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Abstract
The public health impact of a harmful exposure can be quantified by the population-

attributable fraction (PAF). The PAF describes the attributable risk due to an expo-

sure and is often interpreted as the proportion of preventable cases if the exposure

was extinct. Difficulties in the definition and interpretation of the PAF arise when the

exposure of interest depends on time. Then, the definition of exposed and unexposed

individuals is not straightforward. We propose dynamic prediction and landmarking to

define and estimate a PAF in this data situation. Two estimands are discussed which

are based on two hypothetical interventions that could prevent the exposure in dif-

ferent ways. Considering the first estimand, at each landmark the estimation prob-

lem is reduced to a time-independent setting. Then, estimation is simply performed

by using a generalized-linear model accounting for the current exposure state and

further (time-varying) covariates. The second estimand is based on counterfactual

outcomes, estimation can be performed using pseudo-values or inverse-probability

weights. The approach is explored in a simulation study and applied on two data

examples. First, we study a large French database of intensive care unit patients to

estimate the population-benefit of a pathogen-specific intervention that could prevent

ventilator-associated pneumonia caused by the pathogen Pseudomonas aeruginosa.

Moreover, we quantify the population-attributable burden of locoregional and distant

recurrence in breast cancer patients.

K E Y W O R D S
attributable risk, competing risks, dynamic prediction, landmarking, time-dependent exposure

1 INTRODUCTION

A critical aspect of understanding the consequences of an exposure is the harm it causes for the entire population under study.
Whereas the relative risk (RR), and the odds ratio (OR) are commonly used to quantify the risk increase at the individual level, the
population-attributable fraction (PAF) quantifies attributable risk at the population level. The PAF is defined as the proportion
of attributable cases due to exposure and is often interpreted as the proportion of preventable cases if the exposure were extinct.
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The PAF was initially defined for basic study designs such as cohort studies of fixed length (Levin, 1953). However, data
situations are often more complex. For example, in hospital epidemiology the goal may be a quantification of the burden of
hospital-acquired infections (HAIs). As HAIs occur over the course of hospital stays, patients are naturally unexposed at time of
admission to the hospital. The time-dependency of exposure makes it difficult to define the group of patients who are considered
to be unexposed. For example, treating eventually exposed patients as exposed since study entry results in the immortal time
bias (Schumacher, Allignol, Beyersmann, Binder, & Wolkewitz, 2013). Moreover, if the outcome of interest is for example death
in the hospital, discharge alive must be considered as a competing event (Wolkewitz, Cooper, Bonten, Barnett, & Schumacher,
2014). Finally, adjustment for confounding is essential to draw causal conclusions from observational data. Since the kind of
exposure we consider depends on time, we must also consider time-varying confounding. Corresponding adjustments appear
challenging due to collider-stratification bias (Greenland, 2003).

The concept of the PAF has been extended to accommodate time-to-event data with an exposure that is fixed at baseline (Chen,
Hu, & Wang, 2006; Chen, Lin, & Zeng, 2010; Samuelsen & Eide, 2008; Sjölander, 2016; Zhao, Chen, & Hsucorresponding,
2017). Extensions of the PAF to data settings with a binary time-dependent exposure and competing risks have been proposed
by Schumacher, Wangler, Wolkewitz, and Beyersmann (2007) and Bekaert, Vansteelandt, and Mertens (2010). Both proposed
estimands are cumulative measures of attributable risk over the course of time. Thus, they provide information on the evolution
of the PAF for the complete target population. As a consequence, the effect of a preventive intervention for the subgroup of
individuals who are still at risk at later time points may be precluded by the cumulative nature of the estimands.

In this article, we propose two novel estimands of the PAF that account for a time dynamic target population. Being based
on dynamic prediction and landmarking (van Houwelingen & Putter, 2011), the estimands allow for a differentiation between
individuals with differing durations at risk. These patients may differ strongly due to evolving patient characteristics. Consider,
for example, a population of ICU patients. Patients being a long time at risk – so-called long-stayers – are often sicker and also
longer at risk to acquire the exposure (e.g., an HAI).

The first proposed estimand is based on a hypothetical intervention that is only effective at the actual time of intervention. The
estimand is defined over a specific time window within the study time scale. It summarizes the effect of intervention within this
specific time frame rather than over the complete follow-up time. A fixed time window is less dependent on the arbitrary end of
follow-up time point, which depends on the patients in the study. The second estimand is based on an intervention that is effective
for a certain amount of time. Thus, this estimand allows for more realistic long-term intervention relaxing the assumptions of
the first estimand. Moreover, it is also defined over a specific time window.

After an introduction of the methods, we present the results of a simulation study in which we investigate the behavior of the
estimands and estimators. Subsequently, the approaches are applied to a real data sample of ventilated patients in intensive care.
This patient population is at high risk of acquiring ventilator-associated pneumonia (VAP) (Chastre & Fagon 2002). VAPs are
predominantly caused by the pathogen Pseudomonas aeruginosa (Pa). To understand the potential benefit of pathogen-specific
intervention programs, we study the percentage of preventable deaths of ventilated patients in the ICU if VAP caused by Pa
could have been avoided.

The method devised in this article is motivated by a particular data example. However, it is applicable to any other data setting
with binary time-dependent exposure. Therefore, we also apply the method within a different data context. Based on the study of
Fontein et al. (2015) on breast cancer in the TEAM trial data, we estimate the proportion of attributable death cases due to distant
and locoregional recurrence. The data example serves as a demonstration of alternative adjustment methods and is an application
in basic survival settings with internal time-dependent exposures but no competing risks. The article ends with a discussion.

2 THE POPULATION-ATTRIBUTABLE FRACTION FOR COHORT STUDIES
OF FIXED LENGTH WITH A BASELINE EXPOSURE

The PAF has been defined by Benichou (2001) as

𝑃𝐴𝐹 = 𝑃 (𝐷 = 1) − 𝑃 (𝐷 = 1|𝐸 = 0)
𝑃 (𝐷 = 1)

, (1)

where 𝐷 is the random variable of a dichotomous outcome and 𝐸 of a dichotomous exposure. The realization of both 𝐷 and 𝐸 is
observable. The proposed estimand is valid for cross-sectional studies and cohort studies of fixed length with a baseline exposure.

The PAF is usually estimated with observational data, as the effect of the exposure is generally considered to be harmful.
Therefore, adjustment for confounding is essential to obtain an unbiased estimate of the population-attributable burden.
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VON CUBE ET AL. 585

Miettinen (1974) showed that with 𝑃 (𝐷 = 1) = 𝑃 (𝐸 = 1)𝑃 (𝐷 = 1|𝐸 = 1) + 𝑃 (𝐸 = 0)𝑃 (𝐷 = 1|𝐸 = 0) an equivalent defi-
nition of the PAF is

𝑃𝐴𝐹 = 𝑃 (𝐸 = 1|𝐷 = 1) × 𝑅𝑅 − 1
𝑅𝑅

, (2)

where

𝑅𝑅 = 𝑃 (𝐷 = 1|𝐸 = 1)
𝑃 (𝐷 = 1|𝐸 = 0)

.

This reformulation of the PAF allows for a straightforward way of adjusting the estimator of the PAF by plug-in of an adjusted
RR in definition (2) (Miettinen, 1974). The prevalence of the exposure among cases, 𝑃 (𝐸 = 1|𝐷 = 1), can be estimated by the
population average without further consideration of confounders (Miettinen, 1974).

3 CONVENTIONAL DYNAMIC PREDICTION AND LANDMARKING TO
ESTIMATE THE POPULATION-ATTRIBUTABLE FRACTION

Dynamic prediction and landmarking implies that estimands are defined for a set of time points (landmarks) during follow-up.
This allows for an update of the target population that is still at risk at the specific landmark (LM). At each LM only those
individuals at risk are considered, and their exposure state and other patient characteristics are updated at each LM. Thus, at
each LM a different target population is being considered.

A major strength of conventional dynamic prediction and landmarking is the facility of adjustment for confounding of the
estimator. At each LM the data situation is reduced to a time-independent setting. The resulting estimand differs from defini-
tions (1) and (2) only by the target population. Thus, adjustment for confounding is based on established methods available for
estimands that ignore time of exposure and outcome, such as the approach proposed by Miettinen (1974).

3.1 Formal definition of 𝑷𝑨𝑭𝑳𝑴,𝒉

The estimand 𝑃𝐴𝐹𝐿𝑀,ℎ consists of a set of separate estimands 𝑃𝐴𝐹 (𝑙, ℎ). These depend on a specific landmark 𝑙 and a time
window ℎ and are formally given by

𝑃𝐴𝐹 (𝑙, ℎ) =
𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) − 𝑃 (𝐷𝑙,ℎ = 1|𝐸𝑙 = 0, 𝐴𝑙 = 1)

𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1)
, (3)

where 𝐴𝑙 is the random variable denoting the patients’ at-risk state at 𝑙, 𝐸𝑙 is the random variable of the exposure state at 𝑙, and
𝐷𝑙,ℎ is the random variable of the occurrence of the outcome within (𝑙, 𝑙 + ℎ].

Since 𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) = 𝑃 (𝐸𝑙 = 1|𝐴𝑙 = 1)𝑃 (𝐷𝑙,ℎ = 1|𝐸𝑙 = 1, 𝐴𝑙 = 1) + 𝑃 (𝐸𝑙 = 0|𝐴𝑙 = 1)𝑃 (𝐷𝑙,ℎ = 1|𝐸𝑙 = 0,
𝐴𝑙 = 1), an equivalent definition of 𝑃𝐴𝐹 (𝑙, ℎ) is

𝑃𝐴𝐹 (𝑙, ℎ) = 𝑃 (𝐸𝑙 = 1|𝐴𝑙 = 1, 𝐷𝑙,ℎ = 1) ×
𝑅𝑅𝑙,ℎ − 1
𝑅𝑅𝑙,ℎ

= 𝑃𝐸𝑙 ×
𝑅𝑅𝑙,ℎ − 1
𝑅𝑅𝑙,ℎ

(4)

with 𝑃𝐸𝑙 being the prevalence of the exposure at time 𝑙 among cases occurring within the time window (𝑙, 𝑙 + ℎ] and 𝑅𝑅𝑙,ℎ is
the RR of the outcome within (𝑙, 𝑙 + ℎ] depending on the exposure state at time point 𝑙, that is,

𝑅𝑅𝑙,ℎ =
𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1, 𝐸𝑙 = 1)
𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1, 𝐸𝑙 = 0)

. (5)

Formally, we define by 𝑃𝐴𝐹𝐿𝑀,ℎ the set of the 𝑃𝐴𝐹 (𝑙, ℎ)s over all LMs, that is, 𝑃𝐴𝐹𝐿𝑀,ℎ = {𝑃𝐴𝐹 (𝑙, ℎ)|𝑙 ∈ }, where
 is the set of chosen LMs and ℎ is the length of the time window.
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586 VON CUBE ET AL.

3.2 Estimation of 𝑷𝑨𝑭 (𝒍, 𝒉)
For estimation, the LMs should be chosen based on the number of exposed and unexposed patients at each time point. The
number in both patient groups should be sufficiently large for inference. The time window of fixed length can be defined based
on clinical knowledge and relevance. Examples of how to choose the LMs and time windows are presented in Sections 5 to 7
based on a simulation study and real data examples.

Inference at a LM 𝑙 is performed on a LM dataset (van Houwelingen & Putter, 2011) which consists of all patients who are
still at risk at the LM. For every patient within the LM dataset the exposure state at the LM as well as the event state at the end of
the time window is accessed. Patients who do not experience the event of interest within the time window are implicitly assumed
to be either still at risk at the end of the time window or to have experienced the competing event. The matter of censoring is
discussed at the end of this section.

Using Equation (4) to define 𝑃𝐴𝐹 (𝑙, ℎ) results in a straightforward approach of adjustment for confounding (see Miettinen,
1974). As explained by Miettinen (1974) and briefly described in Section 2, 𝑃𝐴𝐹 (𝑙, ℎ) can be estimated by separately estimating
the prevalence 𝑃𝐸𝑙 and 𝑅𝑅𝑙,ℎ. An estimator that accounts for systematic differences between exposed and unexposed patients
is obtained by adjusting 𝑅𝑅𝑙,ℎ at each LM 𝑙.

Estimation of the adjusted 𝑅𝑅𝑙,ℎ can be performed via maximum likelihood estimation using a log-model, that is,

𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1, 𝐸𝑙, 𝑍𝑙) = exp(𝛽0𝑙 + 𝛽1𝑙 × 𝐸𝑙 + 𝛽𝑇𝑙 ×𝑍𝑙), (6)

where 𝛽0𝑙 is the intercept at LM 𝑙, 𝛽1𝑙 is the coefficient of the exposure state at 𝑙, 𝛽𝑇
𝑙

is the vector of coefficients of 𝑍𝑙. 𝑍𝑙 is a
vector of baseline and time-dependent covariates (with covariate values fixed at time point 𝑙) sufficient for confounder control.
The condition 𝐴𝑙 = 1 is automatically fulfilled, as estimation is based on the LM dataset. The 𝑅𝑅𝑙,ℎ is estimated by exp(𝛽1𝑙).
The log-model is implemented in the statistical software R within the function glm (R Core Team, 2017).

The prevalence 𝑃𝐸𝑙 is simply estimated by the proportion of exposed subjects among cases. With glm, 𝑃𝐸𝑙 could, for example,
be estimated by

𝑃𝐸𝑙 = 𝑃 (𝐸𝑙 = 1|𝐴𝑙 = 1, 𝐷𝑙,ℎ) = exp(𝛼0𝑙 + 𝛼1𝑙 ×𝐷𝑙,ℎ), (7)

where 𝛼0𝑙 is the intercept at LM 𝑙 and 𝛼1𝑙 the regression coefficient of𝐷𝑙,ℎ. An estimator of the variance of 𝑃𝐴𝐹 (𝑙, ℎ) is obtained
analogously to the variance estimator of the time-fixed PAF defined in (2) (for details see Greenland, 1987).

3.2.1 Smoothing methods for the separate 𝑷𝑨𝑭 (𝒍, 𝒉)
For practical reasons van Houwelingen and Putter (2011) propose to smooth the separate estimates of 𝑃𝐴𝐹 (𝑙, ℎ) over all LMs.
The advantages of smoothing are not only the removal of noise and the nicer presentation, but also the availability of values
of 𝑃𝐴𝐹𝐿𝑀,ℎ between two LM time points. Moreover, depending on the smoothing method used, an increase in efficiency can
be achieved.

In principle, two approaches can be used to obtain a smooth curve that interpolates the separate quantities 𝑃𝐴𝐹 (𝑙, ℎ) over all
LMs 𝑙, 𝑙 ∈ . An ad hoc approach is to first estimate 𝑃𝐴𝐹 (𝑙, ℎ) for each LM separately (as described in Section 3.2). Then,
smoothing splines, regression splines, polynomial regression or local regression can be used to fit a smooth curve on the separate
estimates. The methods are well described by James, Witten, Hastie, and Tibshirani (2013). The downside of this approach is
that the curve may be easily overfitted, as the choice of the degree of smoothing is not based on any statistical tests. Therefore,
the gain in efficiency is negligible.

As an alternative the principle of pooled logistic regression by a so-called supermodel can be used to obtain a smooth curve
over all LMs directly without first fitting the separate models (van Houwelingen & Putter, 2011). Estimation with the supermodel
is based on the LM datasets stacked together to one large dataset. In this “super prediction dataset” the patients are represented
as often as they appear in the LM datasets (see van Houwelingen & Putter, 2011). A regression model is fitted on the super
prediction dataset separately for 𝑅𝑅𝑙,ℎ and 𝑃𝐸𝑙 by accounting for possible time-varying effects at the LMs via interaction terms.

A supermodel for 𝑃𝐸𝑙 is given by

𝑃𝐸𝑙 = 𝑃 (𝐸𝑙 = 1|𝐴𝑙 = 1, 𝐷𝑙,ℎ) = exp(𝛼0(𝑙) + 𝛼1(𝑙) ×𝐷𝑙,ℎ) (8)

where 𝛼0(𝑙) =
∑
𝛼00 × 𝑓0(𝑙) +⋯ + 𝛼0𝐾 × 𝑓𝐾 (𝑙) and 𝛼1(𝑙) =

∑
𝛼10 × 𝑔0(𝑙) +⋯ + 𝛼1𝐾̃ × 𝑔𝐾̃ (𝑙), with 𝑓0(𝑙) = 𝑔0(𝑙) = 1 and

𝑓𝑗(𝑙), 𝑔𝑗(𝑙) (1 < 𝑗 ≤ 𝐾 or resp. 𝐾̃) being smooth basis functions of the LMs 𝑙, 𝑙 ∈ . We choose our basis functions as pro-
posed in most papers about dynamic prediction and landmarking (van Houwelingen & Putter, 2008; Nicolaie, van Houwelingen,
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VON CUBE ET AL. 587

de Witte, & Putter, 2013a, 2013b). Thus, 𝐾 = 𝐾̃ = 2 and 𝑓1(𝑙) = 𝑔1(𝑙) = 𝑙, 𝑓2(𝑙) = 𝑔2(𝑙) = 𝑙2. This results in the following
supermodel

𝑃𝐸𝑙 = exp(𝛼00 + 𝛼01𝑙 + 𝛼02𝑙
2 + 𝛼10 ×𝐷𝑙,ℎ + 𝛼11𝑙 ×𝐷𝑙,ℎ + 𝛼12𝑙

2 ×𝐷𝑙,ℎ). (9)

We use the same basis functions to estimate 𝑅𝑅𝑙,ℎ:

𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1, 𝐸𝑙, 𝑍𝑙, 𝑙) = exp(𝛽0(𝑙) + 𝛽1(𝑙) × 𝐸𝑙 + 𝛽𝑇 ×𝑍𝑙), (10)

with 𝛽0(𝑙) = (𝛽00 + 𝛽01𝑙 + 𝛽02𝑙
2) and 𝛽1(𝑙) = (𝛽10 + 𝛽12𝑙 + 𝛽12𝑙

2). For simplicity we do not include any time-varying effects
for the covariate vector 𝑍𝑙. 𝑅𝑅𝑙,ℎ is now estimated by exp(𝛽1(𝑙)), where 𝑙 is any time point between the first and the last
LM. The intercept function 𝛽0(𝑙) models the baseline risk of experiencing the event of interest within the time interval, given
alive and at risk at the LM. When including an interaction term for the intercept, we assume that the risk of experiencing the
event of interest within the time interval changes with time. The effect of acquisition of exposure is modeled by the regression
coefficients 𝛽1(𝑙). If interaction terms with the LMs are included, we assume a change of the effect of the exposure with time.
Whether interaction terms with the LMs are needed and up to which degree can be tested with the Wald test (van Houwelingen
& Putter, 2011). Finally, a smoothed estimate of 𝑃𝐴𝐹𝐿𝑀,ℎ is obtained by plugging the estimates of 𝑃𝐸𝑙 and 𝑅𝑅𝑙,ℎ obtained
with the supermodel into Equation (4). For both discussed smoothing approaches, we propose to obtain confidence intervals
(CIs) by a bootstrap approach.

3.2.2 Dealing with censored observations
The method explained so far is valid in the presence of competing risks but without censoring. Then, the outcome 𝐷𝑙,ℎ is
observable for all patients. In hospital epidemiology, this is a common data setup. To generalize the estimation approach to
data settings subject to censoring, dynamic pseudo-observations proposed by Nicolaie et al. (2013b) can be used. After the
pseudo-values have been obtained, the same method as described above (i.e., the approach by Miettinen (1974)) can be applied.
𝐷𝑙,ℎ can be also expressed in terms of a survival probability (Nicolaie et al., 2013b). Let 𝐽 denote the number of differ-

ent event types and let 𝑋 indicate the type of the event. Without loss of generality, we assume 𝐽 = 2 and 𝑋 = 1 for the
event of interest. We have 𝐷𝑙,ℎ = 𝐼(𝑇 ≤ 𝑙 + ℎ,𝑋 = 1|𝑇 > 𝑙), where 𝑇 is the minimum of the event and censoring time. A
pseudo-value for 𝐷𝑙,ℎ is obtained within the LM dataset at 𝑙. For an individual 𝑖 at risk at LM 𝑙 the pseudo-observation is
defined as

𝜃̂𝑖
𝑙,ℎ

= 𝑛𝑙𝐹1(𝑙 + ℎ|𝑙) − (𝑛𝑙 − 1)𝐹 (−𝑖)
1 (𝑙 + ℎ|𝑙), (11)

where 𝑛𝑙 is the number of patients at risk at 𝑙,𝐹1(𝑙 + ℎ|𝑙) is the Aalen-Johansen estimator for the conditional cumulative incidence
function 𝑃 (𝑇 ≤ 𝑙 + ℎ,𝑋 = 1|𝑇 > 𝑙), and 𝐹 (−𝑖)(𝑙 + ℎ|𝑙) is the according Aalen–Johansen estimator based on the LM data set at
𝑙 leaving out observation 𝑖. As suggested by Nicolaie et al. (2013a) the pseudo-observations can be easily obtained with the R
package pseudo (Pohar Perme and Gerster, 2017), or alternatively with the R package prodlim (Gerds, 2017).

Given the LMs satisfy that the time window (𝑙, 𝑙 + ℎ] does not exceed the study horizon 𝜏 with both the probability of
censoring and the probability of still being at risk exceeding zero beyond 𝜏, (Nicolaie et al., 2013b) derive asymptotic properties
for the dynamic pseudo-observations. With these properties, they show that estimation of 𝑃𝐸𝑙 and 𝑅𝑅𝑙,ℎ can be performed in
the same way explained above for both the separate models and the supermodel based on the pseudo-observations. This also
applies to the variance estimators. Then, an estimate of 𝑃𝐴𝐹 (𝑙, ℎ) and the variance can be obtained by plug-in of the estimators
of 𝑅𝑅𝑙,ℎ and 𝑃𝐸𝑙 .

An alternative way to handle censored observation is the use of standard survival analysis methodology. This approach is
based on definition (4). The marginal risk 𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) and the conditional risk 𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1, 𝐸𝑙 = 0) can both be
estimated with the Aalen–Johansen estimator. Adjustment is possible, for example, with the Cox proportional hazards model.
This approach is explained in detail by van Houwelingen and Putter (2008). We also refer to Section 7 where we apply this
approach to a specific data example.
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588 VON CUBE ET AL.

F I G U R E 1 Illustration of the two different types of interventions. Intervention 1 corresponds
to the estimand defined by conventional dynamic prediction and landmarking, 𝑃𝐴𝐹𝐿𝑀,ℎ,
intervention 2 corresponds to the estimand defined by it’s extension, 𝑃𝐴𝐹0𝐿𝑀,ℎ

4 A COUNTERFACTUAL APPROACH TO DEFINE THE
POPULATION-ATTRIBUTABLE FRACTION

The estimand 𝑃𝐴𝐹𝐿𝑀,ℎ is interpretable as the percentage of preventable cases if the exposure could be eliminated at the LM.
However, interventions often have a long-term effect. Thus, a possibly more desirable interpretation could be “the proportion
of preventable cases if the exposure could be avoided over the entire time interval [𝑙, 𝑙 + ℎ]”. We denote the estimand with
this interpretation by 𝑃𝐴𝐹0(𝑙, ℎ) and the set of estimands over a range of LMs 𝑙 by 𝑃𝐴𝐹0𝐿𝑀,ℎ. A graphical illustration of the
interventions assumed for 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ is given in Figure 1.

4.1 Formal definition of 𝑷𝑨𝑭𝟎𝑳𝑴,𝒉

Formally, 𝑃𝐴𝐹0(𝑙, ℎ) can be defined as

𝑃𝐴𝐹0(𝑙, ℎ) =
𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) − 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1)

𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1)
. (12)

𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) is the (observable) overall risk of experiencing the event of interest within the time window (𝑙, 𝑙 + ℎ] among
patients still alive at 𝑙. 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1) is the hypothetical risk of experiencing the event of interest within (𝑙, 𝑙 + ℎ] among
patients still alive at 𝑙 had the exposure been removed within the time window [𝑙, 𝑙 + ℎ] for all patients who were still at risk
at 𝑙.

We expressed 𝑃𝐴𝐹0(𝑙, ℎ) with marginal outcome risks. This definition corresponds to definition (3) of 𝑃𝐴𝐹 (𝑙, ℎ). 𝑃𝐴𝐹 (𝑙, ℎ)
was also expressed in terms of RR and prevalence, which is defined by the conditional outcome risks. The two definitions (3) and
(4) are equivalent. This is due to the fact that the exposure state is fixed at LM 𝑙. In contrast, 𝑃𝐴𝐹0(𝑙, ℎ) cannot be reformulated
in terms of RR and prevalence, because the reformulation uses information about the prevalence within the time window which
is unknown at 𝑙. Formally, we would need 𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1, 𝐸𝑙 = 0) = 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1), which is not the case if some
patients acquire the exposure within the window (𝑙, 𝑙 + ℎ] (post time point 𝑙).

4.2 Estimation of 𝑷𝑨𝑭𝟎(𝒍, 𝒉)
To estimate 𝑃𝐴𝐹0(𝑙, ℎ), we separately estimate 𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) and 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1) and plug them into Equation (12).
Estimation of the observable marginal risk 𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) is straightforward by maximum likelihood estimation based on
generalized linear models (glms). A possible model is

𝑃 (𝐷𝑙,ℎ = 1|𝐴𝑙 = 1) = expit(𝛽0𝑙). (13)

In this situation other link functions such as the link function exp would return identical results.
Estimation of the hypothetical risk of the outcome had all patients been unexposed, 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1), is complicated by

the missing values of exposed patients. Given consistency the counterfactual random variable of the event of interest had the
exposure been removed, 𝐷0𝑙,ℎ, is only realized for patients who were factually observed to remain unexposed within [𝑙, 𝑙 + ℎ].
For patients who acquire the exposure within the time window the realization of 𝐷0𝑙,ℎ is not observable. Therefore, it must be
imputed based on the information available for patients who were observed to remain unexposed within [𝑙, 𝑙 + ℎ].

To impute the missing outcomes of exposed patients various approaches are possible. In the following, we first explain how
to use a pseudo-value approach similar to Section 3 where this approach was used for the imputation of missing outcomes due to
censoring. With this approach, adjustment for time-dependent covariates updated at each LM is possible. However, in contrast to
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VON CUBE ET AL. 589

the estimation of 𝑃𝐴𝐹𝐿𝑀,ℎ, which assumes an intervention that is effective at the LM only, unbiased estimation of 𝑃𝐴𝐹0𝐿𝑀,ℎ

requires patients to be comparable within the complete time window ℎ and not just at the LM 𝑙. Therefore, adjustment for time-
varying confounding within the time window might become necessary. Adjustment for time-varying confounding can be done
using inverse-probability of exposure weights. This procedure is also explained below.

We first explain the pseudo-value approach for an estimation of 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1). In principle, we do the same as in
Section 3.2.3. However, instead of dealing with outcomes that are missing due to censoring, we aim to impute the outcomes
of patients who acquired the exposure within the time window. The crucial assumption is that patients who did not acquire the
exposure within the time window are comparable to those patients who did acquire it.

An estimator of 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1) can be obtained by treating patients who acquire the exposure within the time win-
dow as censored. We express the realization of 𝐷0𝑙,ℎ by 𝐼(𝑇0 ≤ 𝑙 + ℎ,𝑋 = 1|𝑇 > 𝑙), where 𝑇0 is the minimum of the event
and exposure time and 𝑋 is, as in Section 3.2.3., the event indicator (i.e., 𝑋 = 1 if the patient experienced the event of
interest in (𝑙, 𝑙 + ℎ], 𝑋 = 2 if the patient experienced the competing event). Then, the pseudo-value of 𝐷0𝑙,ℎ for patient 𝑖 is
defined as

𝜃̂𝑖0𝑙,ℎ = 𝑛0
𝑙
𝐹 0
1 (𝑙 + ℎ|𝑙) − (𝑛0

𝑙
− 1)𝐹 0(−𝑖)

1 (𝑙 + ℎ|𝑙), (14)

where 𝑛0
𝑙

is the number of patients being unexposed and at risk at time point 𝑙, 𝐹 0
1 (𝑙 + ℎ|𝑙) is the Aalen–Johansen estimator for

the conditional cumulative incidence function 𝑃 (𝑇0 ≤ 𝑙 + ℎ,𝑋 = 1|𝑇 > 𝑙) and 𝐹 0(−𝑖)(𝑙 + ℎ|𝑙) is the according Aalen–Johansen
estimator based on the LM data set at 𝑙 leaving out observation 𝑖. In contrast to the pseudo-values in Section 3.2.3., 𝜃̂𝑖0𝑙,ℎ is
estimated with the patients that are unexposed at LM 𝑙. In Section 3.2.3., pseudo-values were estimated with all patients at risk
at 𝑙. This is because we address two distinct problems. In Section 3.2.3. the observable realization of the random variable𝐷𝑙,ℎ was
missing due to censoring. Here, we aim to estimate pseudo-values for 𝐷0𝑙,ℎ by assuming that patients who acquire the exposure
within the time window (𝑙, 𝑙 + ℎ] would have the same risk to experience an event as patients who remain unexposed. Thus,
patients who acquire the exposure must be treated as censored. After the pseudo-values have been obtained 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1)
can be also estimated with glms using the R-package geese.

The estimate hereby obtained is most likely biased due to a systematic difference between patients who acquire the exposure
and patients who remain unexposed. Such confounding implies a violation of the assumption that patients exposed at some time
point within [𝑙, 𝑙 + ℎ] would have the same risk as patients remaining unexposed within [𝑙, 𝑙 + ℎ].

As discussed by Andersen and Pohar Perme (2010) and Binder, Gerds, and Andersen (2014), the pseudo-observations are
based on the assumption of covariate independent censoring. In the presence of confounding this assumption is violated. If
adjustment for covariates updated at each LM is sufficient for confounder control, adjustment of𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1) can be done
by using covariate-adjusted pseudo-values for the estimation with geese. The adjusted pseudo-values are based on the adjusted
Aalen-Johansen estimators 𝐹 0

1 (𝑙 + ℎ|𝑙, 𝐸𝑙 = 0, 𝑍𝑙), where 𝑍𝑙 is a vector of covariate values observed at LM 𝑙. Yet up to now,
the R functions pseudo (Pohar Perme and Gerster, 2017) and prodlim (Gerds, 2017) are not implemented for covariate adjusted
Aalen–Johansen estimators. Therefore, the pseudo-values must be adjusted either via stratification or - more sophisticated - via
nearest-neighbor estimation as proposed by Beran (1981).

However, with increasing length of the time window ℎ, adjustment for time-varying confounding becomes necessary. There-
fore, we propose to use adjusted inverse probability of exposure weights as initially proposed by Hernán, Brumback, and Robins
(2000). The approach is similar to the modified sequential Cox approach proposed by Karim et al. (2018). The weights are
estimated separately for each LM dataset using the R package ipw. Then, based on the LM datasets, two weighted cause-specific
Cox regression models – one for the occurrence of the event of interest within the time window and one for the occurrence of
the competing event within the time window – are used to estimate the effect of the exposure within the time window. This can
be done with the R function coxph of the survival package (Therneau, 2015). Patients who remain at risk until 𝑙 + ℎ are admin-
istratively censored at the end of the time window. Finally, 𝑃 (𝐷0𝑙,ℎ = 1|𝐴𝑙 = 1) can be estimated using the two Cox regression
models and the R function survfit. A detailed description of this procedure is provided in the tutorial by Therneau, Crowson, and
Atkinson (2016) and the Appendix of Pouwels et al. (2018). To obtain appropriate CIs, we propose to use a bootstrap method.
Smoothed estimates can be obtained as explained in Section 3.

5 SIMULATION STUDY

In a simulation study, we investigated the performance of the two proposed estimands and their estimators. It serves as an exem-
plary presentation of the two approaches under controllable conditions. In the following, we present two simulation scenarios.
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590 VON CUBE ET AL.

F I G U R E 2 Cause-specific Weibull hazard
rates with a direct effect of exposure due to an
increased hazard of the event of interest with
exposure. The hazard of exposure was 𝛼01 = 0.06
and time constant

Other simulations based on different models have been performed. They led to the same conclusions and are not presented
here.

The two simulation scenarios were based on a multi-state model considering the binary time-dependent exposure as an
intermediate event. The final absorbing states were the event of interest and a competing event (see Figure S1). The result-
ing model is often called extended illness-death model. A detailed description of the model is given by Beyersmann, Allignol,
and Schumacher (2011). Both estimands, 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ, can be identified with the transition probabilities of the
extended illness-death model which are fully defined by the cause-specific hazard rates (Andersen, Borgan, Gill, & Keiding,
1993).

We considered constant cause-specific hazards and time-varying Weibull hazards. The R code for the simulation study
was based on the code by Heggland (2015). The sample sizes were 2,000 and 10,000 observations. Both simulation sce-
narios have been run 100 times. For both scenarios and each run, we obtained separate and smoothed estimates of both
𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ. Estimation of 𝑃𝐴𝐹𝐿𝑀,ℎ was performed as described in Section 3. We did not model any con-
founding in the simulation study. Therefore, estimation of 𝑃𝐴𝐹0𝐿𝑀,ℎ was based on the unadjusted pseudo-value approach
explained in Section 4. Smoothed estimates of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ were obtained via the supermodel approach. The
results of each scenario were summarized as plots of the mean, median, and the first and third quartiles of the 100 runs at
each LM.

First, we considered a no-effects model meaning, that the exposure does not increase the risk of the event of interest. The
no-effects model was simulated with constant hazards. Second, the effect of the exposure was modelled such that it increased
the risk of the event of interest directly via an increased hazard of the event of interest. This scenario was based on time-varying
cause-specific hazards. The Weibull hazards of this scenario are shown in Figure 2.

The choice of LMs and the time window were based on the data situation. The LMs were chosen such that there were at least
20 observations of exposed and unexposed patients at each LM. The time window was chosen as the mean time at risk. For the
time constant-hazards data setting this was 30 time points. In the time-varying-hazards data setting events occurred earlier and
the mean duration at risk was eight time points.

In the no-effects model both 𝑃𝐴𝐹0𝐿𝑀,ℎ and 𝑃𝐴𝐹𝐿𝑀,ℎ were approximately zero (Figure 3). In the other scenario, 𝑃𝐴𝐹0𝐿𝑀,ℎ

was larger than 𝑃𝐴𝐹𝐿𝑀,ℎ (Figure 4). If exposure could be prevented over the complete considered time window and exposure
increases the risk of the event of interest, then at least as many cases are preventable as in a setting where exposure can be only
prevented at the LM.

Performance of the estimators varied with sample size at the LMs. Compared to the full cohort there is a significant reduction
of patients being exposed and unexposed at the LMs and the number of events occurring in each group. Therefore, variation
was considerably large (see Figures 3 and 4).

The smoothed versions of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ did reduce the variability of the separate estimates, but not consider-
ably. Despite the smoother presentation of the estimates, the simulation study did not show a benefit of the supermodel that
would justify the more complex estimation procedure. However, we emphasize that our simulation study does not allow for a
generalization of these findings. In Section 6, we further discuss the supermodel in the context of the data example. Source code
to reproduce the results is available as Supporting Information on the journal’s web page.
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VON CUBE ET AL. 591

F I G U R E 3 Simulation of a no-effects
extended illness-death model with constant hazards
(𝛼01(𝑡) = 0.005, 𝛼02(𝑡) = 0.02, 𝛼03(𝑡) = 0.02,
𝛼14(𝑡) = 0.02, and 𝛼15(𝑡) = 0.02). Each sample
consists of 10,000 observations. The time window
was the approximate mean time at risk (30 time
points). The summary comprises the mean, median,
and the first and third quartiles of 100 runs at each
LM

F I G U R E 4 Simulation of an extended
illness-death model with direct effect of the
exposure on the risk to experience the event of
interest with time-varying cause-specific Weibull
hazard rates (the cause-specific hazards are shown in
Figure 2). Each sample consists of 2,000
observations. The time window was the approximate
mean time at risk (8 time points). The summary
comprises the mean, median, and the first and third
quartiles of 100 runs at each LM

6 DATA EXAMPLE: PREVENTABLE DEATH CASES AMONG VENTILATED
PATIENTS IN INTENSIVE CARE

The prevention of hospital-acquired infections caused by multi-drug resistant pathogens is of major interest to public health.
In the following, we investigate the OUTCOMEREA French multi-center database. We consider a sample of 7,221 invasive-
mechanically ventilated (IMV) patients to understand the burden of ventilator-associated pneumonia caused by the pathogen
Pseudomonas aeruginosa (𝑉 𝐴𝑃𝑃 .𝑎.) on a population level. Patients are considered at risk of 𝑉 𝐴𝑃𝑃 .𝑎. acquisition after 2 days of
IMV. Follow-up was from first day of IMV to death in the ICU (n = 1971) or discharge alive from the ICU (n = 5250). Follow-
up was complete. However, discharge alive must be considered as competing risk to death in the ICU. Moreover, all patients
who enter the study are initially unexposed, 𝑉 𝐴𝑃𝑃 .𝑎. is a time-dependent exposure. By the end of follow-up, 463 patients had
acquired a 𝑉 𝐴𝑃𝑃 .𝑎..

In a previously published competing risks analysis we found that patients with a 𝑉 𝐴𝑃𝑃 .𝑎. have an increased risk of death in
the ICU due to a prolonged length of stay (von Cube et al., 2018). Thus, while there was no direct effect on the death hazard
(adjusted hazard ratio (adjHR)=1.05; 95%CI [0.88;1.26]), the hazard of discharge alive was significantly reduced for an infected
patient (adjHR=0.67; 95%CI [0.50;0.79]) (see von Cube et al., 2018).

To understand the public health impact of 𝑉 𝐴𝑃𝑃 .𝑎. for mechanically ventilated patients in intensive care, we estimated both
𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ. The two approaches allow for a differentiation between “short-stayers” and “long-stayers”. While
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592 VON CUBE ET AL.

F I G U R E 5 Total number of unexposed and
exposed patients at each LM of our sample (𝑛 =
7221) of the OUTCOMEREA database, and the
number of ICU death cases within 15 days in each
group

most patients leave the ICU after a few days, some patients stay for quite some time. These long-stayers are at higher risk of
𝑉 𝐴𝑃𝑃 .𝑎. acquisition. At the same time, patients are most vulnerable in the first days of IMV. Our approach reveals which patient
population would benefit most from a preventive intervention.

The LMs were chosen daily from day 3 to day 50, which is the time frame in which a considerable number of patients were
still at risk. The time window was the mean length of stay in the ICU which is 15 days. Figure 5 shows the number of patients at
risk among the unexposed and exposed patients at each LM, as well as the number of events occurring within the time window.

We estimated both unadjusted and adjusted versions of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ. To account for major differences between
infected and uninfected patients, we adjusted for the baseline confounding factors “type of patient” (surgical versus medical)
and age at study entry. Moreover, we adjusted for the time-varying sepsis-related organ failure assessment (SOFA) score, which
is an indicator for the patients’ severity of the initial illness. To estimate 𝑃𝐴𝐹𝐿𝑀,ℎ, the SOFA score was updated at each LM
and held fixed over the time window. In contrast, when estimating 𝑃𝐴𝐹0𝐿𝑀,ℎ, time-varying confounding due to the variation of
the SOFA score within the time window must be accounted for. Therefore, we adjusted 𝑃𝐴𝐹0𝐿𝑀,ℎ for the time-varying SOFA
score. To further avoid collider-stratification bias we used the values lagged by 2 days. Estimation of 𝑃𝐴𝐹𝐿𝑀,ℎ was performed as
described in Section 3. To estimate 𝑃𝐴𝐹0𝐿𝑀,ℎ we accounted for time-varying confounding within the time window. Therefore,
we used the inverse- probability weights as explained in Section 4.

To demonstrate the performance of the supermodel on the data example, we obtained smoothed estimators of 𝑃𝐴𝐹𝐿𝑀,ℎ using
polynomials of degree two as smoothing functions. Thus, we included interaction terms for the baseline risk and for the infection
risk. The resulting model is the one presented in Section 3.

To derive 𝑃𝐴𝐹𝐿𝑀,ℎ we also estimated 𝑅𝑅𝑙,ℎ. The unadjusted 𝑅𝑅𝑙,ℎ (for all LMs 𝑙, 𝑙 ∈ ) and 𝑃𝐴𝐹𝐿𝑀,ℎ (separate
models and supermodel) are shown in Figure 6. We observe an increased RR of death for patients still in the ICU at day 38
(𝑅𝑅38,15 = 1.7, 95%-CI [1.02; 2.88], separate models). Due to this increased RR the PAF (separate model) also has a peak

at day 38 (𝑃𝐴𝐹 (38, 15) = 0.13, 95%-CI [−0.024; 0.27]). The zero is contained in the 95%-CI. This implies that there is no
statistical evidence for attributable mortality of 𝑉 𝐴𝑃𝑃 .𝑎. within 15 days for patients in the ICU at day 38. In general, there is
no evidence for attributable mortality within 15 days at any of the LMs, if the reference population are those patients that are
unexposed at the LM.

The supermodel for both RR and 𝑃𝐴𝐹𝐿𝑀,ℎ clearly increases the efficiency of the estimator. The point-wise CIs are consider-
ably smaller. Nevertheless, the supermodel has some drawbacks. The supermodel puts more weight on LMs with many patients
at risk. As the sample size is decreasing with time, more weight is put on early LMs. The separate models of 𝑅𝑅𝐿𝑀,ℎ indicate
two peaks at day six and day 38. Due to the smaller sample size at day 38, the supermodel does not follow this trend. The data
example demonstrates that the supermodel should be interpreted in combination with the separate models.

The left panel of Figure 7 shows the unadjusted estimates of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ (separate models). 𝑃𝐴𝐹 0𝐿𝑀,ℎ indi-

cates attributable mortality within 15 days at LMs nine (𝑃𝐴𝐹 0(9, 15) = 0.028, 95%-CI [0.004; 0.05]), ten (𝑃𝐴𝐹 0(10, 15) =
0.027, 95%-CI [0.002; 0.05]), and eleven (𝑃𝐴𝐹 0(11, 15) = 0.03, 95%-CI [0.002; 0.06]) if the reference population are those
patients that are unexposed within [𝑙, 𝑙 + ℎ]. For example, if 𝑉 𝐴𝑃𝑃 .𝑎. could be avoided between days 11 and 26 for patients still
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VON CUBE ET AL. 593

F I G U R E 6 Unadjusted relative risk of
death (left panel) and population-attributable
fraction (right panel) within 15 days depending
on the infection state at the LM. The dashed
black lines are the pointwise 95%-CI intervals of
the separate models (separate, non-smoothed
estimates). The dashed gray lines are the
bootstrap CIs of the supermodels (smoothed
estimates)

F I G U R E 7 Unadjusted estimates of
𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ (left panel) and the
adjusted estimates (right panel) of our sample of
the OUTCOMEREA database. The dashed lines
are the pointwise 95%-CI intervals of the
separate models of 𝑃𝐴𝐹𝐿𝑀,ℎ (black) and
𝑃𝐴𝐹0𝐿𝑀,ℎ (gray)

in the ICU at day 11, then 3% of the death cases occurring within this time window could be prevented. This corresponds to a
total number of 25 cases. Nevertheless, as the prevalence of 𝑉 𝐴𝑃𝑃 .𝑎. is – from a statistical point of view – very low, there is no
remarkable difference between 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ.

The adjusted versions of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ are shown in the right panel of Figure 7. The estimates reveal that the
patient populations are most vulnerable within the first days of IMV (days 3 to 12). Here targeted preventive interventions
against 𝑉 𝐴𝑃𝑃 .𝑎. with a long term effect of 15 days would provide the most benefit. A plot that contrasts the adjusted versions of
𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ with the unadjusted ones is provided in Figure S2. Source code to reproduce the results is available
as Supporting Information on the journal’s web page.

7 DATA EXAMPLE: TEAM TRIAL DATA

Fontein et al. (2015) studied the risk of death for a sample of the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial.
The randomized clinical trial included Belgian and Dutch early breast cancer (BC) patients that were postmenopausal hormone
receptor-positive (HR+) and treated with endocrine. Fontein et al. used dynamic prediction and landmarking (van Houwelingen
& Putter, 2011; Fontein et al., 2015) for survival prognosis being made months past time of diagnosis. The approach accounts
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594 VON CUBE ET AL.

F I G U R E 8 Adjusted estimates of 𝑃𝐴𝐹𝐿𝑀,ℎ

and 𝑃𝐴𝐹0𝐿𝑀,ℎ of LRR (left panel) and DR (right
panel) of the TEAM trial data sample. The dashed
lines are the pointwise 95%-CI intervals of the
separate models of 𝑃𝐴𝐹𝐿𝑀,ℎ (black) and
𝑃𝐴𝐹0𝐿𝑀,ℎ (gray)

for time-varying effects and allows for an update of patients characteristics recorded past baseline. Fontein et al. (2015) found a
highly significant increase in all-cause mortality for patients experiencing locoregional recurrence (LRR) or distant recurrence
(DR).

We extended the analysis to study the population-attributable burden of LRR and DR. The outcome of interest was death of
any cause. Thus, in contrast to the data example in Section 6, we have no competing risks. However, of the 2,597 patients included
in the analysis, 2,238 were censored due to end of follow-up. Of the initially included patients, 88 eventually experienced LRR
and 406 DR (48 had both LRR and DR, see also the online supplementary material). A precise clinical definition of LRR and
DR is provided by Fontein et al. (2015). Both DR and LRR are time-varying exposures. A multi-state model illustrating the data
setting is provided in the online supplementary material in Figure S3.

To estimate 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ, we used a time window of 5 years. The LMs were chosen at every third month from
the second year until the fourth year since diagnosis. In contrast to Fontein et al. (2015), we do not consider any LMs before
the first year. Since we use the approach “dynamic prediction by landmarking” for inference rather than prediction a sufficient
number of exposed patients should be present at the LMs. The number of unexposed and exposed patients at each LM for both
exposures (LRR and DR) as well as the number of death cases within the time window of 5 years is illustrated in bar plots in
Figure S4.

We obtained unadjusted and adjusted estimates of𝑃𝐴𝐹𝐿𝑀,ℎ and𝑃𝐴𝐹0𝐿𝑀,ℎ for both exposures, DR and LRR. To demonstrate
different ways of estimation, estimation of 𝑃𝐴𝐹𝐿𝑀,ℎ was based on definition (3) rather than definition (4) which has been
used in the previous data example. The observable overall mortality risk at the LMs within the time window was the same
for both estimates, 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ, and both exposures. Regarding 𝑃𝐴𝐹𝐿𝑀,ℎ, estimation of the death risk among

unexposed was based on the patients being unexposed at the LM. Regarding 𝑃𝐴𝐹 0𝐿𝑀,ℎ, the estimate was obtained by treating
patients experiencing LRR or respectively DR within the time window of 5 years as administratively censored at the time of
recurrence. To obtain adjusted estimates, we adjusted the mortality risk of unexposed patients for each estimand (𝑃𝐴𝐹𝐿𝑀,ℎ

and 𝑃𝐴𝐹0𝐿𝑀,ℎ) with the Cox proportional dynamic prediction model as proposed by Fontein et al. (2015). A more detailed
explanation is provided in the online Supporting Information.

The covariates included in the model were age at diagnosis (as continuous variable, constant, and squared), Bloom and
Richardson (BR) histological grade (I, II, III), tumor stage (1,2, 3/4), nodal stage (N0, N1, N2/N3), ER and PR status (positive,
negative), HER2 status (positive, negative, missing), most extensive surgery (mastectomy, breast conserving surgery), radio-
therapy (yes, no). chemotherapy (yes/no) and treatment status (on/off). Moreover, we adjusted both 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ

of DR for LRR status at the LM and – as Fontein et al. – included an interaction term for LRR and LM (Fontein et al., 2015).
Similarly, we adjusted 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ of LRR for DR status at the LM. A detailed description of the covariates, as
well as the regression coefficients of the dynamic Cox model, can be found in the article by Fontein et al. (2015).

The adjusted estimates of both 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ of LRR and DR are shown in Figure 8. A plot that contrasts the

adjusted versions of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ with the unadjusted ones is provided in Figure S5. First, we consider 𝑃𝐴𝐹𝐿𝑀,ℎ

and 𝑃𝐴𝐹 0𝐿𝑀,ℎ of LRR, which are shown in the left panel of Figure 8. The estimate 𝑃𝐴𝐹𝐿𝑀,ℎ is approximately zero at all LMs
but reaches a peak at 2.5 years post randomization. At this LM only the CI becomes greater than 0. In contrast, an intervention
that could prevent LRR for 5 years would be beneficial at all LMs.
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VON CUBE ET AL. 595

Next, we consider 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹 0𝐿𝑀,ℎ of DR, which are shown in the right panel of Figure 8. Both types of intervention
would be beneficial at all LMs, with a clear advantage of an intervention that is effective over the next five years. Then, for
example at LM 1 almost 60% (adj. 𝑃𝐴𝐹 0𝐿𝑀,ℎ ≈ 0.55, 95%-CI ≈ [0.5; 0.6]) of the death cases occurring within five years

since the LM would be preventable. In comparison, only about 12% (adj. 𝑃𝐴𝐹𝐿𝑀,ℎ ≈ 0.12, 95%-CI ≈ [0.06; 0.18]) would be
preventable when the intervention is effective at the LM only.

With the data example, we demonstrated the application of the proposed approach for a data setting with a binary time-
dependent exposure in a basic survival setting (no competing risks). To obtain adjusted estimates we used adjusted survival
function based on the Cox proportional hazards model (see also the online supplementary material). Source code to reproduce
the results is available as Supporting Information on the journal’s web page.

8 DISCUSSION

This paper introduces a novel approach to define and estimate the PAF for complex data situations. Time-dependent exposures
are common in epidemiology. However, statistical modeling of the time dynamics of exposure and outcome is challenging
and often avoided. Our proposed approach addresses these challenges in a very basic manner. Nevertheless, it accommodates
complex study designs such as survival data with time-dependent exposure and subject to competing risks and censoring.

The two proposed estimands, namely 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ, have a clinically relevant interpretation as they account
for the dynamics of the population over the course time. At a specific LM, 𝑃𝐴𝐹𝐿𝑀,ℎ is interpretable as the proportion of
preventable cases within a predefined time window if the exposure could be prevented at the LM. Thus, the estimand is based on
a hypothetical intervention that would be effective at time of intervention, i.e. at the considered LM, only. In contrast, 𝑃𝐴𝐹0𝐿𝑀,ℎ,
at a specific LM, is interpretable as proportion of preventable cases within the time window if the exposure could be prevented
over the complete time window. The assumed intervention has a long term effect over the complete time window.

Definition of both estimands was based on dynamic prediction and landmarking (van Houwelingen and Putter, 2008) and
estimation was based on existing methods. Adjustment of 𝑃𝐴𝐹𝐿𝑀,ℎ for time-dependent covariates is straightforward since at
each LM the time-dependent data setting is reduced to a data setting with baseline exposure and fixed length of follow-up. Thus,
𝑃𝐴𝐹𝐿𝑀,ℎ retains the advantages of conventional dynamic prediction by landmarking. Since the exposure state is accessed at
the LM only, adjustment for confounding can be performed by updating the time-dependent patient characteristics at the LM
and including these updated values as time-independent covariates in the model. In contrast, estimation of 𝑃𝐴𝐹0𝐿𝑀,ℎ requires
adjustment for time-varying confounding. The time-varying confounding occurs as individuals must be comparable within the
complete time window. When estimating𝑃𝐴𝐹𝐿𝑀,ℎ individuals must be comparable at the LM only. As a consequence estimation
of 𝑃𝐴𝐹0𝐿𝑀,ℎ is more complicated.

Nevertheless, 𝑃𝐴𝐹0𝐿𝑀,ℎ relaxes the assumption that the exposure can be prevented at the LM only. Moreover, it overcomes
the limitation of data samples in which many individuals acquire the exposure at later LMs. In the conventional approach, used
to define 𝑃𝐴𝐹𝐿𝑀,ℎ, these individuals are considered unexposed at the early LMs. If the exposure is harmful, the individuals
who acquire exposure within the time window increase the risk among unexposed and therefore potentially preclude the burden
of the exposure at earlier LMs. Our data examples in Sections 6 and 7 demonstrated that this effect is negligible if the prevalence
is low (data example in Section 6) and strong if the prevalence is high (data example in Section 7).

Originally, dynamic prediction by landmarking has been proposed to make survival prognoses (van Houwelingen and Putter,
2008). Similar to Gran et al. (2010), we applied the approach for inference instead. While unproblematic when making predic-
tions, conditioning on survival up to a certain LM may cause selection bias if the goal is to understand the causal relationship of
exposure and outcome (Aalen, Cook, and Røysland, 2015). This means that the population at risk at LM 𝑙 is not a representative
sample of the initial study population sampled at baseline. The difference is due to (unmeasurable) confounding that has an
effect on survival. However, since our target population are not all initially sampled patients but only those still at risk at LM 𝑙

selection bias is naturally avoided (Gran et al., 2010).
A remaining drawback is the fact that the two landmark estimands were identified with the assumption that the time from

exposure to the LM has no impact on the risk of experiencing the event of interest within the prediction time window. This
assumption corresponds to the well-known Markov assumption (Beyersmann et al., 2011; Aalen, Borgan, & Gjessing, 2008).
If this assumption cannot be made, we must make stronger assumptions about the hypothetical intervention. Then, we must
assume that it prevents the exposure exactly at the LM (and within the time window when considering 𝑃𝐴𝐹0𝐿𝑀,ℎ), but also
reverses/cures any harm caused by the exposure for individuals who were exposed before the LM. At the same time the inter-
vention must be specific in the sense that it reverses only effects caused by the exposure. If the individuals are healthy besides
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596 VON CUBE ET AL.

the exposure-associated health issues such an intervention seems plausible. However, in data settings where individuals are crit-
ically ill, as for example in an ICU setting, such a specific intervention seems rather unrealistic. Despite these interpretational
limitations in these data settings, the approach provides information about the best timing of an intervention and identifies the
most vulnerable target populations.

To demonstrate the interpretation of the estimands and performance of the estimators, we provided a simulation study and
two real data examples. First, we investigated the benefit of a pathogen-specific intervention against 𝑉 𝐴𝑃𝑃 .𝑎.. Second, we
investigated the population-attributable burden of LRR and DR in a population of breast cancer patients. The two data examples
served to explain the interpretation of the novel approach. We based our interpretation of 𝑃𝐴𝐹𝐿𝑀,ℎ and 𝑃𝐴𝐹0𝐿𝑀,ℎ on two
distinct hypothetical interventions. The way the interventions act on exposure may be more or less realistic depending on the
data setting. For example, an intervention that prevents LRR or DR at only one specific time point is less realistic than an
intervention with a long term effect. In these situations, the estimates can be used to identify high-risk populations and to
describe the burden of exposure on a population level.

A disadvantage of the proposed estimation procedure is the sample size reduction at the LMs, which leads to a compara-
tively large variation of 𝑃𝐴𝐹 0𝐿𝑀,ℎ and 𝑃𝐴𝐹𝐿𝑀,ℎ. The smoothing methods currently available may either result in a loss of
information or a negligible increase in efficiency.

To sum up, we proposed two novel estimands of the PAF to quantify the burden of time-dependent harmful exposures on
a population level. The two estimands also account for competing risks, filling a gap in the literature (Sjölander & Vanstee-
landt, 2014). Finally, our innovative way of using dynamic prediction and landmarking allows for adjustment of time-varying
confounding in a straightforward way.

ACKNOWLEDGMENT

The authors thank Mia Klinten Grand, postdoctoral researcher at the Department of Public Health, University of Copenhagen,
for providing helpful information and R code for the analysis of the TEAM trial data example.

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

ORCID

Maja von Cube https://orcid.org/0000-0003-3088-3513
Martin Schumacher https://orcid.org/0000-0002-5037-0099
Hein Putter https://orcid.org/0000-0001-5395-1422

R E F E R E N C E S

Aalen, O., Borgan, O., & Gjessing, H. (2008). Survival and event history analysis: A process point of view. Springer, New York, USA.
Aalen, O. O., Cook, R. J., & Røysland, K. (2015). Does cox analysis of a randomized survival study yield a causal treatment effect? Lifetime Data

Analysis, 21, 579–593.
Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. Springer Series Statistics. New York:

Springer.
Andersen, P. K., & Pohar Perme, M. (2010). Pseudo-observations in survival analysis. Statistical Methods in Medical Research, 19, 71–99.
Bekaert, M., Vansteelandt, S., & Mertens, K. (2010). Adjusting for time-varying confounding in the subdistribution analysis of a competing risk.

Lifetime Data Analysis, 16, 45–70.
Benichou, J. (2001). A review of adjusted estimators of attributable risk. Statistical Methods in Medical Research, 10, 195–216.
Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Report. Berkeley: University of California.
Beyersmann, J., Allignol, A., & Schumacher, M. (2011). Competing risks and multistate models with R. New York: Springer.
Binder, N., Gerds, T. A., & Andersen, P. K. (2014). Pseudo-observations for competing risks with covariate dependent censoring. Lifetime Data

Analysis, 20, 303–315.
Chastre, J., & Fagon, J.-Y. (2002). Ventilator-associated pneumonia. American Journal of Respiratory and Critical Care Medicine, 165, 867–903.
Chen, L., Lin, D., & Zeng, D. (2010). Attributable fraction functions for censored event times. Biometrika, asq023.
Chen, Y. Q., Hu, C., & Wang, Y. (2006). Attributable risk function in the proportional hazards model for censored time-to-event. Biostatistics, 7,

515–529.
Fontein, D.Klinten Grand, M., Nortier, J. W., Seynaeve, C.Meershoek-Klein Kranenbarg, E., Dirix, L. … Putter, H. (2015). Dynamic prediction in

breast cancer: Proving feasibility in clinical practice using the team trial. Annals of Oncology, 26, 1254–1262.

 15214036, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.201800252 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [09/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-3088-3513
https://orcid.org/0000-0003-3088-3513
https://orcid.org/0000-0002-5037-0099
https://orcid.org/0000-0002-5037-0099
https://orcid.org/0000-0001-5395-1422
https://orcid.org/0000-0001-5395-1422


VON CUBE ET AL. 597

Gerds, T. A. (2017). prodlim: Product-Limit Estimation for Censored Event History Analysis. R package version 1.6.1.
Gran, J. M., Røysland, K., Wolbers, M., Didelez, V., Sterne, J. A., Ledergerber, B. … Aalen, O. O. (2010). A sequential Cox approach for estimating the

causal effect of treatment in the presence of time-dependent confounding applied to data from the Swiss HIV cohort study. Statistics in Medicine,
29, 2757–2768.

Greenland, S. (1987). Variance estimators for attributable fraction estimates consistent in both large strata and sparse data. Statistics in Medicine, 6,
701–708.

Greenland, S. (2003). Quantifying biases in causal models: Classical confounding vs collider-stratification bias. Epidemiology, 14, 300–306.
Heggland, T. (2015). Estimating transition probabilities for the illness-death model (Master’s thesis). University of Oslo – Faculty of Mathematics

and Natural Sciences, Norway.
Hernán, M. Á., Brumback, B., & Robins, J. M. (2000). Marginal structural models to estimate the causal effect of zidovudine on the survival of

HIV-positive men. Epidemiology, 11, 561–570
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). New York: Springer.
Karim, M. E., Petkau, J., Gustafson, P., Platt, R. W., Tremlett, H., & BeAMS Study Group (2018). Comparison of statistical approaches dealing with

time-dependent confounding in drug effectiveness studies. Statistical Methods in Medical Research, 27, 1709–1722.
Levin, M. L., (1953). The occurrence of lung cancer in man. Acta Unio Internationalis contra Cancrum, 9, 531–541.
Miettinen, O. S. (1974). Proportion of disease caused or prevented by a given exposure, trait or intervention. American Journal of Epidemiology, 99,

325–332.
Nicolaie, M., van Houwelingen, J., de Witte, T., & Putter, H. (2013a). Dynamic prediction by landmarking in competing risks. Statistics in Medicine,

32, 2031–2047.
Nicolaie, M., van Houwelingen, J., de Witte, T., & Putter, H. (2013b). Dynamic pseudo-observations: A robust approach to dynamic prediction in

competing risks. Biometrics, 69, 1043–1052.
Pohar Perme, M., & Gerster, M. (2017). pseudo: Computes Pseudo-Observations for Modeling. R package version 1.4.3.
Pouwels, K., Vansteelandt, S., Batra, R., Edgeworth, J., Smieszek, T., & Robotham, J. (2018). Intensive care unit (ICU)-acquired bacteraemia and ICU

mortality and discharge: Addressing time-varying confounding using appropriate methodology. Journal of Hospital Infection, 99, 42–47.
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Samuelsen, S. O., & Eide, G. E. (2008). Attributable fractions with survival data. Statistics in Medicine, 27, 1447–1467.
Schumacher, M., Allignol, A., Beyersmann, J., Binder, N., & Wolkewitz, M. (2013). Hospital-acquired infections–appropriate statistical treatment is

urgently needed! International Journal of Epidemiology, 42, 1502–1508.
Schumacher, M., Wangler, M., Wolkewitz, M., & Beyersmann, J. (2007). Attributable mortality due to nosocomial infections. A simple and useful

application of multistate models. Methods of Information in Medicine, 46, 595.
Sjölander, A. (2016). A cautionary note on the use of attributable fractions in cohort studies. Statistical Methods in Medical Research, 25, 2434–2443.
Sjölander, A., & Vansteelandt, S. (2014). Doubly robust estimation of attributable fractions in survival analysis. Statistical Methods in Medical

Research, 26, 948–969.
Therneau, T. (2015). A Package for Survival Analysis in R. R package version 2.38.
Therneau, T., Crowson, C., & Atkinson, E. (2016). Multi-state models and competing risks. Technical Report, Mayo Clinic, Rochester, Minnesota,

USA, https://mran.microsoft.com/snapshot/2016-01-09/web/packages/survival/vignettes/compete.pdf.
van Houwelingen, H., & Putter, H. (2011). Dynamic prediction in clinical survival analysis. Boca Raton: CRC Press.
van Houwelingen, H. C.,Putter, H. (2008). Dynamic predicting by landmarking as an alternative for multi-state modeling: An application to acute

lymphoid leukemia data. Lifetime Data Analysis, 14, 447.
von Cube, M., Timsit, J.-F., Sommer, H., Darmon, M., Schwebel, C., Bailly, S. … Wolkewitz, M. (2018). Relative risk and population-attributable

fraction of ICU death caused by susceptible and resistant pseudomonas aeruginosa ventilator-associated pneumonia: A competing risks approach
to investigate the outcomerea database. Intensive Care Medicine, 44, 1177–1179.

Wolkewitz, M., Cooper, B. S., Bonten, M. J., Barnett, A. G., & Schumacher, M. (2014). Interpreting and comparing risks in the presence of competing
events. BMJ, 349, g5060.

Zhao, W., Chen, Y. Q., & Hsu, L. (2017). On estimation of time-dependent attributable fraction from population-based case-control studies. Biometrics,
73, 866–875.

SUPPORTING INFORMATION

Additional Supporting Information including source code to reproduce the results may be found online in the supporting infor-
mation tab for this article.

How to cite this article: von Cube M, Schumacher M, Putter H, Timsit J-F, van de Velde C, Wolkewitz M. The
population-attributable fraction for time-dependent exposures using dynamic prediction and landmarking. Biometrical
Journal. 2020;62:583–597. https://doi.org/10.1002/bimj.201800252

 15214036, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.201800252 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [09/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://mran.microsoft.com/snapshot/2016-01-09/web/packages/survival/vignettes/compete.pdf
https://doi.org/10.1002/bimj.201800252

