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Chapter 6

Conclusion

In this thesis we investigated ways to leverage sparsity in the design of practical algorithms
for various inverse problems. The inverse problems we focused on arose in quite different
application areas, with each being a topic of intensive research in its own right. The
methods presented in this thesis, while being tailored to each application, also share
some overarching similarities in design and implementation. This, we believe, indicates
the importance of developing mathematical tools that can be applied to more than one
practical problem.

In this concluding chapter, we summarize the contributions of this thesis and point to
some future research directions.

In Chapter 2 we presented a filter-optimization method to improve reproducibility of
reconstructions for synchrotron tomography. Our method used sparsity in the design of
optimal filters. By using the fact that many standard real-space filters taper off to zero at
the detector boundaries, we were able to reduce the number of filter coefficients that need
to be computed. These sparse-basis filters, when optimized to various implementations
of direct reconstruction algorithms, were shown to result in reconstructions with fewer
differences than those that were obtained with standard filters. Our work in this chapter
is a stepping stone towards a more reproducible synchrotron pipeline, which will require
both hardware and software modifications.

In Chapter 3, we demonstrated the use of sparsity in reconstructing atomic defects.
We built on existing ideas of grid-free sparse optimization to propose a more canonical
discretization of the atomic-resolution reconstruction problem. This discretization did
away with the need for reconstructing on a voxel grid. Instead, we modelled atomic
configurations as sparse measures, allowing for continuous deviations of atomic locations.
We showed how, coupled with physical prior knowledge on the potential energy of atomic
configurations, our grid-free method is able to reconstruct common lattice defects with
very few projections. We demonstrated the power of our approach in proof-of-concept
numerical studies, and proposed further modifications that would make our algorithm
applicable to real data.

We extended our grid-free sparse optimization method to investigate marker-based
alignment for cryoET in Chapter 4. Here we modelled marker configurations as deforming
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measures and used similar ideas to those first developed in Chapter 3 to solve for marker
locations and deformations. We applied our approach to synthetic data as well as real data
of markers embedded in ice. Our numerical experiments showed that this approach was
able to localize markers without the need for the user to label markers in projection data,
a cumbersome and error-prone pre-processing task that is needed for existing methods.
Our approach is flexible and allows for different models of sample deformation and marker
shapes.

In Chapter 5, we used sparsity to recover pairwise interactions that lead to network
formation in vertebrates. Our work builds on existing literature on nonlinear equation
learning, where a sparse combination of library terms is learnt for time-series data. We
used particle-based simulations of angiogenesis to generate time-series data of interacting
cells, and were able to recover the relevant interaction terms that led to the formation
of networks. Our work is a stepping stone to learning interaction terms in settings where
these are not evident, such as other simulation paradigms like the cellular Potts model
and experimental data of vascular network formation from endothelial cells.

The work in this thesis shows how sparsity can be used both implicitly and explicitly.
Examples of the former include choosing sparse filter basis functions and making certain
algorithmic choices, such as adding only one atom to the current solution at each iteration.
An explicit way to include sparsity while solving inverse problems is to include an ℓ1

regularization term in the objective, for example when inferring pairwise interactions
between cells.

One promising paradigm developed in recent years is to parametrize the regularizer
with a neural network. In the case of tomographic imaging, such learned regularizers
[117], [118] have been shown to outperform methods with hand-crafted regularization
terms. This is part of a wider interest in the application of data-driven approaches to
inverse problems [56], [119]. Although learned approaches might be superior to several
classical approaches that enforce sparsity explicitly, ideas of sparsity are also important
for improving the efficiency and robustness of deep-learning methods. One example is
the use of sparsity to reduce the complexity of deep neural networks by pruning network
weights. This has been shown to result in more generalizable networks that also use
less resources to train [120]. Another example is using sparsity implicitly in choosing an
appropriate discretization for the studied system. This approach is similar to our work
on reconstructing nanocrystal defects, and has recently been used to study the problem
of atomic-resolution cryo-electron microscopy of proteins [121]. Such examples indicate
the continued relevance of sparsity-based approaches in designing efficient algorithms for
inverse problems.
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