
Sparsity-based algorithms for inverse problems
Ganguly, P.S.

Citation
Ganguly, P. S. (2022, December 8). Sparsity-based algorithms for inverse
problems. Retrieved from https://hdl.handle.net/1887/3494260

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3494260

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3494260

Chapter 5

Learning cell–cell interactions
for vascular network formation

5.1 Introduction
In many real-world applications, it is important to model dynamical equations that best
describe the system studied. Dynamical equations may be constructed from first principles;
the heat equation in physics is one such example. However, in other scenarios where first-
principles methods may be insufficient or lacking, dynamical equations can be learned
from data on the time evolution of a system.

A recent approach [108] formulates the discovery of dynamical equations as a sparse
inverse problem. In this approach – known as Sparse Identification of Nonlinear Dynamics
(SINDy) – the unknown dynamical equation is expressed as a linear combination of library
functions, and a sparse combination of these functions able to explain the time evolution
of the system is sought.

SINDy has been used to infer the dynamics of simulated and real data for a variety
of canonical systems exhibiting nonlinear dynamics. In this chapter we adapt it to study
vascular network formation in vertebrates.

Vascular network formation is the generation of a blood vessel network from cells that
are initially separate. This process is responsible for the generation of a circulatory system
during morphogenesis in vertebrates. The first step of this process is vasculogenesis, where
a primary network is created. This network then sprouts and expands, in a process termed
angiogenesis. Angiogenesis is also observed in cancer tumours, where it helps tumour
maintenance and metastasis.

How endothelial cells organize to form a vascular network is still an open question. It
has been proposed [109] that two main contributing factors are: 1) the intrinsic ability of

This chapter is based on:
Learning cell–cell interactions for vascular network formation. P. S. Ganguly, K. A. E. Keijzer,
D. Chen, T.M. Vergroesen, R. M. H. Merks and H. J. Hupkes. (in preparation)

87

cells to form networks, and 2) environmental cues. The effects of both these factors have
been studied using experimental and simulation studies of network formation. Although
there have been extensive experimental investigations of angiogenesis [110]–[112], simula-
tion studies are particularly effective in understanding how the interplay between different
biological ingredients leads to network formation. This is because all the parameters of
a simulated model can be adjusted and different parameter regimes, which may not be
easy to probe in experimental studies, are easily simulated.

Different simulation paradigms have been used in the literature to study vascular
network formation: one example is a lattice-free, particle-based approach [113], and
another is the lattice-based cellular Potts model (CPM) [109].

The forward problem of network formation consists of modelling the cellular system
using a Hamiltonian or a differential equation, followed by obtaining solutions that cor-
respond to the steady state or have the lowest energy. However, it is not always clear
which model is most suitable and which parameter regions are the most promising for
observing network formation behaviours. Moreover, the correspondence between different
simulation models is also not clear. For e.g. it is unknown whether there exist effective
equations for stochastic Hamiltonian-based models like CPM.

In this chapter, we adapt the SINDy method to learn effective equations for vascular
network formation directly from cell trajectories. In particular, we parametrize the pairwise
interaction between cells instead of the vector field in our differential equation. This
ensures that the number of parameters we learn remains the same despite an increase
in the system size. A related work to ours is [114] where the authors adapt the SINDy
framework for stochastic differential equations and parametrize the potential instead of
the force vector. However, [114] considers only single particle systems in low dimensions,
while we consider systems of many particles. Another related line of research is that that of
learning force fields for molecular dynamics [115], where the task is to fit the energy of an
atomic configuration obtained by solving the electronic Schroedinger equation. Starting
with [116], the approach used is that of decomposing the energy into a sum of terms,
one for each atom, and parametrizing each contribution via a neural network. While the
idea of sharing parameters across particles is similar to our approach, the task in force
fields parametrization is different from ours. Further, our optimization problem is similar
to that of SINDy and has the advantage of being a convex optimization, while that of
[116] is non-convex.

In this chapter, we focus on proof-of-concept studies, where ground-truth effective
equations are available, in order to validate our approach and perform systematic numerical
studies of the effect of system size, function library size and noise (Gaussian and stochastic)
on the the accuracy of recovery. Our work is an important stepping stone towards applying
such an approach to experimental data, where effective equations are unknown, or to
other modelling paradigms like CPM, in order to find a correspondence between different
simulation strategies. Effective differential equations are amenable to analysis and are
much easier to simulate than cell models, thus providing much-needed analytical insight
into biological systems.

This chapter is organized as follows. In Section 5.2 we review the SINDy method
and provide some background on simulation methods for vascular network formation. In
Section 5.3 we detail our method, which adapts the SINDy approach to learn pairwise

88

interactions. We give details of our numerical experiments and results in Section 5.4, and
point to limitations and extensions in Section 5.5.

5.2 Background
5.2.1 SINDy
We consider the following ODE:

ẋ = g(x), (5.1)
where x ∈ Rn denotes the system state at a certain time and g : Rn → Rn is a vector
field that defines the dynamics of the system.

We only have data at discrete time points T := {t1, . . . , tm}, which we denote as X:

X :=

x(t1)
x(t2)

...
x(tm)

 =

x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

x1(tm) x2(tm) . . . xn(tm)

 . (5.2)

From X we can also approximate the time derivatives at T , which we call Ẋ. We shall
use central differences

Ẋij :=
xi(tj+1)− xi(tj−1)

tj+1 − tj−1
, (5.3)

or forward differences

Ẋij :=
xi(tj+1)− xi(tj)

tj+1 − tj
, (5.4)

depending on the application.

Learning problem The goal of SINDy is to learn the form of the function g from a
library of basis functions, given data points X and Ẋ.

First we define the library of K basis functions θ1, . . . , θK , such that θp : Rn → Rn.
The unknown function g is approximated by a linear combination of these basis functions.

We evaluate the functions θp at data points X by writing
Θ(X) :=

(
θ1(X) θ2(X) . . . θK(X)

)
, (5.5)

where

θp(X) =

θp(x(t1))
θp(x(t2))

...
θp(x(tm))

 .

We formulate the recovery of the function g as the following linear least-squares
problem:

minimize
ξ∈RK

∥∥∥Ẋ −Θ(X)ξ
∥∥∥2
2
. (5.6)

89

Inducing sparsity Sparsity of the learnable coefficients is a regularization method used
in machine learning to prevent overfitting, namely the fact that the model fits very well the
training data but generalizes poorly to unseen data – in our case, to unseen time points.
One way to induce sparsity in the coefficients is by solving the following optimization
problem that has an ℓ1 penalty:

minimize
ξ∈RK

∥∥∥Ẋ −Θ(X)ξ
∥∥∥2
2
+ α

∥∥∥ξ∥∥∥
1
, (5.7)

The above problem can be solved using LASSO. For large system sizes, LASSO
is known to be computationally expensive and a sequentially thresholded least-squares
(STLSQ) algorithm has been used in the literature as an alternative [108].

5.2.2 Particle-based model of vascular network formation
In this section we review the particle-based simulation paradigm that has been used in
the literature to study vascular network formation.

This method was originally used to demonstrate that cell elongation and mutual
attraction between endothelial cells was indeed sufficient for producing vascular networks
[113], a claim that was first made using cellular Potts model (CPM) simulations [109].

In this lattice-free paradigm, each cell is represented with a particle that interacts
with other particles in a predefined neighbourhood. The time evolution of the system is
modelled with a Langevin equation:

dvi

dt
=

1

mi

(
− τvi +

∑
j ̸=i

xi − xj

‖xi − xj‖
Fij + η

)
, vi =

dxi

dt
, (5.8)

where τ is the damping constant, Fij is the pairwise interaction between cells and the
last term is a stochastic noise term with correlation function

E(ηa(t)ηb(t′)) ∝ δabδ(t− t′) . (5.9)
The pairwise interaction Fij is modelled with a short-range repulsive term and a long-range
attractive term:

Fij := λrAr − λaAa, (5.10)
where Ar is the area of overlap between the smaller repulsive ellipses and Aa is the overlap
between attractive ellipses (see Figure 5.1 (c)), and λr and λa are constants. The areas
of overlap are usually computed in a Cartesian coordinate system and are functions of the
locations, eccentricities and orientations of ellipses. We discuss this in more detail in the
following section.

Without loss of generality we can set mi = 1, so that the discrete time evolution,
using forward differences, is:

ai(t+∆t) = −τvi(t) +
∑
j ̸=i

xi(t)− xj(t)

‖xi(t)− xj(t)‖
Fij(t) +Nvβv(t)∆t

−0.5 (5.11)

vi(t+∆t) = vi(t) + ai(t+∆t)∆t (5.12)
xi(t+∆t) = xi(t) + vi(t+∆t)∆t . (5.13)

90

Figure 5.1: (a) The two ellipses model two cells, labelled 1 and 2. x1, x2 stand for the
coordinates of the centers of the ellipses and γ1, γ2 for the angles the axis of the ellipses
form with the y axis. (b) A global rotation of φ of the system. (c) Inner area of overlap
Ar and outer area of overlap Aa.

Here we introduced the noise amplitude Nv and the Gaussian random vector βv. In the
overdamped regime, where the acceleration is negligible, setting τ = 1, the discrete time
evolution of the system reduces to

xi(t+∆t)− xi(t) = ∆t
∑
j ̸=i

xi(t)− xj(t)

‖xi(t)− xj(t)‖
Fij(t) +Nvβv(t)

√
∆t . (5.14)

In addition to vectorial noise modulated by the amplitude Nv, the particle-based
simulations make use of angular noise. This corresponds to random changes in the
orientation of cells. A change in orientation of cell i is accepted with a turn probability

Πi = min
{
1, exp

(1

Na

∑
j ̸=i

Fij −
∑
i ̸=j

F ′
ij

)}
, (5.15)

where Na is the angular noise amplitude, and F ′
ij is the interaction between cells i and j

if the orientation change is accepted.
In the following section, we show how we apply the method reviewed in Section 5.2.1

to the vascular network formation problem, and how this formulation leads us to discover
cell–cell interactions from cell trajectories.

91

5.3 SINDy for pairwise interaction discovery
We now look at particle and lattice systems whose dynamics is governed by an interaction
force between constituents. We first discuss particle systems, which is the primary focus
of this chapter, and then comment on how to adapt the framework to lattice systems.
In the vascular network formation problem, each of the particles represents a cell with
coordinates xi ∈ Rd, where d is the dimensionality of the problem. Then the number of
variables is n = d× np, where np denotes the number of particles.

We assume that d = 2 and that the dynamics of the system is given by (5.1) with

gi(x1,x2, . . . ,xn) :=
∑
j∈Ni

xi − xj

‖xi − xj‖
Fij , i = 1, . . . , np (5.16)

Fij := Φ(xi,xj , γi, γj), (5.17)
where Ni is the set of particles that particle i interacts with, and γi denotes the angle that
the i-th ellipse forms with y axis, see Figure 5.1 (a). Each ellipse is determined by (xi, γi)
and the two axes lengths which are assumed to be fixed for all cells, and therefore omitted
from Φ. At this point Φ is a generic function and represents the interaction between the
two ellipses. As such it should not change if we translate or rotate both ellipses w.r.t the
origin. Translation by a vector a acts as (xi, γi) 7→ (xi + a, γi). Rotation by an angle φ
acts as (xi, γi) 7→ (Rφxi, γi + φ), where Rφ is the 2× 2 rotation matrix, see Figure 5.1
(b). Imposing translation invariance leads to

Φ(xi,xj , γi, γj) = Φ(xi + a,xj + a, γi, γj) (5.18)
whose solution is Φ(xi − xj , γi, γj). Imposing rotation invariance leads to

Φ(xi − xj , γi, γj) = Φ(Rφ(xi − xj), γi + φ, γj + φ) , ∀φ ∈ [0, 2π) . (5.19)
First, we note that the following is invariant: Φ(‖xi − xj‖, γi − γj). However, this is
too restrictive, as it satisfies the more general symmetry Φ(xi−xj , γi, γj) = Φ(Rφ(xi−
xj), γi + φ′, γj + φ′) even for φ 6= φ′. To simplify the parametrization we follow [113]
and add a dependency on the areas of overlap, so that:

Fij = Φ(‖xi − xj‖, γi − γj , Aa,ij , Ar,ij) , (5.20)
where Aa, Ar are as in (5.10). While these areas of overlap can be computed from xi−xj

and γi, γj , their expression is complicated and no simple analytical form is known [113].
We also note that this function is periodic in the second argument with period 2π.

We want to recover the function Φ : R+×[0, 2π)×R+×R+ → R given the trajectories
of cells over time encoded in the matrixX of sizem×n, where n is the number of variables
and m is the number of time samples. We shall now adapt the formalism described in
Section 5.2.1 to this problem.

As a first step, we write down a set of basis functions {fp(r, γ, a, b)}Kp=1 to parametrize
the unknown function Φ(r, γ, a, b) appearing in equation (5.20). These correspond to the
following θp in the formalism of Section 5.2.1:

(θp(x))i =
∑
j∈Ni

xi − xj

‖xi − xj‖
fp(‖xi − xj‖, γi − γj , Aa,ij , Ar,ij) . (5.21)

92

Then we can plug in these values for θp in equation (5.6) and solve the least square
problem. The solution ξ will then describe the function Φ as:

Φ(r, γ, a, b) =
K∑

p=1

ξpfp(r, γ, a, b) . (5.22)

If we take Ni in (5.16) to be the set of np − 1 points j 6= i, this implies that all particles
interact with each other. To restrict particle interaction to within a neighbourhood, we
can define a critical radius of interaction rc, such that fp(r, γ, a, b) = 0 if r > rc ∀p.
In the experiments shown later in the chapter, we do not learn the dynamics of the cell
orientation parameters γ; instead, we treat them as known inputs.

5.4 Numerical experiments and results
5.4.1 1D lattice system
We can use the formulation of (5.16) for lattice systems as well by assigning the indices
i to points on the lattice. For example in 1D, i = 1, . . . , n are the points on a line. x
is then a field with values xi at site i. In the case of lattice systems, we take the range
of values Ni to be the neighbours on the grid. For example in 1D, Ni = {i − 1, i + 1}
describes nearest-neighbour interactions.

In this section, we first describe our experiments on recovering the pairwise interaction
between harmonic oscillators on a 1D lattice with nearest-neighbour interactions. The
displacement of the ith particle is given by xi(t). We generated particle trajectories by
evolving the system in the overdamped regime:

ẋi(t) =
∑

j=i−1,i+1

xi − xj
rij

Fij , Fij := −k(rij − ρ), (5.23)

where rij = |xi − xj | and ρ is an offset. The initial configuration of oscillators and Fij

are shown in Figure 5.2, where we take k = 2.0, ρ = 1.0.
We integrated the dynamical equation numerically to obtain a matrix X for a discrete

set of time points T = {t1, . . . , tm}. The matrix of time derivatives Ẋ was obtained
using equation (5.3).

As the pairwise interaction between particles is a function of rij , we chose library
functions that were polynomials of rij :

fp(r) = rp, p ∈ {0, 1, . . . ,K} (5.24)

and used these to solve the LASSO problem (5.7).
As a first experiment, we show how to determine the regularization parameter α in

equation (5.7). For fixed K, n and m, we use LASSO to infer the parameters ξ for
different values of α (see Figure 5.2). We choose the optimum α to be the one with
the minimum number of non-zero terms in ξ for which the coefficient of determination

93

Figure 5.2: (top left) Initial configuration of the 1D lattice system with oscillators shown
in red and connecting springs shown in blue; (top right) ground-truth pairwise interaction
Fij as a function of separation distance r. (bottom left) Plot of R2 coefficient with
respect to the number of non-zero parameters ξ for different values of the regularization
parameter α at fixed K = 10, m = 3, n = 1024. The optimum regularization parameter,
α = 10−5, is chosen such that R2 ≥ 0.99 for the least number of non-zero parameters.
(bottom right) Plot of RMSE with respect to the number of timepoints m for noisy
measurement data with σ = 0.1. The blue dots show mean values and the ribbons show
standard deviations computed over 10 randomised noise seeds.

satisfies R2 ≥ 0.99, where:

R2 = 1− ‖Ẋ −Θ(X)ξ‖22
‖Ẋ − 1

mn

∑
ij Ẋij‖22

. (5.25)

In the absence of measurement noise, we can infer the correct coefficients for arbitrary K
and n with as little as m = 3 timepoints (when time derivatives are computed using the
central difference scheme (5.3)) and ∆t = 0.001 1

k .
As the next experiment, we investigate the effect of measurement noise on inference

accuracy. In the most general setting, measurement noise affects both X and Ẋ, the
latter being numerical derivatives of the former. Applying SINDy to such data typically
leads to large errors in the inferred parameters [108]. Instead as in [108], we choose
to restrict measurement noise to observed values of Ẋ. This translates to the forward
problem:

Ẋ = Θ(X)ξ + η , (5.26)

94

Figure 5.3: (left) Predicted interactions for various values of the regularization parameter
α; in all inference experiments a library with K = 11 polynomial terms in r was used.
(right) Ground truth trajectories (in black) overlaid with predicted trajectories for n = 100,
m = 100; more transparent points are earlier in time.

where η ∼ N (0, σ1).
We inferred parameters ξ for noisy measurement data using σ = 0.1 times the range

of Ẋ. We computed inference accuracy using the root mean squared error (RMSE) of
the inferred parameters ξinf with respect to the ground truth ξgt:

RMSE = ‖ξinf − ξgt‖2 . (5.27)

In Figure 5.2, we observe that the RMSE is high for a small number of timepoints m and
declines as m is increased.

5.4.2 2D particle system
Next we turn to a particle system in 2D, where each particle interacts with all others.
This latter system brings us closer to the vascular network system, where 2D cell–cell
interactions are at play.

For this system, we pick a cubic function to describe the ground-truth interaction
between cells:

ẋ(t) =
∑
j ̸=i

xi − xj

rij
Fij , Fij := k1(rij − ρ)3 − k2(rij − ρ), (5.28)

with k1 = 0.8, k2 = 2.0, ρ = 1.0. The inter-particle separation rij is now given by the
Euclidean distance between particles i and j: rij = ‖xi − xj‖2.

We performed simulations with n = 10 particles by integrating the above equation for
m = 100 time points with time interval equal to k2/10.

We inferred pairwise interactions between the particles by generating a library of
polynomial terms (5.24) with K = 11. Using LASSO with regularization parameter
α, we get different solutions for the inferred interaction in this case (shown in Figure 5.3).

95

High values of α lead to pairwise interactions where the cubic nature of the ground-truth
function is not captured at all. Reducing α activates more and more terms in the function
library. For α = 0.0, where we effectively solve the linear least-squares problem (5.6),
we get a poorer estimation for the interaction. The predicted trajectories overlaid on the
ground-truth trajectories for α = 0.0001 show a close match. This indicates that the part
of the interaction that is not matched in this setting does not play a role in the data.
This is not surprising as the part of the interaction that is not matched corresponds to the
asymptotically increasing part of the cubic function in (5.28), and particles that experience
this large force show exploding trajectories (x approaching infinity). Such particles were
not included in the data in our simulations as such exploding trajectories are unphysical
and unlikely to occur in a real experiment.

5.4.3 Particle-based simulations of vascular network formation
Finally we apply our method of interaction learning to simulated data of vascular network
formation. For data generation in this part we used the particle-based simulation method
described in Section 5.2.2, which has an open-source implementation in C++ [113].

We performed simulations with n = 100 elongated cells with fixed orientations. The
ground-truth interaction between cells was given by equation (5.10) with λr = 0.02 and
λa = 0.0006. We evolved the system using the discretized Langevin equation (5.11) for
m = 100 time steps with time interval ∆t = 1.0. The damping factor τ was set to 1.0
to simulate overdamped dynamics. To simulate vectorial stochastic noise in the locations
of cells, we performed a series of simulations by modulating the noise amplitude Nv in
equation (5.11). A network generated with the particle-based simulation method using
noise amplitude Nv = 0.0 is shown in the top row of Figure 5.4.

Using our method, we then inferred cell–cell interaction terms from a library ofK = 15
terms. The library terms used were polynomial functions of the areas of overlap Ar and
Aa as well as those of the separation distance r. We also used two trigonometric terms
for the relative orientation between cells γ. The full library used was:

f1 = 1.0, f2 = Ar, f3 = Aa, f4 = A2
r, f5 = A2

a,

f6 = A3
r, f7 = A3

a, f8 = A4
r, f9 = A4

a, f10 = cos(γ),

f11 = sin(γ), f12 = r1, f13 = r2, f14 = r3, f15 = r4 .

In Figure 5.4, we plot inferred networks for noise amplitude Nv = 0.0. These networks
were obtained by using the coefficients of the inferred terms as input to the particle-based
simulations and integrating forward in time. The global structure of the inferred networks
is qualitatively similar to that of the true networks. To quantify the similarity between
networks at a given timepoint, we defined the deviation of the inferred network from the
true network as

ϵ =
1

np

np∑
i=1

‖xinf
i − xgt

i ‖2, (5.29)

where xinf
i denotes the position of cell i in the inferred network and xgt

i denotes its position
in the ground truth.

96

True network at t=75 Predicted network at t=75

True network at t=500 Predicted network at t=500

True network at t=900 Predicted network at t=900

Figure 5.4: True and inferred networks of a particle-based simulation of angiogenesis using
100 elongated cells. Pairwise interactions were inferred for Nv = 0.0 using m = 100, n =
100; inferred networks were obtained by using the inferred interactions as input to an
open-source C++ particle-based simulation code [113].

97

Figure 5.5: (left) Plot showing deviation of inferred network from the true network as a
function of iterations for Nv = 0.0; (right) RMSE with respect to the stochastic noise
amplitude Nv. For all inference experiments, we used a library with K = 15 terms,
m = 100 and n = 100.

In Figure 5.5, we plot this deviation normalised by the major diameter of cells (bcell,
which is taken to be constant) as a function of iterations. The deviation is almost zero
for iteration numbers lesser than 50 and is less than 10% of the cell diameter for the
first 100 iterations. This indicates a good match with the data used for inference, given
that we used the first 100 iterations for inferring pairwise interactions. The inferred
network deviates from the true network to a greater extent for the next iterations; this is
expected as small deviations in the earlier time points accumulate to larger differences later
on. Qualitatively, we observe greater differences between the networks at t = 500 than
between those at t = 75 in Figure 5.4. Interestingly, for longer iteration times (greater
than 800), the deviation flattens out; this could be the result of the two networks (true
and inferred) reaching separate steady states. Note, however, that the largest deviation
in networks is still quite small – lesser than one cell diameter. For comparison, the field-
of-view in the plots in Fig 5.4 is slightly greater than 8 bcell.

In Figure 5.5, we also plot the RMSE (5.27) as a function of the noise amplitude
Nv. For the noiseless simulation (Nv = 0.0), we were able to estimate the coefficients
with high accuracy. The RMSE increased almost linearly for increasing amplitudes Nv of
stochastic noise. Qualitatively, this observation is similar to one reported in [114], where
the authors study homogeneous diffusion in the presence of thermal noise and report an
increase in the percentage of function libraries that result in the correct solution with
decreasing noise. In our experiments, adding stochastic noise did not have a large effect
on inference accuracy, as evidenced by an increase in RMSE of less than 1%. This suggests
that our deterministic method performs reasonably for the amounts of stochastic noise in
such simulations.

98

5.5 Discussion and conclusions
In this chapter we discussed a method to learn pairwise interactions between cells from
their trajectories. We adapted an existing equation learning method, SINDy, to our prob-
lem and demonstrated our approach on simulated lattice and particle data. On 1D lattice
data we demonstrated the effect of Gaussian measurement noise on inference accuracy
and presented a way to choose the optimum sparsity level by tuning the regularization
parameter α. On 2D particle data, we further demonstrated the effect of the parameter α
on the learned interaction and showed that parts of the interaction that are not matched
correspond to specific regions that are not sampled in the data. On particle-based simula-
tions of angiogenesis, we presented results on learning the interaction between elongated
cells, and showed how the accuracy of inference degrades with stochastic noise. In the
following, we briefly discuss how to apply our method to cellular Potts model (CPM)
simulations.

The CPM is another simulation paradigm that has been used to elucidate mechanisms
of vascular network formation. In particular, it was used to show that cell elongation was
crucial to network generation [109], a claim that is supported by experimental observations.
The CPM uses lattice spins to simulate biological cells. Each cell is a patch of identical
spins, while the intercellular spaces are modelled by patches of the opposite spin. The
interaction between neighbouring spins is used to generate an effective Hamiltonian, whose
ground state is reached by performing Monte Carlo steps. To learn a CPM, we would use
a library of Hamiltonian terms and coefficients. The observed data, analogous to the data
obtained from particle-based simulations, would be the centres of mass and orientations
of whole cells, which in the case of CPM correspond to patches of spins or Potts domains.

Applying our method to CPM is a stepping stone to inferring effective equations from
experimental wet-lab data. This would enable a complementary approach to angiogenesis
simulations, and pave the way to directly learning interactions that lead to network
formation.

99

100

