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Chapter 4

Grid-free marker-based
alignment in cryo-electron
tomography

4.1 Introduction
Cryo-electron tomography (cryoET) is a powerful imaging technique to resolve the struc-
tures of biomolecules and cellular components in situ using an electron microscope [5]. In
recent years, advancements in detector technology and image processing methods have
greatly improved the resolution of structure determination routines using cryoET, down
to near-atomic resolution [85].

A typical cryoET workflow consists of tilt-series acquisition, tilt-series alignment and
reconstruction, followed by post-processing steps such as per-particle reconstruction re-
finement, segmentation and sub-tomogram averaging [86], [87].

The image formation process in cryoET is as follows. A frozen sample is inserted into a
transmission electron microscope (TEM) where it is irradiated with an electron beam, and
the resulting transmitted beam lands on the camera to form a TEM image. For biological
samples, the observed image contrast is mainly phase contrast because such samples are
made up of light materials and thus are weak scatterers [88]. In contrast, gold markers are
strong scatterers and show clear image contrast even under low-dose acquisition conditions.
In order to obtain a tomographic tilt series (i.e. a series of projection images for consecutive
angles), images of the sample are acquired at different view angles by tilting the sample
with respect to the electron beam.

Aspects of cryoET that distinguish it from other CT setups are as follows. Firstly, the
This chapter is based on:
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geometry of the experimental system limits the extent to which the sample can be tilted.
Moreover, the increase in apparent sample thickness with increasing tilt allows projection
images to only be acquired for a limited angular range in cryoET, usually in [−60◦, 60◦],
resulting in a missing wedge of information that is not available during reconstruction [20].
Secondly, cryoET samples are dose-sensitive, which limits the total dose during acquisition
and leads to very noisy projection images when a large number are acquired. Thirdly, the
sample undergoes local and global movements during the acquisition procedure, making
it difficult to reconstruct with a constant sample assumption. For a detailed discussion
on the mathematics of electron tomography we refer the reader to [89].

The acquired tomographic tilt series must be corrected for global and local sample
motion during tilt-series acquisition [90]. Types of global motion include rotations and
shifts of the sample with respect to the field-of-view (FoV) captured by the camera.
Local motion includes sample deformation induced by the electron beam. In addition,
a build up of surface charges due to irradiation can lead to apparent sample motion
due to a microlensing effect [91]. When not corrected, sample motion leads to blurred
reconstructions and poor resolution of the biological structures extracted by further post-
processing [92]. Tilt-series alignment, the process of figuring out geometric relationships
between projections in the tilt series, provides a way to correct for these effects so that
the highest possible resolution can be achieved in subsequent reconstructions.

Beam-induced local sample deformation is a crucial limiting factor in high-resolution
cryoET studies [93]. In particular, as shown in Fig. 4.1(a), compensation of local mo-
tion during alignment leads to sharper reconstructions and thus more reliable structure
determination. In [93], the authors propose a method to extend currently used alignment
methods with a sample deformation term that takes into account local sample motion
induced by the electron beam. It has previously been observed that cryoET samples un-
dergo “doming” motion, where the sample exhibits an upward deformation perpendicular
to the sample plane (Fig. 4.1(b)). The authors of [93] model this motion using polyno-
mial surfaces with coefficients that can be estimated as part of a minimization scheme.
In addition to global shifts and rotations, the parameters of the doming model are fitted
by solving a non-linear least-squares problem.

One of the drawbacks of the doming model approach is that it requires labelled marker
locations in the tilt series as input, where the same marker has to be identified in all tilt
images such that its locations can be connected to a trace. Markers are usually identified
and traced in tilt-series images by template matching, a procedure that is prone to errors
when the signal-to-noise ratio in tilt images is low, when markers cluster together or
when they overlap in projection while being separate in 3D [90]. Other, state-of-the-art
approaches in local sample deformation correction such as emClarity [94] and M [95] rely
on detecting features from reconstructed tomograms and using these as fiducials, and are
computationally expensive.

An additional disadvantage of the doming model method is the large number of param-
eters that must be estimated because no additional prior information on the deformation
field is incorporated. Without smoothness constraints on the time evolution of the defor-
mation field, the model allows deformation parameters to vary freely over the tilt series
and does not penalize unphysical deformations.

Though not always appropriate, smoothness constraints on local sample motion are

60



Figure 4.1: (a) Reconstructions of a gold bead marker using (top two rows) standard
alignment without sample deformation compensation and (bottom two rows) with sample
deformation compensation. Images reproduced with permission from [93]. (b) Forward
models used in SparseAlign and the doming model method. At t = 0 the sample with
markers is not deformed. Projected marker locations (red dots) are convolved with a
known shape function to yield projection data (blue line). As the sample is tilted, it
undergoes doming deformation. At time t = t′, the change in marker locations caused by
doming (purple upward arrows) leads to a change in the projection data.

reasonable in the context of continuous-tilt cryoET (CTT) data collection, where thou-
sands of very noisy projection images are captured continuously while the stage is tilted
with a constant rotation speed [96]. This allows for a reduction in the number of doming
model parameters.

We propose extensions to the doming model approach that make it possible to align
tilt-series images without labelling markers in the tilt series. Taking inspiration from
algorithms proposed in the context of single-molecule localization microscopy [12], we
use a continuous formulation of the marker localization problem, which enables us to
formulate an image-based loss and identify marker locations with a localization precision
greater than the pixel spacing of the acquired tilt-series data. We equip the localization
scheme with an additional deformation estimation routine and solve for the parameters of
the doming model.

In addition, we incorporate a polynomial time dependence of the deformation field,
which assumes smoothness of the local sample motion after global motion correction.
This assumption is motivated by the fact that local sample motion is the result of positive-
charge accumulation on the sample due to irradiation with a high-energy electron beam
[92], [97]. As charge accumulation happens continuously and smoothly over the acquisi-
tion time, we can assume that local sample motion is also smooth. This assumption helps
us reduce the number of deformation parameters by orders of magnitude. An important
aspect of our approach, however, is that it is independent of the choice of deformation
field parametrization.
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To validate our proposed method, we apply it to simulated data in 2D and 3D as well
as experimental data containing gold markers on ice. As the main focus of our chapter is
on testing the properties and robustness of our proposed method, we focus on simulation
studies with ground-truth marker locations and deformation fields. In experimental studies,
we restrict ourselves to data of gold markers on ice to disentangle the marker localization
and deformation estimation problem from the later image reconstruction problem. We
study the robustness of our approach with respect to noise, forward model mismatch and
deformation model mismatch. We show that we are able to estimate deformation fields
and marker locations with similar accuracy as the doming model approach without the
need for labelled marker data, and that our method estimates deformation parameters
accurately despite model mismatch.

This chapter is structured as follows. In Section 4.2, we review the mathematical
formulation of the alignment problem and discuss a unifying framework for solving it. We
derive the doming model approach in [93] as one possible choice of alignment method.
We also present the main contribution of our chapter: a method that localizes markers
and estimates deformation fields without marker labelling. In Section 4.3, we give details
of the optimization techniques used to solve our extended problem. In Section 5.4, we
describe the numerical experiments performed, and discuss our results on 2D and 3D
simulated data as well as experimental data in Section 4.5. We end our chapter with a
critical discussion of our approach and point to possible extensions in Section 4.6.

4.2 Mathematical formulation
We consider an initial sample u0(ρ), with ρ ∈ Ω ⊂ Rd (d = 2, 3 for simulated data
and d = 3 for experimental data), which consists of two distinct components with non-
overlapping supports:

u0(ρ) = um0 (ρ) + us0(ρ), (4.1)
where um0 (ρ) represents markers and us0(ρ) represents the biological sample in the back-
ground.

This initial sample deforms over time, in the sense

ut(ρ) = u0(ρ−Dt(P )(ρ)) =:WDt(P )u0(ρ), (4.2)

whereDt(P, ρ) : P×Ω→ Rd is a time- and space-dependent deformation field parametrized
by global parameters P ∈ P . The action of this deformation field can be represented
by a linear warping operator WDt(P ). The global deformation parameters couple the re-
construction problems for individual markers. Later in this section we discuss appropriate
parametrizations for the deformation field.

Projection data Ψt of the deforming configuration are generated by applying the
continuous Radon transform to ut(ρ):

Ψt = Rθtut(ρ) = RθtWDt(P ) (u
m
0 + us0) , (4.3)

where θt is the projection angle and the Radon transform for d = 2 is defined as a line
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integral over rays:

Rθt [u](s) =

∫
l(s,θt)

u(ρ) dρ

l(s, θt) = {(x, y) ∈ R2 |x cos θt + y sin θt = s}.

Projection in 3D for a parallel beam geometry, as in the case for cryoET, can be decom-
posed into a series of 2D projections [45].

The full tomographic data, obtained over discrete time points t ∈ {t0, t1, . . . , tT } is a
stack of individual projections:

Ψ :=


Ψ0

Ψ1

. . .
ΨT

 =


Rθ1WD0(P )

Rθ2WD1(P )

. . .
RθTWDT (P )

 (um0 + us0). (4.4)

Solving the set of equations (4.4) when all the variables - um0 , us0 andDt - are unknown
amounts to solving a joint image reconstruction and alignment problem. Most approaches
for solving the joint problem alternate between solving (4.4) for one of the three variables
while keeping the others fixed. In such schemes, determining a good order for these
updates is crucial.

As markers are designed to have a significantly higher contrast compared to the
sample, we can often obtain reasonable first estimates for the marker configuration um0
and deformations Dt while ignoring the sample contribution. This corresponds to solving
(4.4) by setting us0 = 0.

One way to parametrize the initial marker configuration um0 is to represent it using the
continuous locations of markers at t = 0. Here we represent a single marker as a delta
function at the location of its centre convolved with a fixed, known shape function; the
marker configuration is then a sum of convolved delta functions in Ω ⊂ Rd:

um0 (x) =

M∑
j=1

(
G ∗ δrj (ρ)

)
, (4.5)

where rj are the initial marker locations, M is the total number of markers and G is a
known shape function, for instance a Gaussian.

For parallel beam projection, Theorem 1.2 in [45] states that:

Rθ(G ∗ δrj (ρ)) = (RθG) ∗
(
Rθδrj (ρ)

)
=: Gp

θ ∗
(
Rθδrj (ρ)

)
. (4.6)

Furthermore, the Radon transform of a delta function is a delta function in projection
space:

Rθδrj (ρ) = δAθrj (s), (4.7)

where Aθ ∈ R(d−1)×d is a projection matrix that maps marker locations in configuration
space to locations in projection space. We denote the resulting projected marker locations
by qj := Aθrj .
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We can assume that in contrast to the sample, markers are displaced over time, not
deformed. Furthermore, when variations in the global deformation field Dt over the area
covered by a marker are small, we can make the following approximation by commuting
the deformation operator with convolution with the shape function:

WDt(P )(G ∗ δr)(ρ) = (G ∗ δr)(ρ−Dt(P, ρ))

≈ G ∗ δr(ρ−Dt(P, ρ) = G ∗ δr+Dt(P,ρ)(ρ).

Thus, the deformed marker configuration is given by:

WDtu
m
0 (x) ≈

M∑
j=1

(
G ∗ δrj+Dt(P,rj)(ρ)

)
. (4.8)

This assumption is accurate when the support of G is small and the deformation Dt(P, ρ)
is smooth over the support of (G ∗ δrj ). Setting us0 = 0 and inserting the ansatz above
into (4.3) yields

Ψt = RθtWDt(P )u
m
0 ≈

M∑
j=1

(
Gp

θt
∗ δAθt (rj+Dt(P,rj))

)

=

M∑
j=1

(
Gp

θt
∗ δqt,j

)
, (4.9)

where
qt,j = Aθt(rj +Dt(P, rj)). (4.10)

Using equation (4.9) amounts to localizing markers by matching their projection data
Ψt ∈ R(Nθ×Nd) (in 2D), where Nθ is the number of projection angles and Nd is the
discretization of the detector plane. A schematic of this forward model is shown in
Fig. 4.1(b), where we indicate 1D projected data with blue lines.

In [93], the authors use projected marker locations over time as the input instead of
image data (indicated with red dots in Fig. 4.1(b)) and use the following optimization
problem for deformation estimation and marker localization:

minimize
rj ,P

T∑
t=0

M∑
j=1

∥∥∥(q̃t,j −Aθt(rj +Dt(P, rj))
)∥∥∥∥∥

2

2

. (4.11)

Such an approach assumes that we can identify the projected marker locations q̃t,j directly,
despite convolution withGp

θt
. Here and elsewhere, we use symbols with a tilde (e.g. q̃t,j) to

denote measured data and symbols without a tilde (e.g. qt,j) to denote model predictions.
Comparing equations (4.9) and (4.10), we find that for each t the dimensions of 2D

data for (4.10) are d ×M and those of the data for (4.9) are Nθ × Nd. Typical values
for d,M,Nθ and Nd are 3, 20, 100 and 4096, respectively, such that d ×M = 3 × 20
and Nθ ×Nd = 100× 4096, the latter being approximately 6000 times the former. Thus,
(4.10) is a much lower-dimensional problem. Furthermore, the deformation field can be
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extracted from (4.10) in a more direct fashion as it directly describes the corresponding
projected marker displacement, not the change in the projection image caused by it.

However, identifying markers robustly from data is not a trivial problem [90]. It
involves solving an optimization problem of the form:

minimize
qt,j

∑
t

‖Ψ̃t −
∑
j

(Gp
θt
∗ δqt,j )‖22.

Marker labelling is generally performed using normalized cross-correlation-based schemes
or template matching algorithms. Such methods are error-prone when projection data
are noisy or when gold beads are occluded or cluster together in projection data. In
such situations, users must manually annotate markers, or manually inspect and correct
for incorrect and failed detection in one or more images in the tilt series. This manual
intervention leads to time-consuming and subjective labelling.

To avoid solving the marker identification problem, we take a step back and start
directly from (4.9). We solve for marker locations and the deformation field in a least-
squares sense. In addition, we do not assume that we know the number of markers
beforehand. The resulting optimization problem is as follows:

minimize
rj ,P,M

T∑
t=0

∥∥∥Ψ̃t −
M∑
j=1

(
Gp

θt
∗ δAθt (rj+Dt(P,rj))

)∥∥∥2
2
. (4.12)

The optimization problem above assumes a model for the markers, uses an image-based
loss and does not need labelled marker locations like the problem in (4.11). In the following
section, we discuss optimization schemes for solving (4.12).

The deformation field Dt can be represented using different basis functions. If one
uses localized basis functions, e.g. the B-spline basis functions often used in non-rigid
image registration, one either needs a sufficiently dense sampling of the domain with
markers or include suitable regularization constraints [98]. Global basis functions that are
supported in the entire domain will only lead to a compact, low-dimensional description
of the deformation field with sufficient accuracy if they are chosen based on a priori
knowledge about the sample deformation.

In this chapter, we use the global basis functions proposed in [93], where the beam-
induced sample deformation is modeled with a set of polynomial surfaces. The parametrized
sample deformationDt(P, rj) := [Dt,x, Dt,y, Dt,z] is modelled with polynomials in (x, y, z)
such that the deformation in each direction is given by

Dt,k(r, P ) =
∑

α,β,γ≥0
α+β+γ≤dp

(
Pαβγ(t)

)
k
xγyβzα, k ∈ {x, y, z}, (4.13)

where Pαβγ are the coefficients of the polynomial and dp is the degree of the polynomial.
In [93], these polynomials are allowed to vary freely over the tilt series, resulting in a
large number of free parameters. In 3D, we must estimate 18 parameters for each tilt
for a quadratic deformation model, which amounts to thousands of parameters when the
number of tilts is high. One way to reduce the number of parameters, used in [93], is
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by assuming that the deformation field is constant along the depth (z direction) of the
sample. with (dp+2)(dp+1)

2 free parameters.
To further reduce the number of free parameters, we introduce a temporal dependence

in (4.13), which reduces the number of parameters from 18 for each tilt to 18 for the entire
tilt series, assuming a quadratic deformation model. Our time-dependent deformation field
is given by:

Dt,k(r, P ) =

dt∑
ζ=1

∑
α,β,γ≥0

α+β+γ≤dp

(
Pαβγζ

)
k
xαyβzγtζ , t ∈ [0, 1]. (4.14)

As we reconstruct the first image, there is no way to recover a zeroth order deformation
in time. For simplicity, we consider linear time dependence in our experiments, which
amounts to setting dt = 1.

Our method is independent of the choice of parametrization of the deformation field.
Other parametrizations, which take advantage of the possible symmetries of the defor-
mation field or additional understanding of the physics underlying the sample behaviour,
could also be suitable choices.

4.3 Optimization
In [12], [72], [99], convex approximations to the minimization problem (4.12) have been
devised by mapping the problem onto the space of measures M(Ω). We interpret the
marker configuration as a measure µ :=

∑M
j=1 wjδrj ∈ M(Ω), where the weights wj

are introduced as a means of relaxing the optimization problem (4.12). The weights
determine the relative “importance” of the markers and, as we show later, can be used to
remove candidate markers that do not contribute significantly to the data. Mapping the
problem to measure space enables us to express the forward operation shown in (4.9) in
terms of a linear operator, Φt :M(Ω)→ RNd :

Ψt =

M∑
j=1

wj

(
Gp

θt
∗ δqt,j

)
=: Φtµ, Ψ =


Φ1

Φ2

. . .
ΦT

µ =: Φµ (4.15)

The minimization problem (4.12) can then be rewritten as the following problem in
the space of measures, where the loss is convex in the measure µ:

minimize
µ∈M(Ω)

ℓ(Φµ− Ψ̃), ℓ(·) := ‖ · ‖22 (4.16)

In [12], the authors devised an effective numerical scheme for solving infinite-dimensional
convex problems of the type shown above by using a variant of the conditional gradient
or Frank-Wolfe method [19]. They also showed that interleaving the convex Frank-Wolfe
iterations with nonconvex local optimization steps improved the convergence of the al-
gorithm. This algorithm, known as the alternating descent conditional gradient (ADCG)
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method, has been subsequently extended for and applied to a range of application areas
[12], [72], [99].

In this chapter, we adapt the ADCG algorithm to solve the marker localization and
deformation estimation problems simultaneously. To do this, we perform the Frank-Wolfe
iterations as-is but modify the block coordinate descent routine to include an additional
deformation estimation step. At each iteration of the algorithm, we place a new marker
at a candidate initial location by solving a linearized approximation of our optimization
problem. Then, we solve a linear optimization problem to obtain estimates for the weights
of all current markers. Local optimization routines are used to solve for the parameters for
the deformation field and to refine the marker support in a bounded region. Our modified
ADCG routine, which we call SparseAlign, is shown in Algorithm 4. Below we describe
each step in our method in detail.

Algorithm 4 SparseAlign
for n = 1 : nmax do

1) Compute current residual: ϱn ← Φµn − Ψ̃
2) Find next marker: r∗n ← argminr∈grid〈∇ℓ(ϱn),Ψ(r)〉
3) Update support: rn+1 ← [rn, r

∗
n]

4) Block coordinate descent:
Repeat:
(a) Compute weights:
wn+1 ← argminw ℓ(Φµn+1 − Ψ̃)
(b) Prune support:
(wn+1, rn+1)← prune(wn+1, rn+1)
(c) Fit deformation parameters:
Pn+1 ← argminP∈P ℓ(Φµn+1 − Ψ̃)
(d) Improve support:
rn+1 ← argminr∈C ℓ(Φµn+1 − Ψ̃)

end for

Adding candidate marker locations We use the conditional gradient method to obtain
candidate marker locations in steps 2-3. The conditional gradient or Frank-Wolfe method
[19] can be used to solve constrained optimization problems of the type minimizex∈C f(x)
iteratively, where C is a convex set. The first step in each iteration is to minimize a
linearized version of the loss within a specified domain. The linear approximation to a
function f(x) at xk is given by

flin(s) = f(xk) + 〈∇f(xk), s− xk〉.

Minimizing flin(s) over a domain Ds thus amounts to solving
minimize

s∈Ds

〈∇f(xk), s− xk〉.

Using our forward model (4.15) and the loss function in (4.16), we can compute that
the linear minimization step at iteration n is the following optimization problem over
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measures s ∈Ms(Ω) ⊂M(Ω)

minimize
s∈Ms(Ω)

〈∇ℓ(ϱn),Φs〉, (4.17)

where ϱn := Φµn − Ψ̃ is the residual at iteration n.
An optimal solution of the above problem is the addition a single new marker with

positive weight to the current support of µn. This ensures that, at iteration n of the
algorithm the measure µ is supported at n points. Adding only one location at a time
has been shown to give the sparsest possible solution [12].

Practically, we solve (4.17) by gridding the domain of marker locations coarsely. The
contribution of a single marker at each grid point, rgrid, is computed for a current guess
of deformation parameters:

ψ(rgrid) =


Gp

θt
∗ δAθ1

(rgrid+D1(rgrid))

Gp
θt
∗ δAθ2

(rgrid+D2(rgrid))

. . .
Gp

θt
∗ δAθT

(rgrid+DT (rgrid))


Then, the inner product of the current residual with the forward projection of a marker
located at each grid location is calculated. The grid location r∗grid with the smallest inner
product with the residual is chosen as the next candidate location:

r∗grid = arg min
r∈grid

〈∇ℓ(ϱn), ψ(r)〉. (4.18)

Optimizing weights Once we have optimized for marker locations, we can optimize the
weights of each marker as shown in steps 4(a)-(b). Note that the model (4.15) depends
linearly on the weights wj , j ∈ {1, 2, . . . ,M}. Thus, with the number of markers, marker
locations and deformation parameters fixed, the weights wj can be estimated by solving
the following linear least-squares problem

minimize
w∈[0,1]n

‖ℓ(Φµn − Ψ̃)‖22. (4.19)

All weights wj are constrained to lie in [0, 1] and represent the relative importance of
marker contributions to the data. Markers with weights close to zero can be removed by
an additional prune routine that removes all markers with a weight lower than a predefined
threshold. In some cases an additional prune routine can be used to remove markers with
small weights at the end of a full algorithm run. This further ensures that the solution
obtained is the sparsest possible marker configuration required to explain the data Ψ̃.

Refining initial marker locations At each iteration, we perform the nonconvex local
optimization step shown in 4(d) to refine our estimates for the initial marker locations.
This step was first proposed in [12] as a way to speed up convergence of the conditional
gradient method.

Refining the support of the current measure µn without changing the number of
markers ensures that markers are moved off the grid locations used in steps 2-3. It also
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imparts some of the rapid local convergence qualities of nonconvex optimization [12]. In
our implementation, we use the L-BFGS-B algorithm to perform local optimization over
initial marker locations.

Estimating deformation parameters The optimization problem behind step 4(c) is
given by

minimize
P∈P

T∑
t=0

∥∥∥Ψ̃t −
M∑
j=1

wj

(
Gp

θt
∗ δAθt (rj+Dt(rj ,P ))

)∥∥∥2
2
, (4.20)

which is a difficult nonconvex problem that is often studied in the context of image
correspondence problems such as image registration or optical flow estimation [100]. We
use L-BFGS-B initialized at the current Pn to compute a local update Pn+1 for the
parameters of the deformation field.

Coarse-to-fine scheme for large data One of the challenges of solving (4.20) is that
the objective function is flat if the forward projection of the current marker configuration
and the data do not share the same support, and gradient-based optimization schemes
such as L-BFGS-B have a hard time locating a minima. This easily happens for small
objects, such as markers, embedded in large projection images. The remedy is typically
to smooth both images with a Gaussian, compute a deformation field on the smoothed
problem, and use the solution of the smoothed problem to initialize the optimization of
the original problem.

Gaussian smoothing followed by downsampling removes high image frequencies and
one starts matching only the low frequencies. For noisy data, downsampling has the
additional advantage of denoising the data. Furthermore, for large experimental data,
where each tilt image has pixel dimensions 4096× 4096, warm-starting the optimization
at high resolutions with good initial values ensures that not many expensive iterations
have to be performed.

For realistic simulation data and experimental data, we use a coarse-to-fine scheme
where the marker localization and deformation estimation problem is solved at successively
finer resolutions using the results at the coarser resolutions as initialization.

At full resolution, we generate the forward projection of a single marker using (4.6)
followed by sampling on a spatial grid Xf with Nd grid points. Thus, the discretized
forward projection of the full marker configuration can be written as

Ψt =
∑
j

wjS
fG(qt,j ,τf ), (4.21)

where Sf is the sampling operator associated with the spatial grid Xf and G(qt,j ,τf ) is a
Gaussian centred at qt,j with standard deviation τf .

For obtaining measured data at coarse resolutions, we downsampled the full-resolution
measured data Ψ̃t at each time after Gaussian convolution to prevent aliasing artefacts
[101]. Thus, the coarse-resolution data were given by Ψ̃c

t := Hc(Gτa ∗ Ψ̃t), where
Hc is a downsampling operator associated with a coarse grid Xc and Gτa is an anti-
aliasing Gaussian. For integer downsampling factors η := |Xc|/|Xf |, Hc only keeps pixels
separated by η in the coarse-resolution image.
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We approximated matching forward projection data Ψc
t directly from marker locations

using our forward model (4.9) by sampling the Gaussian-convolved projected marker
locations on the coarse grid Xc:

Ψc
t =

∑
j

wjS
cG(qt,j ,τf ), (4.22)

where Sc is the sampling operator associated with the coarse grid Xc.

4.4 Numerical experiments
In this section we describe our experiments with simulated and real data. Implementa-
tion notes with details of software packages used are provided in Section 4.4.6 of the
Supplementary Materials.

4.4.1 Illustrative 2D example
Ground truth We used a simple simulated sample to elucidate properties of our algo-
rithm in 2D. The FoV was taken to be [−L/2, L/2] along both axes, with the canonical
length scale L = 1. The ground truth sample consisted of 10 gold bead markers confined
to a thin rectangular region: x ∈ [−2L/5, 2L/5], z ∈ [−L/10, L/10]. We chose this
geometry for our 2D sample to mimic the geometry of experimental cryoET samples.

For simplicity, we considered deformation field components to be zero along the
horizontal (x) direction. In the vertical (z) direction, we assumed the deformation to
be given by a quadratic polynomial of x and z:

Dt,z(r, P ) = (P0 + P1x+ P2z + P3x
2 + P4z

2 + P5xz)t =: D1,zt, (4.23)

with P0 = 0 L, P1 = P2 = −1, P3 = P4 = P5 = −1 L−1, and t taking values in [0, 1]

Projection data We generated projection data using the forward model in (4.15) over
a set of discrete projection angles θ ∈ [−70◦, 70◦), Nθ = 20. Practically, we computed
the continuous Radon transform of each marker, followed by a continuous 1D Gaussian
convolution in projection space. The Gaussian-convolved projection was then discretized
on a detector grid with Nd = 64. At each projection angle, the projection was then a 1D
profile. All the projections were rearranged in a sinogram with dimensions Nθ ×Nd.

For comparison, we also generated input data for the doming model method in [93].
These data were the projected locations of each marker over the same series of projection
angles.

4.4.2 Simulated 3D examples
Ground truth We used a 3D configuration of markers to test the robustness of our
method to noise and to mismatches in the forward model. We used 20 randomly placed
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markers in a thin region in 3D with dimensions 819.2 nm × 819.2 nm × 100.0 nm. The
sample used was the same as that described in 4.4.3.

We considered deformation field components to be non-zero only along the z direction;
this component was then given by:

Dz(x, y, z, t) = (P0 + P1x
2 + P2y

2)t, (4.24)

with P0 = 200 nm, P1 = P2 = −100 nm−1, and t taking values in [0, 1].

Projection data We generated projection data along 140 equispaced projection angles
in [−70◦, 70◦] using a Gaussian with standard deviation 15nm as the shape function of
individual markers. Each projection image was discretized on a 64× 64 pixel grid.

To convert the intensities in these generated images to meaningful electron counts,
we used that the expected electron count in any pixel is given by I = I0e

−VabsC×δx, where
I0 is the incoming electron count, Vabs is the absorption potential of gold nanoparticles
(5.39V for a 300keV electron beam, treating the gold as amorphous), C is the interaction
constant (0.00653V −1nm−1 at 300keV ) and δx is the path length travelled by electrons
through a gold marker. This path length is equal to the product of the diameter of the
gold bead, which we take to be 15nm, and the intensity in our generated images. For our
experiments, we generated data with I0 = 2n, n ∈ {6, 7, 8, 10, 12, 14}.

Gaussian noise To test the properties of our approach for noisy data, we performed
experiments with data corrupted with additive Gaussian noise, such that

Ψnoisy = Ψclean +N (0, σ2
noise),

where Ψclean are the data scaled to physical electron counts and σ2
noise is the variance of

the noise added.
We performed experiments using σ2 = 2n, n ∈ {7, 8, 10, 12, 14}. For each noise

setting, multiple independent experiments were performed and the results were averaged
to obtain mean values for the metrics. Each independent experiment was initialized with
a with a different random seed.

Poisson noise We also generated a series of Poisson noise-corrupted data by varying
the electron count per pixel per frame, I0. For I0 = 2n, n ∈ {6, 8, 10, 12, 13, 14}, we
generated Poisson-distributed electron counts at each pixel using:

Ψnoisy = Poi(Ψclean), (4.25)

where Ψclean are the data scaled to physical electron counts and Poi(·) denotes a Poisson
random variable. The Poisson-noise data were generated to have comparable signal-to-
noise ratios as those of the Gaussian-noise data. For each noise instance, we performed
multiple independent experiments with different random seeds and averaged over the
obtained metrics.
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Figure 4.2: Example tilt images generated using TEM-simulator (a) without noise and
(b) with added correlated noise; (c) an experimental TEM image showing gold beads on
vitrified ice.

4.4.3 Realistic TEM simulations
We used the TEM-simulator software [102] to generate physically plausible simulations
of TEM images from a specification of a 3D sample (see example projection images in
Fig. 4.2(a) and (b)). To simplify matters, the sample consisted purely of gold particles
in vacuum, thus disregarding the ice buffer and other sample structures. The purpose of
this numerical experiment was to test our algorithm in situations where its forward model
did not match the one used for data generation. In particular, the explicit assumption
of Gaussian shape of gold particles and the implicit assumption of additive uncorrelated
noise characteristics were violated.

The test sample consisted of 20 gold particles of 15nm diameter, randomly distributed
in a slab of dimensions 819.2nm × 819.2nm × 100.0nm in x, y, z space. Over time, this
sample was simulated to undergo a deformation described by the vector field

Dz(x, y, z, t) = (P0 + P1x
2 + P2y

2)t, Dx = Dy ≡ 0 (4.26)
with P0 = 200 nm, P1 = P2 = −100 nm−1, and t taking values in [0, 1]. This amount
of deformation (200 nm at x = y = 0, t = 1) is an exaggerated version of a doming
motion observed in practice. The large amplitude was chosen to make the effects under
investigation easier to observe.

Assuming constant tilt speed, the time t was mapped to a tilt angle θ according to
θi = −70◦ + ti · 140◦, ti = i

140 , i = 0, . . . , 140. At each tilt angle, a projection image
was simulated according to the weak phase object approximation model [88], taking the
contrast transfer function (CTF) of the optical system into account (see [102] for details).
We used electrostatic potential values of V = 0 for vacuum and V = (29.87 + ı · 5.39)
Volt for (amorphous) gold. The CTF parameters were chosen as ∆z = 8 µm (defocus),
CC = 2.7 mm (chromatic aberration) and CS = 2.7 mm (spherical aberration).

The size of each projection image was chosen equal to the x − y dimensions of the
sample, subdivided into (Nx, Ny) = (512, 512) pixels, each of size 1.6 nm. Simulated
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data were generated with 8x binning, with the full resolution pixel size equal to 0.19 nm.
Binning was performed because of computational convenience.

Noiseless data The noiseless images generated by TEM-Simulator correspond to proba-
bility densities of detecting an electron at a given location in the detector plane. Therefore,
scaling with the average number of incoming electrons per pixel area results in each pixel
value representing the expected number of electrons measured in that pixel, also referred
to as “infinite dose” case.

Noise generation In a real experiment, a finite number of electrons interacts with
the sample and is detected at the camera. This process was modeled with a Poisson
random variable Poi(λk) per pixel, where the parameter λk = I0Ψk equals the intensity
of the k−th pixel in the scaled noiseless image. This noise model applies to a perfect
counting camera. However, cameras operating in integration mode have a nontrivial point
spread function because charge from one incident electron can leak into neighboring pixels,
triggering multiple detection events. Furthermore, signal and noise transfer vary with
spatial frequency. These two effects are characterized by the MTF (modulation transfer
function) and DQE (detective quantum efficiency) of the camera and lead to signal blur
and noise correlation [88]. The noisy images in these numerical experiments made use of
this model.

Pre-processing for noisy data For data with correlated Poisson noise, we performed
the following pre-processing steps. First, we used noiseless data to perform segmentation
with Otsu’s method [52]. We obtained a mask for the markers in the tilt series from
this segmentation procedure, which we used to compute average background and marker
intensities in the noisy tilt series. Second, we shifted the range of the noisy data by
subtracting its minimum value and applied the Anscombe transform to our shifted data.
Our forward model (4.15) assumes that the intensity in the background of a projection
image is mean zero with constant variance and the intensity at gold beads is mean one
with constant variance. The variance of data with Poisson noise varies with the mean,
and thus differs from the assumption in our forward model. To reduce the discrepancy
between our model assumptions and the simulated data, we used the Anscombe transform

Anscombe(Ψ̃) := 2

√
Ψ̃ + 3/8

as a variance-stabilizing transformation to obtain data with an approximately constant
variance and standard deviation [103]. Finally, we subtracted the average background
intensity and divided by the average bead intensity in the data.

4.4.4 Experimental data
For our experimental data we used a sample with gold beads as the only prominent features.
We deposited 20nm gold particles on a lacey carbon grid, which was plunge-frozen in liquid
ethane using a Thermo Scientific Vitrobot. An example tilt image is shown in Fig. 4.2(c).
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We acquired a tomographic tilt series using the Thermo Scientific Tomography 5.5
software package on a Thermo Scientific Titan Krios electron microscope equipped with a
Thermo Scientific Falcon 3EC camera. An area in a hole with 15 gold beads was selected.
A magnification of 37000x was chosen for a pixel size of 1.949 and a field of view of
800 nm. The sample was tilted from -60 to +60 degrees with a tilt step of 2 degrees.
Each image in the tilt series had an electron dose of 0.198 e−/2.

Cross-correlation-based global alignment Projection images were globally shift-aligned
using the cross-correlation-based routine in Thermo Scientific Inspect3D.

Data pre-processing Not all projections were globally aligned correctly using the cross-
correlation-based alignment routine. We inspected the tilt series visually for any misaligned
projections and removed these. This resulted in a total of 27 projections that were then
used for estimating local sample deformation. Next, we deleted 256 pixels from each of the
four borders of the tilt series images to get rid of missing image data added by the cross-
correlation-based alignment routine. Only one marker, near the top edge of the tilt series
images, was discarded because of edge removal. As we expected correlated Poisson noise
in these data, we applied the Anscombe transform to the raw tilt series to obtain data with
approximately constant variance. After applying the Anscombe transform, we subtracted
the mean of the tilt series; because most pixels were background pixels, this ensured that
the average background intensity was close to 0. Finally, all tilt series pixels were divided
by the average marker intensity to ensure that, in accordance with our forward model,
the markers had an average intensity of approximately 1. To determine the average bead
intensity in experimental data, we inspected the tilt series visually and used the average
intensity in three small square regions around three beads.

4.4.5 Evaluation criteria
To quantify the accuracy of our estimated deformation fields with respect to the ground
truth, where available, we used the following evaluation criteria. First, the estimated and
ground truth deformation parameters were used to compute the deformation field at t = 1
on a gridded FoV of dimensions 1000× 1000 (for 2D) and 1000× 1000× 1000 (for 3D),
using equation (4.23). Next, the vectorial difference between estimated and ground truth
deformation fields at t = 1 was computed at each grid point:

E(rgrid) = ‖Dgt
1,z(rgrid)−Dest

1,z(rgrid)‖22 (4.27)
This deformation estimation error was averaged over the whole grid to obtain the global
deformation estimation error and averaged only at the ground-truth marker locations to
obtain the deformation estimation error at markers:

Eglobal =
1

Ngrid

∑
grid

E(rgrid) (4.28)

Emarkers =
1

M

M∑
j=1

E(rj) (4.29)
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where Ngrid = 109 for 3D and Ngrid = 106 for 2D.

4.4.6 Implementation details
We implemented SparseAlign in Python 3.6 and used several Python packages for each
subroutine. Marker location refinement was performed using automatic differentiation
routines in Autograd [104] and the L-BFGS-B method implemented in SciPy [105]. The
L-BFGS-B routine in SciPy was also used for deformation estimation.

We generated Gaussian noise and Poisson noise for 3D simulated data using NumPy
[49]. Segmentation using Otsu’s method was performed for 3D simulated data using
pre-defined functions in scikit-image [44].

All experiments were performed using JupyterLab notebooks [106] on an Intel(R)
Core(TM) i7-8700K CPU with 12 cores. Example code for 2D alignment using SparseAlign
is available in the repository https://github.com/poulamisganguly/SparseAlign/.

4.5 Results
SparseAlign adds markers with small displacements first In Fig. 4.3(a) and (b), we
show how SparseAlign localizes markers. At each iteration, markers are added by solving
the linearized problem (4.18) on a coarse grid. We show the values of the objective
function at each grid location in Fig. 4.3(a). The first marker added is a marker close to the
centre of the field of view, where the displacement of markers is smallest. This corresponds
with the fact that all deformation parameters are set to zero for the first iteration. After
the first iteration, when we start optimizing for the deformation parameters, markers that
show larger displacements are added. In Fig. 4.3(b), we show two examples of marker
location refinement. The two plots on the left show marker addition and refinement at
iteration 3; a new marker, indicated with a red star, is added at a grid location. Local
optimization then allows us to move this marker as well as all currently placed markers
(blue plus signs) off the grid and closer to the ground truth locations (green crosses). The
two plots on the right show another step of marker addition and local optimization at
iteration 7. In both cases, local optimization helps to improve the solution close to the
region where the new marker is added. We indicate this region with a red rectangle in
the plots.

SparseAlign’s image-based loss is not convex with respect to deformation parame-
ters In Fig. 4.3(c), we plot the image-based loss in (4.12) as a function of each deforma-
tion parameter separately, while holding other parameters and marker locations fixed at
their respective ground truth values. For comparison we also plot the marker-based loss in
(4.11). Finally, each plot is normalized with a different normalization constant, equal to
the maximum value of the loss for that parameter. For each parameter, the marker-based
loss is a near-perfect quadratic function with a minimum at the ground truth parame-
ter value. The image-based loss function shares the same minima but differs from the
marker-based loss at higher parameter values. In general, the image-based loss function
is only convex in a small region around the global minimum. As we move away from the
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Figure 4.3: Three steps in SparseAlign. (a) Addition of new markers is performed on a
coarse grid using the optimization problem (4.18). The grid location with the smallest
pixel intensity in the heatmap is chosen as the next candidate location, which is indicated
with a red star. (b) Refinement of initial marker locations is performed using L-BFGS-B.
The two leftmost plots show one step of marker addition followed by local optimization;
the two rightmost plots show another step of marker addition and local optimization. In
both cases, after addition of a new marker (red star), local optimization ensures that all
current markers (blue plus signs) are brought closer to the ground truth locations (green
crosses). We indicate the areas where this improvement is clearest with red rectangles.
(c) Sensitivity of the marker-based loss (black line) used in the doming model approach
and our image-based loss (red line) to changes in deformation parameter values. For each
plot, the loss was normalized independently with respect to its maximum value.

minimum, the loss function increases for each parameter until, at large parameter values,
markers move out of the field of view and the loss shows other minima (as in the plot
for P0) or flattens and dips (as in the plots for P1 through P3). Gradient-based schemes
can thus get caught in local minima if parameter values are very far away from the true
minimum at initialization.

SparseAlign estimates deformation parameters with an accuracy comparable to
that of the doming model In Fig. 4.4 we illustrate the differences between the doming
model optimization used in [93] and our method. We use the simple 2D sample shown in
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Figure 4.4: Marker localization and deformation estimation using SpaseAlign and the
doming model method (DM). (a) Ground truth initial marker locations and deformation
field component along the z-axis at t = t1, D1,z. (b) Input data for DM are the projected
marker locations indicated with red dots. Projection data for SparseAlign at 0◦ is a 1D
profile that is a superposition of Gaussians; we indicate this data in blue. The full sinogram
data is a stack of projections taken along tilt angles in [-60◦, 60◦). (c) Reconstructed
deformation fields using DM and SparseAlign. In both cases, errors are largest at the
boundaries of the field of view (FoV), where no markers are present. (d) Deformation
estimation error (4.27) obtained using DM and SparseAlign. Errors are comparable in the
convex hull of markers; errors outside the convex hull are larger when using SparseAlign.
(e)-(f) Mean local and global deformation estimation errors (4.28)-(4.29) as a function of
DM and SparseAlign iterations. (g) Localized initial marker locations using SparseAlign
(blue circles) and DM (red circles) overlaid with the ground truth marker locations (green
crosses).
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Fig. 4.3 with a quadratic deformation field along the vertical (z) direction.
Input data for the doming model (‘DM’) optimization are indicated with red dots in

Fig. 4.4(b); projection data for SparseAlign is a 1D profile indicated with a blue line. The
set of line profiles can be rearranged to give a sinogram for the SparseAlign data.

In Fig. 4.4(c), we show the reconstructed deformation fields obtained using the two
methods. In Fig. 4.4(d), we illustrate the vectorial deformation field error (4.27) in both
cases. We observe that the error in the convex hull of the markers is comparable using
both methods. This is true despite the fact that our method does not need labelled
marker locations and minimizes a more complicated image-based loss function. In regions
without markers, our method shows larger errors. This is an indication of the greater
ill-posedness of our deformation estimation problem (4.20).

In Fig. 4.4(e-f), we compare mean deformation estimation errors (4.29) and (4.28) for
both methods at the ground truth marker locations and in the entire FoV. Mean deforma-
tion estimation errors at marker locations are comparable for both methods although the
global mean error is higher for SparseAlign. The larger global error, however, is not signif-
icant because the major contribution comes from boundaries where no sample is present.
Marker localization using SparseAlign and DM gives comparable results, as illustrated in
Fig. 4.4(g).

Deformation estimation accuracy reduces almost linearly for additive Gaussian
noise In Fig. 4.5, we perform a quantitative analysis of the robustness of our method
with respect to noise in projection data. The ground truth marker configuration and
deformation field are shown in Fig. 4.5(a). We used different noise settings to probe
the properties of our method for data corrupted with Gaussian and Poisson noise, and
for each noise level we performed 100 independent experiments by randomizing both the
initial marker locations as well as using different noise realizations. The mean deformation
estimation error plots for Gaussian noise show an almost linear decrease in deformation
estimation accuracy for increasing signal-to-noise ratio (SNR, given by the standard devia-
tion of the Gaussian noise). Moreover the spread of the distribution narrows for high SNRs,
indicating that there are fewer catastrophic failure cases for deformation estimation.

The dependence of deformation estimation error on noise is more complicated in the
case of Poisson noise. As shown in the plots in Fig. 4.5(c), we do not see a linear depen-
dence as in the case of Gaussian noise. The difference in accuracy between deformation
estimation results for low and high electron counts is also smaller. This suggests that
the mismatch between Poisson noise data and data generated from our forward model is
greater than the mismatch in the case of comparable Gaussian noise.

Model mismatch does not affect deformation estimation significantly We used
physically plausible TEM simulations to generate data where the forward model of SparseAlign
did not match the data generation model.

In these data, the shape function of a gold bead marker is not a Gaussian. In Fig. 4.6(a),
we show the profile of a marker in projection data generated using the TEM-simulator
package [102] and the profile of a marker using our forward model. We assumed that the
size of gold bead markers and the pixel size of projection images are known, so that the
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Figure 4.5: Deformation estimation in 3D with Gaussian and Poisson noise-corrupted
data. (a) Ground truth configuration of markers (left) and ground truth deformation field
in nm (right). (b) Projection image at 0◦ with different Gaussian noise and Poisson noise
settings. The variance of Gaussian noise (σ2) and the photon flux (I0) were chosen to
simulate comparable Gaussian noise and Poisson noise realizations. (c) Deformation field
estimation errors as a function of iteration at markers (Emarkers) and in the entire field-of-
view (Eglobal) for various Gaussian and Poisson noise settings.

width of the Gaussian can be computed.
We used binned simulated data, as detailed in 4.4.3, for these experiments. In

Fig. 4.6(b), we show results on marker localization and deformation estimation using
noiseless data. The ground truth marker configuration and deformation field are the
same as those shown in Fig. 4.5(a). The results we show in Fig. 4.6(b) are those ob-
tained at the final step of a coarse-to-fine scheme, where we solved for marker localiza-
tions and deformation parameters at increasing resolutions using downsampling factors
η = 1/16, 1/8, 1/4, 1/2. The final result of such a scheme shows a good qualitative
match between reconstructed and ground truth marker locations and deformation fields.
We stopped at η = 1/2 because the effect of model mismatch, which we discuss in the
next paragraph, is greatest at high resolutions. Moreover, our current implementation
is unable to handle very large data sizes, an area we plan to improve in a future work.
Nevertheless, our results indicate a good qualitative match between ground truth and
estimated deformation fields, suggesting that the absence of higher-resolution data might
not impact deformation estimation for the cases considered.
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In Fig. 4.6(c), we show the effect of model mismatch at different resolutions using
plots of the difference between our forward projected reconstructed markers and the
observed data. We see that the effect of model mismatch is most pronounced at the
finest resolutions. This indicates why using a coarse-to-fine scheme, where we obtain
initial guesses for marker locations and deformation parameters by solving the problem
in a coarse resolution first, leads to reasonable results despite the difference in forward
models.

We plot mean deformation estimation errors (4.29) and (4.28) for each iteration in
Fig. 4.6(d). Jumps in resolution are indicated with dotted lines. Here we observe that the
maximum reduction in deformation estimation error is achieved at the coarsest resolution.
The initial guesses obtained are then refined subsequently at each finer resolution. The
stopping criterion we used to jump to a higher resolution was to check whether the
absolute difference in loss at each new iteration was greater than a pre-set tolerance value
(here, 10−6).

Finally, in Fig. 4.6(e), we illustrate the deformation estimation error (4.27) at each
resolution. Here we observe that, at the coarsest resolution, the error is already small
near the centre of the FoV, where a majority of markers is present. At higher resolutions,
the refinement in deformation parameters ensures smaller errors at the boundaries and
indicates improvements in the values of estimated parameters.

Marker localization is poor for data with correlated Poisson noise In Fig. 4.7, we
show results of our method on data with realistic markers and realistic correlated noise
using the ground truth marker configuration and deformation field in Fig. 4.5.

We observe that marker localization for correlated noise-corrupted data is poorer than
that for noiseless data (shown in Fig. 4.6). At the end of a coarse-to-fine scheme, two
markers are not localized and a few markers with small weights are added to the recon-
struction domain. These small weighted markers were removed with a further thresholding
step, where markers with weights less than 0.1 were discarded. Improving marker localiza-
tion might need changes to the forward model used, an aspect that needs further research;
however, in our experiments, marker localization did not have a significant effect on de-
formation estimation accuracy, as seen from the reconstructed deformation field shown
in Fig. 4.7(a).

In Fig. 4.7(b), we show plots of mean deformation estimation errors. Note that the
same stopping criterion as that used for noiseless data ensured that more iterations were
performed at finer resolutions for data with realistic noise.

In Fig. 4.7(c), we plot the deformation estimation error at different resolutions. Com-
paring these plots with those for noiseless data in Fig. 4.6, we see that the errors at
the boundaries are higher for noisy data, which is most clearly observed at the coarse
resolutions.

Deformation estimation is limited by the model basis We performed experiments
with realistic 3D simulated data where the ground truth deformation field along the z
direction contained cubic terms in x and y in addition to the quadratic terms in (4.26).
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Figure 4.6: (a) Mismatch in shape function. (left) 2D projection of a single marker
generated using the TEM simulator. (centre) Projection of a Gaussian marker used in our
forward model. (right) Profiles of both shape functions. (b) Marker localization results
(left) and deformation estimation results in nm (right) for noiseless realistic data. (c)
Difference between forward projected marker locations and observed data (a small region
around a single marker is shown). The difference due to model mismatch is largest at the
fine resolutions. (d) Mean deformation estimation error at ground truth marker locations
and in the entire FoV for different iterations. Resolution changes in the coarse-to-fine
scheme are indicated with black dotted lines. (d) Absolute error of estimated deformation
field with respect to the ground truth at different values of the downsampling factor η.

The ground truth deformation field used in these experiments was given by:

Dz(x, y, z, t) = (P0 + P1x
2 + P2y

2 + P3xy
2 + P4x

2y)t (4.30)

with P0 = 200 nm, P1 = P2 = −50 nm−1, P3 = P4 = 25 nm−2. Although the ground
truth contained cubic terms, we restricted the deformation terms used in our forward
model to be quadratic in x and y. We performed experiments for both noiseless data
and data corrupted with correlated Poisson noise. For both noiseless and noisy data, our
algorithm was able to identify the quadratic terms in the deformation field (Fig. 4.8(a-b)).
As there were no cubic terms in the forward model, the reconstructed deformation fields
did not contain any cubic components. The effect of this mismatch is greatest at the two
corners of the FoV where the contribution of cubic terms was the highest.

When we included cubic terms in the forward model, we found that both marker
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Figure 4.7: Results on realistic marker data with correlated noise. (a) Marker localization
(left) and deformation estimation (right) results on data corrupted with realistic correlated
noise. Deformation values shown in nm. (b) Mean deformation estimation error at ground
truth marker locations and in the entire field-of-view for each iteration. Resolution changes
in the coarse-to-fine scheme used to solve for marker locations and deformation parameters
are indicated with black dotted lines. (c) Absolute deformation estimation error (along z)
with respect to the ground truth at different values of the downsampling factor η.

localization and deformation estimation improved as both quadratic and cubic terms were
now estimated. The recovered deformation field in Fig. 4.6(c) is much closer to the
ground truth. These results indicate that the accuracy of SparseAlign is limited by the
basis used for deformation modelling.

SparseAlign locates markers reasonably in experimental data We used an exper-
imental dataset of gold beads embedded in ice to test the applicability of our method
to experimental datasets. We used a coarse-to-fine scheme with downsampling factors
η = 1/128, 1/64, 1/32, 1/16, 1/8 to localize gold bead markers and estimate the deforma-
tion field. We show an example tilt image in Fig. 4.9(a) and the same image at different
downsampling factors in Fig. 4.9(b).

Using a coarse-to-fine scheme we were able to localize several, but not all, markers. In
Fig. 4.9(c), we show our marker localization results. We thresholded the localized markers
according to their reconstructed weights. Here we show 15 markers with the highest
weights. We estimated deformation along the z direction using a quadratic model:

Dt,z(r, P ) = (P0 + P1x+ P2y + P3x
2 + P4y

2 + P5xy)t (4.31)

Additionally, we set the x and y components of the deformation field to zero. It is probable
that our assumed deformation field was insufficient to model sample deformation in the
experimental data.
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Figure 4.8: Alignment using a mismatched deformation model. Marker localization and
deformation estimation for (a) noiseless and (b) noisy data using a quadratic deformation
field model and a cubic deformation field as ground truth. (c) Marker localization and
deformation field estimation using a cubic deformation field model for noiseless data. All
deformation values shown in nm.

Our algorithm predicted a deformation field that is quadratic in x but constant in y,
a model that could not be experimentally validated. Plugging the estimated deformation
field and marker locations into our forward model, we computed the forward projection
shown in Fig. 4.9(d). Comparing this image to the data, we see that not all markers have
been localized correctly, but at least one marker was localized in each of location with
a cluster of markers. Markers throughout the FoV were localized; this suggests that the
deformation estimation routine did not do worse for certain spatial regions. Moreover,
mismatch in the shapes of actual markers and the Gaussian used in our forward model did
not hinder the localization of most markers. Using localized marker locations and setting
deformation to zero leads to projection images that are qualitatively different from the
experimental data (Fig. 4.9(d)).
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Figure 4.9: Results on experimental data. (a) A raw projection image in the acquired tilt
series. (b) One image from pre-processed data used for deformation estimation and marker
localization with downsampling factor η = 1/8, 1/16, 1/32, 1/64, 1/128. (c) Localized
markers (left) and estimated deformation along z (in nm). (d) One experimental projection
image downsampled by η = 1/8 (left), forward projection of localized markers with
estimated deformation field (centre) and forward projection of markers with deformation
field set to zero (right).

4.6 Conclusion and discussion
Marker-based alignment is a important step for reconstruction improvement in cryoET. We
have developed a mathematical approach called SparseAlign for modeling beam-induced
local sample motion. In contrast to current approaches, our method does not need labelled
marker locations, and directly uses projection data to localize markers and solve for the
parameters of a polynomial deformation model. As a consequence, our method is more
suited to data with low signal-to-noise ratios where markers cannot be reliably identified.
The deformation fields estimated using our method can be used in a subsequent routine
to compute a motion-compensated sample reconstruction.

Despite solving a more ill-posed problem for deformation estimation, SparseAlign
localizes markers and estimates deformation parameters with an accuracy comparable
to that of the doming model approach. Moreover, SparseAlign estimates deformation
accurately even when the forward model for markers shows discrepancies with respect to
marker projections in observed data.

The image-based loss (4.12) in this chapter can be improved upon by using a more
canonical loss as the objective function for marker localization and deformation estimation.
Unlike the ℓ2 loss used in this chapter, the Wasserstein loss measures distances between
distributions and has non-zero gradients even when the supports of the ground truth and
current solution do not overlap [107].

The application of our approach to experimental data is limited by the deformation
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model used. One way to choose the most suitable, sparse basis for deformation modelling
is to optimize over a library of basis functions using the data-driven approach in [21].

In this chapter, we have ignored the image contrast of the biological sample while
estimating deformation parameters. Ideally, our approach would be the first step in
an iterative scheme where we alternate between sample reconstruction and tilt-series
alignment, taking both sample and marker contributions into account during deformation
estimation.
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