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Chapter 1

Introduction

In this chapter we give a general introduction to the field of inverse problems and algorith-
mic approaches to solving such problems in a few application areas. We also introduce the
reader to notions of sparsity and show how sparsity is used to tackle the various research
questions investigated in this thesis.

1.1 Background
Scientific questions can be broadly divided into two kinds. The first kind seeks to question
the effects of a set of causal factors while the second seeks to determine the causal factors
given the effects. In this thesis we deal with the latter type of questions.

We shall restrict ourselves to situations where the effects are observations or measure-
ments of a physical system, and the causal factors are certain variables that characterize
the system. One common starting point in this case is to construct a simplified represen-
tation or physical model of the system.

An example of this process of model building is the physical theory of the interaction
of light with matter. Such a theory enables us to calculate, among other things, the
interaction of X-rays passing through a three-dimensional object. The measurements from
this system are images – two-dimensional snapshots of the X-ray beam after it emerges
from the object. These snapshots can be obtained using an X-ray detection system and
compared against our prediction from the physical theory. It turns out that in this case our
predictions match the experimental measurements well, thus validating the correctness of
our theory.

The problem described above is a direct or forward problem, where we predict the
effects given causes and a reliable model. Complementary to this problem is the inverse
problem, where we want to infer the physical properties of the 3D object, in particular
its capacity to interact with X rays, using a set of 2D images. An illustration of both
problems is shown in Figure 1.1. It turns out that the inverse problem of reconstruction
brings about a different set of challenges to the forward problem of projection, and in order
to solve the former problem we must make further assumptions about the 3D object.
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Figure 1.1: A forward problem is one where we predict the effects of a set of causal factors
given a physical model of the system. An inverse problem is one where we invert this
process. An example of a forward problem is the calculation of a 2D X-ray projection of
a 3D object; the inversion of a set of such images to infer the 3D object is the inverse
problem of reconstruction.

One such assumption that is central to the work in this thesis comes from the notion
of sparsity. Broadly speaking, sparsity is the assumption that only a small set of variables
or causal factors is sufficient to explain the measurements of a system. In the example of
X-ray reconstruction above, sparsity could mean that the object is made of a small set of
discrete constituents. Using this as prior knowledge of our 3D object makes the inversion
procedure much more reliable. Stated differently, assuming sparsity enables us to limit
our search for causal factors to a small set.

In this thesis we study several application areas where notions of sparsity yield practical
algorithms for inverse problems. In the next section we first introduce these application
areas and discuss the forward problems therein. Next we present the mathematical
framework of inverse problems and discuss ways to include sparsity in this framework.
In the penultimate section, we return to our application areas and show how practical
algorithms can be designed to tackle sparse inverse problems in these areas. Finally, we
present four research questions that are investigated in the following chapters of this thesis,
and provide a brief abstract of our methods and contributions.
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1.2 Application areas
In this section we introduce three application areas that were studied in this thesis, and
give some mathematical background to these areas.

1.2.1 X-ray computed tomography
X-ray computed tomography (CT) is a powerful method to visualize and obtain quantita-
tive information about the inside of an object non-destructively. X-ray CT is widely used
in medical settings for diagnostic purposes [1], in materials science for studying structural
changes in materials [2] and in cultural heritage for probing the construction of art objects
[3].

In this imaging modality, an X-ray beam is used to generate projection images of an
object of interest. The flux of the X-ray beam changes as it passes through the object
according to the Beer–Lambert law:

I = I0 e
−

∫ l
0
µ(z) dz , (1.1)

where I0 is the flux of the incident X-ray beam, I is the flux after the beam has passed
through a distance l inside the object and µ is the attenuation coefficient that denotes
the capacity of the materials in the object to absorb X rays. Dividing both sides of (1.1)
by I0 and taking the logarithm, we arrive at the linear projection model of X-ray CT:

log

(
I

I0

)
= −

∫ l

0

µ(z) dz (1.2)

Many different experimental setups are used for X-ray CT depending on the application,
but in most setups the basic acquisition strategy consists of rotating the sample with
respect to the incident X-ray beam to acquire measurements along several projection
angles. The emergent X-ray beam after absorption by the sample is detected using a
detection system. In this thesis we focus on parallel-beam CT, where the distance between
X-ray source and object is large enough to approximate the incident rays as being parallel
to each other. This is the setup shown in Figure 1.2. Using (1.2) the forward projection
of a 2D object f(x, y) taken along a projection angle θ, Pθ(t), can then be written as

Pθ(t) := R(f) = −
∫∫

R2

f(x, y) δ(x cos θ + y sin θ − t) dx dy , (1.3)

where the function f : R2 → R is a finite integrable function with bounded support
describing the attenuation of the object. Note that µ(z) in (1.2) is equivalent to the
function f(x, y) evaluated on the line given by x cos θ+y sin θ = t. R(f) is known as the
Radon transform of the function f(x, y), and δ denotes the delta function. Using (1.3) a
set of projections Pθ(t), θ ∈ [0, π) can be acquired and rearranged to give a sinogram. In
Figure 1.2, we show a popular analytical object – known as the Shepp-Logan phantom –
along with its sinogram.

The tomographic reconstruction problem refers to the inversion of (1.3) to yield a
suitable function f(x, y) from a set of measurements Pθ(t), θ ∈ [0, π). In Section 1.4 we
shall return to this inverse problem and discuss it in more detail.
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Figure 1.2: Parallel-beam X-ray CT (left), Shepp–Logan phantom (top right) and its
sinogram (bottom right).

1.2.2 Electron tomography

The next application area of relevance to this thesis is electron tomography (ET). ET is the
method of choice for imaging nanoparticles and biological macromolecules at atomic or
near-atomic resolutions. Imaging with an electron beam allows for much higher resolutions
compared to X-ray imaging because of the shorter wavelength of electrons [4], [5].

Images in ET are generated by passing a focused electron beam through a sample.
In one common modality, each projection image is generated in transmission electron
microscopy (TEM) mode. In this mode, the whole sample is irradiated with the incident
electron beam at the same time and the transmitted electron beam is detected. Alterna-
tively, the electron beam can be focused to scan the sample one small area at a time. This
mode is known as scanning transmission electron microscopy (STEM). To obtain images
at different projection angles, the sample is tilted with respect to the beam. For thin
samples, the linear projection model (1.2) holds for each image in the tilt series. Similar
to X-ray CT, the inverse problem in ET consists of inverting the forward model to infer
the structure of nanoparticles and macromolecules from their projections.

In this thesis, we present methods for two different applications of ET. These are
atomic-resolution ET and cryoET. In Section 1.4, we focus on each of these areas sepa-
rately and state the inverse problems we investigated for each.
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1.2.3 Vascular network formation
The final application area we study in this thesis is of relevance to developmental and
cancer biology. Vasculogenesis is the process by which a primitive circulatory system
is generated in vertebrates. Following the generation of a primitive network, new blood
vessels arise by sprouting and expanding, in a process known as angiogenesis. Angiogenesis
also occurs in certain types of cancer, where it contributes to tumour maintenance and
metastasis.

Understanding how individual cells organize to form mature vascular networks is a
long-standing question. In particular, the contribution of cell–cell interactions and envi-
ronmental cues are still a topic of research. One way to investigate the conditions for
vascular network formation is using computer simulations, where different cell–cell inter-
actions and environmental cues can be prescribed and the resulting long-term dynamics
can be studied. Simulation studies are particularly effective because all the parameters of
a chosen model can be adjusted and different parameter regimes, which may not be easy
to probe in experimental studies, are easily simulated.

Different simulation paradigms have been used in the literature to simulate vascular
network generation. One paradigm is cellular Potts model, a lattice-based simulation
where cells are represented as patches of interacting spins. A complementary paradigm
is a lattice-free particle-based model, where each cell is represented by an ellipse and is
assumed to interact with all other cells in a prescribed neighbourhood. The forward model
of this particle-based paradigm is given by a Langevin equation:

dvi

dt
=

1

mi

(
− τvi +

∑
j ̸=i

xi − xj

‖xi − xj‖
Fij + η

)
, vi =

dxi

dt
, (1.4)

where xi denotes the position of cell i at time t, vi is the velocity of cell i, mi is the mass
of cell i, τ is the so-called damping constant, Fij is the pairwise interaction between cells
i and j, and η is a stochastic noise term.

Using the above equation, the long-time dynamics of cells can be simulated for different
parameter values. The steady-state solutions can then be used to determine the parameter
regions – and hence conditions – for network formation.

An alternative approach is to start directly from experimental observations of network
formation and infer the interaction terms and parameter values in (1.4). In Section 1.4,
we shall return to this inverse problem and describe our methods to tackle it.

1.3 Inverse problems
In the previous section, we described several application areas and the forward problems
that arise in each of them. We also mentioned briefly the inverse to these forward problems.
In this section we discuss the mathematical framework of inverse problems and describe
ways to solve such problems reliably.

Inverse problems arise in many areas of science and engineering, where the goal is to
infer specific variables given measurements of a system and a reliable physical model [6].
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Mathematically, this translates to inferring x from data y, where the two are related by
the following equation:

A(x) = y, (1.5)

where A is the forward model.
One of the examples described above is that of tomographic reconstruction. The

forward problem of tomography is the projection of a 3D object along a set of projection
angles, while the inverse is combining the information from a set of projections to obtain
a reconstruction. In this example, the forward problem has a well-defined solution but the
inverse problem does not.

One way to understand the difference between forward and inverse problems is the
notion of well-posedness. A mathematical problem is said to be well-posed if its solution
exists for arbitrary data (existence) and is unique (uniqueness). Additionally, the solution
must depend continuously on the data such that small changes in the data result in
correspondingly small changes in the solution (stability). Problems that do not meet
these conditions are known as ill-posed.

Some physical intuition regarding the ill-posedness of inverse problems is obtained
by using the idea of entropy from the second law of thermodynamics and information
theory. Forward problems are generally those that describe physical phenomena oriented
along the cause–effect sequence [6]. The cause–effect sequence is determined by the
second law of thermodynamics, which posits an increase in total entropy in the direction
of time evolution. This means that the solution to a direct problem has lower “information
content” than the data. The opposite is true for an inverse problem, where data with lower
information content must be used to infer unknowns with higher information content.

The ill-posedness of inverse problems – specifically the fact that small variations in the
data (caused, for e.g. , by measurement noise) lead to large variations in the solution –
makes it difficult to obtain a meaningful solution to an inverse problem. This is addressed
by using prior knowledge about the physical system being studied. The mathematical
theory that deals with this is called regularization.

An illustration of regularization is provided by the use of Tikhonov regularization in
X-ray CT. The discrete formulation of the X-ray CT problem is given by:

Ax = y, (1.6)

where A is the linear forward operator which amounts to the discretized version of the
Radon transform (1.3), y is a vector of discrete projection data and x is the unknown
discretized reconstruction. The reconstruction problem can then be stated as an optimiza-
tion problem where we seek to minimize the difference with respect to projection data.
The least-squares solution to the discrete reconstruction problem is

minimize
x∈Rd

‖y −Ax‖22 (1.7)

An example reconstruction of the Shepp-Logan phantom using a least-squares strategy
is shown in Figure 1.3. A common way to regularize this problem is to minimize not just the
discrepancy with respect to the projection data but also the energy of the solution, defined
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Figure 1.3: Tomographic reconstructions of the Shepp–Logan phantom using filtered back-
projection (FBP), the simultaneous iterative reconstruction technique (SIRT) and total
variation (TV) minimization. SIRT solves a least-squares problem with added precondi-
tioning; TV solves a regularized least-squares problem that penalizes large gradients in
the reconstructed image. All reconstructions were performed using the Astra Toolbox [7]
and the Operator Discretization Library (ODL) [8].

as its ℓ2-norm. This regularization, known as Tikhonov regularization, then amounts to
the optimization problem:

minimize
x∈Rd

‖y −Ax‖22 + λ‖x‖22, (1.8)

where λ > 0 – the regularization parameter – adjusts the relative weighting of the two
terms in the optimization objective.

1.3.1 Sparse inverse problems
The example of regularization shown above penalizes the energy of the solution. In the
last three decades, a different form of prior knowledge has been shown to be a powerful
technique for solving a host of inverse problems [9], [10]. This prior knowledge relates
to the sparsity of the unknown vector x. One notion of sparsity is given by the number
of nonzero elements of the vector x, which is called the ℓ0 “norm”. The ℓ0 “norm” of a
vector x ∈ Rd is given by

|x|0 :=

d∑
i=1

|xi|0, (1.9)
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and the vector x is said to be s-sparse if

|x|0 ≤ s. (1.10)

A sparse inverse problem is one where we look for the sparsest solution that explains
the observed data. Mathematically, we can state a sparse inverse problem as a constrained
optimization problem where the goal is to

minimize
x∈Rd

|x|0 subject to Ax = y. (1.11)

In some scenarios a reformulation of the optimization problem may be more appropriate.
For example, we may choose to relax the exact equality in the constraint to account for
measurement noise

minimize
x∈Rd

|x|0 subject to ‖Ax− y‖22 ≤ ϵ. (1.12)

Or, we could switch the objective function with the constraint:

minimize
x∈Rd

‖Ax− y‖22 subject to |x|0 ≤ s. (1.13)

Objective and constraint functions may also be added to result in an optimization problem
analogous to Tikhonov regularization (1.8):

minimize
x∈Rd

‖Ax− y‖22 + λ|x|0. (1.14)

The ℓ0 term in the above formulations makes the optimization problem nonconvex,
and thus sensitive to initialization. A convex surrogate is achieved by replacing the ℓ0
term with the ℓ1 norm of x. The convex surrogate of (1.14) is

minimize
x∈Rd

‖Ax− y‖22 + λ‖x‖1. (1.15)

The convex formulation above can be solved with guarantees on existence and conver-
gence of the solution. However, nonconvex optimization methods, such as greedy pursuit
and simulated annealing, have also been used to solve the ℓ0 minimization problem directly
[11].

In many applications, tomographic reconstruction being one of them, the unknown
reconstruction is not sparse per se, but can be sparsely coded in a suitable orthonormal
basis. For e.g., images can be assumed to be piecewise constant, which implies sparsity
in the space of gradients. This results in the total variation (TV) regularization method
that results in surprisingly good reconstructions even for heavily undersampled data:

minimize
x∈Rd

‖Ax− y‖22 + λ‖|∇x|‖1. (1.16)

Reconstruction of the Shepp–Logan phantom using TV regularization is shown in Figure
1.3.
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In some applications like in atomic-resolution ET, discretization of the reconstruction
x as an image may not be the most suitable. In situations where x is a set of unknown
cardinality (e.g. the atomic coordinates in a nanoparticle, with an unknown number of
atoms), the optimization problem (1.15) is no longer convex in the space of atomic
coordinates. A convex formulation in such situations is achieved by lifting the problem to
the vector space of measures [12].

1.4 Computational solution of inverse problems using
sparsity

In this section, we return to the application areas introduced in Section 1.2 and present
ways to include sparsity in the design of efficient algorithms. At the end of each subsection,
we summarise our use of sparsity in that particular problem in a red box.

1.4.1 Sparse design of implementation-adapted filters for X-ray CT
The discretized tomographic reconstruction problem is the estimation of x from equation
(1.6). There exist several methods to obtain an estimate of the reconstruction x given
data y. Direct methods that use discretized inversions of the continuous Radon transform
(1.3) are some of the most popular methods due to their speed. An exact inversion of
the continuous Radon transform is possible and leads to the following inversion formula
for the function f(x, y):

f(x, y) =

∫ π

0

qθ(x cos θ + y sin θ) dθ , qθ(t) =

∫ −∞

∞
|u|P̂θ(u)e

2πiut du, (1.17)

where |u| is known as the ramp filter in Fourier space and P̂θ denotes projection data
in Fourier space. Filtered backprojection (FBP), a real-space direct method, computes a
discretized version of the above inversion formula, such that

f(x, y) ≈
∑
θ∈Θ

∑
τ∈T

Pθ(τ)hθ(x cos θ + y sin θ − τ),

where h is a discretized filter in real space. Equivalently, starting from the algebraic
equation (1.6), the FBP reconstruction x̃FBP of projection data y is given by

x̃FBP = AT (y ∗ h) = ATCh y, (1.18)

where Ch denotes convolution with filter h and AT is known as the backprojection
operator.

In Fourier-space direct methods such as GridRec, both filtering and backprojection are
performed in Fourier space, after which a fast Fourier transform (FFT) is used to convert
the Fourier-space reconstruction to a real-space reconstruction. In addition, Fourier-space
methods often use a windowing function to improve the accuracy of interpolation in Fourier
space [13].
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An important point to note is that, although the problem of inversion is well defined
in the continuous setting, the discretized reconstruction formula (1.18) depends on the
choice of discretization and interpolation. These choices are usually implementation-
specific, which means that they differ across the various available open-source software
implementations of direct algorithms, and contribute to quantitative differences between
reconstructions from each implementation.

Direct methods usually result in poor reconstructions when noise in the data is high or
data have been collected over a limited angular range. For such data, methods that solve
the linear least-squares problem (1.7) iteratively are better. One popular iterative method
is SIRT, which solves the linear least-squares problem with additional preconditioning and,
optionally, non-negative constraints. For large data, a major limiting factor to the practical
application of iterative methods is that the computation time required for reconstructing
is much larger than the time required by direct methods.

A class of filter-optimization methods seek to augment direct methods with some of
the advantages of iterative methods without compromising on the speed of computation.
In such methods, the filter in direct algorithms (h in (1.18)) is learned from the data y,
following which they can be used on-the-fly with direct methods in place of standard hand-
crafted filters. Filter learning using a minimum-residual approach has been performed for
FBP [14] as well as the Feldkamp–Davis–Kress (FDK) algorithm [15], which generalizes
FBP to cone-beam tomography setups.

A minimum-residual filter for data y can be computed by solving the following opti-
mization problem:

minimize
h

‖y −AATCy h‖22. (1.19)

The minimum-residual filter h∗ :=
∑
h∗i bi is expressed as a linear combination of basis

vectors bi. Sparse design of the filter is possible by choosing an appropriate basis such
that only a few filter coefficients have to be learned. A binned basis with exponentially
wider bins away from the centre of the detector array was first proposed for FBP [14]
and later used for filter computation for FDK [15] without loss of reconstruction accuracy.
Such an exponential binning basis translates to a basis of linear combinations of cosines
in Fourier space.

In Chapter 2 we use such sparse-basis filters to tackle the problem of reproducibility
in synchrotron tomography. Hardware and software vary across synchrotrons, and the
results of experiments performed by users at different facilities are often not directly com-
parable with each other. We focus on the image reconstruction block in the synchrotron
tomography pipeline, where differences between discretization and interpolation in vari-
ous software packages play a role in enhancing differences between experimental results.
We show that minimum-residual filters can improve the similarity between reconstructions
(of synthetic and real data) obtained from several open-source implementations of direct
algorithms, and contribute to a more reproducible reconstruction block in the synchrotron
pipeline.

Sparsity is used to limit the number of filter coefficients of
minimum-residual filters.

12



1.4.2 Grid-free, sparse reconstruction of nanocrystal defects
The goal of atomic-resolution electron tomography is to get a precise quantitative picture
of a nanocrystal down to the atomic scale. To probe at such high resolutions, optimizing
both the acquisition of projection images and the reconstruction of projection data is
required.

One approach to atomic-resolution reconstruction is based on discrete tomography. In
this approach, atoms are assumed to lie on a regular lattice and the measured projections
are considered as atom counts along lattice lines. A key advantage of this approach is its
ability to exploit the constraints induced by the discrete domain and range of the image.
As a consequence, a small number of projection angles (typically less than 5) can already
lead to an accurate reconstruction [16], [17]. A key drawback of the discrete lattice
assumption is that in many interesting cases the atoms do not lie on a perfect lattice due
to defects in the crystal structure or interfaces between different crystal lattices.

As an alternative, it has been demonstrated that a more conventional tomographic
series consisting of hundreds of projections of a nanocrystal can be acquired in certain
cases. An image of the nanocrystal is then reconstructed using sparsity-based reconstruc-
tion techniques on a continuous model of the tomography problem, typically solving the
problem (1.16). This approach does not depend on the lattice structure and allows one
to reconstruct defects and interfaces [18]. As a downside, the number of required pro-
jections is large and to accurately model the atom positions the reconstruction must be
represented on a high-resolution pixel grid resulting in a large-scale computational prob-
lem. More importantly, increasing the resolution of the pixel grid in order to capture
defects results in a much more ill-posed problem.

For the atomic-resolution reconstruction problem, a canonical discretization is pro-
vided not by an arbitrarily imposed pixel grid but by the spatial coordinates of atoms in
the nanoparticle. Optimizing over a set of atom coordinates is nonconvex; a convex for-
mulation proposed in the context of single-molecule localization microscopy [12] involves
mapping the problem to the space of measures. In the space of measures, a set of atoms
can be represented as a positive measure µ :=

∑Natoms
i=1 wiδxi

, with xi being the spatial
coordinates of atom i and wi ≥ 0 denoting weights that scale the intensity of atom i in
projection data. Reconstructing the correct measure means solving

minimize
µ

‖Φµ− y‖22, (1.20)

where the forward model Φµ maps the measure to data y, such that

Φµ := R
(Natoms∑

i=1

wi(G ∗ δxi
)
)
,

where R is the continuous Radon transform and G denotes a known shape function.
Sparsity can be included in the optimization problem in a number of ways: one way is
by adding a term that minimizes the ℓ1-norm of the weights {wi}, another is by using
a Frank–Wolfe-type algorithm [19] where the objective is minimized iteratively and only
one atom is added to the support of the measure µ at each iteration.
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In Chapter 3, we investigate grid-free algorithms to solve the reconstruction problem
above. We demonstrate the advantages of using a grid-free approach to traditional grid-
based reconstruction algorithms. We also show that including physical priors relevant to
the problem – in this case, the potential energy of the atomic configuration – can help to
resolve configurations with greater accuracy, especially in situations where the projection
data are not enough to determine a unique atomic configuration.

Atomic configurations are modelled as sparse measures, whose support is
the locations of atomic centres in continuous space.

1.4.3 Grid-free tilt-series alignment in cryoET
The goal of cryoET is to study the structure of biological macromolecules, such as proteins,
in their native cellular context. Aspects of cryoET that distinguish it from other CT setups
are as follows. Firstly, the geometry of the experimental system limits the extent to which
the sample can be tilted. Moreover, the increase in apparent sample thickness with
increasing tilt allows projection images to only be acquired for a limited angular range
in cryoET, usually in [−60◦, 60◦], resulting in a missing wedge of information that is not
available during reconstruction [20]. Secondly, cryoET samples are dose-sensitive, which
limits the total dose during acquisition and leads to very noisy projection images when a
large number are acquired. Thirdly, the sample undergoes local and global movements
during the acquisition procedure, making it difficult to reconstruct with a constant sample
assumption.

Local deformation of the sample induced by the electron beam is a key resolution-
limiting factor in cryoET. One way to align the tilt series is by using high-contrast gold
beads as markers and modelling the deformation of markers using prior knowledge on
sample deformation.

Extending the formalism of the previous section, the deforming marker configuration
in cryoET can be mapped to a measure µ :=

∑Nmarkers
i=1 wiδxi

and the projection data at
time t can be modelled using a forward model given by

Φt µ :=

Nmarkers∑
i=1

wi (G ∗ R) δxi+Dt(P ,xi), (1.21)

where Dt(P ,xi) denotes a deformation field with parameters P . Tilt-series alignment
then amounts to optimizing over the deformation parameters, marker locations and
weights, and number of markers Nmarkers:

minimize
wi,xi,Dt,Nmarkers

T∑
t=0

∥∥∥yt − Nmarkers∑
i=1

wi (G ∗ R) δxi+Dt(P ,xi)

∥∥∥2
2
. (1.22)

We tackle this problem in Chapter 4 of this thesis, and show that our grid-free
formulation allows the recovery of deformation parameters in synthetic and real data
accurately despite the absence of labelled marker data as in existing approaches.
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Gold-bead markers are modelled as sparse measures that deform over
time according to a parametrized deformation field.

1.4.4 Cell–cell interaction learning for vascular network formation
In the final application area studied in this thesis, we look at the problem of inferring cell–
cell interactions that are necessary for vascular network formation. To do this we adopt a
method called Sparse Identification of Nonlinear Dynamics (SINDy) that has been shown
to recover dynamical equations from time-series data [21].

The SINDy approach is applicable to ordinary differential equations of the type:

ẋ = g(x), (1.23)

where x ∈ Rn denotes the system state at a certain time and g : Rn → Rn is a vector
field that defines the dynamics of the system. Given measurements of x at a discrete
set of time-points T , and using computed values for ẋ at these time-points, the goal
of SINDy is to recover the functional form of g from a library of functions. To do this,
SINDy solves the following optimization problem:

minimize
ξ∈RK

‖ẋ−Θ(x)ξ‖22 + λ‖ξ‖1 , (1.24)

where Θ(x) denotes the library functions evaluated at the data points and ξ is the vector
of coefficients that weights the library terms. Thus, SINDy optimizes for a sparse set of
library terms that describes the measurements of a dynamical system.

SINDy has been used to infer the dynamics of simulated and real data for a variety
of canonical systems exhibiting nonlinear dynamics [21]. Moreover, extensions of the
SINDy approach have been used to investigate several problems of biological relevance.
Two important examples are learning stochastic differential equations [22] and implicit
ordinary differential equations describing biological networks [23].

In our case, the vascular network formation process is described by the dynamical
equation (1.4) in particle-based simulations. In the overdamped regime, this translates to
a form for g given by

gi(x1,x2, . . . ,xn) :=
∑
j∈Ni

xi − xj

‖xi − xj‖
Fij , i = 1, . . . , np (1.25)

Fij := Φ(xi,xj , γi, γj), (1.26)

where we parametrize the force between cell pairs as a function Φ of cell locations xi and
orientations γi. The learning problem then amounts to learning a form for these cell–cell
interactions Fij from a library of functions.

In Chapter 5 we provide details of how this can be done, and apply our learning ap-
proach to simulation studies of vascular network formation. Our method can be extended
to recover similar interaction terms from experimental data, and enables the discovery of
effective equations from observations of a few variables.
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Sparsity is used to constrain the number of terms in the inferred pairwise
interaction between cells.

1.5 Research questions
To close this introductory chapter, we present the four research questions that were
investigated in this thesis. Each of these research questions is presented on a separate
page and is dealt with in a separate chapter. Here we provide a brief abstract of our
method and main contributions, along with a representative illustration.
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Research question 1. Can sparse-basis minimum-residual filters be used to improve
reproducibility in the synchrotron CT pipeline?

In Chapter 2, we propose a filter-learning approach that reduces the quantitative
differences between reconstructions obtained from popular open-source implementations.
These differences are a result of differing software conventions for discretization and in-
terpolation. We show that optimizing the filter in real-space and Fourier-space direct
algorithms reduces such differences, resulting in fewer differences also in post-processing
results. We apply our method to real data acquired at the synchrotron to validate the
usability of our approach.

Figure 1.4: Differences between post-processing results after thresholding with Otsu’s
method. The top row shows thresholded reconstructions obtained using different back-
projector implementations and a standard Shepp-Logan filter; Otsu thresholds t, F1 scores
and Jaccard indices are given for each image. The bottom rows shows thresholded re-
constructions obtained using our implementation-adapted filters. Both qualitatively and
quantitatively these results are more similar to each other than those in the top row.
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Research question 2. Can grid-free sparse reconstruction approaches infer the locations
of defects in nanocrystals from very few projections?

In Chapter 3, we turn to the atomic-resolution ET problem and propose a grid-free
sparse optimization approach to tackle it. We also show how adding a physical potential
energy term to the optimization objective helps to resolve atomic configurations from
only two or three projections. We compare the performance of our method with that of
existing grid-based methods such as SIRT and FISTA, as well as with that of nonconvex
techniques like simulated annealing.
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Figure 1.5: Reconstructions of a vacancy defect from three projections. For the simulated
annealing, ADCG and ADCG with energy reconstructions, atoms are coloured according
to their Euclidean distance from the ground truth. Ground truth positions are marked
with red crosses.
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Research question 3. Can we extend grid-free sparse optimization methods to infer
deformation parameters for cryoET alignment?

In Chapter 4, we extend and adapt a grid-free algorithm to infer both locations and de-
formation parameters of gold markers in cryoET. We use globally supported parametrized
deformation fields based on previous experimental studies to model beam-induced sample
motion. The parameters of this model and marker locations are simultaneously inferred
from our method, without the need for labelled marker data in each projection. We apply
our method to TEM simulations as well as real data of gold beads on ice, and show
that our method can estimate deformation fields in a host of noise and model mismatch
settings.

Figure 1.6: Inference of marker locations and deformation parameters from simulated TEM
data with correlated noise. (a) Reconstructed and ground truth marker locations (left),
and reconstructed and ground truth deformation fields in the direction of the electron beam
(right). (b) Deformation estimation error as a function of iterations. (c) Deformation
estimation errors in the beam direction
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Research question 4. Can sparse equation learning recover cell–cell interactions from
simulated time-series data of vascular network formation?

In Chapter 5, we adapt a sparse equation-learning approach to infer which pairwise
interaction terms contribute to vascular network formation. We run particle-based sim-
ulations of network formation to generate cell trajectories over time. We formulate the
time evolution of the system to be given by an overdamped Langevin equation with force
terms that correspond to the pairwise interactions between cells. These force terms are
then inferred from the cell trajectory data from a library of plausible forces.

True network at t=75 Predicted network at t=75

Figure 1.7: True and inferred vascular networks using 100 elongated cells.
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