ENMs. Second, similar to other unsaturated (poly)cyclic 
metabolites like ‘tryptophan precursors and metabolites’ and ‘phenolic, benzoyl and 
phenyl derivatives’, bile acids can generally be expected to have higher affinity to carbon 
than to metal ENMs, as a result of π-π stacking interactions between their steroid core 
and the carbon ENM surface. Third, the polarity of glycine and taurine amino acid 
conjugates can be expected to affect the adsorption affinity for bile acids to carbon and 
metal ENMs differently, specifically favoring adsorption to carbon ENMs. As shown in 
the MD simulations for folate, the ability of these more flexible conjugates to bend 
toward the ENM surface can moreover improve the stability of these bile acids onto the 
carbon ENM surface. Thus, the probable ranking of the adsorption affinity for bile acids 
to ENMs, from high to low, is: conjugated bile acids and carbon ENMs – secondary bile 
acids and carbon ENMs – secondary bile acids and metal ENMs – conjugated bile acids 
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and metal ENMs. This ranking, and similar qualitative assessments based on our results, 
can support the rationalization of biologically relevant physisorption interactions that 
can occur between enteric microbial metabolites and ingested ENMs. The two examples 
also illustrate how knowledge on adsorption interactions between ENMs and microbial 
metabolites can serve as a stepping stone for modeling mechanistic pathways for toxic 
or therapeutic nanomaterials. 
 

2.3 Conclusions 
We set out to investigate the potential interactions between ingested metal and carbon 
ENMs and the diverse set of enteric microbial metabolites that are available in the 
gastrointestinal tract. Our investigations indicate that evaluating these interactions 
merits an integrative approach, taking biological considerations into account, and 
combining different experimental or computational methods. In view of this, the 
overview and classification of enteric microbial metabolites, which we provide as a 
starting point for QSAR models and MD simulations, allows to assess the relevance of 
adsorption interactions from a biological perspective. Relevant considerations include 
the potential of biomolecules like ‘MAMPs’ to activate immune responses, or to mask 
ENMs from immunorecognition, the potential of rare and essential metabolites, like 
‘vitamins’, to cause nutrient deficiencies following sequestration by adsorption to 
ENMs, and the potential of effectively resorbed metabolites, like ‘vitamins’ and ‘bile 
acids’, to affect the biodistribution of associated ENMs.  

The QSAR models developed in the second part of our study provide a set of readily 
available log k predictions for biologically relevant metabolites like ‘short-chain fatty 
acids’ and ‘tryptophan precursors and metabolites’. The correlation of these predictions 
to BSAI nanodescriptors, revealed that hydrophobicity-driven interactions are 
important to the overall interaction strength of enteric microbial metabolites, while 
hydrogen-bond interactions and interactions resulting from the polarizability and 
polarity of metabolites largely explain differences in the interactions of these 
metabolites with metal and carbon ENMs. Ultimately, these insights can aid in the 
qualitative assessment of adsorption adsorption affinities for metabolites like ‘MAMPs’ 
and ‘bile acids’, which cannot yet be assessed quantitatively using the QSAR models. 

The MD simulation case study, which forms the third part of our study, exemplifies 
how conformational properties complicate extending the linear relationships of the 
QSAR models to larger, more flexible molecules, which may gain stability by bending 
toward the ENM surface. Our results furthermore indicate that it is worth including 
polarizable force fields in further MD investigations on charged metabolites, while 
computational cost can be saved by excluding these force fields for investigations on 
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uncharged metabolites. Using unconstrained MD simulations, we moreover found 
excellent agreement with QSAR models on the main interaction types that facilitate the 
interactions between enteric microbial metabolites and ENMs. This provides confidence 
to evaluate the adsorption interactions for larger, flexible biomolecules to the ENM 
surface qualitatively, based on these interaction types. Therefore, we anticipate that the 
results of our study can be employed to rationalize the adsorption interactions that may 
occur between ingested metal and carbon ENMs and a large set of diverse enteric 
microbial metabolites in a biologically relevant way.  
 

2.4 Methods 

2.4.1 Literature search for enteric microbial metabolites 
In order to generate an overview of microbial metabolites that occur in the intestinal 
lumen, we retrieved names of enteric microbial metabolites from reviews on gut 
microbial metabolism. The reviews were accessed through the Web of Science Core 
Collection database (1945-2020) via Leiden University’s library, by applying the search 
string: “(microbiome OR microbiota OR microflora) AND (gut OR *intestine* OR 
enteric) AND metabolite* AND (“microbial metabol*” OR (host AND interact*))”. 
Reviews were added to the literature search until no new categories of microbial 
metabolites were identified, and until the total number of identified metabolites had 
saturated (Fig. 2.1). Metabolites were included in the overview if they had been found to 
be present in the gut lumen, had been reported to be produced and excreted by gut 
microbiota, to be products of microbial modifications, or to be regulated by gut 
microbiota. In case metabolite names referred to groups of molecules (such as 
‘lipopolysaccharides’), one or several representative molecules were selected from the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov). To this end, we either selected 
molecules that had been used in experimental work to represent the concerning 
metabolite groups or selected molecules that had been identified in the gut lumen. 
Finally, we retrieved simplified molecular-input line entry-specifications (SMILES) 
from the PubChem database for each of the metabolites included in the overview. In 
case both isomeric and canonical SMILES were available for the metabolites, isomeric 
SMILES were selected. 
 
2.4.2 BSAI models for log k prediction  
We built QSAR models to predict log k values for the identified enteric microbial 
metabolites to 13 metal ENMs and 6 carbon ENMs (Table 2.2). We refer to the 
Supporting Information of Chen et al. (2014b) for a detailed physicochemical 
characterization of these ENMs, including measurements by transmission electron 

https://pubchem.ncbi.nlm.nih.gov
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microscopy, Brunauer-Emmlett-Teller surface area analysis, dynamic light scattering, 
analytical ultracentrifugation, fluorescence correlation spectroscopy, X-ray diffraction, 
X-ray photoelectron spectroscopy, and electron spin resonance. For each of the ENMs, 
we firstly applied the BSAI model published by Xia et al. (2010) (eq 2.1) to predict log k 
values for metabolites with known Abraham’s molecule descriptors. We subsequently 
used these log k predictions to build QSAR models that could be applied to predict log k 
values for the enteric microbial metabolites. 

 For BSAI predictions, we adopted the nanodescriptors derived by Chen et al. 
(2014b), and obtained molecules with known Abraham’s molecule descriptors from 
Bradley et al. (2014). We prepared the data set of Bradley et al. in three steps. First, 
incorrect SMILES of 14 compounds that could not be parsed in the steps described 
below (keys ‘1833’, ‘1838’, ‘1843’, ‘1844’, ‘1848’, ‘2004’, ‘2012’, ‘2344’, ‘2523’, ‘2656’, 
‘2843’, ‘2855’, ‘2931’, ‘3034’), were corrected using SMILES from the ChemSpider 
database (www.chemspider.com) (Table S1). Second, compounds with poor or 
suspicious data quality, or including metals or salts (keys ‘23’, ‘2030’, ‘2033’, ‘2034’, 
‘2994’, ‘4001’), were excluded following the recommendations by the authors. Third, 
double, triplicate and quadruplet entries of 431 compounds were removed, randomly 
selecting one of the references reporting Abraham descriptors for each of the 
concerning compounds. Similarly, isomers, which have identical values for each of the 
Abraham’s molecule descriptors, were removed from the data set. This resulted in a 
data set comprising 1996 unique compounds with known Abraham descriptors.  
 

2.4.3 Applicability domain of BSAI models  
We assessed the AD of BSAI models for each of the 19 ENMs using Insubria graphs 
(Gramatica et al. 2012). These graphs present the diagonal hat values of the design 
matrix ([E,S,A,B,V]) on the x-axis, and QSAR predictions (log k values) on the y-axis. 
Of the 25 probe compounds that were used by Chen et al. (2014b) to derive 
nanodescriptors, 23 probe compounds were included in the data set with known 
Abraham molecule’s descriptors. We used these compounds to derive the critical hat 
threshold (h*) as 3·(N+1)/n, where N is the number of descriptors in the model, and n is 
the number of probe compounds included in the data set. For the predicted log k values, 
we defined AD thresholds by the mean of the log k predictions for probe compounds, 
and 3 times the standard deviation of these predictions (x̄ ± 3·σ). Subsequently, we 
selected compounds from Insubria graphs 1) by applying both the h* and log k 
thresholds; 2) by applying the h* threshold only; 3) by applying no thresholds. For the 
first approach, including log k thresholds, we only continued with compounds that fell 
within the log k thresholds for all 19 ENMs. For comparison, we also derived the BSAI 

https://www.chemspider.com
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AD based on Mahalanobis distance, as described below (‘Ordination Methods for 
QSAR Models’). We did not continue QSAR analysis with these compounds, due to the 
high similarity with the h* threshold AD. 
 
2.4.4 CDK models for log k prediction  

Using BSAI log k predictions that were selected using each of the three aforementioned 
AD approaches, we applied multiple linear regression (MLR) to build QSAR models 
that can predict log k values using molecular descriptors from CDK. The molecular 
descriptors were computed in R (v. 3.6.3; www.r-project.org), accessing CDK 
functionality using the ‘rcdk’ package (v. 3.5.0; Guha 2007). To load molecules into the 
R environment, SMILES were parsed, implicit hydrogen atoms were converted to 
explicit hydrogen atoms, and aromaticity was checked. Thereafter, molecular 
descriptors were evaluated, and the data set was split into a training set and a validation 
set using the createDataPartition function of the ‘caret’ package (v. 6.0-86). The 
molecules with the lowest and highest BSAI model prediction, calculated as the mean 
predicted log k value for the 19 ENMs, were included in the training set. These were 
keys ‘2924 and ‘1700’ (mean log k = 2.02 and 4.24), keys ‘2400’ and ‘1253’ (mean log k = 
0.98 and 5.53), and keys ‘518’ and ‘74’ (mean log k = 0.40 and 10.56), when applying the 
h* and log k threshold, the h* threshold only, and no thresholds, respectively. The 
remaining molecules were divided into five quantiles, based on the predicted log k 
values from the BSAI model. Molecules of each of the quantiles were randomly divided 
over the training set and validation set. We evaluated the performance of four different 
cross-validation ratios (training set/validation sets = 90/10, 80/20, 70/30, and 60/40). 
Using the training set of each cross-validation ratio, MLR models were derived by 
forward selection. A total of five molecular descriptors were selected for the models, 
including the independent molecular descriptor explaining most of the model variance 
at each of the consequent forward selection steps. To ensure the independence of 
descriptors, molecular descriptors were only included if they did not result in variance-
inflation factors larger than two, as assessed using the vif function from the ‘car’ package 
(v. 3.0-8).  
 

2.4.5 Log k predictions and statistical analyses for QSAR models 
We selected CDK models of the cross-validation ratio with the best internal validation 
score, evaluated as the mean adjusted R2 value of models for all 19 ENMs. Diagnostic 
plots of the models were inspected to identify outliers (Cook’s distance plot), and to 
evaluate the model assumptions of linearity (residuals vs. fitted values plot), normally 
distributed residuals (Q-Q plots), and homoscedasticity (scale-location plots). The AD 

https://www.r-project.org
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of the models was assessed using Williams plots. Compounds were considered to be 
outside of the AD of models if cross-validated residuals are smaller than -3 or larger 
than 3, or if the diagonal hat values are larger than 3·(N+1)/n, where N is the number of 
descriptors in the model, and n is the number of molecules in the training set. 
Correlations between molecular descriptors from CDK and Abraham’s molecule 
descriptors were assessed using to the Spearman’s rank correlation coefficient, 
calculated using the cor.test function of the ‘stats’ package (v. 3.6.3).  

To prepare the microbial metabolite data for log k predictions, SMILES were 
parsed, implicit hydrogen atoms were converted to explicit hydrogen atoms, and 
aromaticity was checked. Thereafter, molecular descriptors were evaluated using ‘rcdk’. 
Metabolites that were assigned to the metabolite category ‘proteins/enzymes’ were 
excluded due to their large size and three-dimensional conformations, which could not 
be accounted for using this QSAR approach. The applicability of the models for the 
other metabolites was assessed using Insubria graphs, by applying the h* threshold. Log 
k predictions of metabolites that were considered to be within the AD of CDK models 
were compared between metal and carbon ENMs, for each metabolite category 
separately. To this end, the Kruskal-Wallis rank sum test was applied in combination 
with the Dunn’s test from the ‘FSA’ package (v. 0.8.32; Ogle 2021). For all Dunn’s tests, 
Holm adjusted p-values are reported. 
 

2.4.6 Ordination methods for QSAR models  
We used ordination methods to compare ENMs based on log k predictions from QSAR 
models and to derive the AD of BSAI models based on Mahalonobis distances. For both 
analyses, we used R functions that are available in the package ‘vegan’ (v. 2.5-6).  
Log k data was transformed to remove negative values by subtracting the minimum log 
k value from all predicted log k values. Using the vegdist function, a Bray-Curtis 
dissimilarity matrix was constructed for the transformed data. The contribution of each 
of the five nanodescriptors to these log k-based distances between ENMs was tested by 
way of dbRDA. To this end, the dbrda function was used, assessing the marginal effects 
of the nanodescriptors. 

To derive the distance-based AD for BSAI models, Mahalonobis distances were 
computed for the data set with known Abraham molecule’s descriptors using the vegdist 
function. Subsequently, the metaMDS function was applied to place each of the 
molecules in a two-dimensional space by way of nonmetric multidimensional scaling. 
All compounds with equal or smaller distance to the centroid of all 23 probe 
compounds in this two-dimensional space were considered to be within the BSAI model 
AD. 
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2.4.7 Computational method: system description and simulation parameters 
The initial structure of a solvated multiwalled carbon nanotube (MWCNTs), SiO2, and 
all the four vitamins, namely, pyridoxine, folate, thiamine, and biotin were built using 
the CHARMM-GUI builder (Jo et al. 2008). A realistic representation of the ENM 
structure is required for an accurate prediction of the interaction between the 
nanoparticle surface and a vitamin. Hence, we considered a 5×5×4 nm3 SiO2 slab and a 
three-layered graphene sheet with an area of 6.5×6.5 nm2 and periodic boundary 
conditions, resulting in infinite surface along the Cartesian x-y direction. The SiO2 
ENM used in the experiment usually occurs in a range of 20-200 nm, while the carbon 
nanotube typically has an outer diameter between 8-15 nm and a length of ~50 µm. We 
postulated that the sizes of the vitamins examined in this study are tiny compared to the 
considered ENMs, meaning that a flat surface representation is adequate. All the 
systems comprise ~40,000 atoms, each varying a little based on the size of the vitamins. 
All all-atom simulations were performed with GROMACS 2020 (Van der Spoel et al. 
2005). The CHARMM36 force field (Pastor and MacKerell 2011) was used for all 
vitamins, while SiO2 and MWCNTs parameters were procured from the INTERFACE 
force field (Heinz et al. 2013), which is integrated within the CHARMM force field. The 
water molecules were simulated using the TIP3P force field (Mark and Nilsson 2001). A 
Nosé-Hoover thermostat (Evans and Holian 1985) at 310 K and a Parrinello-Rahman 
barostat (Parrinello and Rahman 1981) at 1 atm were considered. All hydrogen atoms 
were constrained with the LINCS algorithm (Hess et al. 1997), and long-range 
electrostatics were evaluated with particle-mesh Ewald (Essmann et al. 1995). A 1.4 nm 
cutoff was used for both the electrostatics and LJ interactions. All MD simulations 
employed a 2 fs time step in the standard Leap-Frog integrator (Birdsall and Langdon 
2018), and periodic boundary conditions were considered throughout the study. The 
setup for biotin and both considered ENMs are visualized in Fig. 2.6. Visual Molecular 
Dynamics 1.9.3 (VMD) (Humphrey et al. 1996) was used for visualization. 
 

2.4.8 Constrained MD simulation 
The potential of mean force (PMF) was determined using metadynamics (Laio and 
Gervasio 2008) as implemented in the Plumed plugin (Bonomi et al. 2009) patched with 
GROMACS, at all-atom resolution with explicit solvent. The considered collective 
variable for the generation of PMFs is the distance between the center of mass (COM) 
of the SiO2 or MWCNTs slab and the COM of the respective vitamin. Each system 
underwent 5000 steps of energy minimization with the standard steepest descent 
method (Fliege and Svaiter 2000) followed by 100 ps of standard equilibration. 
Consequently, a 300 ns production run was conducted to generate the free energy 
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profile. Each run was performed on 48 processors, resulting in 25-30 ns per day, that is, 
10-12 days per ENM and vitamin. The reduced performance compared to the 
unconstrained simulations can be attributed to the more frequent output requirement 
while performing free energy calculations. As previously discussed by Comer et al. 
(2015), the adsorption affinity (k) of any given vitamin with SiO2 surface can be 
calculated from the PMF as 

"!"#! =	∫ %&	exp	[−,-$!"#!(&)]!
%   (eq 2.2) 

where c is the cut-off distance provided by the onset of the (bulk) plateau region in the 
PMF, that is, the adsorbed region, β = (kBT )−1 corresponds to the reciprocal of the 
thermal energy, with the Boltzmann constant kB and temperature T (in Kelvin), and 
-$!"#!(&) is the PMF determined by constrained MD. We have omitted the usual 
material dependent prefactor to the right-hand side of eq 2.2, because it has to be 
determined experimentally, and thus introduces uncertainty. In particular, it will not 
change the ranking of vitamin affinities when considering a single material. In order to 
compare kcalc with log k predictions from QSAR models, the Pearson correlation 
coefficient (r) was calculated in R using the cor.test function of the stats package (v. 
3.6.3). 
 

 
Figure 2.6: Simulation snapshots for biotin adsorbing on a SiO2 (a) and MWCNTs (b) surface. The 

surfaces extend infinitely along the x-y directions due to periodic boundary conditions. All the 
atoms are shown as spheres, while bonds are represented as white sticks. The silicon, oxygen, 

carbon, sulfur, hydrogen atoms are shown in yellow, red, green, yellow and white. For reasons of 
visual clarity, the water molecules are represented by a blue transparent isosurface of the water 

density. 
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2.4.9 Unconstrained MD simulation 

Unconstrained simulations were also required in order to differentiate between the 
several factors, including hydrogen bonding, π-π-stacking, charged (electrostatic) 
interactions, and others that may play a role in adsorption. For the unconstrained 
simulation, the same SiO2 slab setup as before was considered for each vitamin. 
Unconstrained simulations for MWCNTs were not considered because only LJ 
interactions between the vitamins and this nanomaterial will play a role, meaning that a 
breakdown in other types of interactions is not meaningful. It can be inferred that the 
interaction between MWCNTs and each respective vitamin will purely be LJ 
interaction. Initially, we performed energy minimization, followed by 10 ns of NPT 
equilibration and a final production run of 500 ns. Each run was performed on 48 
processors, resulting in ~70 ns per day. For the purpose of analysis, a rerun of the MD 
trajectories was performed to extract the different contributions to the interaction 
energies between the SiO2 and each vitamin molecule. The number of hydrogen bonds 
formed as a function of time was computed using the GROMACS built-in routine gmx 
hbond. 
 

2.4.10 Data and software availability 
The QSAR models, training and validation data sets, SMILES of enteric microbial 
metabolites, calculated CDK descriptors, applicability domains of QSAR models, and 
predicted log k values are available free of charge as Supporting Information (DOI: 
10.5281/zenodo.6800734). Data and results from MD simulations are available via 
Zenodo (DOI: 10.5281/zenodo.6800734).  
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