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Chapter 1

Introduction

In this chapter we give a general introduction to the field of inverse problems and algorith-
mic approaches to solving such problems in a few application areas. We also introduce the
reader to notions of sparsity and show how sparsity is used to tackle the various research
questions investigated in this thesis.

1.1 Background
Scientific questions can be broadly divided into two kinds. The first kind seeks to question
the effects of a set of causal factors while the second seeks to determine the causal factors
given the effects. In this thesis we deal with the latter type of questions.

We shall restrict ourselves to situations where the effects are observations or measure-
ments of a physical system, and the causal factors are certain variables that characterize
the system. One common starting point in this case is to construct a simplified represen-
tation or physical model of the system.

An example of this process of model building is the physical theory of the interaction
of light with matter. Such a theory enables us to calculate, among other things, the
interaction of X-rays passing through a three-dimensional object. The measurements from
this system are images – two-dimensional snapshots of the X-ray beam after it emerges
from the object. These snapshots can be obtained using an X-ray detection system and
compared against our prediction from the physical theory. It turns out that in this case our
predictions match the experimental measurements well, thus validating the correctness of
our theory.

The problem described above is a direct or forward problem, where we predict the
effects given causes and a reliable model. Complementary to this problem is the inverse
problem, where we want to infer the physical properties of the 3D object, in particular
its capacity to interact with X rays, using a set of 2D images. An illustration of both
problems is shown in Figure 1.1. It turns out that the inverse problem of reconstruction
brings about a different set of challenges to the forward problem of projection, and in order
to solve the former problem we must make further assumptions about the 3D object.
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Figure 1.1: A forward problem is one where we predict the effects of a set of causal factors
given a physical model of the system. An inverse problem is one where we invert this
process. An example of a forward problem is the calculation of a 2D X-ray projection of
a 3D object; the inversion of a set of such images to infer the 3D object is the inverse
problem of reconstruction.

One such assumption that is central to the work in this thesis comes from the notion
of sparsity. Broadly speaking, sparsity is the assumption that only a small set of variables
or causal factors is sufficient to explain the measurements of a system. In the example of
X-ray reconstruction above, sparsity could mean that the object is made of a small set of
discrete constituents. Using this as prior knowledge of our 3D object makes the inversion
procedure much more reliable. Stated differently, assuming sparsity enables us to limit
our search for causal factors to a small set.

In this thesis we study several application areas where notions of sparsity yield practical
algorithms for inverse problems. In the next section we first introduce these application
areas and discuss the forward problems therein. Next we present the mathematical
framework of inverse problems and discuss ways to include sparsity in this framework.
In the penultimate section, we return to our application areas and show how practical
algorithms can be designed to tackle sparse inverse problems in these areas. Finally, we
present four research questions that are investigated in the following chapters of this thesis,
and provide a brief abstract of our methods and contributions.
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1.2 Application areas
In this section we introduce three application areas that were studied in this thesis, and
give some mathematical background to these areas.

1.2.1 X-ray computed tomography
X-ray computed tomography (CT) is a powerful method to visualize and obtain quantita-
tive information about the inside of an object non-destructively. X-ray CT is widely used
in medical settings for diagnostic purposes [1], in materials science for studying structural
changes in materials [2] and in cultural heritage for probing the construction of art objects
[3].

In this imaging modality, an X-ray beam is used to generate projection images of an
object of interest. The flux of the X-ray beam changes as it passes through the object
according to the Beer–Lambert law:

I = I0 e
−

∫ l
0
µ(z) dz , (1.1)

where I0 is the flux of the incident X-ray beam, I is the flux after the beam has passed
through a distance l inside the object and µ is the attenuation coefficient that denotes
the capacity of the materials in the object to absorb X rays. Dividing both sides of (1.1)
by I0 and taking the logarithm, we arrive at the linear projection model of X-ray CT:

log

(
I

I0

)
= −

∫ l

0

µ(z) dz (1.2)

Many different experimental setups are used for X-ray CT depending on the application,
but in most setups the basic acquisition strategy consists of rotating the sample with
respect to the incident X-ray beam to acquire measurements along several projection
angles. The emergent X-ray beam after absorption by the sample is detected using a
detection system. In this thesis we focus on parallel-beam CT, where the distance between
X-ray source and object is large enough to approximate the incident rays as being parallel
to each other. This is the setup shown in Figure 1.2. Using (1.2) the forward projection
of a 2D object f(x, y) taken along a projection angle θ, Pθ(t), can then be written as

Pθ(t) := R(f) = −
∫∫

R2

f(x, y) δ(x cos θ + y sin θ − t) dx dy , (1.3)

where the function f : R2 → R is a finite integrable function with bounded support
describing the attenuation of the object. Note that µ(z) in (1.2) is equivalent to the
function f(x, y) evaluated on the line given by x cos θ+y sin θ = t. R(f) is known as the
Radon transform of the function f(x, y), and δ denotes the delta function. Using (1.3) a
set of projections Pθ(t), θ ∈ [0, π) can be acquired and rearranged to give a sinogram. In
Figure 1.2, we show a popular analytical object – known as the Shepp-Logan phantom –
along with its sinogram.

The tomographic reconstruction problem refers to the inversion of (1.3) to yield a
suitable function f(x, y) from a set of measurements Pθ(t), θ ∈ [0, π). In Section 1.4 we
shall return to this inverse problem and discuss it in more detail.
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Figure 1.2: Parallel-beam X-ray CT (left), Shepp–Logan phantom (top right) and its
sinogram (bottom right).

1.2.2 Electron tomography

The next application area of relevance to this thesis is electron tomography (ET). ET is the
method of choice for imaging nanoparticles and biological macromolecules at atomic or
near-atomic resolutions. Imaging with an electron beam allows for much higher resolutions
compared to X-ray imaging because of the shorter wavelength of electrons [4], [5].

Images in ET are generated by passing a focused electron beam through a sample.
In one common modality, each projection image is generated in transmission electron
microscopy (TEM) mode. In this mode, the whole sample is irradiated with the incident
electron beam at the same time and the transmitted electron beam is detected. Alterna-
tively, the electron beam can be focused to scan the sample one small area at a time. This
mode is known as scanning transmission electron microscopy (STEM). To obtain images
at different projection angles, the sample is tilted with respect to the beam. For thin
samples, the linear projection model (1.2) holds for each image in the tilt series. Similar
to X-ray CT, the inverse problem in ET consists of inverting the forward model to infer
the structure of nanoparticles and macromolecules from their projections.

In this thesis, we present methods for two different applications of ET. These are
atomic-resolution ET and cryoET. In Section 1.4, we focus on each of these areas sepa-
rately and state the inverse problems we investigated for each.
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1.2.3 Vascular network formation
The final application area we study in this thesis is of relevance to developmental and
cancer biology. Vasculogenesis is the process by which a primitive circulatory system
is generated in vertebrates. Following the generation of a primitive network, new blood
vessels arise by sprouting and expanding, in a process known as angiogenesis. Angiogenesis
also occurs in certain types of cancer, where it contributes to tumour maintenance and
metastasis.

Understanding how individual cells organize to form mature vascular networks is a
long-standing question. In particular, the contribution of cell–cell interactions and envi-
ronmental cues are still a topic of research. One way to investigate the conditions for
vascular network formation is using computer simulations, where different cell–cell inter-
actions and environmental cues can be prescribed and the resulting long-term dynamics
can be studied. Simulation studies are particularly effective because all the parameters of
a chosen model can be adjusted and different parameter regimes, which may not be easy
to probe in experimental studies, are easily simulated.

Different simulation paradigms have been used in the literature to simulate vascular
network generation. One paradigm is cellular Potts model, a lattice-based simulation
where cells are represented as patches of interacting spins. A complementary paradigm
is a lattice-free particle-based model, where each cell is represented by an ellipse and is
assumed to interact with all other cells in a prescribed neighbourhood. The forward model
of this particle-based paradigm is given by a Langevin equation:

dvi

dt
=

1

mi

(
− τvi +

∑
j ̸=i

xi − xj

‖xi − xj‖
Fij + η

)
, vi =

dxi

dt
, (1.4)

where xi denotes the position of cell i at time t, vi is the velocity of cell i, mi is the mass
of cell i, τ is the so-called damping constant, Fij is the pairwise interaction between cells
i and j, and η is a stochastic noise term.

Using the above equation, the long-time dynamics of cells can be simulated for different
parameter values. The steady-state solutions can then be used to determine the parameter
regions – and hence conditions – for network formation.

An alternative approach is to start directly from experimental observations of network
formation and infer the interaction terms and parameter values in (1.4). In Section 1.4,
we shall return to this inverse problem and describe our methods to tackle it.

1.3 Inverse problems
In the previous section, we described several application areas and the forward problems
that arise in each of them. We also mentioned briefly the inverse to these forward problems.
In this section we discuss the mathematical framework of inverse problems and describe
ways to solve such problems reliably.

Inverse problems arise in many areas of science and engineering, where the goal is to
infer specific variables given measurements of a system and a reliable physical model [6].
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Mathematically, this translates to inferring x from data y, where the two are related by
the following equation:

A(x) = y, (1.5)

where A is the forward model.
One of the examples described above is that of tomographic reconstruction. The

forward problem of tomography is the projection of a 3D object along a set of projection
angles, while the inverse is combining the information from a set of projections to obtain
a reconstruction. In this example, the forward problem has a well-defined solution but the
inverse problem does not.

One way to understand the difference between forward and inverse problems is the
notion of well-posedness. A mathematical problem is said to be well-posed if its solution
exists for arbitrary data (existence) and is unique (uniqueness). Additionally, the solution
must depend continuously on the data such that small changes in the data result in
correspondingly small changes in the solution (stability). Problems that do not meet
these conditions are known as ill-posed.

Some physical intuition regarding the ill-posedness of inverse problems is obtained
by using the idea of entropy from the second law of thermodynamics and information
theory. Forward problems are generally those that describe physical phenomena oriented
along the cause–effect sequence [6]. The cause–effect sequence is determined by the
second law of thermodynamics, which posits an increase in total entropy in the direction
of time evolution. This means that the solution to a direct problem has lower “information
content” than the data. The opposite is true for an inverse problem, where data with lower
information content must be used to infer unknowns with higher information content.

The ill-posedness of inverse problems – specifically the fact that small variations in the
data (caused, for e.g. , by measurement noise) lead to large variations in the solution –
makes it difficult to obtain a meaningful solution to an inverse problem. This is addressed
by using prior knowledge about the physical system being studied. The mathematical
theory that deals with this is called regularization.

An illustration of regularization is provided by the use of Tikhonov regularization in
X-ray CT. The discrete formulation of the X-ray CT problem is given by:

Ax = y, (1.6)

where A is the linear forward operator which amounts to the discretized version of the
Radon transform (1.3), y is a vector of discrete projection data and x is the unknown
discretized reconstruction. The reconstruction problem can then be stated as an optimiza-
tion problem where we seek to minimize the difference with respect to projection data.
The least-squares solution to the discrete reconstruction problem is

minimize
x∈Rd

‖y −Ax‖22 (1.7)

An example reconstruction of the Shepp-Logan phantom using a least-squares strategy
is shown in Figure 1.3. A common way to regularize this problem is to minimize not just the
discrepancy with respect to the projection data but also the energy of the solution, defined
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Figure 1.3: Tomographic reconstructions of the Shepp–Logan phantom using filtered back-
projection (FBP), the simultaneous iterative reconstruction technique (SIRT) and total
variation (TV) minimization. SIRT solves a least-squares problem with added precondi-
tioning; TV solves a regularized least-squares problem that penalizes large gradients in
the reconstructed image. All reconstructions were performed using the Astra Toolbox [7]
and the Operator Discretization Library (ODL) [8].

as its ℓ2-norm. This regularization, known as Tikhonov regularization, then amounts to
the optimization problem:

minimize
x∈Rd

‖y −Ax‖22 + λ‖x‖22, (1.8)

where λ > 0 – the regularization parameter – adjusts the relative weighting of the two
terms in the optimization objective.

1.3.1 Sparse inverse problems
The example of regularization shown above penalizes the energy of the solution. In the
last three decades, a different form of prior knowledge has been shown to be a powerful
technique for solving a host of inverse problems [9], [10]. This prior knowledge relates
to the sparsity of the unknown vector x. One notion of sparsity is given by the number
of nonzero elements of the vector x, which is called the ℓ0 “norm”. The ℓ0 “norm” of a
vector x ∈ Rd is given by

|x|0 :=

d∑
i=1

|xi|0, (1.9)
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and the vector x is said to be s-sparse if

|x|0 ≤ s. (1.10)

A sparse inverse problem is one where we look for the sparsest solution that explains
the observed data. Mathematically, we can state a sparse inverse problem as a constrained
optimization problem where the goal is to

minimize
x∈Rd

|x|0 subject to Ax = y. (1.11)

In some scenarios a reformulation of the optimization problem may be more appropriate.
For example, we may choose to relax the exact equality in the constraint to account for
measurement noise

minimize
x∈Rd

|x|0 subject to ‖Ax− y‖22 ≤ ϵ. (1.12)

Or, we could switch the objective function with the constraint:

minimize
x∈Rd

‖Ax− y‖22 subject to |x|0 ≤ s. (1.13)

Objective and constraint functions may also be added to result in an optimization problem
analogous to Tikhonov regularization (1.8):

minimize
x∈Rd

‖Ax− y‖22 + λ|x|0. (1.14)

The ℓ0 term in the above formulations makes the optimization problem nonconvex,
and thus sensitive to initialization. A convex surrogate is achieved by replacing the ℓ0
term with the ℓ1 norm of x. The convex surrogate of (1.14) is

minimize
x∈Rd

‖Ax− y‖22 + λ‖x‖1. (1.15)

The convex formulation above can be solved with guarantees on existence and conver-
gence of the solution. However, nonconvex optimization methods, such as greedy pursuit
and simulated annealing, have also been used to solve the ℓ0 minimization problem directly
[11].

In many applications, tomographic reconstruction being one of them, the unknown
reconstruction is not sparse per se, but can be sparsely coded in a suitable orthonormal
basis. For e.g., images can be assumed to be piecewise constant, which implies sparsity
in the space of gradients. This results in the total variation (TV) regularization method
that results in surprisingly good reconstructions even for heavily undersampled data:

minimize
x∈Rd

‖Ax− y‖22 + λ‖|∇x|‖1. (1.16)

Reconstruction of the Shepp–Logan phantom using TV regularization is shown in Figure
1.3.
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In some applications like in atomic-resolution ET, discretization of the reconstruction
x as an image may not be the most suitable. In situations where x is a set of unknown
cardinality (e.g. the atomic coordinates in a nanoparticle, with an unknown number of
atoms), the optimization problem (1.15) is no longer convex in the space of atomic
coordinates. A convex formulation in such situations is achieved by lifting the problem to
the vector space of measures [12].

1.4 Computational solution of inverse problems using
sparsity

In this section, we return to the application areas introduced in Section 1.2 and present
ways to include sparsity in the design of efficient algorithms. At the end of each subsection,
we summarise our use of sparsity in that particular problem in a red box.

1.4.1 Sparse design of implementation-adapted filters for X-ray CT
The discretized tomographic reconstruction problem is the estimation of x from equation
(1.6). There exist several methods to obtain an estimate of the reconstruction x given
data y. Direct methods that use discretized inversions of the continuous Radon transform
(1.3) are some of the most popular methods due to their speed. An exact inversion of
the continuous Radon transform is possible and leads to the following inversion formula
for the function f(x, y):

f(x, y) =

∫ π

0

qθ(x cos θ + y sin θ) dθ , qθ(t) =

∫ −∞

∞
|u|P̂θ(u)e

2πiut du, (1.17)

where |u| is known as the ramp filter in Fourier space and P̂θ denotes projection data
in Fourier space. Filtered backprojection (FBP), a real-space direct method, computes a
discretized version of the above inversion formula, such that

f(x, y) ≈
∑
θ∈Θ

∑
τ∈T

Pθ(τ)hθ(x cos θ + y sin θ − τ),

where h is a discretized filter in real space. Equivalently, starting from the algebraic
equation (1.6), the FBP reconstruction x̃FBP of projection data y is given by

x̃FBP = AT (y ∗ h) = ATCh y, (1.18)

where Ch denotes convolution with filter h and AT is known as the backprojection
operator.

In Fourier-space direct methods such as GridRec, both filtering and backprojection are
performed in Fourier space, after which a fast Fourier transform (FFT) is used to convert
the Fourier-space reconstruction to a real-space reconstruction. In addition, Fourier-space
methods often use a windowing function to improve the accuracy of interpolation in Fourier
space [13].
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An important point to note is that, although the problem of inversion is well defined
in the continuous setting, the discretized reconstruction formula (1.18) depends on the
choice of discretization and interpolation. These choices are usually implementation-
specific, which means that they differ across the various available open-source software
implementations of direct algorithms, and contribute to quantitative differences between
reconstructions from each implementation.

Direct methods usually result in poor reconstructions when noise in the data is high or
data have been collected over a limited angular range. For such data, methods that solve
the linear least-squares problem (1.7) iteratively are better. One popular iterative method
is SIRT, which solves the linear least-squares problem with additional preconditioning and,
optionally, non-negative constraints. For large data, a major limiting factor to the practical
application of iterative methods is that the computation time required for reconstructing
is much larger than the time required by direct methods.

A class of filter-optimization methods seek to augment direct methods with some of
the advantages of iterative methods without compromising on the speed of computation.
In such methods, the filter in direct algorithms (h in (1.18)) is learned from the data y,
following which they can be used on-the-fly with direct methods in place of standard hand-
crafted filters. Filter learning using a minimum-residual approach has been performed for
FBP [14] as well as the Feldkamp–Davis–Kress (FDK) algorithm [15], which generalizes
FBP to cone-beam tomography setups.

A minimum-residual filter for data y can be computed by solving the following opti-
mization problem:

minimize
h

‖y −AATCy h‖22. (1.19)

The minimum-residual filter h∗ :=
∑
h∗i bi is expressed as a linear combination of basis

vectors bi. Sparse design of the filter is possible by choosing an appropriate basis such
that only a few filter coefficients have to be learned. A binned basis with exponentially
wider bins away from the centre of the detector array was first proposed for FBP [14]
and later used for filter computation for FDK [15] without loss of reconstruction accuracy.
Such an exponential binning basis translates to a basis of linear combinations of cosines
in Fourier space.

In Chapter 2 we use such sparse-basis filters to tackle the problem of reproducibility
in synchrotron tomography. Hardware and software vary across synchrotrons, and the
results of experiments performed by users at different facilities are often not directly com-
parable with each other. We focus on the image reconstruction block in the synchrotron
tomography pipeline, where differences between discretization and interpolation in vari-
ous software packages play a role in enhancing differences between experimental results.
We show that minimum-residual filters can improve the similarity between reconstructions
(of synthetic and real data) obtained from several open-source implementations of direct
algorithms, and contribute to a more reproducible reconstruction block in the synchrotron
pipeline.

Sparsity is used to limit the number of filter coefficients of
minimum-residual filters.
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1.4.2 Grid-free, sparse reconstruction of nanocrystal defects
The goal of atomic-resolution electron tomography is to get a precise quantitative picture
of a nanocrystal down to the atomic scale. To probe at such high resolutions, optimizing
both the acquisition of projection images and the reconstruction of projection data is
required.

One approach to atomic-resolution reconstruction is based on discrete tomography. In
this approach, atoms are assumed to lie on a regular lattice and the measured projections
are considered as atom counts along lattice lines. A key advantage of this approach is its
ability to exploit the constraints induced by the discrete domain and range of the image.
As a consequence, a small number of projection angles (typically less than 5) can already
lead to an accurate reconstruction [16], [17]. A key drawback of the discrete lattice
assumption is that in many interesting cases the atoms do not lie on a perfect lattice due
to defects in the crystal structure or interfaces between different crystal lattices.

As an alternative, it has been demonstrated that a more conventional tomographic
series consisting of hundreds of projections of a nanocrystal can be acquired in certain
cases. An image of the nanocrystal is then reconstructed using sparsity-based reconstruc-
tion techniques on a continuous model of the tomography problem, typically solving the
problem (1.16). This approach does not depend on the lattice structure and allows one
to reconstruct defects and interfaces [18]. As a downside, the number of required pro-
jections is large and to accurately model the atom positions the reconstruction must be
represented on a high-resolution pixel grid resulting in a large-scale computational prob-
lem. More importantly, increasing the resolution of the pixel grid in order to capture
defects results in a much more ill-posed problem.

For the atomic-resolution reconstruction problem, a canonical discretization is pro-
vided not by an arbitrarily imposed pixel grid but by the spatial coordinates of atoms in
the nanoparticle. Optimizing over a set of atom coordinates is nonconvex; a convex for-
mulation proposed in the context of single-molecule localization microscopy [12] involves
mapping the problem to the space of measures. In the space of measures, a set of atoms
can be represented as a positive measure µ :=

∑Natoms
i=1 wiδxi

, with xi being the spatial
coordinates of atom i and wi ≥ 0 denoting weights that scale the intensity of atom i in
projection data. Reconstructing the correct measure means solving

minimize
µ

‖Φµ− y‖22, (1.20)

where the forward model Φµ maps the measure to data y, such that

Φµ := R
(Natoms∑

i=1

wi(G ∗ δxi
)
)
,

where R is the continuous Radon transform and G denotes a known shape function.
Sparsity can be included in the optimization problem in a number of ways: one way is
by adding a term that minimizes the ℓ1-norm of the weights {wi}, another is by using
a Frank–Wolfe-type algorithm [19] where the objective is minimized iteratively and only
one atom is added to the support of the measure µ at each iteration.
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In Chapter 3, we investigate grid-free algorithms to solve the reconstruction problem
above. We demonstrate the advantages of using a grid-free approach to traditional grid-
based reconstruction algorithms. We also show that including physical priors relevant to
the problem – in this case, the potential energy of the atomic configuration – can help to
resolve configurations with greater accuracy, especially in situations where the projection
data are not enough to determine a unique atomic configuration.

Atomic configurations are modelled as sparse measures, whose support is
the locations of atomic centres in continuous space.

1.4.3 Grid-free tilt-series alignment in cryoET
The goal of cryoET is to study the structure of biological macromolecules, such as proteins,
in their native cellular context. Aspects of cryoET that distinguish it from other CT setups
are as follows. Firstly, the geometry of the experimental system limits the extent to which
the sample can be tilted. Moreover, the increase in apparent sample thickness with
increasing tilt allows projection images to only be acquired for a limited angular range
in cryoET, usually in [−60◦, 60◦], resulting in a missing wedge of information that is not
available during reconstruction [20]. Secondly, cryoET samples are dose-sensitive, which
limits the total dose during acquisition and leads to very noisy projection images when a
large number are acquired. Thirdly, the sample undergoes local and global movements
during the acquisition procedure, making it difficult to reconstruct with a constant sample
assumption.

Local deformation of the sample induced by the electron beam is a key resolution-
limiting factor in cryoET. One way to align the tilt series is by using high-contrast gold
beads as markers and modelling the deformation of markers using prior knowledge on
sample deformation.

Extending the formalism of the previous section, the deforming marker configuration
in cryoET can be mapped to a measure µ :=

∑Nmarkers
i=1 wiδxi

and the projection data at
time t can be modelled using a forward model given by

Φt µ :=

Nmarkers∑
i=1

wi (G ∗ R) δxi+Dt(P ,xi), (1.21)

where Dt(P ,xi) denotes a deformation field with parameters P . Tilt-series alignment
then amounts to optimizing over the deformation parameters, marker locations and
weights, and number of markers Nmarkers:

minimize
wi,xi,Dt,Nmarkers

T∑
t=0

∥∥∥yt − Nmarkers∑
i=1

wi (G ∗ R) δxi+Dt(P ,xi)

∥∥∥2
2
. (1.22)

We tackle this problem in Chapter 4 of this thesis, and show that our grid-free
formulation allows the recovery of deformation parameters in synthetic and real data
accurately despite the absence of labelled marker data as in existing approaches.
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Gold-bead markers are modelled as sparse measures that deform over
time according to a parametrized deformation field.

1.4.4 Cell–cell interaction learning for vascular network formation
In the final application area studied in this thesis, we look at the problem of inferring cell–
cell interactions that are necessary for vascular network formation. To do this we adopt a
method called Sparse Identification of Nonlinear Dynamics (SINDy) that has been shown
to recover dynamical equations from time-series data [21].

The SINDy approach is applicable to ordinary differential equations of the type:

ẋ = g(x), (1.23)

where x ∈ Rn denotes the system state at a certain time and g : Rn → Rn is a vector
field that defines the dynamics of the system. Given measurements of x at a discrete
set of time-points T , and using computed values for ẋ at these time-points, the goal
of SINDy is to recover the functional form of g from a library of functions. To do this,
SINDy solves the following optimization problem:

minimize
ξ∈RK

‖ẋ−Θ(x)ξ‖22 + λ‖ξ‖1 , (1.24)

where Θ(x) denotes the library functions evaluated at the data points and ξ is the vector
of coefficients that weights the library terms. Thus, SINDy optimizes for a sparse set of
library terms that describes the measurements of a dynamical system.

SINDy has been used to infer the dynamics of simulated and real data for a variety
of canonical systems exhibiting nonlinear dynamics [21]. Moreover, extensions of the
SINDy approach have been used to investigate several problems of biological relevance.
Two important examples are learning stochastic differential equations [22] and implicit
ordinary differential equations describing biological networks [23].

In our case, the vascular network formation process is described by the dynamical
equation (1.4) in particle-based simulations. In the overdamped regime, this translates to
a form for g given by

gi(x1,x2, . . . ,xn) :=
∑
j∈Ni

xi − xj

‖xi − xj‖
Fij , i = 1, . . . , np (1.25)

Fij := Φ(xi,xj , γi, γj), (1.26)

where we parametrize the force between cell pairs as a function Φ of cell locations xi and
orientations γi. The learning problem then amounts to learning a form for these cell–cell
interactions Fij from a library of functions.

In Chapter 5 we provide details of how this can be done, and apply our learning ap-
proach to simulation studies of vascular network formation. Our method can be extended
to recover similar interaction terms from experimental data, and enables the discovery of
effective equations from observations of a few variables.

15



Sparsity is used to constrain the number of terms in the inferred pairwise
interaction between cells.

1.5 Research questions
To close this introductory chapter, we present the four research questions that were
investigated in this thesis. Each of these research questions is presented on a separate
page and is dealt with in a separate chapter. Here we provide a brief abstract of our
method and main contributions, along with a representative illustration.
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Research question 1. Can sparse-basis minimum-residual filters be used to improve
reproducibility in the synchrotron CT pipeline?

In Chapter 2, we propose a filter-learning approach that reduces the quantitative
differences between reconstructions obtained from popular open-source implementations.
These differences are a result of differing software conventions for discretization and in-
terpolation. We show that optimizing the filter in real-space and Fourier-space direct
algorithms reduces such differences, resulting in fewer differences also in post-processing
results. We apply our method to real data acquired at the synchrotron to validate the
usability of our approach.

Figure 1.4: Differences between post-processing results after thresholding with Otsu’s
method. The top row shows thresholded reconstructions obtained using different back-
projector implementations and a standard Shepp-Logan filter; Otsu thresholds t, F1 scores
and Jaccard indices are given for each image. The bottom rows shows thresholded re-
constructions obtained using our implementation-adapted filters. Both qualitatively and
quantitatively these results are more similar to each other than those in the top row.
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Research question 2. Can grid-free sparse reconstruction approaches infer the locations
of defects in nanocrystals from very few projections?

In Chapter 3, we turn to the atomic-resolution ET problem and propose a grid-free
sparse optimization approach to tackle it. We also show how adding a physical potential
energy term to the optimization objective helps to resolve atomic configurations from
only two or three projections. We compare the performance of our method with that of
existing grid-based methods such as SIRT and FISTA, as well as with that of nonconvex
techniques like simulated annealing.
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Figure 1.5: Reconstructions of a vacancy defect from three projections. For the simulated
annealing, ADCG and ADCG with energy reconstructions, atoms are coloured according
to their Euclidean distance from the ground truth. Ground truth positions are marked
with red crosses.
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Research question 3. Can we extend grid-free sparse optimization methods to infer
deformation parameters for cryoET alignment?

In Chapter 4, we extend and adapt a grid-free algorithm to infer both locations and de-
formation parameters of gold markers in cryoET. We use globally supported parametrized
deformation fields based on previous experimental studies to model beam-induced sample
motion. The parameters of this model and marker locations are simultaneously inferred
from our method, without the need for labelled marker data in each projection. We apply
our method to TEM simulations as well as real data of gold beads on ice, and show
that our method can estimate deformation fields in a host of noise and model mismatch
settings.

Figure 1.6: Inference of marker locations and deformation parameters from simulated TEM
data with correlated noise. (a) Reconstructed and ground truth marker locations (left),
and reconstructed and ground truth deformation fields in the direction of the electron beam
(right). (b) Deformation estimation error as a function of iterations. (c) Deformation
estimation errors in the beam direction
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Research question 4. Can sparse equation learning recover cell–cell interactions from
simulated time-series data of vascular network formation?

In Chapter 5, we adapt a sparse equation-learning approach to infer which pairwise
interaction terms contribute to vascular network formation. We run particle-based sim-
ulations of network formation to generate cell trajectories over time. We formulate the
time evolution of the system to be given by an overdamped Langevin equation with force
terms that correspond to the pairwise interactions between cells. These force terms are
then inferred from the cell trajectory data from a library of plausible forces.

True network at t=75 Predicted network at t=75

Figure 1.7: True and inferred vascular networks using 100 elongated cells.

20



Chapter 2

Implementation-adapted filters
for synchrotron tomography

2.1 Introduction
In several scientific disciplines, such as materials science, biomedicine and engineering, a
quantitative three-dimensional representation of a sample of interest is crucial for char-
acterizing and understanding the underlying system [24]–[27]. Such a representation can
be obtained with the experimental technique of computerized tomography (CT). In this
approach, a penetrating beam, such as X-rays, is used to obtain projection images of a
sample at various angles. These projections are then combined by using a computational
algorithm to give a 3D reconstruction [28], [29].

Different tomographic setups are used in various practical settings. Our focus here is on
tomography performed with a parallel-beam X-ray source at synchrotrons. Synchrotrons
provide a powerful source of X-rays for imaging, enabling a broad range of high-resolution
and high-speed tomographic imaging techniques [30]–[32].

A typical tomography experiment at the synchrotron can be described by a pipeline
consisting of several sequential steps (see Fig. 2.1). First, a sample is prepared according
to the experiment and imaging setup requirements. Then, the imaging system is aligned
[33], and a series of projection images of the sample are acquired [34]. These data are
then processed for calibration, contrast improvement (e.g. phase retrieval [35]) or removal
of undesirable artefacts like rings or stripes [36]. Following pre-processing, the data are fed
into a reconstruction software package that makes use of one or more standard algorithms
to compute a 3D reconstruction [37], [38]. The reconstruction volumes can then be further
post-processed and analysed [39], [40] to obtain parameter estimates of the system being

This chapter is based on:
Improving reproducibility in synchrotron tomography using implementation-adapted filters.
P. S. Ganguly, D. M. Pelt, D. Gürsoy, F. de Carlo, and K. J. Batenburg. Journal of Synchrotron
Radiation 28, no. 5, 2021.
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Figure 2.1: Schematic representation of a typical tomography pipeline at synchrotrons.
Hardware differences play an important role during sample preparation and data acquisi-
tion. Software differences affect image pre-processing, reconstruction and post-processing.
Together these lead to differences in the output of analysis and parameter estimation stud-
ies. In this chapter we propose a filter optimization method that works as a wrap-around
routine on the reconstruction block. Our method only requires evaluations of the recon-
struction routine and does not require any internal coding. The output of our method is a
filter that can be used in the reconstruction block for more reproducible reconstructions.

studied. In some cases, systematic imperfections in the data can also be corrected by post-
processing reconstructions. For example, ring artefacts, which are commonly observed in
synchrotron data, can be corrected before or after reconstruction [37].

At various synchrotron facilities in the world, the pipeline described above is imple-
mented using different instruments, protocols and methods specific for each facility [41].
These differences are on the level of both hardware and software. Dissimilarities in the
characteristics of the used X-ray source and detection system, including camera, visi-
ble light objective and scintillator screen, lead to differences in the acquired data. The
differences in the data are then further compounded by variations in processing and re-
construction software, resulting in differences in voxel or pixel intensities, and eventually
in variations in the output of post-processing and analysis routines.

For users, such differences pose several challenges. First, it is difficult to ensure that
results and conclusions obtained from experiments at one facility are comparable and
consistent with experiments from another facility. Second, other researchers seeking to
reproduce the results of a previous work with their own software might not be able to
do so, even if they have access to raw data. In [41], the authors report quantitative
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differences at various stages of the pipeline when scanning the same object at different
synchrotrons. Reproducibility and the ability to verify experimental findings is crucial for
ascertaining the reliability of scientific results. Therefore, in order to ensure reproducibility
for the synchrotron pipeline, it is important to quantify and mitigate differences in the
acquired, processed and reconstructed data.

Hardware and software vary across synchrotrons for a number of reasons. Each
synchrotron uses a pipeline that is optimized for its specific characteristics. In addition,
legacy considerations play a role in the choice of components. Because of the variations
across synchrotrons, any successful strategy for creating reproducible results must take
this diversity into account. Ideally, the choices for specific implementations of each block
in the synchrotron pipeline in Fig 2.1 should not influence the final results of a tomography
experiment. Following this strategy, each block can be optimized for reproducibility
independently from the rest of the pipeline.

In this chapter, we focus on improving the reproducibility of the reconstruction block in
the pipeline. In most synchrotrons, fast analytical methods such as filtered backprojection
(FBP) [29] and Gridrec [42] are the most commonly-used algorithms for reconstruction.
This is primarily because such algorithms are fast and work out-of-the-box without pa-
rameter tuning. These algorithms give accurate reconstructions when the projection data
are well-sampled, such as in microCT beamlines where thousands of projections can be
acquired in a relatively short time.

Several open-source software packages for synchrotron tomography reconstruction
are available, such as TomoPy, the ASTRA toolbox and scikit-image [37], [43], [44].
Usually, an in-house implementation of FBP or Gridrec, or one of the open-source software
packages is used for reconstruction. Each of these implementations contains a filtering
step that is applied to the projection data as part of the reconstruction. Filtering influences
characteristics, such as noise and smoothness, of the reconstructed volume. A sample-
independent, pre-defined filter is generally used for reconstruction. Some filters used
in this step have tunable parameters, but these are often tuned on-the-fly and are not
recorded in metadata.

Reconstructions in analytical algorithms are obtained by inversion of the Radon trans-
form [45]. Although this inversion is well-defined mathematically in a continuous setting,
software implementations invariably have to work in a discretized space. In software im-
plementations, the measurements as well as the reconstructed volume are discrete. In
a discretized space, inversion of the Radon transform often translates to a backprojec-
tion step, which makes use of a discretized projection kernel to simulate the intersection
between the scanned object and X rays [46]. The backprojection operation can also be
performed directly using interpolations in Fourier space [29].

Different choices of discretization and interpolation, in projection kernels and filters,
are possible. These choices lead to quantitative differences between the reconstructions
obtained from different software implementations. A simple example of this effect is
shown in Fig. 2.2, where we consider a phantom of pixel size 33 × 33 and data along 8
projection angles uniformly sampled in [0, π). We compare reconstructions of the same
data using two different projection kernels and two different filtering methods. In both
instances, the image to be reconstructed contains a single bright pixel at the centre of the
field-of-view. The sinogram of such an image (i.e. the combined projection data for the
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Figure 2.2: Differences in reconstruction due to differences in backprojector and filter im-
plementations. (a) a 33×33 phantom with one bright pixel, (b) sinogram of the phantom
(computed using a strip kernel from the ASTRA toolbox), (c) differences in (unfiltered)
backprojection when using different backprojectors: (left to right) backprojection using a
CPU line kernel from the ASTRA toolbox, backprojection using a GPU pixel-driven kernel
from the ASTRA toolbox, absolute difference between the two backprojections. (d) differ-
ences in reconstruction when using different filtering routines in FBP with the gpu-pixel
kernel as backprojector: (left to right) reconstruction using filtering in real space with the
Ram-Lak filter, reconstruction using the ramp filter in Fourier space, absolute difference
between the two reconstructions.

full range of angles) was computed using a CPU strip kernel projector from the ASTRA
toolbox [43]. Backprojections of this projection data using two other projectors - a CPU
line projection kernel and a pixel-driven kernel implemented on a graphics processing unit
(GPU) - show significant, radially-symmetric differences. These differences are dependent
on the number of projection angles used, and are highly structured, unlike differences due
to random noise. We also observe structured differences between reconstructions when
the same projection kernel (gpu-pixel) is used after different filtering operations in real
and Fourier space. This example highlights the impact of discretization and interpolation
choices on the final reconstruction obtained from identical raw data.

Our main contribution in this chapter is a heuristic approach that can improve repro-
ducibility in reconstructions. Our method consists of optimizing the filter used in differ-
ent software implementations of reconstruction methods. We call such optimized filters
implementation-adapted filters. The computation of our filters does not require knowl-
edge of the underlying software implementation of the reconstruction algorithm. Instead,
a wrapper routine around any black-box implementation can be used for filter computa-
tion. Once computed, these filters can be applied with the reconstruction software like
any other standard filter.

Our chapter is organized as follows. In Section 5.2, we formulate the reconstruction
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problem mathematically and discuss the effect of different software implementations. In
Section 2.3, we describe our algorithm for computing implementation-adapted filters.
Numerical experiments described in Sections 2.4 and 4.5 demonstrate use cases for our
filters on simulated and real data. Finally, we discuss extensions to the current work
in Section 5.5 and conclude our chapter in Section 4.6. Our open-source Python code
for computing implementation-adapted filters is available on GitHub (https://github.
com/poulamisganguly/impl-adapted-filters).

2.2 Background
2.2.1 Continuous reconstruction
Consider an object described by a two-dimensional attenuation function f : R2 → R.
Mathematically, the tomographic projections of the object can be modelled by the Radon
transform, R(f). The Radon transform is the line integral of f along parametrized lines
lθ,t = {(x, y) ∈ R2 |x cos θ + y sin θ = t}, where θ is the projection angle and t is the
distance along the detector. Projection data pθ(t) along an angle θ are thus given by

pθ(t) = R(f) =
∫∫

R2

f(x, y)δ(x cos θ + y sin θ − t)dxdy. (2.1)

The goal of tomographic reconstruction is to obtain the function f(x, y) given the
projections pθ(t) for various angles θ ∈ Θ. One way to achieve this is by direct inversion
of the Radon transform. Given a complete angular sampling in [0, π), the Radon transform
can be inverted giving the following relation [29]

f(x, y) =

∫ π

0

(∫ ∞

−∞
P̃θ(ω)|ω|e2πiω(x cos θ+y sin θ)dω

)
dθ, (2.2)

where P̃θ(ω) denotes the Fourier transform of the projection data pθ(t) and multiplication
by the absolute value of the frequency |ω| denotes filtering with the so-called ramp filter.

For noiseless and complete data, the Radon inversion formula (2.2) provides a perfect
analytical reconstruction of the function f(x, y) from its projections. However, in practice,
tomographic projections are obtained on a discretized detector, consisting of individual
pixels, and for a finite set of projection angles. Additionally, the reconstruction volume
must be discretized in order to represent it on a computer. Therefore, in practical
applications, a discretized version of (2.2) is used to obtain reconstructions.

2.2.2 Discrete reconstruction
Discretization of the reconstruction problem yields the following equation for the discrete
reconstruction r(xd, yd):

r(xd, yd) =
∑
θd∈Θ

∑
td∈T

h(td)Pθd(xd cos θd + yd sin θd − td), (2.3)
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where (xd, yd), θd and td denote discretized reconstruction pixels, angles and detector
positions, respectively, and h(td) is a discrete real-space filter. This inversion formula is
known as the filtered backprojection (FBP) algorithm.

The FBP equation (2.3) can be written algebraically as the composition of two matrix
operations: filtering and backprojection. Filtering denotes convolution in real space (or,
correspondingly, multiplication in Fourier space) with a discrete filter. Backprojection con-
sists of a series of interpolation and numerical integration steps to sum contributions from
different projection angles. These discretized operations can be implemented in a num-
ber of different ways and different software implementations often make use of different
choices for discretization and interpolation. Consequently, the reconstruction obtained
from a particular implementation is dependent on these choices. The reconstruction rI
from an implementation I can thus be written as

rI(h,p) = W T
I MI(h,p), (2.4)

where W T
I is the backprojector and MI(·, ·) is the (linear) filtering operation associated

with implementation I. We denote the discrete filter by h.
In the following subsection, we discuss some common choices for projection and

filtering operators in software implementations of analytical algorithms.

2.2.3 Differences in projectors and filtering
In order to discretize the Radon transform, we must choose a suitable discretization of the
reconstruction volume, a discretization of the incoming ray and an appropriate numerical
integration scheme. All these choices contribute to differences in different backprojectors
W T

I in (2.4).
Voxels (or pixels in 2D) in the reconstruction volume can be considered either to have

a finite size or to be spikes of infinitesimal size. Similarly, a ray can be discretized to
have finite width (i.e. a strip) or have zero width (i.e. a line). The numerical integration
scheme chosen might be piecewise constant, piecewise linear or continuous. All of these
different choices have given rise to different software implementations of backprojectors
[46]. There exist different categorizations of backprojectors in the literature; for example,
the linear kernel in the ASTRA toolbox is referred to as the slice-interpolated scheme in
[47] and the strip kernel is referred to as the box-beam integrated scheme in the same
work. In this chapter, we designate different backprojectors with the terms used in the
software package where they have been implemented.

In addition to the choices mentioned above, backprojectors have also been optimized
for the processing units on which they are used. For this reason, backprojectors that are
optimized to be implemented on graphics processing units (GPUs) might be different from
those that are implemented on a CPU due to speed considerations. In particular, GPUs
provide hardware interpolation that is extremely fast, but can also be of limited accuracy
compared to standard floating point operations.

So far, we have discussed real space backprojectors. Fourier-domain algorithms such
as Gridrec [42] use backprojectors that operate in the Fourier domain. These operators
are generally faster than real-space operators, and are therefore particularly suited for
accelerating iterative algorithms [48]. Unlike real space backprojectors, Fourier-space
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backprojectors perform interpolation in the Fourier domain. As this might lead to non-
local errors in the reconstruction, an additional filtering step is performed to improve the
accuracy of the interpolation.

Apart from differences in backprojectors, different implementations also vary in the
way they perform the filtering operation in analytical algorithms. Filtering can be per-
formed as a convolution in real space or as a multiplication in Fourier space. Real space
filtering implementations can differ from each other in computational conventions, for
example by the type of padding used [13] to extend the signal at the boundary of the
detector. Moreover, the zero-frequency filter component is treated in different ways be-
tween implementations. For example, the Gridrec implementation in TomoPy sets the
zero-frequency component of the filter to zero.

2.3 Implementation-adapted filters
We now present the main contribution of our chapter. In order to mitigate the differences
between implementations discussed in the previous section, we propose to specifically
tune the filter h for each implemented analytical algorithm. In the following, we describe
an optimization scheme for the filter, which helps us to reduce the differences between
reconstructions from various implementations.

We optimize the filter by minimizing the ℓ2 difference with respect to the projection
data p. This can be stated as the following optimization problem over filters h:

h∗
I = argmin

h
‖p−WrI(h,p)‖22, (2.5)

where rI is the reconstruction from implementation I. Note that the forward projector
W used above is chosen as a fixed operator in our method (the same for each imple-
mentation for which the filter is optimized) and does not have to be the transpose of the
implementation-specific backprojection operator W T

I . In order to improve stability and
take additional prior knowledge of the scanned object into account, a regularization term
can be added to the objective in (2.5).

The solution to the optimization problem above is a implementation-adapted filter
h∗
I . Once the filter has been computed, it can be used in (2.4) to give an optimized

reconstruction:
r∗I = W T

I MI(h
∗
I ,p).

Out of all reconstructions that an implemented algorithm can produce for a given dataset
p by varying the filter, this reconstruction, r∗I , is the one that results in the smallest
residual error. Such filters are known as minimum-residual filters and have previously
been proposed to improve reconstructions of real-space analytical algorithms in low-dose
settings [14], [15].

Our implementation-adapted filters are thus minimum-residual filters that have been
optimized to each implementation I. The main difference between the previous works
[14], [15] and our present study is that we use a fixed forward operator in our optimiza-
tion problem, which is not necessarily the transpose of the backprojection operator. More
importantly, our goal in this chapter is not the improvement of reconstruction accuracy,

27



but the reduction of differences in reconstruction between various software implementa-
tions.

We hypothesize that such minimum-residual reconstructions obtained using different
implementations are closer (quantitatively more similar) to each other than reconstruc-
tions obtained using standard filters. As an example for motivating this choice, let’s take
an implementation of an analytical algorithm from both TomoPy and the ASTRA toolbox.
Given a certain dataset, changing the reconstruction filter results in different reconstructed
images, each with a different residual error. Even though the implementations used by
TomoPy and ASTRA are fixed, the freedom in choosing a filter gives us an opportunity
to reduce the difference between reconstructions from both implementations. Tuning the
filter is a way to optimize the reconstruction according to user-selected quality criteria.
Choosing the minimum-residual reconstruction for each implementation results in recon-
structions that are the closest possible to each other in terms of data misfit. Closeness in
data misfit, under convexity assumptions, indicates closeness in pixel intensity values of
reconstruction images. Hence, the minimum-residual reconstructions for the two imple-
mentations are closer to each other than reconstructions with standard filters offered by
the implementations.

To compute the optimized filter (2.5), we use the fact that the reconstruction rI(h,p)
of data p obtained from an implementation of FBP or Gridrec is linear in the filter h.
This means that we can write the reconstruction as

rI(h,p) = RI(p)h,

where RI(p) is the reconstruction matrix of implementation I given projection data p.
Thus, the optimization problem (2.5) becomes

h∗
I = argmin

h
‖p−WRI(p)h‖22 =: argmin

h
‖p− FI(p)h‖22 (2.6)

The matrix FI(p) has dimensions Np ×Nf , where Np is the size of projection data and
Nf is the number of filter components. For a filter that is independent of projection
angle, the number of filter components, Nf , is equal to the number of discrete detector
pixels, Nd. The projection size Np := NdNθ, where Nθ is the number of projection
angles. FI(p) can be constructed explicitly by assuming a basis for filter components. A
canonical basis can be formed using Nd unit vectors {ei, i = 1, 2, . . . , Nd}, such that

e1 =


1
0
.
.
.
0

 , e2 =


0
1
.
.
.
0

 , . . . eNd
=


0
0
.
.
.
1

 .

Using these basis filters, each column of FI(p) can be computed by reconstructing p
using the implementation I, followed by forward projection with W :

fj = WrI(ej ,p), j ∈ {1, 2, . . . , Nd}
FI(p) =

(
f1 f2 f3 . . . fNd

)
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We can then substitute for FI(p) in (2.6) and solve for the optimized filter h∗
I . Note that

our method only requires evaluations of the implementation I by using it as a black-box
routine to compute the reconstructions rI(ej ,p) above. In other words, no knowledge of
the implementation I or any internal coding is required.

If we expand the filter in a basis of unit vectors, O(Np) reconstructions using the
implementation I and O(Np) forward projections with W must be performed for filter
optimization. In contrast, the complexity of a standard FBP reconstruction is of the order
of a single backprojection. Choosing a smaller set of suitable basis functions would result
in a reduction in the number of operations for filter optimization and, consequently, faster
filter computations. One way to do this is by exponential binning [14].

The idea of exponential binning is to assume that the real-space filter is a piecewise
constant function with Nb bins, where Nb < Nd. The bin width wi, for i = 1, 2, . . . , Nb,
is assumed to increase in an exponential fashion away from the centre of the detector,
such that:

wi =

{
1, |i| < Nl

2|i|−Nl , |i| ≥ Nl

, (2.7)

where Nl is the number of large bins with width 1. Exponential binning is inspired by the
observation that standard filters used in tomographic reconstruction, such as the Ram-
Lak filter, are peaked at the centre of the detector and decay to zero relatively quickly
towards the edges. Binning results in a reduction of free filter components from Nd to Nb.
Moreover, despite the reduction in components, it does not typically result in a significant
change in reconstruction quality [14].

The pseudocode for our filter computation method is shown in Algorithm 1. Here
we give further details of the routines used in the algorithm. The filter routine per-
forms filtering in the Fourier domain, which is equivalent to multiplication by the filter
followed by an inverse Fourier transform. The reconstructI routine calls the function
for reconstruction in implementation I with the internal filtering disabled. Finally, the
lstsq routine calls a standard linear least squares solver in NumPy [49] to compute filter
coefficients.

Algorithm 1 Implementation-adapted filter computation
1: procedure Compute filter(p, I, W ):
2: Create filter basis: B := {b1, b2, . . . , bNb

}
3: Compute columns of FI(p):
4: for bj ∈ B do
5: Filter data with basis filter: q ← filter(p, bj)
6: Reconstruct filtered projection with I: r ← reconstructI(q)
7: Forward project reconstruction fj ← flatten(Wr)
8: end for
9: Linear least squares fitting of filter coefficients: c← lstsq(FI(p),p)

10: Return filter: h∗ ←
∑Nb

j=1 cjbj
11: end procedure

Once a filter h∗ is computed, we can store it in memory, either as a filter in Fourier
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space or as a filter in real space after computing the Fourier transform of h∗. Using the
filter with a black-box software package involves calling the filter routine with the data
and the computed filter as arguments, followed by one call of the reconstructI routine
in a chosen algorithm (with its internal filtering disabled). Thus, the complexity of a
reconstruction using a computed implementation-adapted filter is the same as that of a
reconstruction run using a standard filter.

In the following sections, we describe numerical experiments and the results of filter
optimization on reconstructions.

2.4 Data and metrics
We performed a range of numerical experiments on real and simulated data to quanti-
tatively assess (i) the effect of our proposed optimized filters on the variations between
reconstructions from different implementations; (ii) the behaviour and dependence of our
proposed filters on acquisition characteristics such as noise and sparse angular sampling;
and (iii) the effect of our proposed filters on post-processing steps following the reconstruc-
tion block in Fig 2.1. In this section, we describe the software implementations used, data
generation steps and the metric used to quantify intra-set variability of reconstructions.

2.4.1 Software implementations of analytical algorithms
We optimized filters to commonly used software implementations of FBP and Gridrec.
For FBP, we considered different projector implementations in the ASTRA toolbox [43] as
well as the iradon backprojection function in scikit-image [44]. These implementations
use different choices of volume and ray discretization as well as numerical integration
schemes. From the ASTRA toolbox, we considered projectors implemented on the CPU
(strip, line and linear) as well as a pixel-driven kernel on the GPU (gpu-pixel, called
cuda in the ASTRA toolbox). For Fourier-space methods, we considered the Gridrec
implementation in TomoPy. We used the ASTRA strip kernel as the forward projector
W in (2.5) during filter computations.

2.4.2 Projection data
We performed experiments with both simulated and real data. Both data consisted of
projections acquired in a parallel-beam geometry along a complete angular range in [0, π).

Simulated foam phantom data
Simulated data of foam-like phantoms were generated using the foam_ct_phantom pack-
age in Python. This package generates 3D volumes of foam-like phantoms by removing,
at random, a pre-specified number of non-overlapping spheres from a cylinder of a given
material [50]. The simulated phantoms are representative of real foam samples used in to-
mographic experiments and are challenging to reconstruct due to the presence of features
at different length scales. At the same time, the phantoms are amenable to experimenta-
tion as data in different acquisition settings can be easily generated. Slices of one such
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phantom, which we used for the experiments in this chapter, are shown in Fig. 2.3 and
Fig. 2.5.

Ray tracing through the volume is used to generate projection data from a 3D foam
phantom. To simulate real-world experimental setups, where detector pixels have a finite
area, ray supersampling can be used. This amounts to averaging the contribution of n
neighbouring rays within a single pixel, where n is called the supersampling factor.

For our experiments, we generated a 3D foam with 1000 non-overlapping spheres with
varying radii. A parallel beam projection geometry, in line with synchrotron setups, was
used to generate projection data. We used ray supersampling with a supersampling factor
of 4, and each 2D projection was discretized on a pixel grid of size 256× 256. We varied
the number of projection angles, Nθ, in our experiments in order to determine the effect
of sparse sampling ranges on our filters.

Poisson noise was added to noiseless data by using the astra.add_noise_to_sino
function in the ASTRA toolbox [43]. This function requires the user to specify a value for
the photon flux I0. In an image corrupted with Poisson noise, each pixel intensity value
k is drawn from a Poisson distribution

fPois(k;λ) =
λke−λ

k!
,

with λ ∝ I0. High photon counts (and high values of λ) correspond to low noise settings.
All noise realizations in our experiments were generated with a pre-specified random seed.

Real data of shale
In order to validate the applicability of our method to real data, we performed numerical
experiments using microCT data of the Round-Robin shale sample N1 from the tomo-
graphic data repository Tomobank [51]. We used data acquired at the Advanced Photon
Source (APS) for our experiments. The Round-Robin datasets were acquired for charac-
terizing the porosity and microstructures of shale, and the same sample has been imaged
at different synchrotrons (using the same experimental settings) for comparison of results
[41]. The dataset we used was acquired with a 10x objective lens and had an effective
pixel size of approximately 0.7µm. Each projection in the dataset had pixel dimensions
2048 × 2048, and data were acquired over 1500 projection angles. In order to simulate
sparse angular range settings, we removed projections at intervals of m = 2, 3, 4, 5 and 10
from the complete data.

2.4.3 Quantitative metrics
Reconstructions of a 3D volume from parallel beam data can be done slice-wise, because
data in different slices (along the rotation axis) are independent of each other in a parallel
beam geometry. Therefore, all our quantitative metrics were computed on individual slices.
Reconstructed slices of the simulated foam phantom were discretized on a pixel grid of
size 256 × 256. Reconstruction slices of the Round-Robin dataset were discretized on a
pixel grid of size 2048 × 2048. All CPU reconstructions were performed on an Intel(R)
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Core(TM) i7-8700K CPU with 12 cores. GPU reconstructions were performed on a single
Nvidia GeForce GTX 1070 Ti GPU with CUDA version 10.0.

We were interested in comparing the similarity between reconstructions in a set of
images, without having a reference reconstruction. We quantified the intra-set variability
between reconstruction slices obtained from different implementations using the pixelwise
standard deviation between these. For a set of reconstruction slices {rI , I ∈ I} obtained
using different implementations I, the standard deviation of a pixel j is given by:

σj =

√
1

NI

∑
I∈I

(
(rI)j − r̄j

)2
; r̄j =

1

NI

∑
I∈I

(rI)j , (2.8)

where (rI)j is the intensity value of pixel j in reconstruction rI and NI is the total number
of implementations.

In our experiments, we reconstructed the same data using our set of implementations
{I ∈ I}, by using the Ram-Lak filter and the Shepp-Logan filter as defined in different
packages, and then by using filters {h∗

I , I ∈ I} (2.5) that were optimized to those
implementations. As a result, we achieved three sets of reconstructions: one set using
the Ram-Lak filter, a second set using the Shepp-Logan filter and a third set using the
implementation-adapted filters. We computed the pixelwise standard deviation (2.8) over
slices for all sets.

The mean standard deviation of a slice S (with dimensions N ×N) is defined as the
mean of pixelwise standard deviations in that slice:

σ̄S =
1

N2

∑
j∈JS

σj , (2.9)

where JS is the list of pixels in slice S.
In addition to the mean, the histogram of standard deviations (2.8) provides important

information about the distribution of standard deviation values in a slice. The mode of
this histogram is the value of standard deviation that occurs most, and the tail of the
histogram indicates the number of large standard deviations observed. For reconstructions
that are more similar to each other, we would expect the histogram to be peaked at a
value close to 0 and have a small tail.

In order to quantify the difference between a reconstruction slice and the ground truth
(in experiments where a ground truth was available), we used the root mean squared error
(RMSE) given by

RMSE(rI) =
√

1

N2

∑
(rI − rgt)2, (2.10)

where rgt is the ground truth reconstruction. For a set of reconstructions we used the
squared bias defined below to quantify the difference with respect to the ground truth:(

bias({rI , I ∈ I})
)2

=
(
r̄ − rgt

)2
, (2.11)

where r̄ :=
∑

I∈I
1
NI

rI is the mean over the set of reconstructions. The squared bias,
similar to the standard deviation in (2.8) is a pixelwise measure. The mean squared bias
over a slice S is obtained by taking the mean of (2.11) over all pixels in the slice.
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Figure 2.3: Reduction in intra-set variability between reconstructions of simulated foam
data (Nθ = 32, no noise) by using implementation-adapted filters. (top three rows)
Reconstructions of the central slice (slice no. 128) of a foam phantom. To highlight
intra-set discrepancies we show the absolute difference with respect to the corresponding
strip kernel reconstructions in the right half of each image. The rightmost column shows
pixelwise standard deviation σ in each set. (bottom row, left) Ground truth foam phantom
slice. (right) Histograms of standard deviations σ for all three sets. The Ram-Lak filter
and Shepp-Logan filter histograms overlap.

In our experiments, we also quantify the effect of filter optimization on later post-
processing steps after reconstruction. To do this, we threshold a set of reconstructions
using Otsu’s method [52], which picks a single threshold to maximize the variance in
intensity between binary classes. To quantify the accuracy of the resulting segmentations
and to compare the similarity in a set we used two standard metrics for segmentation
analysis: the F1 score and the Jaccard index. The F1 score takes into account false
positives (fp), true positives (tp) and false negatives (fn) in binary segmentation and is
given by:

F1 =
tp

tp+ 1
2 (fp+ fn) . (2.12)

The Jaccard index is the ratio between the intersection and union of two sets A and B.
In our case, one set is the segmented binary image and the other set is the binary ground
truth image:

J(A,B) =
|A ∩B|
|A ∪B|

. (2.13)
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2.5 Numerical experiments and results
In this section, we give details of our numerical experiments and discuss their results.

2.5.1 Foam phantom data
Reduction in differences between reconstructions
Fig. 2.3 shows the central (ground truth) slice of the foam phantom. Data along Nθ =
32 angles were reconstructed using all implementations using the Ram-Lak filter, the
Shepp-Logan filter and our implementation-adapted filters. Reconstructions using the
various filters are shown in Fig. 2.3. In order to highlight intra-set variability, we include
heatmaps showing the absolute difference with respect to one (strip) reconstruction.
Upon visual inspection, we see that discrepancies between reconstructions are smaller
in the set obtained using implementation-adapted filters. An interesting point to note is
that the Gridrec and iradon reconstructions show the largest differences from the ASTRA
strip kernel reconstruction in both sets. This suggests that differences between different
software packages are greater than differences between different projectors in the same
software package.

To further investigate intra-set variability, we use pixelwise standard deviation maps
for all sets of reconstructions. We observe that higher values of standard deviation
are observed when using the Ram-Lak and Shepp-Logan filters. This indicates that
quantitative differences between these reconstructions were more pronounced. In contrast,
reconstructions using our implementation-adapted filters were more similar, resulting in
low pixelwise standard deviations. Furthermore, the mode of the histogram of standard
deviations (in the central slice) is shifted closer to zero for reconstructions with our filters,
and the tail of the histogram is shorter. This highlights the fact that the maximum
standard deviation between reconstructions with our filters is smaller than the maximum
standard deviation in reconstructions with the Shepp-Logan or Ram-Lak filters.

Dependence of filters on noise and sparse angular sampling
We consider the effect of noise and sparse sampling on our filters. For the central slice
of the foam phantom shown in Fig. 2.3, we generated data by varying the number of
projection angles Nθ and the photon flux I0. For each of these settings, we computed
the mean standard deviation (2.9) between reconstruction slices. Our results are shown
in Fig. 2.4. For all noise and angular sampling settings, the mean standard deviation in
the slice was reduced by using implementation-adapted filters, with the difference being
particularly prominent for noisy and smaller angular sampling settings. Shepp-Logan
filter reconstructions had smaller mean standard deviation compared with Ram-Lak filter
reconstructions, except in situations where many angles (Nθ ≥ 256) were used. In the
high angle regime, reconstructions using the Ram-Lak filter have a relatively small number
of artefacts and improvements due to filter optimization are modest.

We also quantified the mean squared bias and the mean RMSE with respect to the
ground truth for this slice. From these plots, we observe that reconstructions using
implementation-adapted filters have lower mean squared bias and mean RMSE compared
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Figure 2.4: Implementation-adapted filters for noisy and sparsely sampled data. (top, left
to right) Mean standard deviations σ̄S for slice S = 128 as a function of the number of
projection angles Nθ, mean value of the squared bias, mean value of RMSE with respect
to the ground truth slice, and optimized filters in Fourier space. (bottom, left to right)
Mean standard deviations in S = 128 as a function of photon flux I0 (higher values of I0
correspond to lower noise levels) using Nθ = 64, mean value of the squared bias, mean
value of RMSE with respect to the ground truth slice, and optimized filters in Fourier
space.

with those for reconstructions with standard filters. High noise (low I0) and sparse
angular sampling settings result in an increase in bias and RMSE for all filter types.
However, the increase is sharper for the Shepp-Logan and Ram-Lak filters than for our
implementation-adapted filters. For every noise setting, the Ram-Lak filter results in
the worst reconstructions in terms of bias and RMSE. Although both bias and RMSE
increase as the number of projection angles is reduced in the noise-free setting, we
observe a reduction in mean standard deviation for reconstructions using implementation-
adapted filters. This suggests that in spite of a reduction in mean standard deviation
due to effective suppression of high frequencies, the reconstructions produced by our
implementation-adapted filters in this regime are incapable of mitigating the large number
of low-angle artefacts. In effect, these settings show a limit where optimization of a linear
filter is not sufficient for good reconstructions, and intra-set homogeneity is achieved at
the expense of an increase in bias and RMSE.

In addition, we also show the shapes of the filters (computed for the strip kernel
in the ASTRA toolbox) as a function of noise and angular sampling. As the number
of projection angles is increased, the shape of implementation-adapted filters approaches
that of the ramp filter. In these regimes, reconstructions obtained using the Ram-Lak
filter and the Shepp-Logan filter are nearly identical in terms of bias and RMSE. For
different noise settings, the filters only vary at certain frequencies. It is possible that
these frequencies are indicative of the main features in the foam phantom slice used.
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Figure 2.5: Variation of filters with projection data. (top) Two slices of a simulated foam
phantom with differences in features. (bottom left) Implementation-adapted filters for
all slices of the foam phantom (slice-specific filters). Central slice (slice no. 128) filters
for each implementation are indicated with bold lines. (bottom right) Scatter plot of
pixelwise standard deviations σ using slice-specific filters, the central slice filter and the
Shepp-Logan filter. Standard deviations using the central slice filter are almost the same
as those using slice-specific filters (orange dots). These points lie on a straight line (shown
in black) with slope ∼ 1 and intercept ∼ 0. In contrast, standard deviations using the
Shepp-Logan filter are higher than those using slice-specific filters (blue dots) for most
pixels.

Variation of filters with projection data
In order to understand how our filters change with changes in the data, we computed
filters for all slices of our simulated foam phantom. Two such slices are shown in Fig. 2.5.
These slices, although visually similar, have different features. Implementation-adapted
filters for all 256 slices of the foam phantom are shown in Fig. 2.5.

In order to study the applicability of the central slice filter to other slices, we performed
the following experiment. First, we reconstructed all slices using the slice-specific filters,
i.e. filters that had been optimized for each individual slice using different implementations.
Next, we reconstructed all slices with the central slice filter. As a baseline, all slices were
also reconstructed using the Shepp-Logan filter. Pixelwise standard deviations (2.8) were
computed for all pixels in the foam phantom volume for the three cases. The scatter plot
in Fig. 2.5 shows that the pixelwise standard deviations with the central slice filter are
nearly the same as those with the slice-specific filters. In fact, these points lie on a line
with slope nearly equal to one. This indicates that using the central slice filter results in
an equivalent reduction in differences between reconstructions as slice-specific filters. In
contrast, the pixelwise standard deviations using the Shepp-Logan filter are, for a majority
of pixels, larger than those obtained using slice-specific filters. This suggests that, for a
majority of pixels in the reconstruction volume, smaller values of standard deviation are
observed after filter optimization.
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Figure 2.6: Differences after thresholding using Otsu’s method. Reconstructions shown in
Fig. 2.3 were used as input to the thresholding routine. (top row) Thresholded reconstruc-
tions obtained using different backprojector implementations and the Shepp-Logan filter.
Corresponding Otsu thresholds t, F1 scores and Jaccard indices are given for each image.
(bottom row) Thresholded reconstructions obtained using implementation-adapted filters.

Our experiment suggests that using the central slice filter for all slices of the foam
phantom results in an equivalent reduction in standard deviation as slice-specific filters.
This paves the way to fast application of such filters in a real dataset. An implementation-
adapted filter computed for one slice of such a dataset could be reused with all other slices
with no additional computational cost, just like any of the standard filters in a software
package.

Reduction in differences after thresholding
We investigated the effect of our filters on the results of a simple post-processing step.
We reconstructed data (Nθ = 32, no noise) from the central slice of the foam phantom
and used Otsu’s method in scikit-image [44] to threshold reconstruction slices from dif-
ferent implementations. In Fig. 2.6, we show two sets of thresholded reconstructions, one
obtained using the Shepp-Logan filter and the other obtained using our implementation-
adapted filters. We show values for the Otsu threshold t, the F1 score with respect to the
ground truth slice and the Jaccard index in the figure. We used routines in scikit-learn
[53] to compute all segmentation metrics. For the set of Shepp-Logan filter reconstruc-
tions, the ranges of threshold values (0.32-0.36), F1 scores (0.63-0.71) and Jaccard indices
(0.46-0.55) were larger than the corresponding ranges for the implementation-adapted fil-
ter reconstructions. For the latter set, the Otsu threshold varied between 0.32 and 0.33
for all reconstructions. The F1 scores were between 0.81 and 0.83, and the Jaccard indices
were in the range of 0.69-0.72. Upon visual inspection of the zoomed-in insets we find
greater differences between thresholded reconstructions in the set of Shepp-Logan filter
reconstructions. These results suggest that post-processing steps such as segmentation
may be rendered more reproducible and amenable to automation if reconstructions are
obtained using implementation-adapted filters.
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Figure 2.7: Filter optimization using a reference reconstruction. (top row) Filters opti-
mized to a strip kernel reconstruction (top row, left). (top row) Reconstructions before
and after filter optimization using the ASTRA line kernel and Gridrec. Right half of each
image shows absolute difference with the reference reconstruction. RMSE values with re-
spect to the reference are also shown. (bottom row) Reconstructions of a different (test)
slice using the filters obtained for the slice in the top row. Pixelwise absolute difference
and RMSE using implementation-adapted filters are smaller in both cases.

Optimizing to a reference reconstruction
Although we focus on filter optimization in sinogram space in this chapter, a related
optimization problem is one where reconstruction results from different implementations
are optimized to a reference reconstruction. This type of optimization might be useful
when the result of one specific implementation is preferred due to its superior accuracy
and when the exact settings used with this algorithm are unknown.

In some cases, high-quality reconstructions might be computed with an unknown
(possibly in-house) software package during the experiment by expert beamline scientists.
When users reconstruct this data later at their home institutes, it might not be possible
to use the same software packages with identical settings. Our approach would enable
users to reduce the difference between their reconstructions and the high-quality reference
reconstructions.

Optimization in reconstruction space can be performed by modifying the objective in
(2.5):

h∗
I = argmin

h
‖rref − rI(h,p)‖22, (2.14)

where rref is the reference reconstruction.
To illustrate filter optimization in reconstruction space, we performed the following

experiment. Using the strip kernel reconstruction (with the Shepp-Logan filter) as a
reference, we computed optimized filters for two other implementations (ASTRA line
kernel and TomoPy Gridrec) for reconstructing the central slice of the foam phantom.
Subsequently, we reconstructed the sinogram with the Shepp-Logan filter and our filters.
These reconstructions are shown in the top row of Fig. 2.7. To quantify similarity with
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Figure 2.8: Reduction in differences between reconstructions of the Round-Robin dataset
(slice no. 896). (top three rows) Slice reconstructions using different implementations.
Reconstructions were performed by discarding every second projection from the full dataset.
The right half of the images show absolute differences with the corresponding strip kernel
reconstruction in each set. The rightmost column shows pixelwise standard deviations in
each set. (bottom row, left) Histograms of standard deviation for all three types of filters.
(right) Mean standard deviations σ̄S in slice S = 896 for different numbers of projection
angles.

the reference reconstruction, we computed the pixelwise absolute difference between each
reconstruction and the reference as well as the RMSE using the reference as ground truth,
which we denote as RMSEr. For both line and Gridrec backprojectors, optimizing the
filter to a reference reconstruction reduced the RMSEr and absolute difference. As a
further test, we applied the filters computed for this slice to a different slice of the foam
phantom, which did not have any overlaps with the slice used to compute the filters. For
this test slice, we again observed the reduction in RMSEr and absolute error, suggesting
that our filters were able to bring the resulting reconstructions closer to the reference
reconstruction.

2.5.2 Round-Robin data
Fig. 2.8 shows the results of our method on the central slice (slice no. 896) of the Round-
Robin dataset N1. These reconstructions were performed by discarding every second
projection from the entire dataset. From the heatmaps of absolute difference with respect
to the strip kernel reconstruction, we observe that intra-set differences are reduced by
using implementation-adapted filters. This is further shown by the pixelwise standard
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deviation maps. Standard deviations between reconstructions using the Ram-Lak and
Shepp-Logan filters are larger than those between reconstructions using implementation-
adapted filters. Similar to the distributions in Fig. 2.3, we see that our implementation-
adapted filters are able to shift the mode of the histogram of standard deviations towards
zero and to reduce the number of large standard deviations in the slice. We also observe
that the Ram-Lak filter reconstructions show higher standard deviations than the Shepp-
Logan filter reconstructions.

We also studied the effect of the number of projections used on the mean standard
deviation (2.9) in this slice. To do this, we performed experiments with the whole
dataset and also with parts of the data, where every 2, 3, 4, 5 and 10 projections were
discarded. For each instance, the data were reconstructed using the Ram-Lak filter, the
Shepp-Logan filter and our implementation-adapted filters. The plot of mean standard
deviations is shown in Fig. 2.8. For all projection numbers, filter optimization reduced
the mean standard deviation in the slice. The difference was smaller for higher projection
numbers, indicating that our filters are especially useful in improving reproducibility of
reconstructions when the number of projection angles is small. In practice, data along
few angles may be acquired to reduce the X-ray dose on a sample or to speed up acquisition
when the sample is evolving over time.

2.6 Discussion
In this chapter, we presented a method to improve the reproducibility of reconstructions in
the synchrotron pipeline. Our method uses an optimization problem over filters to reduce
differences between reconstructions from various software implementations of commonly-
used algorithms.

The objective function that was used in our optimization problem was the ℓ2-distance
between the forward projection of the obtained reconstruction and the given projection
data. This choice was motivated by the fact that ground truth reconstructions are
generally not available in real-world experiments. However, it is possible to formulate
a similar (and related) problem in reconstruction space, by using the ℓ2-distance between
the reconstruction from a given software package and a reference reconstruction as the
objective to be minimized. The solution to such an optimization procedure is a shift-
invariant blurring kernel in reconstruction space. The implementation-adapted filters
presented in this chapter can thus be viewed as a linear transformation of the projection
data that results in an automatic selection of shift-invariant blurring of reconstructions.

Our work here can be extended to optimize other pre-processing and post-processing
steps in the synchrotron pipeline. An important example is phase retrieval, which can be
formulated in terms of a filtering operation [35]. This filter can be optimized similarly in
order to improve reproducibility.

One limitation of our method is that we optimize to the data available. This opti-
mization can lead to undesired solutions in the presence of outliers in the data, such as
zingers or ring artefacts. Reconstructions of data corrupted with zingers (randomly placed
very bright pixels in the sinogram) are shown in Fig. 2.9. In this example we see that the
FBP reconstruction using the ASTRA strip kernel and the Shepp-Logan filter shows less
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Figure 2.9: Reconstructions of data corrupted with zingers showing an example where
the Shepp-Logan filter reconstruction and corresponding segmentation are better than
those using an implementation-adapted filter or an iterative method (SIRT). (top row)
Reconstructions of data from slice 128 (Nθ = 512, no noise) corrupted with zingers.
Zingers are more prominent in the reconstruction using an implementation-adapted filter
and in the SIRT reconstruction (after 800 iterations). (bottom row) Segmentations using
Otsu’s method of all three reconstructions. The Otsu threshold, F1 score and Jaccard
index for each image is given below.

prominent zingers than the reconstruction using an implementation-adapted filter. This
is because the optimized filter preserves the zingers in the data whereas the unoptimized
FBP reconstruction is independent of them. Other methods, such as the simultaneous
iterative reconstruction technique (SIRT), which iteratively minimize the data misfit also
give similar, poor reconstructions. One way to improve iterative reconstruction methods is
to use regularization, which can be achieved either by early stopping or by the inclusion of
an explicit regularization term in the objective function to be minimized. Analogous tech-
niques can be used for our filter optimization problem (2.5) to ensure greater robustness
to outliers.

Although we have demonstrated the reusability of our filters for similar data, these fil-
ters are dependent on the noise statistics and angular sampling in the acquired projections.
One way to improve the generalizability of filters would be to simultaneously optimize to
more than one dataset. This idea has been explored in [54], [55] using shallow neural
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networks.
Another promising direction is provided by deep learning-based methods, which have

been applied to improve tomographic image reconstruction in a number of ways [56].
Supervised deep learning approaches can be used to learn a (non-linear) mapping from
input reconstructions to a reference reconstruction. However, such approaches generally
require large amounts of paired training data (input and reference reconstructions). When
insufficient training pairs are available, various unsupervised approaches, such as the Deep
Image Prior method proposed in [57], are more suitable. For a quantitative comparison of
various popular deep learning-based reconstruction methods, we refer the reader to [58].

Apart from software solutions for image reconstruction, which have been the focus
of this chapter, improving reproducibility throughout the synchrotron pipeline requires
hardware adjustments to the blocks in Fig 2.1. Scanning the same sample twice under the
same experimental conditions leads to small fluctuations in the data due to stochastic noise
and drifts during the scanning process. In addition, beam-sensitive samples might deform
due to irradiation. Such changes lead to differences in reconstructions that are similar to
the differences due to software implementations, albeit less structured than those shown
in Fig. 2.2. To improve hardware reproducibility, controlled phantom experiments might
be performed to address differences in data acquisition. Finally, software and hardware
solutions can be effectively linked by using approaches like reinforcement learning for
experimental design and control [59], [60]. Such creative solutions might provide an
efficient way for synchrotron users to perform reproducible experiments in the future.

2.7 Conclusion
In this chapter, we proposed a filter optimization method to improve reproducibility of
tomographic reconstructions at synchrotrons. These implementation-adapted filters can
be computed for any black-box software implementation by using only evaluations of the
corresponding reconstruction routine. We numerically demonstrated the properties of and
use cases for such filters. In both real and simulated data, our implementation-adapted
filters reduced the standard deviation between reconstructions from various software im-
plementations of reconstruction algorithms. The reduction in standard deviation was
especially evident when the data were noisy or sparsely sampled.

Our filter optimization technique can be used to reduce the effect of differences in
discretization and interpolation in commonly-used software packages and is a key building
block towards improving reproducibility throughout the synchrotron pipeline. We make
available the open-source Python code for our method, allowing synchrotron users to
obtain reconstructions that are more comparable and reproducible.
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Chapter 3

Sparse grid-free reconstruction
of nanocrystal defects

3.1 Introduction
Electron tomography is a powerful technique for resolving the interior of nanomaterials.
After preparing a microscopic sample, a series of projection images (so called tilt-series)
is acquired by rotating the specimen in the electron microscope, acquiring data from a
range of angles. In recent years, electron tomography has been successfully applied to
reconstruct the 3D positions of the individual atoms in nanocrystalline materials [61]–[63].

Since the first demonstration of atomic resolution tomography of nanocrystals in
2010 by discrete tomography [64], a range of tomographic acquisition techniques and
reconstruction algorithms have been applied to reconstruct nanocrystals of increasing
complexity. In the discrete tomography approach, atoms are assumed to lie on a regular
lattice and the measured projections can be considered as atom counts along lattice lines.
A key advantage of this approach is its ability to exploit the constraints induced by the
discrete domain and range of the image. As a consequence, a small number of projection
angles (typically less than 5) can already lead to an accurate reconstruction [16], [17]. The
theoretical properties of the discrete reconstruction problem have been studied extensively
with results on algorithm complexity, uniqueness, and stability [65]–[67]. A key drawback
of the discrete lattice assumption when considering real-world applications to nanocrystal
data is that in many interesting cases the atoms do not lie on a perfect lattice due to
defects in the crystal structure or interfaces between different crystal lattices. In such
cases the atoms do not project perfectly into columns, forming a mismatch with the
discrete tomography model.

As an alternative, it has been demonstrated that a more conventional tomographic

This chapter is based on:
Atomic Super-resolution Tomography. P. S. Ganguly, F. Lucka, H. J. Hupkes, K. J. Batenburg.
International Workshop on Combinatorial Image Analysis. Springer, Cham, pp. 45-61, 2020.

43



series consisting of hundreds of projections of a nanocrystal can be acquired in certain
cases. An image of the nanocrystal is then reconstructed using sparsity based reconstruc-
tion techniques on a continuous model of the tomography problem. This approach does
not depend on the lattice structure and allows one to reconstruct defects and interfaces
[18]. As a downside, the number of required projections is large and to accurately model
the atom positions the reconstruction must be represented on a high-resolution pixel grid
resulting in a large-scale computational problem. This raises the question if a reconstruc-
tion problem can be defined that fills the gap between these two extremes and can exploit
the discrete nature of the lattice structure while at the same time allowing for continuous
deviations of atom positions from the perfect lattice.

In this chapter we propose a model for the atomic resolution tomography problem
that combines these two characteristics. Inspired by the algorithm proposed in [12], our
model is based on representing the crystal image as a superposition of delta functions
with continuous coordinates and exploiting sparsity of the image to reduce the number of
required projections. We show that by incorporating a physical model for the potential
energy of the atomic configuration, the reconstruction results can be further improved.

3.2 Problem setting
In this section we formulate a mathematical model of the atomic resolution tomography
problem and discuss several approaches to solve it. Some of these approaches assume that
the atom locations are restricted to a perfect grid, the crystal lattice, which corresponds
to only one possible local minimum of the potential energy of the atomic configuration.
To overcome certain limitations of this assumption, we propose an alternative formulation
where the atom locations are allowed to vary continuously and an explicit model of the
potential energy of their configuration is used to regularize the image reconstruction.

An atomic configuration is characterized by a positive measure µ on a bounded subset
X of Rd. We denote the space of such measures byM(X). The measure represents the
electron density, which is the probability that an electron is present at a given location.
The electron density around an atomic configuration is highest in regions where atoms are
present. In electron tomography, electron density is probed by irradiating a sample with a
beam of electrons. The beam undergoes absorption and scattering due to its interactions
with the electrons of the atomic configuration. The transmitted or scattered signal can
then be used to form an image. The Radon transform provides a simplified mathematical
model of this ray-based image formation process. For d = 2, the Radon transform Rµ
can be expressed as integrals taken over straight rays

R[µ](r, θ) :=
∫
l(r,θ)

dµ, (3.1)

l(r, θ) = {(x1, x2) ∈ R2 |x1 cos θ + x2 sin θ = r}, (3.2)

where we parametrized the rays by the projection angle θ and the distance on the detector r.
The corresponding inverse problem is to recover µ from noisy observations of y = Rµ+ ε.
One way to formulate a solution to this problem is via the following optimization over the
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space of measures:
minimize
µ∈M(X)

‖Rµ− y‖22, (3.3)

which is an infinite dimensional non-negative linear least-squares problem. In the following,
we will introduce a series of discretizations of this optimization problem. Numerical
schemes to solve them will be discussed in Section 3.3.

In situations where we only have access to data from a few projection angles, intro-
ducing a suitable discretization of (3.3) is essential for obtaining a stable reconstruction.
One way to achieve this is to restrict the atom locations to a spatial grid with n nodes,
xn
i=1, and model their interaction zone with the electron beam by a Gaussian with known

shape G. The atom centres are then delta peaks δxi
on the gridded image domain. The

Gaussian convolution of atom centres can be viewed as the “blurring” produced by thermal
motion of atoms. In fact, it is known from lattice vibration theory that, for large con-
figurations, the probability density function of an atom around its equilibrium position is
a Gaussian, whose width depends on temperature, dimensionality and interatomic forces
[68]. The discretized measure µ can then be written as

µgrid =
n∑

i=1

wi(G ∗ δxi
), (3.4)

where n is the total number of grid points and weights wi ≥ 0 were introduced to indicate
confidence in the presence or absence of an atom at grid location i. If we insert (3.4) in
(3.3) and introduce the forward projection of a single atom as ψi := R(G ∗ δxi) we get

‖Rµgrid − y‖22 = ‖R
n∑

i=1

wi(G ∗ δxi
)− y‖22 =

‖
n∑

i=1

wiR(G ∗ δxi
)− y‖22 =: ‖

n∑
i=1

ψiwi − y‖22 =: ‖Ψw − y‖22

The corresponding optimization problem is given by

minimize
w∈Rn

+

‖Ψw − y‖22 , (3.5)

which is a finite dimensional linear non-negative least squares problem.
The choice of the computational grid in (3.4) is unfortunately not trivial. Only in

certain situations, one can assume that all atoms lie on a lattice of known grid size and
orientation, and directly match this lattice with the computational grid. In general, one
needs to pick a computational grid of much smaller grid size. With the data y given, the
grid admits multiple solutions of (3.5) and most efficient computational schemes tend
to pick a blurred, artefact-ridden solution with many non-zero weights far from the true,
underlying µ, as we will demonstrate in Section 3.4. To obtain a better reconstruction, one
can choose to add sparsity constraints which embed our physical a priori knowledge that
µ originates from a discrete configuration of atoms. In our model (3.4), this corresponds
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(a) (b) (c)

Figure 3.1: Atomic configurations with (a) an interstitial point defect, (b) a vacancy and
(c) an edge dislocation.

to a w ∈ Rn
+ with few non-zeros entries. To obtain such a sparse solution we can add a

constraint on ℓ0 norm of the weights to the optimization problem:

minimize
w∈Rn

+

‖Ψw − y‖22

subject to |w|0 ≤ K.

However, this problem is NP-hard [69]. A approximate solution can be found by replacing
the ℓ0 norm with the ℓ1 norm and adding it to the objective function:

minimize
w∈Rn

+

‖Ψw − y‖22 + λ‖w‖1, (3.6)

where λ is the relative weight of the sparsity-inducing term. This particular choice of
formulation is not always best and alternative formulations of the same problem exist
[69].

For atomic configurations where only one type of atom is present, the weights can be
considered to be one where an atom is present and zero everywhere else. This corresponds
to discretizing the range of the reconstructed image. The fully discrete optimization
problem then becomes:

minimize
w∈{0,1}n

‖Ψw − y‖22. (3.7)

With image range discretization, a constraint on the number of atoms is typically no
longer needed because adding an additional atom with weight 1 after all atoms have been
found leads to an increase in the objective function.

Although the optimization problems (3.5), (3.6) and (3.7) allow for the recovery of
atomic configurations without solving (3.3), all of them rely crucially on discretization
of the domain of the reconstructed image, i.e. the assumption that atoms lie on a grid.
However, this assumption is not always true. In particular, atomic configurations often
contain defects where atom positions deviate from the perfect lattice. Fig. 3.1 shows
examples of common lattice defects. In order to resolve these defects correctly, the image
domain must be discretized to higher resolutions, i.e. the grid of possible atom positions
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Figure 3.2: The normalized Lennard-Jones pair potential as a function of normalized
interatomic separation.

must be made finer. This introduces two main problems: First, making the grid finer for
the same data makes the inverse problem more ill-posed. Second, the computational time
increases significantly even for modestly sized configurations.

In order to overcome these difficulties, we revisit (3.4) and remove the requirement
for xi to lie on a grid. The projection of a single atom now becomes a function of its
location x ∈ Rd, ψ(x) := R(G ∗ δx). We keep the image range discretization introduced
above by requiring wi ∈ {0, 1}. Now, (3.7) becomes

minimize
x∈Xn,w∈{0,1}n

∥∥∥ n∑
i=1

wiψ(xi)− y
∥∥∥2
2
. (3.8)

The minimization over x is a non-linear, non-convex least-squares problem which has
been studied extensively in the context of mathematical super-resolution [12], [70], [71]. In
these works, efficient algorithms are derived from relating it back to the infinite dimensional
linear least-squares problem on the space of measures (3.3). For instance, for applications
such as fluorescence microscopy [12] and ultrasound imaging [72], an alternating descent
conditional gradient (ADCG) algorithm has been proposed, which we will revisit in the
next section. Compared to these works, we have a more complicated non-local and under-
determined inverse problem and the minimization over w adds a combinatorial, discrete
flavor to (3.8). To further tailor it to our specific application, we will incorporate physical
a priori knowledge about atomic configurations of crystalline solids by adding a functional
formed by the atomic interaction potentials. This will act as a regularization of the
underlying under-determined inverse problem.
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3.2.1 Potential energy of the atomic configuration
The total energy of an atomic configuration is the sum of its potential energy and kinetic
energy. As we consider only static configurations, the kinetic energy of the configuration
is zero and the total energy is equal to the potential energy. In order to compute the
potential energy of the atomic configuration, we must prescribe the interaction between
atoms. In this chapter, we use the Lennard-Jones pair potential, which is a simplified
model of interatomic interactions. The Lennard-Jones potential VLJ as a function of
interatomic separation r is given by [73]

VLJ(r) =

4ϵ
[(σ
r

)12
−
(σ
r

)6]
, r < rcut

0, r ≥ rcut
(3.9)

where ϵ is the depth of the potential well and σ is the interatomic separation at which the
potential is zero. The separation at which the potential reaches its minimum is given by
rm = 21/6σ. The parameter rcut denotes a cut-off separation beyond which the potential
is inactive. Fig. 3.2 shows the form of the the Lennard-Jones pair potential as a function
of interatomic separation. The potential energy of the atomic configuration is computed
by summing over the pairwise interaction between all pairs of atoms

Vtot(x1,x2, ...,xN ) =
∑
i>j

VLJ(xi − xj). (3.10)

Adding this energy to the objective in (3.8) leads to

minimize
x∈C,w∈{0,1}n

∥∥∥ n∑
i=1

wiψ(xi)− y
∥∥∥2
2
+ αVtot(x). (3.11)

The regularization parameter, α, adjusts the relative weight of the energy term, so that
by tuning it we are able to move between atomic configurations that are data-optimal
and those that are energy-optimal. The constraint set C ⊂ Xn is defined by a minimum
distance rmin, such that |xi − xj | > rmin, ∀i > j. The minimum distance, rmin, is
chosen to be smaller than the optimal interatomic separation rm and allows us to set α
to 0 and still avoid configurations where atoms are placed exactly at the same position.
For small separations, the energy is dominated by the

(
σ
r

)12 term and increases sharply
for separations less than rm. Thus, for non-zero α, configurations where atoms have a
separation less than rm are highly unlikely.

3.3 Algorithms
In this section we discuss several algorithms to solve the optimization problems introduced
in Section 3.2.
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3.3.1 Projected gradient descent
The non-negative least-squares problem (3.5) can be solved with a simple iterative first-
order optimization scheme. At each step of the algorithm, the next iterate is computed by
moving in the direction of the negative gradient of the objective function. Non-negativity
of the weights is enforced by projecting negative iterates to zero. Mathematically, each
iterate is given by

wk+1 =
∏

+

(
wk + tΨT (Ψwk − y)

)
, (3.12)

where t is the step size and the projection operator is given by∏
+
(·) = max( · , 0). (3.13)

In the numerical experiments in Section 3.4, we used the SIRT algorithm [29] as imple-
mented in the tomographic reconstruction library ASTRA [7], which is based on a minor
modification of the iteration described above.

3.3.2 Proximal gradient descent
If we add the non-smooth ℓ1 regularizer and obtain problem (3.6), we need to extend
(3.12) to a proximal gradient scheme [74]

wk+1 = proxh
(
wk + tΨT (Ψwk − y)

)
, (3.14)

where the projection operator (3.13) is replaced by the proximal operator of the convex
function

h(x) :=

{
λ‖x‖1 x ≥ 0

0 elsewhere , (3.15)

which is given by the non-negative soft-thresholding operator

proxh(x) =
{
x− λ, x ≥ λ
0, elsewhere .

In the numerical experiments in Section 3.4, we used the fast iterative soft-thresholding
algorithm (FISTA) [75] as implemented in the Python library ODL [8], which is based on
a slight modification of the iteration described above.

3.3.3 Simulated annealing
For solving the fully discrete problem (3.7), we used a simulated annealing algorithm as
shown in Algorithm 2, which consists of two subsequent accept-reject steps carried out
with respect to the same inverse temperature parameter β. In the first one, the algorithm
tries to add a new atom to the existing configuration. In the second one, the atom
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Algorithm 2 Discrete simulated annealing
1: while β < βmax do
2: Select new atom location: w̃k ∈ argmink∈C Ψwk − y
3: Add new atom to current configuration: w̃k+1 ← {wk, w̃k}
4: Accept new configuration with a certain probability:
5: if β‖Ψw̃k+1 − y‖22 < β‖Ψwk − y‖22 then
6: wk+1 ← w̃k+1

7: else
8: Generate random number: t ∈ rand[0, 1)
9: if t < e−β∥Ψw̃k+1−y∥2

2/e−β∥Ψwk−y∥2
2 then

10: wk+1 ← w̃k+1

11: end if
12: end if
13: Move atom: wk+1 ← random move(wk+1)
14: Run acceptance steps 5–13
15: Increase β
16: end while

locations are perturbed locally. As β is increased towards βmax, fewer new configurations
are accepted and the algorithm converges to a minimum.

In the atom adding step at each iteration k, the algorithm tries to add an atom at one
of the grid location i where the residual Ψwk − y is minimal (this corresponds to flipping
wk

i from 0 to 1 in (3.7)). The allowed grid locations belong to a constraint set C, such
that no two atoms are closer than a pre-specified minimum distance rmin. To perturb the
atom positions locally, the algorithm selects an atom at random and moves it to one of
its 4 nearest neighbor locations at random.

Algorithm 3 ADCG with energy
1: for k = 1 : kmax do
2: Compute next atom in grid g:

xnew ∈ argminxnew∈g,(xk,xnew)∈C ‖
∑k

i=1 ψ(xi)−y+ψ(xnew)‖+αVtot(xk,xnew)

3: Update support: xk+1 ← {xk,xnew}
4: Locally move atoms:

xk+1 ← minx∈X ‖Ψµ(xk+1)− y‖22 + αV (xk+1)
5: Break if objective function is increasing:
6: if ‖Ψµ(xk+1)− y‖22 + αV (xk+1) > ‖Ψµ(xk)− y‖22 + αV (xk) then break
7: end if
8: end for
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3.3.4 ADCG with energy
Variants of the Frank-Wolfe algorithm (or conditional gradient method) [19], [76] have
been proposed for solving problems of the form (3.8) [72], [77] without discrete constraints
for w and are commonly known as alternating descent conditional gradient (ADCG)
schemes (see [78] for an analysis specific to multidimensional sparse inverse problems).
Here, we modify the ADCG scheme to

1. incorporate binary constraints on w

2. handle the singularities of the atomic interaction potentials

3. avoid local minima resulting from poor initializations

The complete algorithm is shown in Algorithm 3. Essentially, the scheme also alternates
between adding a new atom to the current configuration and optimizing the positions of
the atoms.

In the first step, the image domain is coarsely gridded and the objective function after
adding an atom at each location is computed. Locations closer to existing atoms than
rmin are excluded. In the second step, the atom coordinates are optimized by a continuous
local optimization method. Here, the Nelder-Mead method [79] implemented in SciPy
[80] was used.

A continuation strategy is used to avoid problems resuling from poor initilizations:
Algorithm 3 is run for increasing values of α, starting from α = 0. The reconstruction
obtained at the end of a run is used as initialization for the next. In the following section,
we demonstrate the effect of increasing α on the reconstructions obtained and discuss how
an optimal α was selected. In the following section, we refer to Algorithm 3 as “ADCG”
when used for α = 0 and as “ADCG with energy” otherwise.

3.4 Numerical experiments
We conducted numerical experiments by creating 2D atomic configurations with defects
and using the algorithms discussed in Section 3.3 to resolve atom positions. In this
section we describe how the ground truth configurations were generated and projected,
and compare the reconstruction results of different algorithms.

3.4.1 Ground truth configurations
We generated ground truth configurations using the molecular dynamics software HOOMD-
blue [81], [82]. We created perfect square lattices and then induced defects by adding
or removing atoms. The resulting configuration was then relaxed to an energy minimum
using the FIRE energy minimizer [83] to give the configurations shown in Fig. 3.1. The fol-
lowing parameter values were used in (3.9) for specifying the Lennard-Jones pair potential
between atoms.
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Defect type ϵ σ rcut

Interstitial defect 0.4 0.15 0.4
Vacancy 0.4 0.14 0.4
Edge dislocation 0.4 0.13 0.17

3.4.2 Discretized projection data

We generated two 1D projections for each ground truth atomic configuration at projection
angles θ = 0◦, 90◦. As discussed in Section 3.2, the projection of a single atom centre is
given by a Gaussian convolution followed by the Radon transform. The Radon transform
of a Gaussian is also a Gaussian. Therefore, we interchanged the two operations in the
forward transform to speed up the computations. The sum over individual projections of
atom centres was used as the total (noise-free) projection. Using the Radon transform
in (3.1), each atom centre was projected onto a 1D detector, following which it was
convolved with a 1D Gaussian of the form G(z) = e−(z−z0)/ς

2 , where z0 is the position
of the atom centre on the detector and ς controls the width of the Gaussian. Finally, the
continuous projection was sampled at a fixed number of points to give rise to a discrete
projection. For our experiments, the ς of the Gaussian function was taken to be equal to
the discretization of the detector given by the detector pixel size d. Both were taken to
be 0.01.

3.4.3 Discretization of the reconstruction volume

For SIRT, FISTA and simulated annealing (described in subsections 3.3.1, 3.3.2 and 3.3.3,
respectively), each dimension of the reconstruction area was discretized using the detector
pixel size d. Therefore, there were 1/d× 1/d grid points in total.

Gridding is required for our variant of ADCG (subsection 3.3.4, Algorithm 3) at the
atom adding step. We found that a coarse discretization, with less than 1/9th the number
of grid points, was already sufficient.

3.4.4 Comparison between reconstructions

The reconstructions obtained with the different algorithms are shown in Fig. 3.3. For each
reconstruction, data from only two projections were used. Note that two projections is
far from sufficient for determining the correct atomic configuration and several different
configurations have the same data discrepancy.
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Figure 3.3: Reconstructions of atomic configurations with (a)–(f) an interstitial point
defect, (g)–(l) a vacancy and (m)–(r) an edge dislocation from two projections. For the
simulated annealing, ADCG and ADCG with energy reconstructions, atoms are coloured
according to their Euclidean distance from the ground truth. The ground truth positions
are marked with red crosses. In (j)–(l) an extra atom (shown in red) was present in the
reconstructions but not in the ground truth.
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Figure 3.4: Reconstructions of a vacancy defect from three projections. For the simulated
annealing, ADCG and ADCG with energy reconstructions, atoms are coloured according
to their Euclidean distance from the ground truth. Ground truth positions are marked
with red crosses.

In the SIRT reconstructions, atom positions were blurred out and none of the defects
were resolved. In all cases, the number of intensity peaks was also different from the true
number of atoms. Although FISTA reconstructions, which include sparsity constraints on
the weights, were less blurry, atoms still occupied more than one pixel. For both these
algorithms, additional heuristic post-processing is required to output atom locations. In
the edge dislocation case, both algorithms gave rise to a configuration with many more
atoms than were present in the ground truth.

The discrete simulated annealing algorithm performed better for all configurations.
For the interstitial point defect and edge dislocation, the number of atoms in the recon-
struction matched that in the ground truth. The positions of most atoms, however, were
not resolved correctly. Moreover, the resolution, like in previous algorithms, was limited to
the resolution on the detector. We ran the simulated annealing algorithm for comparable
times as the ADCG algorithms and picked the solution with the least data discrepancy.

Already the ADCG algorithm for α = 0 performed far better than all the previous
algorithms. For the configurations with an interstitial point defect and edge dislocation,
all but a few atom locations were identified correctly. For the configuration with a
vacancy, all atoms were correctly placed. However, an additional atom at the centre
of the configuration was placed incorrectly.

Adding the potential energy (ADCG with energy) helps to resolve atom positions that
were not identified with α = 0. For the interstitial point defect and edge dislocation,
these reconstructions were the closest to the ground truth. Adding the energy to the
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Interstitial defect Vacancy (3 projs. ) Edge dislocation
Number
of
atoms

Mean
distance

Number
of
atoms

Mean
distance

Number
of
atoms

Mean
distance

Ground truth 37 0.0000 48 0.0000 39 0.0000
SIRT 36 – 49 – 66 –
FISTA 36 – 49 – 66 –
Simulated an-
nealing

37 0.0184 48 0.0164 39 0.0159

ADCG 37 0.0138 48 0.0130 39 0.0049
ADCG with
energy

37 0.0018 48 0.0024 39 0.0048

Table 3.1: Number of atoms and mean Euclidean distance from ground truth atoms for
reconstructions obtained with different algorithms. Thresholding was used to compute
the number of atoms detected in the SIRT and FISTA reconstructions.

configuration with a vacancy moved the atoms near the defect further apart but was not
able to correct for the extra atom placed. For this case, we performed an additional
experiment with three projections at 0◦, 45◦ and 90◦. These results are shown in Fig. 3.4.
Taking projections at different angles (e.g. 0◦, 22.5◦ and 90◦) did not improve results. The
defect was still not resolved in the SIRT and FISTA reconstructions. However, the number
of atoms in the simulated annealing, ADCG and ADCG with energy reconstructions
was correct. Once again, the reconstruction obtained with our algorithm was closer to
the ground truth than all other reconstructions, with all but one atom placed correctly.
Reconstructions with 3 projections for the interstitial point defect and edge dislocation
were not significantly different from those with 2 projections. In Table 3.1, we report the
number of atoms detected and (where applicable) the mean Euclidean distance of atoms
from the ground truth. Note that for computing the mean distance, we required that
the number of atoms detected in the reconstruction matched that in the ground truth.
Thresholding with a pre-defined minimum distance between peaks was used to detect
atoms in the SIRT and FISTA reconstructions.

3.4.5 Effect of adding energy to the optimization
To resolve atom positions using Algorithm 3, the contribution of the potential energy was
increased gradually by increasing α. In Fig. 3.5, we show the effect of adding energy
to the optimization problem. For α = 0, an initial guess for the true configuration
was obtained. This configuration, though data optimal, was not the ground truth. A
quantitative measure of this mismatch is the Euclidean distance between the reconstructed
atom locations and those in the ground truth. As α was increased, the reconstructions
evolved from being data-optimal to being energy-optimal. At a certain value of α, the
Euclidean distance between reconstructed and ground truth atom locations decreased
to zero. Increasing α beyond this point led to a large increase in the data discrepancy
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Figure 3.5: (a)-(d): Increasing the weighting of the energy term from α = 0.0 to α = 10.0
helps to resolve the correct atomic configuration. The reconstructed atoms are coloured
according to their Euclidean distance from the atoms in the ground truth. (e) At high
values of α, the reconstructions have a high data discrepancy and correspond to one of
the global minima of the potential energy. (f) From the plots of potential energy and data
discrepancy, an optimal value of α (indicated by the grey line) is selected. Increasing α
beyond this optimal value leads to a large increase in the data discrepancy due to addition
of more atoms.

term due to the addition of more atoms. For very high values of α, the configurations
obtained were essentially global minima of the potential energy, such as the honeycomb
configuration in Fig. 3.5(e) for α = 100.0. An optimal value of the regularization
parameter was selected by increasing α to the point at which more atoms were added to
the configuration and a jump in the data discrepancy was observed.

3.5 Discussion
The results of our numerical experiments demonstrate that algorithms like ADCG, which
do not rely on domain discretization, are better at resolving the defects in the atomic
configurations shown in Fig. 3.1. Moreover, the output from ADCG is a list of coordinates
and not an image like that of SIRT or FISTA, which requires further post-processing
steps to derive the atom locations. Direct access to coordinates can be particularly useful
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because further analysis, such as strain calculations, often require atom positions as input.
Adding the potential energy of the atomic configuration to the optimization problem

resulted in reconstructions that were closer to the ground truth. One challenge of the
proposed approach (with or without adding the potential energy) is that the resulting
optimization problem is a non-convex function of the atom locations. The numerical
methods we presented are not intentionally designed to escape local minima and are
therefore sensitive to their initialization. To improve this, one important extension would
be to also remove atoms from the current configuration, which might make it possible to
resolve the vacancy defect in Fig. 3.3 with two projections. More generally, one would need
to include suitable features of global optimization algorithms [84] that do not compromise
ADCG’s computational efficiency (note that we could have adapted simulated annealing
to solve (3.11) but using a cooling schedule slow enough to prevent getting trapped in
local minima quickly becomes practically infeasible). A related problem is to characterize
local and global minimizers of (3.11) to understand which configurations can be uniquely
recovered by this approach and which cannot. To process experimental data, it may
furthermore be important to analyze the impact of the error caused by the approximate
nature of the mathematical models used for data acquisition (R, G) and atomic interaction
(VLJ).

3.6 Conclusions
In this chapter we proposed a novel discrete tomography approach in which the locations
of atoms are allowed to vary continuously and their interaction potentials are modeled
explicitly. We showed in proof-of-concept numerical studies that such an approach can
be better at resolving crystalline defects than image domain discretized or fully discrete
algorithms. Furthermore, in situations where atom locations are desired, this approach
provides access to the quantity of interest without any additional post-processing. For
future work, we will extend our numerical studies on this atomic super-resolution approach
to larger-sized scenarios in 3D, featuring realistic measurement noise, acquisition geome-
tries, more suitable and accurate physical interaction potentials and different atom types.
This will require additional computational effort to scale up our algorithm and will then
allow us to work on real electron tomography data of nanocrystals.

57



58



Chapter 4

Grid-free marker-based
alignment in cryo-electron
tomography

4.1 Introduction
Cryo-electron tomography (cryoET) is a powerful imaging technique to resolve the struc-
tures of biomolecules and cellular components in situ using an electron microscope [5]. In
recent years, advancements in detector technology and image processing methods have
greatly improved the resolution of structure determination routines using cryoET, down
to near-atomic resolution [85].

A typical cryoET workflow consists of tilt-series acquisition, tilt-series alignment and
reconstruction, followed by post-processing steps such as per-particle reconstruction re-
finement, segmentation and sub-tomogram averaging [86], [87].

The image formation process in cryoET is as follows. A frozen sample is inserted into a
transmission electron microscope (TEM) where it is irradiated with an electron beam, and
the resulting transmitted beam lands on the camera to form a TEM image. For biological
samples, the observed image contrast is mainly phase contrast because such samples are
made up of light materials and thus are weak scatterers [88]. In contrast, gold markers are
strong scatterers and show clear image contrast even under low-dose acquisition conditions.
In order to obtain a tomographic tilt series (i.e. a series of projection images for consecutive
angles), images of the sample are acquired at different view angles by tilting the sample
with respect to the electron beam.

Aspects of cryoET that distinguish it from other CT setups are as follows. Firstly, the
This chapter is based on:

SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estima-
tion in Cryo-Electron Tomography. P. S. Ganguly, F. Lucka, H. Kohr, E. Franken, H. J. Hupkes
and K. J. Batenburg. IEEE Transactions on Computational Imaging, vol. 8, pp. 651-665, 2022.
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geometry of the experimental system limits the extent to which the sample can be tilted.
Moreover, the increase in apparent sample thickness with increasing tilt allows projection
images to only be acquired for a limited angular range in cryoET, usually in [−60◦, 60◦],
resulting in a missing wedge of information that is not available during reconstruction [20].
Secondly, cryoET samples are dose-sensitive, which limits the total dose during acquisition
and leads to very noisy projection images when a large number are acquired. Thirdly, the
sample undergoes local and global movements during the acquisition procedure, making
it difficult to reconstruct with a constant sample assumption. For a detailed discussion
on the mathematics of electron tomography we refer the reader to [89].

The acquired tomographic tilt series must be corrected for global and local sample
motion during tilt-series acquisition [90]. Types of global motion include rotations and
shifts of the sample with respect to the field-of-view (FoV) captured by the camera.
Local motion includes sample deformation induced by the electron beam. In addition,
a build up of surface charges due to irradiation can lead to apparent sample motion
due to a microlensing effect [91]. When not corrected, sample motion leads to blurred
reconstructions and poor resolution of the biological structures extracted by further post-
processing [92]. Tilt-series alignment, the process of figuring out geometric relationships
between projections in the tilt series, provides a way to correct for these effects so that
the highest possible resolution can be achieved in subsequent reconstructions.

Beam-induced local sample deformation is a crucial limiting factor in high-resolution
cryoET studies [93]. In particular, as shown in Fig. 4.1(a), compensation of local mo-
tion during alignment leads to sharper reconstructions and thus more reliable structure
determination. In [93], the authors propose a method to extend currently used alignment
methods with a sample deformation term that takes into account local sample motion
induced by the electron beam. It has previously been observed that cryoET samples un-
dergo “doming” motion, where the sample exhibits an upward deformation perpendicular
to the sample plane (Fig. 4.1(b)). The authors of [93] model this motion using polyno-
mial surfaces with coefficients that can be estimated as part of a minimization scheme.
In addition to global shifts and rotations, the parameters of the doming model are fitted
by solving a non-linear least-squares problem.

One of the drawbacks of the doming model approach is that it requires labelled marker
locations in the tilt series as input, where the same marker has to be identified in all tilt
images such that its locations can be connected to a trace. Markers are usually identified
and traced in tilt-series images by template matching, a procedure that is prone to errors
when the signal-to-noise ratio in tilt images is low, when markers cluster together or
when they overlap in projection while being separate in 3D [90]. Other, state-of-the-art
approaches in local sample deformation correction such as emClarity [94] and M [95] rely
on detecting features from reconstructed tomograms and using these as fiducials, and are
computationally expensive.

An additional disadvantage of the doming model method is the large number of param-
eters that must be estimated because no additional prior information on the deformation
field is incorporated. Without smoothness constraints on the time evolution of the defor-
mation field, the model allows deformation parameters to vary freely over the tilt series
and does not penalize unphysical deformations.

Though not always appropriate, smoothness constraints on local sample motion are
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Figure 4.1: (a) Reconstructions of a gold bead marker using (top two rows) standard
alignment without sample deformation compensation and (bottom two rows) with sample
deformation compensation. Images reproduced with permission from [93]. (b) Forward
models used in SparseAlign and the doming model method. At t = 0 the sample with
markers is not deformed. Projected marker locations (red dots) are convolved with a
known shape function to yield projection data (blue line). As the sample is tilted, it
undergoes doming deformation. At time t = t′, the change in marker locations caused by
doming (purple upward arrows) leads to a change in the projection data.

reasonable in the context of continuous-tilt cryoET (CTT) data collection, where thou-
sands of very noisy projection images are captured continuously while the stage is tilted
with a constant rotation speed [96]. This allows for a reduction in the number of doming
model parameters.

We propose extensions to the doming model approach that make it possible to align
tilt-series images without labelling markers in the tilt series. Taking inspiration from
algorithms proposed in the context of single-molecule localization microscopy [12], we
use a continuous formulation of the marker localization problem, which enables us to
formulate an image-based loss and identify marker locations with a localization precision
greater than the pixel spacing of the acquired tilt-series data. We equip the localization
scheme with an additional deformation estimation routine and solve for the parameters of
the doming model.

In addition, we incorporate a polynomial time dependence of the deformation field,
which assumes smoothness of the local sample motion after global motion correction.
This assumption is motivated by the fact that local sample motion is the result of positive-
charge accumulation on the sample due to irradiation with a high-energy electron beam
[92], [97]. As charge accumulation happens continuously and smoothly over the acquisi-
tion time, we can assume that local sample motion is also smooth. This assumption helps
us reduce the number of deformation parameters by orders of magnitude. An important
aspect of our approach, however, is that it is independent of the choice of deformation
field parametrization.
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To validate our proposed method, we apply it to simulated data in 2D and 3D as well
as experimental data containing gold markers on ice. As the main focus of our chapter is
on testing the properties and robustness of our proposed method, we focus on simulation
studies with ground-truth marker locations and deformation fields. In experimental studies,
we restrict ourselves to data of gold markers on ice to disentangle the marker localization
and deformation estimation problem from the later image reconstruction problem. We
study the robustness of our approach with respect to noise, forward model mismatch and
deformation model mismatch. We show that we are able to estimate deformation fields
and marker locations with similar accuracy as the doming model approach without the
need for labelled marker data, and that our method estimates deformation parameters
accurately despite model mismatch.

This chapter is structured as follows. In Section 4.2, we review the mathematical
formulation of the alignment problem and discuss a unifying framework for solving it. We
derive the doming model approach in [93] as one possible choice of alignment method.
We also present the main contribution of our chapter: a method that localizes markers
and estimates deformation fields without marker labelling. In Section 4.3, we give details
of the optimization techniques used to solve our extended problem. In Section 5.4, we
describe the numerical experiments performed, and discuss our results on 2D and 3D
simulated data as well as experimental data in Section 4.5. We end our chapter with a
critical discussion of our approach and point to possible extensions in Section 4.6.

4.2 Mathematical formulation
We consider an initial sample u0(ρ), with ρ ∈ Ω ⊂ Rd (d = 2, 3 for simulated data
and d = 3 for experimental data), which consists of two distinct components with non-
overlapping supports:

u0(ρ) = um0 (ρ) + us0(ρ), (4.1)
where um0 (ρ) represents markers and us0(ρ) represents the biological sample in the back-
ground.

This initial sample deforms over time, in the sense

ut(ρ) = u0(ρ−Dt(P )(ρ)) =:WDt(P )u0(ρ), (4.2)

whereDt(P, ρ) : P×Ω→ Rd is a time- and space-dependent deformation field parametrized
by global parameters P ∈ P . The action of this deformation field can be represented
by a linear warping operator WDt(P ). The global deformation parameters couple the re-
construction problems for individual markers. Later in this section we discuss appropriate
parametrizations for the deformation field.

Projection data Ψt of the deforming configuration are generated by applying the
continuous Radon transform to ut(ρ):

Ψt = Rθtut(ρ) = RθtWDt(P ) (u
m
0 + us0) , (4.3)

where θt is the projection angle and the Radon transform for d = 2 is defined as a line
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integral over rays:

Rθt [u](s) =

∫
l(s,θt)

u(ρ) dρ

l(s, θt) = {(x, y) ∈ R2 |x cos θt + y sin θt = s}.

Projection in 3D for a parallel beam geometry, as in the case for cryoET, can be decom-
posed into a series of 2D projections [45].

The full tomographic data, obtained over discrete time points t ∈ {t0, t1, . . . , tT } is a
stack of individual projections:

Ψ :=


Ψ0

Ψ1

. . .
ΨT

 =


Rθ1WD0(P )

Rθ2WD1(P )

. . .
RθTWDT (P )

 (um0 + us0). (4.4)

Solving the set of equations (4.4) when all the variables - um0 , us0 andDt - are unknown
amounts to solving a joint image reconstruction and alignment problem. Most approaches
for solving the joint problem alternate between solving (4.4) for one of the three variables
while keeping the others fixed. In such schemes, determining a good order for these
updates is crucial.

As markers are designed to have a significantly higher contrast compared to the
sample, we can often obtain reasonable first estimates for the marker configuration um0
and deformations Dt while ignoring the sample contribution. This corresponds to solving
(4.4) by setting us0 = 0.

One way to parametrize the initial marker configuration um0 is to represent it using the
continuous locations of markers at t = 0. Here we represent a single marker as a delta
function at the location of its centre convolved with a fixed, known shape function; the
marker configuration is then a sum of convolved delta functions in Ω ⊂ Rd:

um0 (x) =

M∑
j=1

(
G ∗ δrj (ρ)

)
, (4.5)

where rj are the initial marker locations, M is the total number of markers and G is a
known shape function, for instance a Gaussian.

For parallel beam projection, Theorem 1.2 in [45] states that:

Rθ(G ∗ δrj (ρ)) = (RθG) ∗
(
Rθδrj (ρ)

)
=: Gp

θ ∗
(
Rθδrj (ρ)

)
. (4.6)

Furthermore, the Radon transform of a delta function is a delta function in projection
space:

Rθδrj (ρ) = δAθrj (s), (4.7)

where Aθ ∈ R(d−1)×d is a projection matrix that maps marker locations in configuration
space to locations in projection space. We denote the resulting projected marker locations
by qj := Aθrj .
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We can assume that in contrast to the sample, markers are displaced over time, not
deformed. Furthermore, when variations in the global deformation field Dt over the area
covered by a marker are small, we can make the following approximation by commuting
the deformation operator with convolution with the shape function:

WDt(P )(G ∗ δr)(ρ) = (G ∗ δr)(ρ−Dt(P, ρ))

≈ G ∗ δr(ρ−Dt(P, ρ) = G ∗ δr+Dt(P,ρ)(ρ).

Thus, the deformed marker configuration is given by:

WDtu
m
0 (x) ≈

M∑
j=1

(
G ∗ δrj+Dt(P,rj)(ρ)

)
. (4.8)

This assumption is accurate when the support of G is small and the deformation Dt(P, ρ)
is smooth over the support of (G ∗ δrj ). Setting us0 = 0 and inserting the ansatz above
into (4.3) yields

Ψt = RθtWDt(P )u
m
0 ≈

M∑
j=1

(
Gp

θt
∗ δAθt (rj+Dt(P,rj))

)

=

M∑
j=1

(
Gp

θt
∗ δqt,j

)
, (4.9)

where
qt,j = Aθt(rj +Dt(P, rj)). (4.10)

Using equation (4.9) amounts to localizing markers by matching their projection data
Ψt ∈ R(Nθ×Nd) (in 2D), where Nθ is the number of projection angles and Nd is the
discretization of the detector plane. A schematic of this forward model is shown in
Fig. 4.1(b), where we indicate 1D projected data with blue lines.

In [93], the authors use projected marker locations over time as the input instead of
image data (indicated with red dots in Fig. 4.1(b)) and use the following optimization
problem for deformation estimation and marker localization:

minimize
rj ,P

T∑
t=0

M∑
j=1

∥∥∥(q̃t,j −Aθt(rj +Dt(P, rj))
)∥∥∥∥∥

2

2

. (4.11)

Such an approach assumes that we can identify the projected marker locations q̃t,j directly,
despite convolution withGp

θt
. Here and elsewhere, we use symbols with a tilde (e.g. q̃t,j) to

denote measured data and symbols without a tilde (e.g. qt,j) to denote model predictions.
Comparing equations (4.9) and (4.10), we find that for each t the dimensions of 2D

data for (4.10) are d ×M and those of the data for (4.9) are Nθ × Nd. Typical values
for d,M,Nθ and Nd are 3, 20, 100 and 4096, respectively, such that d ×M = 3 × 20
and Nθ ×Nd = 100× 4096, the latter being approximately 6000 times the former. Thus,
(4.10) is a much lower-dimensional problem. Furthermore, the deformation field can be
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extracted from (4.10) in a more direct fashion as it directly describes the corresponding
projected marker displacement, not the change in the projection image caused by it.

However, identifying markers robustly from data is not a trivial problem [90]. It
involves solving an optimization problem of the form:

minimize
qt,j

∑
t

‖Ψ̃t −
∑
j

(Gp
θt
∗ δqt,j )‖22.

Marker labelling is generally performed using normalized cross-correlation-based schemes
or template matching algorithms. Such methods are error-prone when projection data
are noisy or when gold beads are occluded or cluster together in projection data. In
such situations, users must manually annotate markers, or manually inspect and correct
for incorrect and failed detection in one or more images in the tilt series. This manual
intervention leads to time-consuming and subjective labelling.

To avoid solving the marker identification problem, we take a step back and start
directly from (4.9). We solve for marker locations and the deformation field in a least-
squares sense. In addition, we do not assume that we know the number of markers
beforehand. The resulting optimization problem is as follows:

minimize
rj ,P,M

T∑
t=0

∥∥∥Ψ̃t −
M∑
j=1

(
Gp

θt
∗ δAθt (rj+Dt(P,rj))

)∥∥∥2
2
. (4.12)

The optimization problem above assumes a model for the markers, uses an image-based
loss and does not need labelled marker locations like the problem in (4.11). In the following
section, we discuss optimization schemes for solving (4.12).

The deformation field Dt can be represented using different basis functions. If one
uses localized basis functions, e.g. the B-spline basis functions often used in non-rigid
image registration, one either needs a sufficiently dense sampling of the domain with
markers or include suitable regularization constraints [98]. Global basis functions that are
supported in the entire domain will only lead to a compact, low-dimensional description
of the deformation field with sufficient accuracy if they are chosen based on a priori
knowledge about the sample deformation.

In this chapter, we use the global basis functions proposed in [93], where the beam-
induced sample deformation is modeled with a set of polynomial surfaces. The parametrized
sample deformationDt(P, rj) := [Dt,x, Dt,y, Dt,z] is modelled with polynomials in (x, y, z)
such that the deformation in each direction is given by

Dt,k(r, P ) =
∑

α,β,γ≥0
α+β+γ≤dp

(
Pαβγ(t)

)
k
xγyβzα, k ∈ {x, y, z}, (4.13)

where Pαβγ are the coefficients of the polynomial and dp is the degree of the polynomial.
In [93], these polynomials are allowed to vary freely over the tilt series, resulting in a
large number of free parameters. In 3D, we must estimate 18 parameters for each tilt
for a quadratic deformation model, which amounts to thousands of parameters when the
number of tilts is high. One way to reduce the number of parameters, used in [93], is
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by assuming that the deformation field is constant along the depth (z direction) of the
sample. with (dp+2)(dp+1)

2 free parameters.
To further reduce the number of free parameters, we introduce a temporal dependence

in (4.13), which reduces the number of parameters from 18 for each tilt to 18 for the entire
tilt series, assuming a quadratic deformation model. Our time-dependent deformation field
is given by:

Dt,k(r, P ) =

dt∑
ζ=1

∑
α,β,γ≥0

α+β+γ≤dp

(
Pαβγζ

)
k
xαyβzγtζ , t ∈ [0, 1]. (4.14)

As we reconstruct the first image, there is no way to recover a zeroth order deformation
in time. For simplicity, we consider linear time dependence in our experiments, which
amounts to setting dt = 1.

Our method is independent of the choice of parametrization of the deformation field.
Other parametrizations, which take advantage of the possible symmetries of the defor-
mation field or additional understanding of the physics underlying the sample behaviour,
could also be suitable choices.

4.3 Optimization
In [12], [72], [99], convex approximations to the minimization problem (4.12) have been
devised by mapping the problem onto the space of measures M(Ω). We interpret the
marker configuration as a measure µ :=

∑M
j=1 wjδrj ∈ M(Ω), where the weights wj

are introduced as a means of relaxing the optimization problem (4.12). The weights
determine the relative “importance” of the markers and, as we show later, can be used to
remove candidate markers that do not contribute significantly to the data. Mapping the
problem to measure space enables us to express the forward operation shown in (4.9) in
terms of a linear operator, Φt :M(Ω)→ RNd :

Ψt =

M∑
j=1

wj

(
Gp

θt
∗ δqt,j

)
=: Φtµ, Ψ =


Φ1

Φ2

. . .
ΦT

µ =: Φµ (4.15)

The minimization problem (4.12) can then be rewritten as the following problem in
the space of measures, where the loss is convex in the measure µ:

minimize
µ∈M(Ω)

ℓ(Φµ− Ψ̃), ℓ(·) := ‖ · ‖22 (4.16)

In [12], the authors devised an effective numerical scheme for solving infinite-dimensional
convex problems of the type shown above by using a variant of the conditional gradient
or Frank-Wolfe method [19]. They also showed that interleaving the convex Frank-Wolfe
iterations with nonconvex local optimization steps improved the convergence of the al-
gorithm. This algorithm, known as the alternating descent conditional gradient (ADCG)
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method, has been subsequently extended for and applied to a range of application areas
[12], [72], [99].

In this chapter, we adapt the ADCG algorithm to solve the marker localization and
deformation estimation problems simultaneously. To do this, we perform the Frank-Wolfe
iterations as-is but modify the block coordinate descent routine to include an additional
deformation estimation step. At each iteration of the algorithm, we place a new marker
at a candidate initial location by solving a linearized approximation of our optimization
problem. Then, we solve a linear optimization problem to obtain estimates for the weights
of all current markers. Local optimization routines are used to solve for the parameters for
the deformation field and to refine the marker support in a bounded region. Our modified
ADCG routine, which we call SparseAlign, is shown in Algorithm 4. Below we describe
each step in our method in detail.

Algorithm 4 SparseAlign
for n = 1 : nmax do

1) Compute current residual: ϱn ← Φµn − Ψ̃
2) Find next marker: r∗n ← argminr∈grid〈∇ℓ(ϱn),Ψ(r)〉
3) Update support: rn+1 ← [rn, r

∗
n]

4) Block coordinate descent:
Repeat:
(a) Compute weights:
wn+1 ← argminw ℓ(Φµn+1 − Ψ̃)
(b) Prune support:
(wn+1, rn+1)← prune(wn+1, rn+1)
(c) Fit deformation parameters:
Pn+1 ← argminP∈P ℓ(Φµn+1 − Ψ̃)
(d) Improve support:
rn+1 ← argminr∈C ℓ(Φµn+1 − Ψ̃)

end for

Adding candidate marker locations We use the conditional gradient method to obtain
candidate marker locations in steps 2-3. The conditional gradient or Frank-Wolfe method
[19] can be used to solve constrained optimization problems of the type minimizex∈C f(x)
iteratively, where C is a convex set. The first step in each iteration is to minimize a
linearized version of the loss within a specified domain. The linear approximation to a
function f(x) at xk is given by

flin(s) = f(xk) + 〈∇f(xk), s− xk〉.

Minimizing flin(s) over a domain Ds thus amounts to solving
minimize

s∈Ds

〈∇f(xk), s− xk〉.

Using our forward model (4.15) and the loss function in (4.16), we can compute that
the linear minimization step at iteration n is the following optimization problem over
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measures s ∈Ms(Ω) ⊂M(Ω)

minimize
s∈Ms(Ω)

〈∇ℓ(ϱn),Φs〉, (4.17)

where ϱn := Φµn − Ψ̃ is the residual at iteration n.
An optimal solution of the above problem is the addition a single new marker with

positive weight to the current support of µn. This ensures that, at iteration n of the
algorithm the measure µ is supported at n points. Adding only one location at a time
has been shown to give the sparsest possible solution [12].

Practically, we solve (4.17) by gridding the domain of marker locations coarsely. The
contribution of a single marker at each grid point, rgrid, is computed for a current guess
of deformation parameters:

ψ(rgrid) =


Gp

θt
∗ δAθ1

(rgrid+D1(rgrid))

Gp
θt
∗ δAθ2

(rgrid+D2(rgrid))

. . .
Gp

θt
∗ δAθT

(rgrid+DT (rgrid))


Then, the inner product of the current residual with the forward projection of a marker
located at each grid location is calculated. The grid location r∗grid with the smallest inner
product with the residual is chosen as the next candidate location:

r∗grid = arg min
r∈grid

〈∇ℓ(ϱn), ψ(r)〉. (4.18)

Optimizing weights Once we have optimized for marker locations, we can optimize the
weights of each marker as shown in steps 4(a)-(b). Note that the model (4.15) depends
linearly on the weights wj , j ∈ {1, 2, . . . ,M}. Thus, with the number of markers, marker
locations and deformation parameters fixed, the weights wj can be estimated by solving
the following linear least-squares problem

minimize
w∈[0,1]n

‖ℓ(Φµn − Ψ̃)‖22. (4.19)

All weights wj are constrained to lie in [0, 1] and represent the relative importance of
marker contributions to the data. Markers with weights close to zero can be removed by
an additional prune routine that removes all markers with a weight lower than a predefined
threshold. In some cases an additional prune routine can be used to remove markers with
small weights at the end of a full algorithm run. This further ensures that the solution
obtained is the sparsest possible marker configuration required to explain the data Ψ̃.

Refining initial marker locations At each iteration, we perform the nonconvex local
optimization step shown in 4(d) to refine our estimates for the initial marker locations.
This step was first proposed in [12] as a way to speed up convergence of the conditional
gradient method.

Refining the support of the current measure µn without changing the number of
markers ensures that markers are moved off the grid locations used in steps 2-3. It also
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imparts some of the rapid local convergence qualities of nonconvex optimization [12]. In
our implementation, we use the L-BFGS-B algorithm to perform local optimization over
initial marker locations.

Estimating deformation parameters The optimization problem behind step 4(c) is
given by

minimize
P∈P

T∑
t=0

∥∥∥Ψ̃t −
M∑
j=1

wj

(
Gp

θt
∗ δAθt (rj+Dt(rj ,P ))

)∥∥∥2
2
, (4.20)

which is a difficult nonconvex problem that is often studied in the context of image
correspondence problems such as image registration or optical flow estimation [100]. We
use L-BFGS-B initialized at the current Pn to compute a local update Pn+1 for the
parameters of the deformation field.

Coarse-to-fine scheme for large data One of the challenges of solving (4.20) is that
the objective function is flat if the forward projection of the current marker configuration
and the data do not share the same support, and gradient-based optimization schemes
such as L-BFGS-B have a hard time locating a minima. This easily happens for small
objects, such as markers, embedded in large projection images. The remedy is typically
to smooth both images with a Gaussian, compute a deformation field on the smoothed
problem, and use the solution of the smoothed problem to initialize the optimization of
the original problem.

Gaussian smoothing followed by downsampling removes high image frequencies and
one starts matching only the low frequencies. For noisy data, downsampling has the
additional advantage of denoising the data. Furthermore, for large experimental data,
where each tilt image has pixel dimensions 4096× 4096, warm-starting the optimization
at high resolutions with good initial values ensures that not many expensive iterations
have to be performed.

For realistic simulation data and experimental data, we use a coarse-to-fine scheme
where the marker localization and deformation estimation problem is solved at successively
finer resolutions using the results at the coarser resolutions as initialization.

At full resolution, we generate the forward projection of a single marker using (4.6)
followed by sampling on a spatial grid Xf with Nd grid points. Thus, the discretized
forward projection of the full marker configuration can be written as

Ψt =
∑
j

wjS
fG(qt,j ,τf ), (4.21)

where Sf is the sampling operator associated with the spatial grid Xf and G(qt,j ,τf ) is a
Gaussian centred at qt,j with standard deviation τf .

For obtaining measured data at coarse resolutions, we downsampled the full-resolution
measured data Ψ̃t at each time after Gaussian convolution to prevent aliasing artefacts
[101]. Thus, the coarse-resolution data were given by Ψ̃c

t := Hc(Gτa ∗ Ψ̃t), where
Hc is a downsampling operator associated with a coarse grid Xc and Gτa is an anti-
aliasing Gaussian. For integer downsampling factors η := |Xc|/|Xf |, Hc only keeps pixels
separated by η in the coarse-resolution image.
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We approximated matching forward projection data Ψc
t directly from marker locations

using our forward model (4.9) by sampling the Gaussian-convolved projected marker
locations on the coarse grid Xc:

Ψc
t =

∑
j

wjS
cG(qt,j ,τf ), (4.22)

where Sc is the sampling operator associated with the coarse grid Xc.

4.4 Numerical experiments
In this section we describe our experiments with simulated and real data. Implementa-
tion notes with details of software packages used are provided in Section 4.4.6 of the
Supplementary Materials.

4.4.1 Illustrative 2D example
Ground truth We used a simple simulated sample to elucidate properties of our algo-
rithm in 2D. The FoV was taken to be [−L/2, L/2] along both axes, with the canonical
length scale L = 1. The ground truth sample consisted of 10 gold bead markers confined
to a thin rectangular region: x ∈ [−2L/5, 2L/5], z ∈ [−L/10, L/10]. We chose this
geometry for our 2D sample to mimic the geometry of experimental cryoET samples.

For simplicity, we considered deformation field components to be zero along the
horizontal (x) direction. In the vertical (z) direction, we assumed the deformation to
be given by a quadratic polynomial of x and z:

Dt,z(r, P ) = (P0 + P1x+ P2z + P3x
2 + P4z

2 + P5xz)t =: D1,zt, (4.23)

with P0 = 0 L, P1 = P2 = −1, P3 = P4 = P5 = −1 L−1, and t taking values in [0, 1]

Projection data We generated projection data using the forward model in (4.15) over
a set of discrete projection angles θ ∈ [−70◦, 70◦), Nθ = 20. Practically, we computed
the continuous Radon transform of each marker, followed by a continuous 1D Gaussian
convolution in projection space. The Gaussian-convolved projection was then discretized
on a detector grid with Nd = 64. At each projection angle, the projection was then a 1D
profile. All the projections were rearranged in a sinogram with dimensions Nθ ×Nd.

For comparison, we also generated input data for the doming model method in [93].
These data were the projected locations of each marker over the same series of projection
angles.

4.4.2 Simulated 3D examples
Ground truth We used a 3D configuration of markers to test the robustness of our
method to noise and to mismatches in the forward model. We used 20 randomly placed
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markers in a thin region in 3D with dimensions 819.2 nm × 819.2 nm × 100.0 nm. The
sample used was the same as that described in 4.4.3.

We considered deformation field components to be non-zero only along the z direction;
this component was then given by:

Dz(x, y, z, t) = (P0 + P1x
2 + P2y

2)t, (4.24)

with P0 = 200 nm, P1 = P2 = −100 nm−1, and t taking values in [0, 1].

Projection data We generated projection data along 140 equispaced projection angles
in [−70◦, 70◦] using a Gaussian with standard deviation 15nm as the shape function of
individual markers. Each projection image was discretized on a 64× 64 pixel grid.

To convert the intensities in these generated images to meaningful electron counts,
we used that the expected electron count in any pixel is given by I = I0e

−VabsC×δx, where
I0 is the incoming electron count, Vabs is the absorption potential of gold nanoparticles
(5.39V for a 300keV electron beam, treating the gold as amorphous), C is the interaction
constant (0.00653V −1nm−1 at 300keV ) and δx is the path length travelled by electrons
through a gold marker. This path length is equal to the product of the diameter of the
gold bead, which we take to be 15nm, and the intensity in our generated images. For our
experiments, we generated data with I0 = 2n, n ∈ {6, 7, 8, 10, 12, 14}.

Gaussian noise To test the properties of our approach for noisy data, we performed
experiments with data corrupted with additive Gaussian noise, such that

Ψnoisy = Ψclean +N (0, σ2
noise),

where Ψclean are the data scaled to physical electron counts and σ2
noise is the variance of

the noise added.
We performed experiments using σ2 = 2n, n ∈ {7, 8, 10, 12, 14}. For each noise

setting, multiple independent experiments were performed and the results were averaged
to obtain mean values for the metrics. Each independent experiment was initialized with
a with a different random seed.

Poisson noise We also generated a series of Poisson noise-corrupted data by varying
the electron count per pixel per frame, I0. For I0 = 2n, n ∈ {6, 8, 10, 12, 13, 14}, we
generated Poisson-distributed electron counts at each pixel using:

Ψnoisy = Poi(Ψclean), (4.25)

where Ψclean are the data scaled to physical electron counts and Poi(·) denotes a Poisson
random variable. The Poisson-noise data were generated to have comparable signal-to-
noise ratios as those of the Gaussian-noise data. For each noise instance, we performed
multiple independent experiments with different random seeds and averaged over the
obtained metrics.
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Figure 4.2: Example tilt images generated using TEM-simulator (a) without noise and
(b) with added correlated noise; (c) an experimental TEM image showing gold beads on
vitrified ice.

4.4.3 Realistic TEM simulations
We used the TEM-simulator software [102] to generate physically plausible simulations
of TEM images from a specification of a 3D sample (see example projection images in
Fig. 4.2(a) and (b)). To simplify matters, the sample consisted purely of gold particles
in vacuum, thus disregarding the ice buffer and other sample structures. The purpose of
this numerical experiment was to test our algorithm in situations where its forward model
did not match the one used for data generation. In particular, the explicit assumption
of Gaussian shape of gold particles and the implicit assumption of additive uncorrelated
noise characteristics were violated.

The test sample consisted of 20 gold particles of 15nm diameter, randomly distributed
in a slab of dimensions 819.2nm × 819.2nm × 100.0nm in x, y, z space. Over time, this
sample was simulated to undergo a deformation described by the vector field

Dz(x, y, z, t) = (P0 + P1x
2 + P2y

2)t, Dx = Dy ≡ 0 (4.26)
with P0 = 200 nm, P1 = P2 = −100 nm−1, and t taking values in [0, 1]. This amount
of deformation (200 nm at x = y = 0, t = 1) is an exaggerated version of a doming
motion observed in practice. The large amplitude was chosen to make the effects under
investigation easier to observe.

Assuming constant tilt speed, the time t was mapped to a tilt angle θ according to
θi = −70◦ + ti · 140◦, ti = i

140 , i = 0, . . . , 140. At each tilt angle, a projection image
was simulated according to the weak phase object approximation model [88], taking the
contrast transfer function (CTF) of the optical system into account (see [102] for details).
We used electrostatic potential values of V = 0 for vacuum and V = (29.87 + ı · 5.39)
Volt for (amorphous) gold. The CTF parameters were chosen as ∆z = 8 µm (defocus),
CC = 2.7 mm (chromatic aberration) and CS = 2.7 mm (spherical aberration).

The size of each projection image was chosen equal to the x − y dimensions of the
sample, subdivided into (Nx, Ny) = (512, 512) pixels, each of size 1.6 nm. Simulated
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data were generated with 8x binning, with the full resolution pixel size equal to 0.19 nm.
Binning was performed because of computational convenience.

Noiseless data The noiseless images generated by TEM-Simulator correspond to proba-
bility densities of detecting an electron at a given location in the detector plane. Therefore,
scaling with the average number of incoming electrons per pixel area results in each pixel
value representing the expected number of electrons measured in that pixel, also referred
to as “infinite dose” case.

Noise generation In a real experiment, a finite number of electrons interacts with
the sample and is detected at the camera. This process was modeled with a Poisson
random variable Poi(λk) per pixel, where the parameter λk = I0Ψk equals the intensity
of the k−th pixel in the scaled noiseless image. This noise model applies to a perfect
counting camera. However, cameras operating in integration mode have a nontrivial point
spread function because charge from one incident electron can leak into neighboring pixels,
triggering multiple detection events. Furthermore, signal and noise transfer vary with
spatial frequency. These two effects are characterized by the MTF (modulation transfer
function) and DQE (detective quantum efficiency) of the camera and lead to signal blur
and noise correlation [88]. The noisy images in these numerical experiments made use of
this model.

Pre-processing for noisy data For data with correlated Poisson noise, we performed
the following pre-processing steps. First, we used noiseless data to perform segmentation
with Otsu’s method [52]. We obtained a mask for the markers in the tilt series from
this segmentation procedure, which we used to compute average background and marker
intensities in the noisy tilt series. Second, we shifted the range of the noisy data by
subtracting its minimum value and applied the Anscombe transform to our shifted data.
Our forward model (4.15) assumes that the intensity in the background of a projection
image is mean zero with constant variance and the intensity at gold beads is mean one
with constant variance. The variance of data with Poisson noise varies with the mean,
and thus differs from the assumption in our forward model. To reduce the discrepancy
between our model assumptions and the simulated data, we used the Anscombe transform

Anscombe(Ψ̃) := 2

√
Ψ̃ + 3/8

as a variance-stabilizing transformation to obtain data with an approximately constant
variance and standard deviation [103]. Finally, we subtracted the average background
intensity and divided by the average bead intensity in the data.

4.4.4 Experimental data
For our experimental data we used a sample with gold beads as the only prominent features.
We deposited 20nm gold particles on a lacey carbon grid, which was plunge-frozen in liquid
ethane using a Thermo Scientific Vitrobot. An example tilt image is shown in Fig. 4.2(c).
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We acquired a tomographic tilt series using the Thermo Scientific Tomography 5.5
software package on a Thermo Scientific Titan Krios electron microscope equipped with a
Thermo Scientific Falcon 3EC camera. An area in a hole with 15 gold beads was selected.
A magnification of 37000x was chosen for a pixel size of 1.949 and a field of view of
800 nm. The sample was tilted from -60 to +60 degrees with a tilt step of 2 degrees.
Each image in the tilt series had an electron dose of 0.198 e−/2.

Cross-correlation-based global alignment Projection images were globally shift-aligned
using the cross-correlation-based routine in Thermo Scientific Inspect3D.

Data pre-processing Not all projections were globally aligned correctly using the cross-
correlation-based alignment routine. We inspected the tilt series visually for any misaligned
projections and removed these. This resulted in a total of 27 projections that were then
used for estimating local sample deformation. Next, we deleted 256 pixels from each of the
four borders of the tilt series images to get rid of missing image data added by the cross-
correlation-based alignment routine. Only one marker, near the top edge of the tilt series
images, was discarded because of edge removal. As we expected correlated Poisson noise
in these data, we applied the Anscombe transform to the raw tilt series to obtain data with
approximately constant variance. After applying the Anscombe transform, we subtracted
the mean of the tilt series; because most pixels were background pixels, this ensured that
the average background intensity was close to 0. Finally, all tilt series pixels were divided
by the average marker intensity to ensure that, in accordance with our forward model,
the markers had an average intensity of approximately 1. To determine the average bead
intensity in experimental data, we inspected the tilt series visually and used the average
intensity in three small square regions around three beads.

4.4.5 Evaluation criteria
To quantify the accuracy of our estimated deformation fields with respect to the ground
truth, where available, we used the following evaluation criteria. First, the estimated and
ground truth deformation parameters were used to compute the deformation field at t = 1
on a gridded FoV of dimensions 1000× 1000 (for 2D) and 1000× 1000× 1000 (for 3D),
using equation (4.23). Next, the vectorial difference between estimated and ground truth
deformation fields at t = 1 was computed at each grid point:

E(rgrid) = ‖Dgt
1,z(rgrid)−Dest

1,z(rgrid)‖22 (4.27)
This deformation estimation error was averaged over the whole grid to obtain the global
deformation estimation error and averaged only at the ground-truth marker locations to
obtain the deformation estimation error at markers:

Eglobal =
1

Ngrid

∑
grid

E(rgrid) (4.28)

Emarkers =
1

M

M∑
j=1

E(rj) (4.29)
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where Ngrid = 109 for 3D and Ngrid = 106 for 2D.

4.4.6 Implementation details
We implemented SparseAlign in Python 3.6 and used several Python packages for each
subroutine. Marker location refinement was performed using automatic differentiation
routines in Autograd [104] and the L-BFGS-B method implemented in SciPy [105]. The
L-BFGS-B routine in SciPy was also used for deformation estimation.

We generated Gaussian noise and Poisson noise for 3D simulated data using NumPy
[49]. Segmentation using Otsu’s method was performed for 3D simulated data using
pre-defined functions in scikit-image [44].

All experiments were performed using JupyterLab notebooks [106] on an Intel(R)
Core(TM) i7-8700K CPU with 12 cores. Example code for 2D alignment using SparseAlign
is available in the repository https://github.com/poulamisganguly/SparseAlign/.

4.5 Results
SparseAlign adds markers with small displacements first In Fig. 4.3(a) and (b), we
show how SparseAlign localizes markers. At each iteration, markers are added by solving
the linearized problem (4.18) on a coarse grid. We show the values of the objective
function at each grid location in Fig. 4.3(a). The first marker added is a marker close to the
centre of the field of view, where the displacement of markers is smallest. This corresponds
with the fact that all deformation parameters are set to zero for the first iteration. After
the first iteration, when we start optimizing for the deformation parameters, markers that
show larger displacements are added. In Fig. 4.3(b), we show two examples of marker
location refinement. The two plots on the left show marker addition and refinement at
iteration 3; a new marker, indicated with a red star, is added at a grid location. Local
optimization then allows us to move this marker as well as all currently placed markers
(blue plus signs) off the grid and closer to the ground truth locations (green crosses). The
two plots on the right show another step of marker addition and local optimization at
iteration 7. In both cases, local optimization helps to improve the solution close to the
region where the new marker is added. We indicate this region with a red rectangle in
the plots.

SparseAlign’s image-based loss is not convex with respect to deformation parame-
ters In Fig. 4.3(c), we plot the image-based loss in (4.12) as a function of each deforma-
tion parameter separately, while holding other parameters and marker locations fixed at
their respective ground truth values. For comparison we also plot the marker-based loss in
(4.11). Finally, each plot is normalized with a different normalization constant, equal to
the maximum value of the loss for that parameter. For each parameter, the marker-based
loss is a near-perfect quadratic function with a minimum at the ground truth parame-
ter value. The image-based loss function shares the same minima but differs from the
marker-based loss at higher parameter values. In general, the image-based loss function
is only convex in a small region around the global minimum. As we move away from the
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Figure 4.3: Three steps in SparseAlign. (a) Addition of new markers is performed on a
coarse grid using the optimization problem (4.18). The grid location with the smallest
pixel intensity in the heatmap is chosen as the next candidate location, which is indicated
with a red star. (b) Refinement of initial marker locations is performed using L-BFGS-B.
The two leftmost plots show one step of marker addition followed by local optimization;
the two rightmost plots show another step of marker addition and local optimization. In
both cases, after addition of a new marker (red star), local optimization ensures that all
current markers (blue plus signs) are brought closer to the ground truth locations (green
crosses). We indicate the areas where this improvement is clearest with red rectangles.
(c) Sensitivity of the marker-based loss (black line) used in the doming model approach
and our image-based loss (red line) to changes in deformation parameter values. For each
plot, the loss was normalized independently with respect to its maximum value.

minimum, the loss function increases for each parameter until, at large parameter values,
markers move out of the field of view and the loss shows other minima (as in the plot
for P0) or flattens and dips (as in the plots for P1 through P3). Gradient-based schemes
can thus get caught in local minima if parameter values are very far away from the true
minimum at initialization.

SparseAlign estimates deformation parameters with an accuracy comparable to
that of the doming model In Fig. 4.4 we illustrate the differences between the doming
model optimization used in [93] and our method. We use the simple 2D sample shown in
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Figure 4.4: Marker localization and deformation estimation using SpaseAlign and the
doming model method (DM). (a) Ground truth initial marker locations and deformation
field component along the z-axis at t = t1, D1,z. (b) Input data for DM are the projected
marker locations indicated with red dots. Projection data for SparseAlign at 0◦ is a 1D
profile that is a superposition of Gaussians; we indicate this data in blue. The full sinogram
data is a stack of projections taken along tilt angles in [-60◦, 60◦). (c) Reconstructed
deformation fields using DM and SparseAlign. In both cases, errors are largest at the
boundaries of the field of view (FoV), where no markers are present. (d) Deformation
estimation error (4.27) obtained using DM and SparseAlign. Errors are comparable in the
convex hull of markers; errors outside the convex hull are larger when using SparseAlign.
(e)-(f) Mean local and global deformation estimation errors (4.28)-(4.29) as a function of
DM and SparseAlign iterations. (g) Localized initial marker locations using SparseAlign
(blue circles) and DM (red circles) overlaid with the ground truth marker locations (green
crosses).
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Fig. 4.3 with a quadratic deformation field along the vertical (z) direction.
Input data for the doming model (‘DM’) optimization are indicated with red dots in

Fig. 4.4(b); projection data for SparseAlign is a 1D profile indicated with a blue line. The
set of line profiles can be rearranged to give a sinogram for the SparseAlign data.

In Fig. 4.4(c), we show the reconstructed deformation fields obtained using the two
methods. In Fig. 4.4(d), we illustrate the vectorial deformation field error (4.27) in both
cases. We observe that the error in the convex hull of the markers is comparable using
both methods. This is true despite the fact that our method does not need labelled
marker locations and minimizes a more complicated image-based loss function. In regions
without markers, our method shows larger errors. This is an indication of the greater
ill-posedness of our deformation estimation problem (4.20).

In Fig. 4.4(e-f), we compare mean deformation estimation errors (4.29) and (4.28) for
both methods at the ground truth marker locations and in the entire FoV. Mean deforma-
tion estimation errors at marker locations are comparable for both methods although the
global mean error is higher for SparseAlign. The larger global error, however, is not signif-
icant because the major contribution comes from boundaries where no sample is present.
Marker localization using SparseAlign and DM gives comparable results, as illustrated in
Fig. 4.4(g).

Deformation estimation accuracy reduces almost linearly for additive Gaussian
noise In Fig. 4.5, we perform a quantitative analysis of the robustness of our method
with respect to noise in projection data. The ground truth marker configuration and
deformation field are shown in Fig. 4.5(a). We used different noise settings to probe
the properties of our method for data corrupted with Gaussian and Poisson noise, and
for each noise level we performed 100 independent experiments by randomizing both the
initial marker locations as well as using different noise realizations. The mean deformation
estimation error plots for Gaussian noise show an almost linear decrease in deformation
estimation accuracy for increasing signal-to-noise ratio (SNR, given by the standard devia-
tion of the Gaussian noise). Moreover the spread of the distribution narrows for high SNRs,
indicating that there are fewer catastrophic failure cases for deformation estimation.

The dependence of deformation estimation error on noise is more complicated in the
case of Poisson noise. As shown in the plots in Fig. 4.5(c), we do not see a linear depen-
dence as in the case of Gaussian noise. The difference in accuracy between deformation
estimation results for low and high electron counts is also smaller. This suggests that
the mismatch between Poisson noise data and data generated from our forward model is
greater than the mismatch in the case of comparable Gaussian noise.

Model mismatch does not affect deformation estimation significantly We used
physically plausible TEM simulations to generate data where the forward model of SparseAlign
did not match the data generation model.

In these data, the shape function of a gold bead marker is not a Gaussian. In Fig. 4.6(a),
we show the profile of a marker in projection data generated using the TEM-simulator
package [102] and the profile of a marker using our forward model. We assumed that the
size of gold bead markers and the pixel size of projection images are known, so that the
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Figure 4.5: Deformation estimation in 3D with Gaussian and Poisson noise-corrupted
data. (a) Ground truth configuration of markers (left) and ground truth deformation field
in nm (right). (b) Projection image at 0◦ with different Gaussian noise and Poisson noise
settings. The variance of Gaussian noise (σ2) and the photon flux (I0) were chosen to
simulate comparable Gaussian noise and Poisson noise realizations. (c) Deformation field
estimation errors as a function of iteration at markers (Emarkers) and in the entire field-of-
view (Eglobal) for various Gaussian and Poisson noise settings.

width of the Gaussian can be computed.
We used binned simulated data, as detailed in 4.4.3, for these experiments. In

Fig. 4.6(b), we show results on marker localization and deformation estimation using
noiseless data. The ground truth marker configuration and deformation field are the
same as those shown in Fig. 4.5(a). The results we show in Fig. 4.6(b) are those ob-
tained at the final step of a coarse-to-fine scheme, where we solved for marker localiza-
tions and deformation parameters at increasing resolutions using downsampling factors
η = 1/16, 1/8, 1/4, 1/2. The final result of such a scheme shows a good qualitative
match between reconstructed and ground truth marker locations and deformation fields.
We stopped at η = 1/2 because the effect of model mismatch, which we discuss in the
next paragraph, is greatest at high resolutions. Moreover, our current implementation
is unable to handle very large data sizes, an area we plan to improve in a future work.
Nevertheless, our results indicate a good qualitative match between ground truth and
estimated deformation fields, suggesting that the absence of higher-resolution data might
not impact deformation estimation for the cases considered.
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In Fig. 4.6(c), we show the effect of model mismatch at different resolutions using
plots of the difference between our forward projected reconstructed markers and the
observed data. We see that the effect of model mismatch is most pronounced at the
finest resolutions. This indicates why using a coarse-to-fine scheme, where we obtain
initial guesses for marker locations and deformation parameters by solving the problem
in a coarse resolution first, leads to reasonable results despite the difference in forward
models.

We plot mean deformation estimation errors (4.29) and (4.28) for each iteration in
Fig. 4.6(d). Jumps in resolution are indicated with dotted lines. Here we observe that the
maximum reduction in deformation estimation error is achieved at the coarsest resolution.
The initial guesses obtained are then refined subsequently at each finer resolution. The
stopping criterion we used to jump to a higher resolution was to check whether the
absolute difference in loss at each new iteration was greater than a pre-set tolerance value
(here, 10−6).

Finally, in Fig. 4.6(e), we illustrate the deformation estimation error (4.27) at each
resolution. Here we observe that, at the coarsest resolution, the error is already small
near the centre of the FoV, where a majority of markers is present. At higher resolutions,
the refinement in deformation parameters ensures smaller errors at the boundaries and
indicates improvements in the values of estimated parameters.

Marker localization is poor for data with correlated Poisson noise In Fig. 4.7, we
show results of our method on data with realistic markers and realistic correlated noise
using the ground truth marker configuration and deformation field in Fig. 4.5.

We observe that marker localization for correlated noise-corrupted data is poorer than
that for noiseless data (shown in Fig. 4.6). At the end of a coarse-to-fine scheme, two
markers are not localized and a few markers with small weights are added to the recon-
struction domain. These small weighted markers were removed with a further thresholding
step, where markers with weights less than 0.1 were discarded. Improving marker localiza-
tion might need changes to the forward model used, an aspect that needs further research;
however, in our experiments, marker localization did not have a significant effect on de-
formation estimation accuracy, as seen from the reconstructed deformation field shown
in Fig. 4.7(a).

In Fig. 4.7(b), we show plots of mean deformation estimation errors. Note that the
same stopping criterion as that used for noiseless data ensured that more iterations were
performed at finer resolutions for data with realistic noise.

In Fig. 4.7(c), we plot the deformation estimation error at different resolutions. Com-
paring these plots with those for noiseless data in Fig. 4.6, we see that the errors at
the boundaries are higher for noisy data, which is most clearly observed at the coarse
resolutions.

Deformation estimation is limited by the model basis We performed experiments
with realistic 3D simulated data where the ground truth deformation field along the z
direction contained cubic terms in x and y in addition to the quadratic terms in (4.26).
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Figure 4.6: (a) Mismatch in shape function. (left) 2D projection of a single marker
generated using the TEM simulator. (centre) Projection of a Gaussian marker used in our
forward model. (right) Profiles of both shape functions. (b) Marker localization results
(left) and deformation estimation results in nm (right) for noiseless realistic data. (c)
Difference between forward projected marker locations and observed data (a small region
around a single marker is shown). The difference due to model mismatch is largest at the
fine resolutions. (d) Mean deformation estimation error at ground truth marker locations
and in the entire FoV for different iterations. Resolution changes in the coarse-to-fine
scheme are indicated with black dotted lines. (d) Absolute error of estimated deformation
field with respect to the ground truth at different values of the downsampling factor η.

The ground truth deformation field used in these experiments was given by:

Dz(x, y, z, t) = (P0 + P1x
2 + P2y

2 + P3xy
2 + P4x

2y)t (4.30)

with P0 = 200 nm, P1 = P2 = −50 nm−1, P3 = P4 = 25 nm−2. Although the ground
truth contained cubic terms, we restricted the deformation terms used in our forward
model to be quadratic in x and y. We performed experiments for both noiseless data
and data corrupted with correlated Poisson noise. For both noiseless and noisy data, our
algorithm was able to identify the quadratic terms in the deformation field (Fig. 4.8(a-b)).
As there were no cubic terms in the forward model, the reconstructed deformation fields
did not contain any cubic components. The effect of this mismatch is greatest at the two
corners of the FoV where the contribution of cubic terms was the highest.

When we included cubic terms in the forward model, we found that both marker
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Figure 4.7: Results on realistic marker data with correlated noise. (a) Marker localization
(left) and deformation estimation (right) results on data corrupted with realistic correlated
noise. Deformation values shown in nm. (b) Mean deformation estimation error at ground
truth marker locations and in the entire field-of-view for each iteration. Resolution changes
in the coarse-to-fine scheme used to solve for marker locations and deformation parameters
are indicated with black dotted lines. (c) Absolute deformation estimation error (along z)
with respect to the ground truth at different values of the downsampling factor η.

localization and deformation estimation improved as both quadratic and cubic terms were
now estimated. The recovered deformation field in Fig. 4.6(c) is much closer to the
ground truth. These results indicate that the accuracy of SparseAlign is limited by the
basis used for deformation modelling.

SparseAlign locates markers reasonably in experimental data We used an exper-
imental dataset of gold beads embedded in ice to test the applicability of our method
to experimental datasets. We used a coarse-to-fine scheme with downsampling factors
η = 1/128, 1/64, 1/32, 1/16, 1/8 to localize gold bead markers and estimate the deforma-
tion field. We show an example tilt image in Fig. 4.9(a) and the same image at different
downsampling factors in Fig. 4.9(b).

Using a coarse-to-fine scheme we were able to localize several, but not all, markers. In
Fig. 4.9(c), we show our marker localization results. We thresholded the localized markers
according to their reconstructed weights. Here we show 15 markers with the highest
weights. We estimated deformation along the z direction using a quadratic model:

Dt,z(r, P ) = (P0 + P1x+ P2y + P3x
2 + P4y

2 + P5xy)t (4.31)

Additionally, we set the x and y components of the deformation field to zero. It is probable
that our assumed deformation field was insufficient to model sample deformation in the
experimental data.

82



Figure 4.8: Alignment using a mismatched deformation model. Marker localization and
deformation estimation for (a) noiseless and (b) noisy data using a quadratic deformation
field model and a cubic deformation field as ground truth. (c) Marker localization and
deformation field estimation using a cubic deformation field model for noiseless data. All
deformation values shown in nm.

Our algorithm predicted a deformation field that is quadratic in x but constant in y,
a model that could not be experimentally validated. Plugging the estimated deformation
field and marker locations into our forward model, we computed the forward projection
shown in Fig. 4.9(d). Comparing this image to the data, we see that not all markers have
been localized correctly, but at least one marker was localized in each of location with
a cluster of markers. Markers throughout the FoV were localized; this suggests that the
deformation estimation routine did not do worse for certain spatial regions. Moreover,
mismatch in the shapes of actual markers and the Gaussian used in our forward model did
not hinder the localization of most markers. Using localized marker locations and setting
deformation to zero leads to projection images that are qualitatively different from the
experimental data (Fig. 4.9(d)).
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Figure 4.9: Results on experimental data. (a) A raw projection image in the acquired tilt
series. (b) One image from pre-processed data used for deformation estimation and marker
localization with downsampling factor η = 1/8, 1/16, 1/32, 1/64, 1/128. (c) Localized
markers (left) and estimated deformation along z (in nm). (d) One experimental projection
image downsampled by η = 1/8 (left), forward projection of localized markers with
estimated deformation field (centre) and forward projection of markers with deformation
field set to zero (right).

4.6 Conclusion and discussion
Marker-based alignment is a important step for reconstruction improvement in cryoET. We
have developed a mathematical approach called SparseAlign for modeling beam-induced
local sample motion. In contrast to current approaches, our method does not need labelled
marker locations, and directly uses projection data to localize markers and solve for the
parameters of a polynomial deformation model. As a consequence, our method is more
suited to data with low signal-to-noise ratios where markers cannot be reliably identified.
The deformation fields estimated using our method can be used in a subsequent routine
to compute a motion-compensated sample reconstruction.

Despite solving a more ill-posed problem for deformation estimation, SparseAlign
localizes markers and estimates deformation parameters with an accuracy comparable
to that of the doming model approach. Moreover, SparseAlign estimates deformation
accurately even when the forward model for markers shows discrepancies with respect to
marker projections in observed data.

The image-based loss (4.12) in this chapter can be improved upon by using a more
canonical loss as the objective function for marker localization and deformation estimation.
Unlike the ℓ2 loss used in this chapter, the Wasserstein loss measures distances between
distributions and has non-zero gradients even when the supports of the ground truth and
current solution do not overlap [107].

The application of our approach to experimental data is limited by the deformation
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model used. One way to choose the most suitable, sparse basis for deformation modelling
is to optimize over a library of basis functions using the data-driven approach in [21].

In this chapter, we have ignored the image contrast of the biological sample while
estimating deformation parameters. Ideally, our approach would be the first step in
an iterative scheme where we alternate between sample reconstruction and tilt-series
alignment, taking both sample and marker contributions into account during deformation
estimation.
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Chapter 5

Learning cell–cell interactions
for vascular network formation

5.1 Introduction
In many real-world applications, it is important to model dynamical equations that best
describe the system studied. Dynamical equations may be constructed from first principles;
the heat equation in physics is one such example. However, in other scenarios where first-
principles methods may be insufficient or lacking, dynamical equations can be learned
from data on the time evolution of a system.

A recent approach [108] formulates the discovery of dynamical equations as a sparse
inverse problem. In this approach – known as Sparse Identification of Nonlinear Dynamics
(SINDy) – the unknown dynamical equation is expressed as a linear combination of library
functions, and a sparse combination of these functions able to explain the time evolution
of the system is sought.

SINDy has been used to infer the dynamics of simulated and real data for a variety
of canonical systems exhibiting nonlinear dynamics. In this chapter we adapt it to study
vascular network formation in vertebrates.

Vascular network formation is the generation of a blood vessel network from cells that
are initially separate. This process is responsible for the generation of a circulatory system
during morphogenesis in vertebrates. The first step of this process is vasculogenesis, where
a primary network is created. This network then sprouts and expands, in a process termed
angiogenesis. Angiogenesis is also observed in cancer tumours, where it helps tumour
maintenance and metastasis.

How endothelial cells organize to form a vascular network is still an open question. It
has been proposed [109] that two main contributing factors are: 1) the intrinsic ability of

This chapter is based on:
Learning cell–cell interactions for vascular network formation. P. S. Ganguly, K. A. E. Keijzer,
D. Chen, T.M. Vergroesen, R. M. H. Merks and H. J. Hupkes. (in preparation)
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cells to form networks, and 2) environmental cues. The effects of both these factors have
been studied using experimental and simulation studies of network formation. Although
there have been extensive experimental investigations of angiogenesis [110]–[112], simula-
tion studies are particularly effective in understanding how the interplay between different
biological ingredients leads to network formation. This is because all the parameters of
a simulated model can be adjusted and different parameter regimes, which may not be
easy to probe in experimental studies, are easily simulated.

Different simulation paradigms have been used in the literature to study vascular
network formation: one example is a lattice-free, particle-based approach [113], and
another is the lattice-based cellular Potts model (CPM) [109].

The forward problem of network formation consists of modelling the cellular system
using a Hamiltonian or a differential equation, followed by obtaining solutions that cor-
respond to the steady state or have the lowest energy. However, it is not always clear
which model is most suitable and which parameter regions are the most promising for
observing network formation behaviours. Moreover, the correspondence between different
simulation models is also not clear. For e.g. it is unknown whether there exist effective
equations for stochastic Hamiltonian-based models like CPM.

In this chapter, we adapt the SINDy method to learn effective equations for vascular
network formation directly from cell trajectories. In particular, we parametrize the pairwise
interaction between cells instead of the vector field in our differential equation. This
ensures that the number of parameters we learn remains the same despite an increase
in the system size. A related work to ours is [114] where the authors adapt the SINDy
framework for stochastic differential equations and parametrize the potential instead of
the force vector. However, [114] considers only single particle systems in low dimensions,
while we consider systems of many particles. Another related line of research is that that of
learning force fields for molecular dynamics [115], where the task is to fit the energy of an
atomic configuration obtained by solving the electronic Schroedinger equation. Starting
with [116], the approach used is that of decomposing the energy into a sum of terms,
one for each atom, and parametrizing each contribution via a neural network. While the
idea of sharing parameters across particles is similar to our approach, the task in force
fields parametrization is different from ours. Further, our optimization problem is similar
to that of SINDy and has the advantage of being a convex optimization, while that of
[116] is non-convex.

In this chapter, we focus on proof-of-concept studies, where ground-truth effective
equations are available, in order to validate our approach and perform systematic numerical
studies of the effect of system size, function library size and noise (Gaussian and stochastic)
on the the accuracy of recovery. Our work is an important stepping stone towards applying
such an approach to experimental data, where effective equations are unknown, or to
other modelling paradigms like CPM, in order to find a correspondence between different
simulation strategies. Effective differential equations are amenable to analysis and are
much easier to simulate than cell models, thus providing much-needed analytical insight
into biological systems.

This chapter is organized as follows. In Section 5.2 we review the SINDy method
and provide some background on simulation methods for vascular network formation. In
Section 5.3 we detail our method, which adapts the SINDy approach to learn pairwise
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interactions. We give details of our numerical experiments and results in Section 5.4, and
point to limitations and extensions in Section 5.5.

5.2 Background
5.2.1 SINDy
We consider the following ODE:

ẋ = g(x), (5.1)
where x ∈ Rn denotes the system state at a certain time and g : Rn → Rn is a vector
field that defines the dynamics of the system.

We only have data at discrete time points T := {t1, . . . , tm}, which we denote as X:

X :=


x(t1)
x(t2)

...
x(tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
... . . . ...

x1(tm) x2(tm) . . . xn(tm)

 . (5.2)

From X we can also approximate the time derivatives at T , which we call Ẋ. We shall
use central differences

Ẋij :=
xi(tj+1)− xi(tj−1)

tj+1 − tj−1
, (5.3)

or forward differences

Ẋij :=
xi(tj+1)− xi(tj)

tj+1 − tj
, (5.4)

depending on the application.

Learning problem The goal of SINDy is to learn the form of the function g from a
library of basis functions, given data points X and Ẋ.

First we define the library of K basis functions θ1, . . . , θK , such that θp : Rn → Rn.
The unknown function g is approximated by a linear combination of these basis functions.

We evaluate the functions θp at data points X by writing
Θ(X) :=

(
θ1(X) θ2(X) . . . θK(X)

)
, (5.5)

where

θp(X) =


θp(x(t1))
θp(x(t2))

...
θp(x(tm))

 .

We formulate the recovery of the function g as the following linear least-squares
problem:

minimize
ξ∈RK

∥∥∥Ẋ −Θ(X)ξ
∥∥∥2
2
. (5.6)
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Inducing sparsity Sparsity of the learnable coefficients is a regularization method used
in machine learning to prevent overfitting, namely the fact that the model fits very well the
training data but generalizes poorly to unseen data – in our case, to unseen time points.
One way to induce sparsity in the coefficients is by solving the following optimization
problem that has an ℓ1 penalty:

minimize
ξ∈RK

∥∥∥Ẋ −Θ(X)ξ
∥∥∥2
2
+ α

∥∥∥ξ∥∥∥
1
, (5.7)

The above problem can be solved using LASSO. For large system sizes, LASSO
is known to be computationally expensive and a sequentially thresholded least-squares
(STLSQ) algorithm has been used in the literature as an alternative [108].

5.2.2 Particle-based model of vascular network formation
In this section we review the particle-based simulation paradigm that has been used in
the literature to study vascular network formation.

This method was originally used to demonstrate that cell elongation and mutual
attraction between endothelial cells was indeed sufficient for producing vascular networks
[113], a claim that was first made using cellular Potts model (CPM) simulations [109].

In this lattice-free paradigm, each cell is represented with a particle that interacts
with other particles in a predefined neighbourhood. The time evolution of the system is
modelled with a Langevin equation:

dvi

dt
=

1

mi

(
− τvi +

∑
j ̸=i

xi − xj

‖xi − xj‖
Fij + η

)
, vi =

dxi

dt
, (5.8)

where τ is the damping constant, Fij is the pairwise interaction between cells and the
last term is a stochastic noise term with correlation function

E(ηa(t)ηb(t′)) ∝ δabδ(t− t′) . (5.9)
The pairwise interaction Fij is modelled with a short-range repulsive term and a long-range
attractive term:

Fij := λrAr − λaAa, (5.10)
where Ar is the area of overlap between the smaller repulsive ellipses and Aa is the overlap
between attractive ellipses (see Figure 5.1 (c)), and λr and λa are constants. The areas
of overlap are usually computed in a Cartesian coordinate system and are functions of the
locations, eccentricities and orientations of ellipses. We discuss this in more detail in the
following section.

Without loss of generality we can set mi = 1, so that the discrete time evolution,
using forward differences, is:

ai(t+∆t) = −τvi(t) +
∑
j ̸=i

xi(t)− xj(t)

‖xi(t)− xj(t)‖
Fij(t) +Nvβv(t)∆t

−0.5 (5.11)

vi(t+∆t) = vi(t) + ai(t+∆t)∆t (5.12)
xi(t+∆t) = xi(t) + vi(t+∆t)∆t . (5.13)
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Figure 5.1: (a) The two ellipses model two cells, labelled 1 and 2. x1, x2 stand for the
coordinates of the centers of the ellipses and γ1, γ2 for the angles the axis of the ellipses
form with the y axis. (b) A global rotation of φ of the system. (c) Inner area of overlap
Ar and outer area of overlap Aa.

Here we introduced the noise amplitude Nv and the Gaussian random vector βv. In the
overdamped regime, where the acceleration is negligible, setting τ = 1, the discrete time
evolution of the system reduces to

xi(t+∆t)− xi(t) = ∆t
∑
j ̸=i

xi(t)− xj(t)

‖xi(t)− xj(t)‖
Fij(t) +Nvβv(t)

√
∆t . (5.14)

In addition to vectorial noise modulated by the amplitude Nv, the particle-based
simulations make use of angular noise. This corresponds to random changes in the
orientation of cells. A change in orientation of cell i is accepted with a turn probability

Πi = min
{
1, exp

( 1

Na

∑
j ̸=i

Fij −
∑
i ̸=j

F ′
ij

)}
, (5.15)

where Na is the angular noise amplitude, and F ′
ij is the interaction between cells i and j

if the orientation change is accepted.
In the following section, we show how we apply the method reviewed in Section 5.2.1

to the vascular network formation problem, and how this formulation leads us to discover
cell–cell interactions from cell trajectories.
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5.3 SINDy for pairwise interaction discovery
We now look at particle and lattice systems whose dynamics is governed by an interaction
force between constituents. We first discuss particle systems, which is the primary focus
of this chapter, and then comment on how to adapt the framework to lattice systems.
In the vascular network formation problem, each of the particles represents a cell with
coordinates xi ∈ Rd, where d is the dimensionality of the problem. Then the number of
variables is n = d× np, where np denotes the number of particles.

We assume that d = 2 and that the dynamics of the system is given by (5.1) with

gi(x1,x2, . . . ,xn) :=
∑
j∈Ni

xi − xj

‖xi − xj‖
Fij , i = 1, . . . , np (5.16)

Fij := Φ(xi,xj , γi, γj), (5.17)
where Ni is the set of particles that particle i interacts with, and γi denotes the angle that
the i-th ellipse forms with y axis, see Figure 5.1 (a). Each ellipse is determined by (xi, γi)
and the two axes lengths which are assumed to be fixed for all cells, and therefore omitted
from Φ. At this point Φ is a generic function and represents the interaction between the
two ellipses. As such it should not change if we translate or rotate both ellipses w.r.t the
origin. Translation by a vector a acts as (xi, γi) 7→ (xi + a, γi). Rotation by an angle φ
acts as (xi, γi) 7→ (Rφxi, γi + φ), where Rφ is the 2× 2 rotation matrix, see Figure 5.1
(b). Imposing translation invariance leads to

Φ(xi,xj , γi, γj) = Φ(xi + a,xj + a, γi, γj) (5.18)
whose solution is Φ(xi − xj , γi, γj). Imposing rotation invariance leads to

Φ(xi − xj , γi, γj) = Φ(Rφ(xi − xj), γi + φ, γj + φ) , ∀φ ∈ [0, 2π) . (5.19)
First, we note that the following is invariant: Φ(‖xi − xj‖, γi − γj). However, this is
too restrictive, as it satisfies the more general symmetry Φ(xi−xj , γi, γj) = Φ(Rφ(xi−
xj), γi + φ′, γj + φ′) even for φ 6= φ′. To simplify the parametrization we follow [113]
and add a dependency on the areas of overlap, so that:

Fij = Φ(‖xi − xj‖, γi − γj , Aa,ij , Ar,ij) , (5.20)
where Aa, Ar are as in (5.10). While these areas of overlap can be computed from xi−xj

and γi, γj , their expression is complicated and no simple analytical form is known [113].
We also note that this function is periodic in the second argument with period 2π.

We want to recover the function Φ : R+×[0, 2π)×R+×R+ → R given the trajectories
of cells over time encoded in the matrixX of sizem×n, where n is the number of variables
and m is the number of time samples. We shall now adapt the formalism described in
Section 5.2.1 to this problem.

As a first step, we write down a set of basis functions {fp(r, γ, a, b)}Kp=1 to parametrize
the unknown function Φ(r, γ, a, b) appearing in equation (5.20). These correspond to the
following θp in the formalism of Section 5.2.1:

(θp(x))i =
∑
j∈Ni

xi − xj

‖xi − xj‖
fp(‖xi − xj‖, γi − γj , Aa,ij , Ar,ij) . (5.21)
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Then we can plug in these values for θp in equation (5.6) and solve the least square
problem. The solution ξ will then describe the function Φ as:

Φ(r, γ, a, b) =
K∑

p=1

ξpfp(r, γ, a, b) . (5.22)

If we take Ni in (5.16) to be the set of np − 1 points j 6= i, this implies that all particles
interact with each other. To restrict particle interaction to within a neighbourhood, we
can define a critical radius of interaction rc, such that fp(r, γ, a, b) = 0 if r > rc ∀p.
In the experiments shown later in the chapter, we do not learn the dynamics of the cell
orientation parameters γ; instead, we treat them as known inputs.

5.4 Numerical experiments and results
5.4.1 1D lattice system
We can use the formulation of (5.16) for lattice systems as well by assigning the indices
i to points on the lattice. For example in 1D, i = 1, . . . , n are the points on a line. x
is then a field with values xi at site i. In the case of lattice systems, we take the range
of values Ni to be the neighbours on the grid. For example in 1D, Ni = {i − 1, i + 1}
describes nearest-neighbour interactions.

In this section, we first describe our experiments on recovering the pairwise interaction
between harmonic oscillators on a 1D lattice with nearest-neighbour interactions. The
displacement of the ith particle is given by xi(t). We generated particle trajectories by
evolving the system in the overdamped regime:

ẋi(t) =
∑

j=i−1,i+1

xi − xj
rij

Fij , Fij := −k(rij − ρ), (5.23)

where rij = |xi − xj | and ρ is an offset. The initial configuration of oscillators and Fij

are shown in Figure 5.2, where we take k = 2.0, ρ = 1.0.
We integrated the dynamical equation numerically to obtain a matrix X for a discrete

set of time points T = {t1, . . . , tm}. The matrix of time derivatives Ẋ was obtained
using equation (5.3).

As the pairwise interaction between particles is a function of rij , we chose library
functions that were polynomials of rij :

fp(r) = rp, p ∈ {0, 1, . . . ,K} (5.24)

and used these to solve the LASSO problem (5.7).
As a first experiment, we show how to determine the regularization parameter α in

equation (5.7). For fixed K, n and m, we use LASSO to infer the parameters ξ for
different values of α (see Figure 5.2). We choose the optimum α to be the one with
the minimum number of non-zero terms in ξ for which the coefficient of determination
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Figure 5.2: (top left) Initial configuration of the 1D lattice system with oscillators shown
in red and connecting springs shown in blue; (top right) ground-truth pairwise interaction
Fij as a function of separation distance r. (bottom left) Plot of R2 coefficient with
respect to the number of non-zero parameters ξ for different values of the regularization
parameter α at fixed K = 10, m = 3, n = 1024. The optimum regularization parameter,
α = 10−5, is chosen such that R2 ≥ 0.99 for the least number of non-zero parameters.
(bottom right) Plot of RMSE with respect to the number of timepoints m for noisy
measurement data with σ = 0.1. The blue dots show mean values and the ribbons show
standard deviations computed over 10 randomised noise seeds.

satisfies R2 ≥ 0.99, where:

R2 = 1− ‖Ẋ −Θ(X)ξ‖22
‖Ẋ − 1

mn

∑
ij Ẋij‖22

. (5.25)

In the absence of measurement noise, we can infer the correct coefficients for arbitrary K
and n with as little as m = 3 timepoints (when time derivatives are computed using the
central difference scheme (5.3)) and ∆t = 0.001 1

k .
As the next experiment, we investigate the effect of measurement noise on inference

accuracy. In the most general setting, measurement noise affects both X and Ẋ, the
latter being numerical derivatives of the former. Applying SINDy to such data typically
leads to large errors in the inferred parameters [108]. Instead as in [108], we choose
to restrict measurement noise to observed values of Ẋ. This translates to the forward
problem:

Ẋ = Θ(X)ξ + η , (5.26)
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Figure 5.3: (left) Predicted interactions for various values of the regularization parameter
α; in all inference experiments a library with K = 11 polynomial terms in r was used.
(right) Ground truth trajectories (in black) overlaid with predicted trajectories for n = 100,
m = 100; more transparent points are earlier in time.

where η ∼ N (0, σ1).
We inferred parameters ξ for noisy measurement data using σ = 0.1 times the range

of Ẋ. We computed inference accuracy using the root mean squared error (RMSE) of
the inferred parameters ξinf with respect to the ground truth ξgt:

RMSE = ‖ξinf − ξgt‖2 . (5.27)

In Figure 5.2, we observe that the RMSE is high for a small number of timepoints m and
declines as m is increased.

5.4.2 2D particle system
Next we turn to a particle system in 2D, where each particle interacts with all others.
This latter system brings us closer to the vascular network system, where 2D cell–cell
interactions are at play.

For this system, we pick a cubic function to describe the ground-truth interaction
between cells:

ẋ(t) =
∑
j ̸=i

xi − xj

rij
Fij , Fij := k1(rij − ρ)3 − k2(rij − ρ), (5.28)

with k1 = 0.8, k2 = 2.0, ρ = 1.0. The inter-particle separation rij is now given by the
Euclidean distance between particles i and j: rij = ‖xi − xj‖2.

We performed simulations with n = 10 particles by integrating the above equation for
m = 100 time points with time interval equal to k2/10.

We inferred pairwise interactions between the particles by generating a library of
polynomial terms (5.24) with K = 11. Using LASSO with regularization parameter
α, we get different solutions for the inferred interaction in this case (shown in Figure 5.3).
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High values of α lead to pairwise interactions where the cubic nature of the ground-truth
function is not captured at all. Reducing α activates more and more terms in the function
library. For α = 0.0, where we effectively solve the linear least-squares problem (5.6),
we get a poorer estimation for the interaction. The predicted trajectories overlaid on the
ground-truth trajectories for α = 0.0001 show a close match. This indicates that the part
of the interaction that is not matched in this setting does not play a role in the data.
This is not surprising as the part of the interaction that is not matched corresponds to the
asymptotically increasing part of the cubic function in (5.28), and particles that experience
this large force show exploding trajectories (x approaching infinity). Such particles were
not included in the data in our simulations as such exploding trajectories are unphysical
and unlikely to occur in a real experiment.

5.4.3 Particle-based simulations of vascular network formation
Finally we apply our method of interaction learning to simulated data of vascular network
formation. For data generation in this part we used the particle-based simulation method
described in Section 5.2.2, which has an open-source implementation in C++ [113].

We performed simulations with n = 100 elongated cells with fixed orientations. The
ground-truth interaction between cells was given by equation (5.10) with λr = 0.02 and
λa = 0.0006. We evolved the system using the discretized Langevin equation (5.11) for
m = 100 time steps with time interval ∆t = 1.0. The damping factor τ was set to 1.0
to simulate overdamped dynamics. To simulate vectorial stochastic noise in the locations
of cells, we performed a series of simulations by modulating the noise amplitude Nv in
equation (5.11). A network generated with the particle-based simulation method using
noise amplitude Nv = 0.0 is shown in the top row of Figure 5.4.

Using our method, we then inferred cell–cell interaction terms from a library ofK = 15
terms. The library terms used were polynomial functions of the areas of overlap Ar and
Aa as well as those of the separation distance r. We also used two trigonometric terms
for the relative orientation between cells γ. The full library used was:

f1 = 1.0, f2 = Ar, f3 = Aa, f4 = A2
r, f5 = A2

a,

f6 = A3
r, f7 = A3

a, f8 = A4
r, f9 = A4

a, f10 = cos(γ),

f11 = sin(γ), f12 = r1, f13 = r2, f14 = r3, f15 = r4 .

In Figure 5.4, we plot inferred networks for noise amplitude Nv = 0.0. These networks
were obtained by using the coefficients of the inferred terms as input to the particle-based
simulations and integrating forward in time. The global structure of the inferred networks
is qualitatively similar to that of the true networks. To quantify the similarity between
networks at a given timepoint, we defined the deviation of the inferred network from the
true network as

ϵ =
1

np

np∑
i=1

‖xinf
i − xgt

i ‖2, (5.29)

where xinf
i denotes the position of cell i in the inferred network and xgt

i denotes its position
in the ground truth.
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True network at t=75 Predicted network at t=75

True network at t=500 Predicted network at t=500

True network at t=900 Predicted network at t=900

Figure 5.4: True and inferred networks of a particle-based simulation of angiogenesis using
100 elongated cells. Pairwise interactions were inferred for Nv = 0.0 using m = 100, n =
100; inferred networks were obtained by using the inferred interactions as input to an
open-source C++ particle-based simulation code [113].
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Figure 5.5: (left) Plot showing deviation of inferred network from the true network as a
function of iterations for Nv = 0.0; (right) RMSE with respect to the stochastic noise
amplitude Nv. For all inference experiments, we used a library with K = 15 terms,
m = 100 and n = 100.

In Figure 5.5, we plot this deviation normalised by the major diameter of cells (bcell,
which is taken to be constant) as a function of iterations. The deviation is almost zero
for iteration numbers lesser than 50 and is less than 10% of the cell diameter for the
first 100 iterations. This indicates a good match with the data used for inference, given
that we used the first 100 iterations for inferring pairwise interactions. The inferred
network deviates from the true network to a greater extent for the next iterations; this is
expected as small deviations in the earlier time points accumulate to larger differences later
on. Qualitatively, we observe greater differences between the networks at t = 500 than
between those at t = 75 in Figure 5.4. Interestingly, for longer iteration times (greater
than 800), the deviation flattens out; this could be the result of the two networks (true
and inferred) reaching separate steady states. Note, however, that the largest deviation
in networks is still quite small – lesser than one cell diameter. For comparison, the field-
of-view in the plots in Fig 5.4 is slightly greater than 8 bcell.

In Figure 5.5, we also plot the RMSE (5.27) as a function of the noise amplitude
Nv. For the noiseless simulation (Nv = 0.0), we were able to estimate the coefficients
with high accuracy. The RMSE increased almost linearly for increasing amplitudes Nv of
stochastic noise. Qualitatively, this observation is similar to one reported in [114], where
the authors study homogeneous diffusion in the presence of thermal noise and report an
increase in the percentage of function libraries that result in the correct solution with
decreasing noise. In our experiments, adding stochastic noise did not have a large effect
on inference accuracy, as evidenced by an increase in RMSE of less than 1%. This suggests
that our deterministic method performs reasonably for the amounts of stochastic noise in
such simulations.
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5.5 Discussion and conclusions
In this chapter we discussed a method to learn pairwise interactions between cells from
their trajectories. We adapted an existing equation learning method, SINDy, to our prob-
lem and demonstrated our approach on simulated lattice and particle data. On 1D lattice
data we demonstrated the effect of Gaussian measurement noise on inference accuracy
and presented a way to choose the optimum sparsity level by tuning the regularization
parameter α. On 2D particle data, we further demonstrated the effect of the parameter α
on the learned interaction and showed that parts of the interaction that are not matched
correspond to specific regions that are not sampled in the data. On particle-based simula-
tions of angiogenesis, we presented results on learning the interaction between elongated
cells, and showed how the accuracy of inference degrades with stochastic noise. In the
following, we briefly discuss how to apply our method to cellular Potts model (CPM)
simulations.

The CPM is another simulation paradigm that has been used to elucidate mechanisms
of vascular network formation. In particular, it was used to show that cell elongation was
crucial to network generation [109], a claim that is supported by experimental observations.
The CPM uses lattice spins to simulate biological cells. Each cell is a patch of identical
spins, while the intercellular spaces are modelled by patches of the opposite spin. The
interaction between neighbouring spins is used to generate an effective Hamiltonian, whose
ground state is reached by performing Monte Carlo steps. To learn a CPM, we would use
a library of Hamiltonian terms and coefficients. The observed data, analogous to the data
obtained from particle-based simulations, would be the centres of mass and orientations
of whole cells, which in the case of CPM correspond to patches of spins or Potts domains.

Applying our method to CPM is a stepping stone to inferring effective equations from
experimental wet-lab data. This would enable a complementary approach to angiogenesis
simulations, and pave the way to directly learning interactions that lead to network
formation.

99



100



Chapter 6

Conclusion

In this thesis we investigated ways to leverage sparsity in the design of practical algorithms
for various inverse problems. The inverse problems we focused on arose in quite different
application areas, with each being a topic of intensive research in its own right. The
methods presented in this thesis, while being tailored to each application, also share
some overarching similarities in design and implementation. This, we believe, indicates
the importance of developing mathematical tools that can be applied to more than one
practical problem.

In this concluding chapter, we summarize the contributions of this thesis and point to
some future research directions.

In Chapter 2 we presented a filter-optimization method to improve reproducibility of
reconstructions for synchrotron tomography. Our method used sparsity in the design of
optimal filters. By using the fact that many standard real-space filters taper off to zero at
the detector boundaries, we were able to reduce the number of filter coefficients that need
to be computed. These sparse-basis filters, when optimized to various implementations
of direct reconstruction algorithms, were shown to result in reconstructions with fewer
differences than those that were obtained with standard filters. Our work in this chapter
is a stepping stone towards a more reproducible synchrotron pipeline, which will require
both hardware and software modifications.

In Chapter 3, we demonstrated the use of sparsity in reconstructing atomic defects.
We built on existing ideas of grid-free sparse optimization to propose a more canonical
discretization of the atomic-resolution reconstruction problem. This discretization did
away with the need for reconstructing on a voxel grid. Instead, we modelled atomic
configurations as sparse measures, allowing for continuous deviations of atomic locations.
We showed how, coupled with physical prior knowledge on the potential energy of atomic
configurations, our grid-free method is able to reconstruct common lattice defects with
very few projections. We demonstrated the power of our approach in proof-of-concept
numerical studies, and proposed further modifications that would make our algorithm
applicable to real data.

We extended our grid-free sparse optimization method to investigate marker-based
alignment for cryoET in Chapter 4. Here we modelled marker configurations as deforming
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measures and used similar ideas to those first developed in Chapter 3 to solve for marker
locations and deformations. We applied our approach to synthetic data as well as real data
of markers embedded in ice. Our numerical experiments showed that this approach was
able to localize markers without the need for the user to label markers in projection data,
a cumbersome and error-prone pre-processing task that is needed for existing methods.
Our approach is flexible and allows for different models of sample deformation and marker
shapes.

In Chapter 5, we used sparsity to recover pairwise interactions that lead to network
formation in vertebrates. Our work builds on existing literature on nonlinear equation
learning, where a sparse combination of library terms is learnt for time-series data. We
used particle-based simulations of angiogenesis to generate time-series data of interacting
cells, and were able to recover the relevant interaction terms that led to the formation
of networks. Our work is a stepping stone to learning interaction terms in settings where
these are not evident, such as other simulation paradigms like the cellular Potts model
and experimental data of vascular network formation from endothelial cells.

The work in this thesis shows how sparsity can be used both implicitly and explicitly.
Examples of the former include choosing sparse filter basis functions and making certain
algorithmic choices, such as adding only one atom to the current solution at each iteration.
An explicit way to include sparsity while solving inverse problems is to include an ℓ1

regularization term in the objective, for example when inferring pairwise interactions
between cells.

One promising paradigm developed in recent years is to parametrize the regularizer
with a neural network. In the case of tomographic imaging, such learned regularizers
[117], [118] have been shown to outperform methods with hand-crafted regularization
terms. This is part of a wider interest in the application of data-driven approaches to
inverse problems [56], [119]. Although learned approaches might be superior to several
classical approaches that enforce sparsity explicitly, ideas of sparsity are also important
for improving the efficiency and robustness of deep-learning methods. One example is
the use of sparsity to reduce the complexity of deep neural networks by pruning network
weights. This has been shown to result in more generalizable networks that also use
less resources to train [120]. Another example is using sparsity implicitly in choosing an
appropriate discretization for the studied system. This approach is similar to our work
on reconstructing nanocrystal defects, and has recently been used to study the problem
of atomic-resolution cryo-electron microscopy of proteins [121]. Such examples indicate
the continued relevance of sparsity-based approaches in designing efficient algorithms for
inverse problems.
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Samenvatting

This chapter contains a summary of the thesis in Dutch and English. Thanks to Adriaan
Graas for his extensive help with the summary in Dutch.

Inverse problemen zĳn problemen waarbĳ we de waarden van bepaalde parameters van
een systeem willen schatten, gegeven een aantal waarnemingen van het systeem. Dergelĳ-
ke problemen komen veelvuldig voor in verschillende gebieden van wetenschap en techniek.
Inverse problemen zĳn vaak lastig oplosbaar, wat betekent dat de waarnemingen niet op
unieke wĳze de te schatten parameters kunnen bepalen. Om dergelĳke problemen op te
lossen moeten we daarom gebruik maken van extra kennis die beschikbaar is over het
systeem in kwestie. Een voorbeeld daarvan wordt gegeven door het begrip “ĳlheid”.

Met “ĳlheid” (engels: sparsity) wordt bedoeld dat de oplossing van het inverse probleem
kan worden uitgedrukt als een combinatie van slechts enkele termen. De ĳlheid van een
oplossing kan expliciet of impliciet worden bewerkstelligt. Een expliciete manier is door
het minimaliseren van het aantal niet-nul termen in de oplossing. Een impliciete manier
is, bĳvoorbeeld, door een aanpassing te maken in het algoritme dat gebruikt wordt om
tot de oplossing te komen.

In dit proefschrift hebben we vier verschillende inverse problemen uit vier verschillende
toepassingsgebieden bestudeerd. Per geval laten we zien hoe ideeën over ĳle problemen
toegepast kunnen worden om tot effectieve algoritmes te komen, en problemen uit de
toepassing op te lossen.

In hoofdstuk 2 hebben we het probleem van reproduceerbaarheid in synchrotron to-
mografie bestudeerd. Hardware en software kunnen sterk verschillen tussen synchrotrons
onderling, en de resultaten van experimenten die uitgevoerd worden door gebruikers van
verschillende faciliteiten zĳn dus niet zonder meer met elkaar te vergelĳken. Om die reden
hebben we een filter-optimalisatie algoritme ontwikkeld dat het reconstructiedeel van de
synchrotron pĳplĳn verbetert (zie figuur 1). Onze filters zĳn uitgedrukt in een ĳle basis,
wat betekent dat er maar een klein aantal filtercomponenten berekend hoeft te worden.

In hoofdstuk 3 hebben we onze aandacht gericht op de reconstructie van nanokristallen
uit een laag aantal projecties, m.b.v. elektronentomografie. Atomic-resolution tomograp-
hy (een beeldvormende methode voor atomen) van nanokristallen is in het verleden al
aangetoond, maar de tot dusver gebruikte algoritmes berustten op de veronderstelling dat
atomen op een rooster liggen. Deze aanname maakte het moeilĳk om kristaldefecten te
reconstrueren, wat juist één van de meest interessante kwaliteiten is van zulke beelden.
Wĳ hebben hiervoor een rastervrĳ algoritme ontworpen dat in staat was om veelvoorko-
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Figuur 1: Schematische voorstelling van een typische tomografie-pijplijn bij synchrotrons.
Onze filter-optimalisatie methode is een routine die het reconstructiedeel omvat. De output
van onze methode is een filter dat in het reconstructiedeel gebruikt kan worden voor
reproduceerbare reconstructies.

mende kristaldefecten te reconstrueren uit gesimuleerde data. We introduceerden ĳlheid
in de ruimte van atomen door bĳ elke iteratie slechts één atoom toe te voegen aan de
atoomconfiguratie van dat moment. We toonden daarnaast aan dat het meenemen van
voorkennis over de potentiële energie van de atoomconfiguratie de nauwkeurigheid van de
reconstructie verbetert.

We hebben onze methode voor atomic-resolution tomography verder uitgebreid in
hoofdstuk 4, waar we een nieuwe methode voorstellen voor marker-gebaseerde uitlĳning
in cryo-elektronentomografie. Cryo-elektronentomografie is de methode bĳ uitstek om de
structuur van biologische macromoleculen, zoals eiwitten, in hun oorspronkelĳke cellu-
laire omgeving te bepalen. Uitlĳning van projectiebeelden (de zogenaamde tilt-reeks) is
een cruciale stap om de resolutie van de uiteindelĳke structuren te verbeteren. Bĳ cryo-
elektronentomografie is het bĳzonder uitdagend om de plaatselĳke vervorming van het
monster ten gevolge van de bestraling met de elektronenbundel te corrigeren. Normaal
gesproken wordt de uitlĳning uitgevoerd met behulp van contrasterende gouden deeltjes
als markers, door de deeltjes te volgen in de tilt-reeks. Dit is echter een lastige, tĳdro-
vende en foutgevoelige taak, vooral wanneer de tilt-reeks ruis vertoont. Wĳ hebben een
uitlĳningsmethode voorgesteld waarbĳ het volgen van de markers niet nodig is; in plaats
daarvan gebruikt onze methode een model voor de markers en wordt zowel de lokalisatie
van de markers als de schatting van de vervorming tegelĳkertĳd uitgevoerd. We hebben
deze methode toegepast op zowel gesimuleerde als echte data, en vergeleken met een
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state-of-the-art beeldveranderingsmethode.

True network at t=75 Predicted network at t=75

Figuur 2: Ware en afgeleide vasculaire netwerken met 100 langgerekte cellen.

In ons laatste hoofdstuk, hoofdstuk 5, onderzochten we de vorming van vasculaire
netwerken – i.e., een nieuw bloedvatenstelsel – bĳ gewervelde dieren. Het ontspruiten
en uitbreiden van nieuwe bloedvaten uit een primitief netwerk gebeurt zowel tĳdens de
ontwikkeling als bĳ bepaalde kankertypes, waar in dit laatste geval het proces bĳdraagt
tot het behoud van de tumor en metastasering. Hoe individuele cellen zich organiseren
om vasculaire netwerken te vormen wordt nog niet goed begrepen. Eén manier om dit
proces te bestuderen is door netwerkvorming op de computer te simuleren met behulp
van handmatig ingestelde cel-cel interacties en omgevingsfactoren. Dergelĳke simulaties
zĳn bĳzonder nuttig gebleken voor het verhelderen van de minimale condities die nodig zĳn
voor netwerkvorming. Een aanvullende aanpak is om de cel-cel interacties direct af te leiden
uit experimentele studies over netwerkvorming. Voor dit laatste stelden we een aanpak
voor waarbĳ we paarsgewĳze interacties tussen cellen leren uit tĳdreeksdata. We pasten
deze aanpak toe op proof-of-concept experimenten, en toonden aan dat onze methode
in staat is om relevante interacties tussen cellen te leren uit een database van mogelĳke
interactietermen, wat resulteerde in een goede overeenkomst tussen het werkelĳke netwerk
en het netwerk voorspeld door onze methode (zie figuur 2). In de toekomst hopen we
deze methode uit te breiden naar andere simulaties waar zulke interactietermen niet
vanzelfsprekend zĳn en, tenslotte, naar experimentele data van netwerk-vormende cellen.

Ondanks de verschillen tussen de toepassingsgebieden die in dit proefschrift zĳn bestu-
deerd, hebben we laten zien dat vergelĳkbare optimalisatietechnieken op basis van ĳlheid
gebruikt kunnen worden om verschillende problemen aan te pakken. Dit weerspiegelt het
feit dat – zelfs als specifieke eigenschappen van problemen sterk verschillen – er vaak
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een onderliggende wiskundige overeenkomst is, en dat die door toegepaste wiskundigen
gebruikt kan worden voor het ontwerp van effectieve oplossingen.

English Summary
Inverse problems are problems where we want to estimate the values of certain parameters
of a system given observations of the system. Such problems occur in several areas of
science and engineering. Inverse problems are often ill-posed, which means that the
observations of the system do not uniquely define the parameters we seek to estimate.
In order to solve such problems, therefore, we need to make use of additional knowledge
about the system at hand. One such prior information is given by the notion of sparsity.

Sparsity refers to the knowledge that the solution to the inverse problem can be
expressed as a combination of a few terms. The sparsity of a solution can be controlled
explicitly or implicitly. An explicit way to induce sparsity is to minimize the number of
non-zero terms in the solution. Implicit use of sparsity can be made, for e.g., by making
adjustments to the algorithm used to arrive at the solution.

In this thesis we studied four different inverse problems in four different application
areas and showed how ideas of sparsity can be used in each case to design effective
algorithms to solve such problems.

In Chapter 2, we studied the problem of reproducibility in synchrotron tomography.
Hardware and software vary across synchrotrons, and the results of experiments performed
by users at different facilities are not readily comparable with each other. We proposed
a filter optimization approach to improve the reconstruction block in the synchrotron
pipeline (see Figure 1). Our filters are expressed in a sparse basis, which means that not
many filter components have to be computed.

In Chapter 3, we turned to the problem of reconstructing nanocrystals from a few
projections using electron tomography. Atomic-resolution tomography of nanocrystals has
been demonstrated in the past; however, the algorithms used relied on the assumption
that atoms lie on a grid. This assumption made it hard to reconstruct crystal defects,
which are often the feature of interest in such samples. We devised a grid-free algorithm
to reconstruct crystal defects that was able to reconstruct common defects from simulated
data. We induced sparsity in the space of atoms by adding only one atom to the current
atomic configuration at each iteration. We also showed that making use of physical prior
knowledge on the potential energy of the atomic configuration improved reconstruction
accuracy.

We extended our method for atomic-resolution tomography to propose a new method
for marker-based alignment in cryo-electron tomography in Chapter 4. Cryo-electron to-
mography is the method of choice for resolving the structure of biological macromolecules,
such as proteins, in their native cellular environment. Alignment of projection images
(known as a tilt-series) is a crucial step to increasing the resolution of the final struc-
tures. In cryo-electron tomography, local deformation of the sample due to irradiation
with the electron beam is particularly challenging to correct. Usually, alignment is done
by using high-contrast gold beads as markers, whose positions are tracked across the
tilt-series. However, tracking markers is a difficult, time-consuming and error-prone task,
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especially when tilt-series are noisy. We proposed an alignment method without the need
for marker tracking; instead, our method used a model for the markers and performed
marker localization and deformation estimation simultaneously. We applied this method
to both simulated and real data, and compared it against a state-of-the-art method for
deformation estimation.

In our final chapter, Chapter 5, we investigated the problem of vascular network
formation – the formation of a new circulatory system – in vertebrates. Sprouting and
expansion of new blood vessels from a primitive network occurs both during development
and in certain types of cancer, where this process contributes to tumour maintenance
and metastasis. How individual cells self-organize to form vascular networks is poorly
understood. One way to study this process it to simulate network formation on a computer
using hand-crafted cell–cell interactions and environmental cues. Such simulations have
proven to be extremely useful in elucidating the minimal interactions required for network
formation. A complementary approach is to infer cell–cell interactions directly from
experimental studies of network formation. To that end, we proposed a sparse optimization
approach to learn pairwise interactions between cells from time-series data on cells. We
applied this approach to proof-of-concept experiments and showed that our method is able
to learn the relevant interactions between cells from a library of possible interaction terms,
which resulted in a good match between the actual network and the network predicted
by our method (see Figure 2). In the future, we hope to extend this method to other
simulations where such interaction terms are not evident and, finally, to experimental data
of network-forming cells.

Despite the differences between the application areas studied in this thesis, we showed
that similar optimization techniques based on sparsity can be used to tackle each problem.
This reflects the fact that, although the specifics of each problem vary vastly from the
next one, there is an underlying mathematical similarity between the problems that can
be used by applied mathematicians to design effective ways to solve them.

119



120



Curriculum Vitae

Poulami Somanya Ganguly was born and brought up in Kolkata, India, and attended high
school at Loreto Day School Dharamtala and La Martiniere for Girls. She went on to study
physics at St Stephen’s College, Delhi, and was awarded a BSc (Hons) degree in 2013. In
the summers of 2011 and 2012, she conducted biophysics research at the Bose Institute in
Kolkata and the National Centre of Biological Sciences in Bangalore. Following her bach-
elor’s studies, she moved to Köln, Germany, for a Master’s degree (2015) in theoretical
physics at the Bonn Cologne Graduate School. In 2017, she was awarded an MPhil in the-
oretical and computational biophysics by University College London; her MPhil research
on the mechanics of morphogenesis was carried out at the Francis Crick Institute. In 2018
she began her doctoral research on inverse problems at the Centrum Wiskunde & Informat-
ica (CWI) in Amsterdam and Leiden University, as part of the Marie-Sklowdowska Curie
Innovative Training Network MUMMERING. She made extended research visits to the
Paul Scherrer Institute (Villigen, Switzerland) and Thermo Fisher Scientific (Eindhoven,
The Netherlands) as part of her PhD, and was twice awarded travel grants by the Society
of Industrial and Applied Mathematics (SIAM) to present her work at the SIAM Imaging
Science conference.

121


	Introduction
	Background
	Application areas
	Inverse problems
	Computational solution of inverse problems using sparsity
	Research questions

	Implementation-adapted filters for synchrotron tomography
	Introduction
	Background
	Implementation-adapted filters
	Data and metrics
	Numerical experiments and results
	Discussion
	Conclusion

	Sparse grid-free reconstruction of nanocrystal defects
	Introduction
	Problem setting
	Algorithms
	Numerical experiments
	Discussion
	Conclusions

	Grid-free marker-based alignment in cryo-electron tomography
	Introduction
	Mathematical formulation
	Optimization
	Numerical experiments
	Results
	Conclusion and discussion

	Learning cell–cell interactions for vascular network formation
	Introduction
	Background
	SINDy for pairwise interaction discovery
	Numerical experiments and results
	Discussion and conclusions

	Conclusion
	Bibliography
	List of publications
	Samenvatting
	Curriculum Vitae

