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Chapter 3

Sparse grid-free reconstruction
of nanocrystal defects

3.1 Introduction
Electron tomography is a powerful technique for resolving the interior of nanomaterials.
After preparing a microscopic sample, a series of projection images (so called tilt-series)
is acquired by rotating the specimen in the electron microscope, acquiring data from a
range of angles. In recent years, electron tomography has been successfully applied to
reconstruct the 3D positions of the individual atoms in nanocrystalline materials [61]–[63].

Since the first demonstration of atomic resolution tomography of nanocrystals in
2010 by discrete tomography [64], a range of tomographic acquisition techniques and
reconstruction algorithms have been applied to reconstruct nanocrystals of increasing
complexity. In the discrete tomography approach, atoms are assumed to lie on a regular
lattice and the measured projections can be considered as atom counts along lattice lines.
A key advantage of this approach is its ability to exploit the constraints induced by the
discrete domain and range of the image. As a consequence, a small number of projection
angles (typically less than 5) can already lead to an accurate reconstruction [16], [17]. The
theoretical properties of the discrete reconstruction problem have been studied extensively
with results on algorithm complexity, uniqueness, and stability [65]–[67]. A key drawback
of the discrete lattice assumption when considering real-world applications to nanocrystal
data is that in many interesting cases the atoms do not lie on a perfect lattice due to
defects in the crystal structure or interfaces between different crystal lattices. In such
cases the atoms do not project perfectly into columns, forming a mismatch with the
discrete tomography model.

As an alternative, it has been demonstrated that a more conventional tomographic

This chapter is based on:
Atomic Super-resolution Tomography. P. S. Ganguly, F. Lucka, H. J. Hupkes, K. J. Batenburg.
International Workshop on Combinatorial Image Analysis. Springer, Cham, pp. 45-61, 2020.
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series consisting of hundreds of projections of a nanocrystal can be acquired in certain
cases. An image of the nanocrystal is then reconstructed using sparsity based reconstruc-
tion techniques on a continuous model of the tomography problem. This approach does
not depend on the lattice structure and allows one to reconstruct defects and interfaces
[18]. As a downside, the number of required projections is large and to accurately model
the atom positions the reconstruction must be represented on a high-resolution pixel grid
resulting in a large-scale computational problem. This raises the question if a reconstruc-
tion problem can be defined that fills the gap between these two extremes and can exploit
the discrete nature of the lattice structure while at the same time allowing for continuous
deviations of atom positions from the perfect lattice.

In this chapter we propose a model for the atomic resolution tomography problem
that combines these two characteristics. Inspired by the algorithm proposed in [12], our
model is based on representing the crystal image as a superposition of delta functions
with continuous coordinates and exploiting sparsity of the image to reduce the number of
required projections. We show that by incorporating a physical model for the potential
energy of the atomic configuration, the reconstruction results can be further improved.

3.2 Problem setting
In this section we formulate a mathematical model of the atomic resolution tomography
problem and discuss several approaches to solve it. Some of these approaches assume that
the atom locations are restricted to a perfect grid, the crystal lattice, which corresponds
to only one possible local minimum of the potential energy of the atomic configuration.
To overcome certain limitations of this assumption, we propose an alternative formulation
where the atom locations are allowed to vary continuously and an explicit model of the
potential energy of their configuration is used to regularize the image reconstruction.

An atomic configuration is characterized by a positive measure µ on a bounded subset
X of Rd. We denote the space of such measures byM(X). The measure represents the
electron density, which is the probability that an electron is present at a given location.
The electron density around an atomic configuration is highest in regions where atoms are
present. In electron tomography, electron density is probed by irradiating a sample with a
beam of electrons. The beam undergoes absorption and scattering due to its interactions
with the electrons of the atomic configuration. The transmitted or scattered signal can
then be used to form an image. The Radon transform provides a simplified mathematical
model of this ray-based image formation process. For d = 2, the Radon transform Rµ
can be expressed as integrals taken over straight rays

R[µ](r, θ) :=
∫
l(r,θ)

dµ, (3.1)

l(r, θ) = {(x1, x2) ∈ R2 |x1 cos θ + x2 sin θ = r}, (3.2)

where we parametrized the rays by the projection angle θ and the distance on the detector r.
The corresponding inverse problem is to recover µ from noisy observations of y = Rµ+ ε.
One way to formulate a solution to this problem is via the following optimization over the
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space of measures:
minimize
µ∈M(X)

‖Rµ− y‖22, (3.3)

which is an infinite dimensional non-negative linear least-squares problem. In the following,
we will introduce a series of discretizations of this optimization problem. Numerical
schemes to solve them will be discussed in Section 3.3.

In situations where we only have access to data from a few projection angles, intro-
ducing a suitable discretization of (3.3) is essential for obtaining a stable reconstruction.
One way to achieve this is to restrict the atom locations to a spatial grid with n nodes,
xn
i=1, and model their interaction zone with the electron beam by a Gaussian with known

shape G. The atom centres are then delta peaks δxi
on the gridded image domain. The

Gaussian convolution of atom centres can be viewed as the “blurring” produced by thermal
motion of atoms. In fact, it is known from lattice vibration theory that, for large con-
figurations, the probability density function of an atom around its equilibrium position is
a Gaussian, whose width depends on temperature, dimensionality and interatomic forces
[68]. The discretized measure µ can then be written as

µgrid =
n∑

i=1

wi(G ∗ δxi
), (3.4)

where n is the total number of grid points and weights wi ≥ 0 were introduced to indicate
confidence in the presence or absence of an atom at grid location i. If we insert (3.4) in
(3.3) and introduce the forward projection of a single atom as ψi := R(G ∗ δxi) we get

‖Rµgrid − y‖22 = ‖R
n∑

i=1

wi(G ∗ δxi
)− y‖22 =

‖
n∑

i=1

wiR(G ∗ δxi
)− y‖22 =: ‖

n∑
i=1

ψiwi − y‖22 =: ‖Ψw − y‖22

The corresponding optimization problem is given by

minimize
w∈Rn

+

‖Ψw − y‖22 , (3.5)

which is a finite dimensional linear non-negative least squares problem.
The choice of the computational grid in (3.4) is unfortunately not trivial. Only in

certain situations, one can assume that all atoms lie on a lattice of known grid size and
orientation, and directly match this lattice with the computational grid. In general, one
needs to pick a computational grid of much smaller grid size. With the data y given, the
grid admits multiple solutions of (3.5) and most efficient computational schemes tend
to pick a blurred, artefact-ridden solution with many non-zero weights far from the true,
underlying µ, as we will demonstrate in Section 3.4. To obtain a better reconstruction, one
can choose to add sparsity constraints which embed our physical a priori knowledge that
µ originates from a discrete configuration of atoms. In our model (3.4), this corresponds
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(a) (b) (c)

Figure 3.1: Atomic configurations with (a) an interstitial point defect, (b) a vacancy and
(c) an edge dislocation.

to a w ∈ Rn
+ with few non-zeros entries. To obtain such a sparse solution we can add a

constraint on ℓ0 norm of the weights to the optimization problem:

minimize
w∈Rn

+

‖Ψw − y‖22

subject to |w|0 ≤ K.

However, this problem is NP-hard [69]. A approximate solution can be found by replacing
the ℓ0 norm with the ℓ1 norm and adding it to the objective function:

minimize
w∈Rn

+

‖Ψw − y‖22 + λ‖w‖1, (3.6)

where λ is the relative weight of the sparsity-inducing term. This particular choice of
formulation is not always best and alternative formulations of the same problem exist
[69].

For atomic configurations where only one type of atom is present, the weights can be
considered to be one where an atom is present and zero everywhere else. This corresponds
to discretizing the range of the reconstructed image. The fully discrete optimization
problem then becomes:

minimize
w∈{0,1}n

‖Ψw − y‖22. (3.7)

With image range discretization, a constraint on the number of atoms is typically no
longer needed because adding an additional atom with weight 1 after all atoms have been
found leads to an increase in the objective function.

Although the optimization problems (3.5), (3.6) and (3.7) allow for the recovery of
atomic configurations without solving (3.3), all of them rely crucially on discretization
of the domain of the reconstructed image, i.e. the assumption that atoms lie on a grid.
However, this assumption is not always true. In particular, atomic configurations often
contain defects where atom positions deviate from the perfect lattice. Fig. 3.1 shows
examples of common lattice defects. In order to resolve these defects correctly, the image
domain must be discretized to higher resolutions, i.e. the grid of possible atom positions
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Figure 3.2: The normalized Lennard-Jones pair potential as a function of normalized
interatomic separation.

must be made finer. This introduces two main problems: First, making the grid finer for
the same data makes the inverse problem more ill-posed. Second, the computational time
increases significantly even for modestly sized configurations.

In order to overcome these difficulties, we revisit (3.4) and remove the requirement
for xi to lie on a grid. The projection of a single atom now becomes a function of its
location x ∈ Rd, ψ(x) := R(G ∗ δx). We keep the image range discretization introduced
above by requiring wi ∈ {0, 1}. Now, (3.7) becomes

minimize
x∈Xn,w∈{0,1}n

∥∥∥ n∑
i=1

wiψ(xi)− y
∥∥∥2
2
. (3.8)

The minimization over x is a non-linear, non-convex least-squares problem which has
been studied extensively in the context of mathematical super-resolution [12], [70], [71]. In
these works, efficient algorithms are derived from relating it back to the infinite dimensional
linear least-squares problem on the space of measures (3.3). For instance, for applications
such as fluorescence microscopy [12] and ultrasound imaging [72], an alternating descent
conditional gradient (ADCG) algorithm has been proposed, which we will revisit in the
next section. Compared to these works, we have a more complicated non-local and under-
determined inverse problem and the minimization over w adds a combinatorial, discrete
flavor to (3.8). To further tailor it to our specific application, we will incorporate physical
a priori knowledge about atomic configurations of crystalline solids by adding a functional
formed by the atomic interaction potentials. This will act as a regularization of the
underlying under-determined inverse problem.
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3.2.1 Potential energy of the atomic configuration
The total energy of an atomic configuration is the sum of its potential energy and kinetic
energy. As we consider only static configurations, the kinetic energy of the configuration
is zero and the total energy is equal to the potential energy. In order to compute the
potential energy of the atomic configuration, we must prescribe the interaction between
atoms. In this chapter, we use the Lennard-Jones pair potential, which is a simplified
model of interatomic interactions. The Lennard-Jones potential VLJ as a function of
interatomic separation r is given by [73]

VLJ(r) =

4ϵ
[(σ
r

)12
−
(σ
r

)6]
, r < rcut

0, r ≥ rcut
(3.9)

where ϵ is the depth of the potential well and σ is the interatomic separation at which the
potential is zero. The separation at which the potential reaches its minimum is given by
rm = 21/6σ. The parameter rcut denotes a cut-off separation beyond which the potential
is inactive. Fig. 3.2 shows the form of the the Lennard-Jones pair potential as a function
of interatomic separation. The potential energy of the atomic configuration is computed
by summing over the pairwise interaction between all pairs of atoms

Vtot(x1,x2, ...,xN ) =
∑
i>j

VLJ(xi − xj). (3.10)

Adding this energy to the objective in (3.8) leads to

minimize
x∈C,w∈{0,1}n

∥∥∥ n∑
i=1

wiψ(xi)− y
∥∥∥2
2
+ αVtot(x). (3.11)

The regularization parameter, α, adjusts the relative weight of the energy term, so that
by tuning it we are able to move between atomic configurations that are data-optimal
and those that are energy-optimal. The constraint set C ⊂ Xn is defined by a minimum
distance rmin, such that |xi − xj | > rmin, ∀i > j. The minimum distance, rmin, is
chosen to be smaller than the optimal interatomic separation rm and allows us to set α
to 0 and still avoid configurations where atoms are placed exactly at the same position.
For small separations, the energy is dominated by the

(
σ
r

)12 term and increases sharply
for separations less than rm. Thus, for non-zero α, configurations where atoms have a
separation less than rm are highly unlikely.

3.3 Algorithms
In this section we discuss several algorithms to solve the optimization problems introduced
in Section 3.2.
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3.3.1 Projected gradient descent
The non-negative least-squares problem (3.5) can be solved with a simple iterative first-
order optimization scheme. At each step of the algorithm, the next iterate is computed by
moving in the direction of the negative gradient of the objective function. Non-negativity
of the weights is enforced by projecting negative iterates to zero. Mathematically, each
iterate is given by

wk+1 =
∏

+

(
wk + tΨT (Ψwk − y)

)
, (3.12)

where t is the step size and the projection operator is given by∏
+
(·) = max( · , 0). (3.13)

In the numerical experiments in Section 3.4, we used the SIRT algorithm [29] as imple-
mented in the tomographic reconstruction library ASTRA [7], which is based on a minor
modification of the iteration described above.

3.3.2 Proximal gradient descent
If we add the non-smooth ℓ1 regularizer and obtain problem (3.6), we need to extend
(3.12) to a proximal gradient scheme [74]

wk+1 = proxh
(
wk + tΨT (Ψwk − y)

)
, (3.14)

where the projection operator (3.13) is replaced by the proximal operator of the convex
function

h(x) :=

{
λ‖x‖1 x ≥ 0

0 elsewhere , (3.15)

which is given by the non-negative soft-thresholding operator

proxh(x) =
{
x− λ, x ≥ λ
0, elsewhere .

In the numerical experiments in Section 3.4, we used the fast iterative soft-thresholding
algorithm (FISTA) [75] as implemented in the Python library ODL [8], which is based on
a slight modification of the iteration described above.

3.3.3 Simulated annealing
For solving the fully discrete problem (3.7), we used a simulated annealing algorithm as
shown in Algorithm 2, which consists of two subsequent accept-reject steps carried out
with respect to the same inverse temperature parameter β. In the first one, the algorithm
tries to add a new atom to the existing configuration. In the second one, the atom
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Algorithm 2 Discrete simulated annealing
1: while β < βmax do
2: Select new atom location: w̃k ∈ argmink∈C Ψwk − y
3: Add new atom to current configuration: w̃k+1 ← {wk, w̃k}
4: Accept new configuration with a certain probability:
5: if β‖Ψw̃k+1 − y‖22 < β‖Ψwk − y‖22 then
6: wk+1 ← w̃k+1

7: else
8: Generate random number: t ∈ rand[0, 1)
9: if t < e−β∥Ψw̃k+1−y∥2

2/e−β∥Ψwk−y∥2
2 then

10: wk+1 ← w̃k+1

11: end if
12: end if
13: Move atom: wk+1 ← random move(wk+1)
14: Run acceptance steps 5–13
15: Increase β
16: end while

locations are perturbed locally. As β is increased towards βmax, fewer new configurations
are accepted and the algorithm converges to a minimum.

In the atom adding step at each iteration k, the algorithm tries to add an atom at one
of the grid location i where the residual Ψwk − y is minimal (this corresponds to flipping
wk

i from 0 to 1 in (3.7)). The allowed grid locations belong to a constraint set C, such
that no two atoms are closer than a pre-specified minimum distance rmin. To perturb the
atom positions locally, the algorithm selects an atom at random and moves it to one of
its 4 nearest neighbor locations at random.

Algorithm 3 ADCG with energy
1: for k = 1 : kmax do
2: Compute next atom in grid g:

xnew ∈ argminxnew∈g,(xk,xnew)∈C ‖
∑k

i=1 ψ(xi)−y+ψ(xnew)‖+αVtot(xk,xnew)

3: Update support: xk+1 ← {xk,xnew}
4: Locally move atoms:

xk+1 ← minx∈X ‖Ψµ(xk+1)− y‖22 + αV (xk+1)
5: Break if objective function is increasing:
6: if ‖Ψµ(xk+1)− y‖22 + αV (xk+1) > ‖Ψµ(xk)− y‖22 + αV (xk) then break
7: end if
8: end for
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3.3.4 ADCG with energy
Variants of the Frank-Wolfe algorithm (or conditional gradient method) [19], [76] have
been proposed for solving problems of the form (3.8) [72], [77] without discrete constraints
for w and are commonly known as alternating descent conditional gradient (ADCG)
schemes (see [78] for an analysis specific to multidimensional sparse inverse problems).
Here, we modify the ADCG scheme to

1. incorporate binary constraints on w

2. handle the singularities of the atomic interaction potentials

3. avoid local minima resulting from poor initializations

The complete algorithm is shown in Algorithm 3. Essentially, the scheme also alternates
between adding a new atom to the current configuration and optimizing the positions of
the atoms.

In the first step, the image domain is coarsely gridded and the objective function after
adding an atom at each location is computed. Locations closer to existing atoms than
rmin are excluded. In the second step, the atom coordinates are optimized by a continuous
local optimization method. Here, the Nelder-Mead method [79] implemented in SciPy
[80] was used.

A continuation strategy is used to avoid problems resuling from poor initilizations:
Algorithm 3 is run for increasing values of α, starting from α = 0. The reconstruction
obtained at the end of a run is used as initialization for the next. In the following section,
we demonstrate the effect of increasing α on the reconstructions obtained and discuss how
an optimal α was selected. In the following section, we refer to Algorithm 3 as “ADCG”
when used for α = 0 and as “ADCG with energy” otherwise.

3.4 Numerical experiments
We conducted numerical experiments by creating 2D atomic configurations with defects
and using the algorithms discussed in Section 3.3 to resolve atom positions. In this
section we describe how the ground truth configurations were generated and projected,
and compare the reconstruction results of different algorithms.

3.4.1 Ground truth configurations
We generated ground truth configurations using the molecular dynamics software HOOMD-
blue [81], [82]. We created perfect square lattices and then induced defects by adding
or removing atoms. The resulting configuration was then relaxed to an energy minimum
using the FIRE energy minimizer [83] to give the configurations shown in Fig. 3.1. The fol-
lowing parameter values were used in (3.9) for specifying the Lennard-Jones pair potential
between atoms.
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Defect type ϵ σ rcut

Interstitial defect 0.4 0.15 0.4
Vacancy 0.4 0.14 0.4
Edge dislocation 0.4 0.13 0.17

3.4.2 Discretized projection data

We generated two 1D projections for each ground truth atomic configuration at projection
angles θ = 0◦, 90◦. As discussed in Section 3.2, the projection of a single atom centre is
given by a Gaussian convolution followed by the Radon transform. The Radon transform
of a Gaussian is also a Gaussian. Therefore, we interchanged the two operations in the
forward transform to speed up the computations. The sum over individual projections of
atom centres was used as the total (noise-free) projection. Using the Radon transform
in (3.1), each atom centre was projected onto a 1D detector, following which it was
convolved with a 1D Gaussian of the form G(z) = e−(z−z0)/ς

2 , where z0 is the position
of the atom centre on the detector and ς controls the width of the Gaussian. Finally, the
continuous projection was sampled at a fixed number of points to give rise to a discrete
projection. For our experiments, the ς of the Gaussian function was taken to be equal to
the discretization of the detector given by the detector pixel size d. Both were taken to
be 0.01.

3.4.3 Discretization of the reconstruction volume

For SIRT, FISTA and simulated annealing (described in subsections 3.3.1, 3.3.2 and 3.3.3,
respectively), each dimension of the reconstruction area was discretized using the detector
pixel size d. Therefore, there were 1/d× 1/d grid points in total.

Gridding is required for our variant of ADCG (subsection 3.3.4, Algorithm 3) at the
atom adding step. We found that a coarse discretization, with less than 1/9th the number
of grid points, was already sufficient.

3.4.4 Comparison between reconstructions

The reconstructions obtained with the different algorithms are shown in Fig. 3.3. For each
reconstruction, data from only two projections were used. Note that two projections is
far from sufficient for determining the correct atomic configuration and several different
configurations have the same data discrepancy.
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Figure 3.3: Reconstructions of atomic configurations with (a)–(f) an interstitial point
defect, (g)–(l) a vacancy and (m)–(r) an edge dislocation from two projections. For the
simulated annealing, ADCG and ADCG with energy reconstructions, atoms are coloured
according to their Euclidean distance from the ground truth. The ground truth positions
are marked with red crosses. In (j)–(l) an extra atom (shown in red) was present in the
reconstructions but not in the ground truth.
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Figure 3.4: Reconstructions of a vacancy defect from three projections. For the simulated
annealing, ADCG and ADCG with energy reconstructions, atoms are coloured according
to their Euclidean distance from the ground truth. Ground truth positions are marked
with red crosses.

In the SIRT reconstructions, atom positions were blurred out and none of the defects
were resolved. In all cases, the number of intensity peaks was also different from the true
number of atoms. Although FISTA reconstructions, which include sparsity constraints on
the weights, were less blurry, atoms still occupied more than one pixel. For both these
algorithms, additional heuristic post-processing is required to output atom locations. In
the edge dislocation case, both algorithms gave rise to a configuration with many more
atoms than were present in the ground truth.

The discrete simulated annealing algorithm performed better for all configurations.
For the interstitial point defect and edge dislocation, the number of atoms in the recon-
struction matched that in the ground truth. The positions of most atoms, however, were
not resolved correctly. Moreover, the resolution, like in previous algorithms, was limited to
the resolution on the detector. We ran the simulated annealing algorithm for comparable
times as the ADCG algorithms and picked the solution with the least data discrepancy.

Already the ADCG algorithm for α = 0 performed far better than all the previous
algorithms. For the configurations with an interstitial point defect and edge dislocation,
all but a few atom locations were identified correctly. For the configuration with a
vacancy, all atoms were correctly placed. However, an additional atom at the centre
of the configuration was placed incorrectly.

Adding the potential energy (ADCG with energy) helps to resolve atom positions that
were not identified with α = 0. For the interstitial point defect and edge dislocation,
these reconstructions were the closest to the ground truth. Adding the energy to the
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Interstitial defect Vacancy (3 projs. ) Edge dislocation
Number
of
atoms

Mean
distance

Number
of
atoms

Mean
distance

Number
of
atoms

Mean
distance

Ground truth 37 0.0000 48 0.0000 39 0.0000
SIRT 36 – 49 – 66 –
FISTA 36 – 49 – 66 –
Simulated an-
nealing

37 0.0184 48 0.0164 39 0.0159

ADCG 37 0.0138 48 0.0130 39 0.0049
ADCG with
energy

37 0.0018 48 0.0024 39 0.0048

Table 3.1: Number of atoms and mean Euclidean distance from ground truth atoms for
reconstructions obtained with different algorithms. Thresholding was used to compute
the number of atoms detected in the SIRT and FISTA reconstructions.

configuration with a vacancy moved the atoms near the defect further apart but was not
able to correct for the extra atom placed. For this case, we performed an additional
experiment with three projections at 0◦, 45◦ and 90◦. These results are shown in Fig. 3.4.
Taking projections at different angles (e.g. 0◦, 22.5◦ and 90◦) did not improve results. The
defect was still not resolved in the SIRT and FISTA reconstructions. However, the number
of atoms in the simulated annealing, ADCG and ADCG with energy reconstructions
was correct. Once again, the reconstruction obtained with our algorithm was closer to
the ground truth than all other reconstructions, with all but one atom placed correctly.
Reconstructions with 3 projections for the interstitial point defect and edge dislocation
were not significantly different from those with 2 projections. In Table 3.1, we report the
number of atoms detected and (where applicable) the mean Euclidean distance of atoms
from the ground truth. Note that for computing the mean distance, we required that
the number of atoms detected in the reconstruction matched that in the ground truth.
Thresholding with a pre-defined minimum distance between peaks was used to detect
atoms in the SIRT and FISTA reconstructions.

3.4.5 Effect of adding energy to the optimization
To resolve atom positions using Algorithm 3, the contribution of the potential energy was
increased gradually by increasing α. In Fig. 3.5, we show the effect of adding energy
to the optimization problem. For α = 0, an initial guess for the true configuration
was obtained. This configuration, though data optimal, was not the ground truth. A
quantitative measure of this mismatch is the Euclidean distance between the reconstructed
atom locations and those in the ground truth. As α was increased, the reconstructions
evolved from being data-optimal to being energy-optimal. At a certain value of α, the
Euclidean distance between reconstructed and ground truth atom locations decreased
to zero. Increasing α beyond this point led to a large increase in the data discrepancy
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Figure 3.5: (a)-(d): Increasing the weighting of the energy term from α = 0.0 to α = 10.0
helps to resolve the correct atomic configuration. The reconstructed atoms are coloured
according to their Euclidean distance from the atoms in the ground truth. (e) At high
values of α, the reconstructions have a high data discrepancy and correspond to one of
the global minima of the potential energy. (f) From the plots of potential energy and data
discrepancy, an optimal value of α (indicated by the grey line) is selected. Increasing α
beyond this optimal value leads to a large increase in the data discrepancy due to addition
of more atoms.

term due to the addition of more atoms. For very high values of α, the configurations
obtained were essentially global minima of the potential energy, such as the honeycomb
configuration in Fig. 3.5(e) for α = 100.0. An optimal value of the regularization
parameter was selected by increasing α to the point at which more atoms were added to
the configuration and a jump in the data discrepancy was observed.

3.5 Discussion
The results of our numerical experiments demonstrate that algorithms like ADCG, which
do not rely on domain discretization, are better at resolving the defects in the atomic
configurations shown in Fig. 3.1. Moreover, the output from ADCG is a list of coordinates
and not an image like that of SIRT or FISTA, which requires further post-processing
steps to derive the atom locations. Direct access to coordinates can be particularly useful
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because further analysis, such as strain calculations, often require atom positions as input.
Adding the potential energy of the atomic configuration to the optimization problem

resulted in reconstructions that were closer to the ground truth. One challenge of the
proposed approach (with or without adding the potential energy) is that the resulting
optimization problem is a non-convex function of the atom locations. The numerical
methods we presented are not intentionally designed to escape local minima and are
therefore sensitive to their initialization. To improve this, one important extension would
be to also remove atoms from the current configuration, which might make it possible to
resolve the vacancy defect in Fig. 3.3 with two projections. More generally, one would need
to include suitable features of global optimization algorithms [84] that do not compromise
ADCG’s computational efficiency (note that we could have adapted simulated annealing
to solve (3.11) but using a cooling schedule slow enough to prevent getting trapped in
local minima quickly becomes practically infeasible). A related problem is to characterize
local and global minimizers of (3.11) to understand which configurations can be uniquely
recovered by this approach and which cannot. To process experimental data, it may
furthermore be important to analyze the impact of the error caused by the approximate
nature of the mathematical models used for data acquisition (R, G) and atomic interaction
(VLJ).

3.6 Conclusions
In this chapter we proposed a novel discrete tomography approach in which the locations
of atoms are allowed to vary continuously and their interaction potentials are modeled
explicitly. We showed in proof-of-concept numerical studies that such an approach can
be better at resolving crystalline defects than image domain discretized or fully discrete
algorithms. Furthermore, in situations where atom locations are desired, this approach
provides access to the quantity of interest without any additional post-processing. For
future work, we will extend our numerical studies on this atomic super-resolution approach
to larger-sized scenarios in 3D, featuring realistic measurement noise, acquisition geome-
tries, more suitable and accurate physical interaction potentials and different atom types.
This will require additional computational effort to scale up our algorithm and will then
allow us to work on real electron tomography data of nanocrystals.
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