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Epithelial–mesenchymal transition (EMT) and immunoevasion
through upregulation of programmed death-ligand 1 (PD-L1)
are important drivers of cancer progression. While EMT has
beenproposed to facilitate PD-L1-mediated immunosuppression,
molecular mechanisms of their interaction remain obscure. Here,
we provide insight into these mechanisms by proposing a math-
ematical model that describes the crosstalk between EMT and
interferon gamma (IFNγ)-induced PD-L1 expression. Our model
shows that via interaction with microRNA-200 (miR-200), the
multi-stability of the EMT regulatory circuit is mirrored in PD-
L1 levels, which are further amplified by IFNγ stimulation. This
IFNγ-mediated effect is most prominent for cells in a fully
mesenchymal state and less strong for those inan epithelial orpar-
tially mesenchymal state. In addition, bidirectional crosstalk
between miR-200 and PD-L1 implies that IFNγ stimulation
allows cells to undergo EMT for lower amounts of inducing
signal, and the presence of IFNγ accelerates EMT and decelerates
mesenchymal–epithelial transition (MET). Overall, our model
agreeswith published findings and provides insight into possible
mechanisms behind EMT-mediated immune evasion, and pri-
mary, adaptive, or acquired resistance to immunotherapy. Our
model can be used as a starting point to explore additional cross-
talk mechanisms, as an improved understanding of these
mechanisms is indispensable for developing better diagnostic
and therapeutic options for cancer patients.
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1. Introduction
Activating invasion and metastasis and evading immune destruction are well-established hallmarks of
cancer, complementary capabilities that enable tumour growth and metastatic dissemination [1].
Because metastasis is the main cause of cancer mortality, a thorough understanding of the interaction
between these hallmarks is essential for developing therapeutic approaches, yet they are often studied
separately [2]. Consequently, the interplay between metastatic dissemination and immune evasion
remains poorly understood.

In recent years, epithelial–mesenchymal plasticity (EMP), the ability of cells to interconvert between
intermediate E/M phenotypes along the epithelial–mesenchymal transition (EMT) spectrum [3], has
been extensively studied because of its crucial role in invasion and metastasis (reviewed in [4–6]).
Moreover, EMP is associated with therapeutic resistance (reviewed in [5,7]), including resistance to
immunotherapy (reviewed in [8]). One of the mechanisms through which cancer cells acquire immune
resistance is by activation of immune checkpoint pathways, which under physiological conditions are
indispensable for self-tolerance and modulation of the immune response [9].

A frequently upregulated checkpoint protein in tumours is programmed death-ligand 1 (PD-L1) [10].
Its corresponding receptor programmed death 1 (PD-1) is expressed on the cell membrane of T cells, and
PD-1–PD-L1 interaction induces a variety of immunosuppressive effects, such as inhibition of T cell
proliferation, survival and effector functions [11]. Tumour cells can express PD-L1 by two general
mechanisms: adaptive immune resistance, where PD-L1 expression is upregulated in response to
inflammatory factors (such as interferon gamma (IFNγ)) produced by an anti-tumour immune
response, and innate immune resistance, where PD-L1 expression is upregulated in response to
constitutive oncogenic signalling [9]. Such constitutive signalling could, for example, be caused by
EMT, and indeed several links between EMT and PD-L1-mediated immunoevasion have been
reported in the literature (reviewed by Jiang and Zhan [12], who conclude that additional mechanistic
studies are urgently needed).

Here, we study the post-transcriptional regulation of PD-L1 by the microRNA-200 (miR-200)–zinc
finger E-box-binding homeobox 1 (ZEB1) axis, which is one of the proposed mechanisms underlying
the interplay between EMT and immune resistance [13–15]. The binding of miR-200 to the mRNA of
PD-L1 inhibits mRNA translation and in general such binding can stimulate miRNA decay [16,17].
The miR-200–ZEB1 axis is ‘a motor of cellular plasticity’ [18] and is considered to be part of the EMT
core regulatory network [19]. Various mathematical models of EMT that include the miR-200–ZEB1
axis have been developed, which have contributed to a better mechanistic understanding of EMT
(reviewed in [3,20,21]). Recently, Sahoo et al. [22] presented a mathematical model interconnecting a
minimal EMT network and PD-L1 using shifted Hill functions to investigate immune-evasive
strategies of hybrid E/M states, assuming an indirect effect of PD-L1 on EMT. Model analysis showed
that both the stable hybrid and full EMT phenotypes resulting from the model were associated with
high PD-L1 levels. However, although EMT scores determined from gene expression levels across a
large panel of cell lines indeed exhibited a pattern of gradually increasing PD-L1 expression with the
increasing EMT score, there was no clear dichotomy as expected from the mathematical model. This
difference may be explained by the indirect nature of the feedback of PD-L1 to EMT as implemented
in the model of Sahoo et al. [22]. Moreover, the impact of adaptive, IFNγ-driven PD-L1 expression, i.e.
the primary reason for PD-L1 upregulation [23,24], was not taken into account in their model.

To describe the full interactions expected between adaptive and innate immune resistance and to
study the impact of direct, mutual feedback between EMT and PD-L1, we connected a ‘core’ EMT
model to a model for IFNγ-induced PD-L1 expression, which we developed based on an extension of
a published JAK–STAT model [25]. For EMT, we used the ternary chimera switch (TCS) model by
Jolly et al. [26], which is a simplification compared with the prior work [27]. Combining these two
models was achieved by adding a mutually inhibitory feedback loop between miR-200 and PD-L1,
which we described using appropriate miRNA–mRNA dynamics [28]. The analysis of our model
shows that IFNγ-induced PD-L1 expression is expected to greatly accelerate EMT and decelerate the
reverse mesenchymal–epithelial transition (MET) process. Moreover, IFNγ-induced PD-L1 lowers the
required level of EMT-inducing signal, leading to an overall larger probability of EMT in tumours
with a high IFNγ expression compared with tumours with a low expression. Vice versa, and
consistent with the study by Sahoo et al. [22], a full EMT induced via other signals greatly upregulates
PD-L1 expression, which IFNγ further amplifies. However, in our model, the hybrid EMT phenotype
only moderately affects PD-L1 expression, which is due to the mutual feedback between EMT and
PD-L1. Finally, we show that our model findings are broadly consistent with published experimental
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Figure 1. PD-L1 and EMT dynamics occur on distinct time scales. (a) Schematic diagram of the signalling pathway regulating IFNγ-
induced PD-L1 expression. (b) Schematic diagram of the full model combining IFNγ-induced STAT signalling (left box), PD-L1
expression (middle box) and the simplified TCS model for EMT dynamics (right box). (c)–( f ) Temporal dynamics of separate
models (boxes in (b)) without connection to the other parts. This includes IFNγ-induced STAT1 signalling (c) with IFNγ =
0.1 nM, STAT1-induced PD-L1 expression (d ) with STAT1p_2 = 430 nM and SNAIL1-induced EMT ( f ) with SNAIL1 = 2.3 ×
105 molecules. The bifurcation diagram in (e) illustrates how EMT phenotype depends on the inducing signal in the TCS model
(left, black lines). The eventual phenotype also depends on the initial state of the system, illustrated by temporal dynamics
after a sudden increase in SNAIL1 from 2.0 × 105 molecules to 2.15 × 105 molecules given three different initial states
(coloured lines).
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results in an extensive comparison with experimental data. Overall, our analysis illustrates how crosstalk
between EMP and IFNγ-induced PD-L1 production can result in immune evasion and contribute to
invasion and metastasis.
2. Results
2.1. Modelling IFNγ-induced PD-L1 expression and EMT
To study the interplay between IFNγ-induced PD-L1 expression and EMT, we first need a quantitative
description of these major processes. Although interferon gamma (IFNγ)-induced PD-L1 expression
via the JAK–STAT pathway (figure 1a) has been extensively studied [29,30], to the best of our
knowledge, no mathematical model of this entire process exists. Existing models focus on IFNγ-
induced JAK–STAT signalling (reviewed in [31]) and usually do not take into account direct targets of
STAT such as interferon regulatory factors (IRFs) and interferon-stimulated genes. To model IFNγ-
induced PD-L1 expression, we used the simplified JAK–STAT model by Quaiser and Mönnigmann
[32] (figure 1b, left box), which is a truncated version of a more detailed model by Yamada et al. [33].
In this model, phosphorylated signal transducer and activator of transcription 1 (STAT1) homodimer
(STAT1p_2) reaches its maximum at about 30 min after IFNγ exposure (figure 1c), in agreement with



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220186
4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 N

ov
em

be
r 

20
22

 

Brysha et al. [34]. This time scale is much shorter than the time scale of hours at which PD-L1 dynamics
occur (figure 1d ), in agreement with Kleijn et al. [35] and Ghosh et al. [36]. Therefore, we simplified this
model further by describing the steady state of its output, i.e. STAT1p_2, with a Gompertz function
(electronic supplementary material, Methods). We then extended this model with the production of
IRF1 mediated by STAT1, and production of PD-L1 mediated by IRF1 (figure 1b, middle box, and
electronic supplementary material, figure S1A). We modelled both of these processes with shifted Hill
functions, which led to realistic IRF1 [37] and PD-L1 [36] dynamics (electronic supplementary
material, figure S1B).

For EMT, various mathematical models have been developed (reviewed in [20,21]). Two well-known
models of the miR34-SNAIL1 and miR200-ZEB1 axes, i.e. the core regulatory machinery of EMT [19], are
the cascading bistable switches model (Tian et al. [38]; later revised by Zhang et al. [39]) and the TCS
model [27]. We elected to use the simplified TCS model developed by Jolly et al. [26] (figure 1b, right
box). Notably, the TCS model exhibits three stable states, representing an epithelial phenotype (E), an
intermediate phenotype (E/M) and a mesenchymal phenotype (M) (figure 1e, left, black lines).
Consistent with the results for the full TCS model (cf. fig. 6 in [27]), a full EMT in the simplified TCS
model takes approximately 20 days, with a slowing down of the transitioning to the mesenchymal
phenotype around ZEB1 expression levels for the hybrid phenotype (figure 1f ). Both the initial state
of the system and the EMT-inducing signal determine the phenotype that the system attains in the
long run (figure 1e, coloured lines). Moreover, it is important to note the difference in time scales for
the dynamics of the different model components: although signal transducer and activator of
transcription (STAT) signalling and PD-L1 expression occur on a time scale of minutes and hours, a
full EMT transition from E to M occurs on a time scale of days (figure 1c–f ).

2.2. IFNγ amplifies the increase in PD-L1 caused by EMT primarily for mesenchymal cells
Because we aimed to study the impact of IFNγ-mediated PD-L1 on EMT and vice versa, we connected the
separate model parts (figure 1b, boxes) by adding mutual inhibition between PD-L1 and miR-200
[13,14,40] using the theoretical framework for miRNA-transcription factor (TF) dynamics by Lu et al.
[28]. This results in direct inhibition of PD-L1 by miR-200, as miR-200 binds to the mRNA of PD-L1
[13]. However, there is automatically also an inhibitory effect of PD-L1 on miR-200 because the
modelled miRNA–mRNA interaction leads to additional miR-200 degradation (Lu et al. [28], see
electronic supplementary material, Methods for details). This PD-L1 inhibitory effect on miR-200 also
affects the miR-200 level in the absence of IFNγ because in the coupled model PD-L1 has a non-zero
expression level (driven by EMT status). The basal miR-200 degradation rate in the TCS model should
contain the influence of degradation by any molecule not described explicitly in that model, including
PD-L1. Thus, to aim for a fair comparison between these structurally different models (i.e. TCS and
our combined model (figure 1b)), we decreased the basal miR-200 degradation rate in the combined
model until it approximately matched the bifurcation diagram for the TCS model (electronic
supplementary material, figure S2).

Next, we studied how the system responds to different levels of SNAIL1 (activated via, for example,
transforming growth factor beta (TGFβ)) and IFNγ (figure 2). In the absence of IFNγ, the previously
reported tristable ZEB1 levels [27] translate to similar tristability in PD-L1 expression at the cell
membrane (blue line in figure 2a). Here, the highest PD-L1 expression occurs for mesenchymal cells
and the lowest for epithelial cells. Note that the PD-L1 expression of hybrid cells is only slightly
increased compared with epithelial cells, a prediction that is different from the recent study by Sahoo
et al. [22], who predict an almost equal level of PD-L1 for the hybrid and mesenchymal phenotype.
Notably, the mutual inhibition of miR-200 and PD-L1 did not result in additional bifurcation points.
However, the combined model predicts that exposure of cells to IFNγ greatly amplifies PD-L1
expression for all phenotypes, thereby also amplifying the differences in PD-L1 expression between
those EMT phenotypes (figure 2a, orange line; figure 2b). Nevertheless, in the presence of IFNγ, the
hybrid phenotype has a PD-L1 expression level similar to that of epithelial cells, and only
mesenchymal cells are expected to have substantially higher PD-L1 levels.

2.3. IFNγ promotes the occurrence of EMT
We next asked what the impact of IFNγ is on ZEB1, i.e. a central EMT-TF. In the absence of IFNγ, cells in
our model undergo EMT for similar levels of SNAIL1 compared with the original TCS model (blue curve
in figure 2c compared with the grey curve). Small differences between our model and the TCS model are
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caused by the bidirectional influence between PD-L1 and miR-200. In the presence of IFNγ, this mutual
influence causes the bifurcation diagram to shift to the left (figure 2c, orange curve), because the
expression of PD-L1 leads to a reduced amount of miR-200, in turn affecting EMT. This implies that
according to our model IFNγ promotes EMT because both partial and full EMT more readily occur
than in the absence of IFNγ.

We created a phase diagram to provide an overview of how the stability of EMT phenotypes depend
on IFNγ and SNAIL1 levels (figure 2d ). In this phase diagram, the IFNγ-induced leftward shift is clearly
visible. In addition, it shows that the total range of SNAIL1 for which the hybrid E/M phenotype, a
particularly aggressive EMT phenotype (Lüönd et al. [41], and reviewed in Jolly et al. [42]), can
(co-)exist is unaffected. As the different EMT phenotypes express different levels of PD-L1 we
additionally quantified these levels for each phenotype and for the average PD-L1 expression per
stability region (electronic supplementary material, figure S3).

To investigate the role of the included JAK–STAT regulation, we created a simplified crosstalk model
where we replaced JAK–STAT signalling with a generic inducing signal I (electronic supplementary
material, figure S4A). The influence of this inducing signal is more gradual than the influence of IFNγ
in the full model, yet the same leftward shift is present (electronic supplementary material, figure S4B,
compared with figure 2b), suggesting that IFNγ-induced JAK–STAT signalling makes the response
highly ‘switch-like’. In addition, we used a sensitivity analysis on parameters used in the negative-
feedback loop between miR-200 and PD-L1, which showed that both the predicted leftward shift of
SNAIL1 levels and the amplification of PD-L1 by IFNγ are robust to parameter change (electronic
supplementary material, figure S5). In conclusion, our model predicts that local presence of IFNγ
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promotes partial and full EMT by lowering the threshold for additional EMT-inducing signals to induce
(partial) EMT.

2.4. IFNγ-driven PD-L1 expression accelerates EMT
Besides the steady states for EMT status and PD-L1 expression that the combined regulatory network can
reach in the long run, in practice, it will also matter how long it takes to reach these states. Therefore, we
also investigated our combined regulatory network’s temporal dynamics and compared them with the
temporal dynamics of the separate models.

To study the impact of PD-L1 expression on the temporal dynamics of an EMT transition and vice
versa, we started with a stable epithelial phenotype (SNAIL1 = 1.7 × 105 molecules) and simulated
transition to a fully mesenchymal phenotype by a sudden increase of SNAIL1 (to 2.3 × 105 molecules).
In the absence of IFNγ, there is only a minor change in the temporal dynamics of EMT in our
combined model relative to the simplified TCS model (blue versus grey lines in figure 3). However, as
a consequence of the double-negative feedback loop between miR-200 and PD-L1, the decrease in
miR-200 during EMT affects the PD-L1 mRNA and membrane PD-L1 (which are not present in the
TCS model) at a similar time scale as miR-200. Thus, the effect of EMT on PD-L1 expression takes
place on a much slower time scale than for PD-L1 expression driven by IFNγ (for comparison, see
figure 1d ).

In the presence IFNγ, the increased level of PD-L1 over time speeds up the miR-200 decrease
(compared with the TCS model that does not consider an interaction with PD-L1). This is due to fast
PD-L1-driven miR-200 degradation during the initial phase of EMT (electronic supplementary
material, figure S6). Because of miR-200’s role as a critical suppressor of several EMT-TFs [43,44], this
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accelerates the EMT process by about 10 days, mainly by reducing the time cells remain in a state close
to the hybrid (E/M) phenotype before converting to a fully mesenchymal phenotype (orange line in
figure 3, left). Again, the PD-L1 expression level evolves slowly compared with the rapid increase
observed on a time scale of hours for the model describing just IFNγ signalling (figure 1d ). This
difference in time scales of initial IFNγ-driven PD-L1 increase and of further PD-L1 increase due to
EMT is especially apparent when considering a scenario where cells are simultaneously exposed
to IFNγ and a TGFβ (electronic supplementary material, figure S7, left column).

In summary, the double-negative feedback loop between miR-200 and PD-L1 accelerates EMT in the
presence of IFNγ.

2.5. IFNγ-driven PD-L1 expression decelerates MET
Finally, we investigated whether similar changes occur in the temporal dynamics of the reverse process in
which mesenchymal cells transition to an epithelial phenotype, i.e. MET. For this purpose, we started
with a stable mesenchymal phenotype, where SNAIL1 = 2.3 × 105 molecules, which we instantaneously
decreased to 1.7 × 105 molecules. In the simplified TCS model, this SNAIL1 decrease led to a direct
transition from the mesenchymal into the epithelial phenotype (grey dashed line in figure 3, right), i.e.
without a substantial slowing down of the dynamics around a hybrid phenotype.

As anticipated from the observed EMT dynamics showing that the double-negative feedback
loop between PD-L1 and miR-200 favours the mesenchymal phenotype, this loop also affects MET,
albeit in the opposite direction, i.e. it decelerates MET. This is primarily due to the long-lasting
suppression of miR-200 (orange lines in figure 3, right). However, this effect is considerably smaller
than the effect in the forward transition, which is probably the result of MET not transitioning
through the hybrid state at a slow pace since the PD-L1–miR-200 interaction primarily accelerated
EMT by shortening the time spent there (figure 3, left). Note that simultaneous lowering of SNAIL1
and removal of IFNγ do lead to an MET occurring at a similar speed as in the original TCS model
(electronic supplementary material, figure S7, right column), demonstrating the important role of IFNγ
in EMP.

In conclusion, the PD-L1–miR-200 double-negative feedback loop is expected to slow down MET
considerably in the presence of IFNγ.
3. Discussion and conclusion
Here, we have used a mathematical model to describe the crosstalk between IFNγ-induced PD-L1
expression and EMT. We showed that merely adding the reported interaction between PD-L1 and
miR-200 gives rise to tristability in the PD-L1 levels, where a mesenchymal state corresponds with
high PD-L1 expression and an epithelial state with low PD-L1 expression. The difference in PD-L1
levels between the stable EMT states is amplified by adding IFNγ stimulation. In addition, we showed
that adding this crosstalk reduces the amount of SNAIL1 required to undergo EMT in the presence of
IFNγ. Finally, we showed that in the presence of IFNγ, this crosstalk accelerates the forward EMT
process and decelerates the reverse MET process.

To assess the extent to which the model results agree with recent studies, we have compiled a
summary of published experimental reports on the link between EMT and PD-L1 and indicated
which findings are qualitatively consistent with our results (table 1). Note that we omitted several
papers that propose different mechanisms underlying EMT/PD-L1 crosstalk and lacked experimental
findings that could be compared with our simulations [54–57]. Overall, the simulated results of our
model are in good agreement with the reported experimental findings.

Although findings of our model and experimental data are in good agreement, some results are
partially conflicting: firstly, Noman et al. [14] reported that while PD-L1 expression in EMT-activated
breast cancer cell lines is regulated via the SNAIL1/ZEB1/miR-200 axis, treatment of MCF7-2101 cells
with TGFβ or inhibition of TGFβ in MCF sh-WISP2 cells did not modulate PD-L1 expression.
However, the MCF7-2101 cell line already has a mesenchymal phenotype, evident from their vimentin
expression and lack of E-cadherin; hence, additional TGFβ is not expected to further increase PD-L1
expression by triggering EMT. Moreover, although the TGFβ signalling inhibitors repressed SMAD2
activation in MCF7 sh-WISP2 cells, phosphorylated SMAD2/3 is only essential for SNAIL1 activation
and not for the persistence of SNAIL1 expression [58]. Thus, the performed experiments cannot rule
out that TGFβ signalling modulates PD-L1 expression in these cell lines. Secondly, PD-L1 expression



Table 1. Summary of experimental reports regarding the crosstalk between EMT and PD-L1 and their consistency with our ODE
model.

cancer type description match

— association between EMT markers and PD-L1 expression in different cancer

types [12]

yes

breast cancer Induction of EMT in human breast cells using TGFβ upregulated PD-L1

expression in a manner that was dependent on the activation of the

PI3K/AKT and MEK/ERK pathways. In addition, manipulation of PD-L1

modulated the EMT status of breast cancer cells. Downregulation of PD-L1

using specific shRNA in mesenchymal-like cells led to partial EMT reversal.

Conversely, overexpression of PD-L1 led to EMT [40].

yesa

In an EMT-activated and a mesenchymal-like breast cancer cell line,

upregulation of PD-L1 depended on SNAIL and ZEB1. In another EMT-

activated cell line, silencing of ZEB1 (but not SNAIL) and overexpression

of miR-200 family members strongly decreased PD-L1 expression.

However, the treatment of EMT-activated breast cancer cells with TGFβ

did not affect PD-L1 expression, and inhibitors of TGFβ signalling did not

modulate PD-L1 expression [14].

mostly

colon cancer ZEB and PD-L1 overexpression and a reduction in miR-200 were identified in

budding areas in colon cancer tissues. PD-L1 overexpression led to low

levels of miR-200a and miR-200c and high levels of ZEB1 and ZEB2 [15].

yes

oesophageal squamous cell

carcinoma (OSCC)

TGFβ induced ZEB1 and PD-L1 expression in epithelial-like OSCC cell lines.

ZEB1 knockdown by RNA interference stimulated E-cadherin and

suppressed PD-L1 mRNA and protein expression in a mesenchymal-like

cell line. Because the promoter region of PD-L1 contains a binding site

for ZEB1, the authors speculated that ZEB1 directly regulates PD-L1

expression, in addition to its indirect regulation through miR-200 [45].

mostlya

PD-L1 expression promoted the mesenchymal phenotype in oesophageal

cancer cells. Ablation of PD-L1 enhanced E-cadherin and suppressed

several mesenchymal markers, and the opposite was observed upon PD-

L1 overexpression [46].

yes

TRAIL induced EMT in OSCC by upregulating PD-L1 expression. In addition,

treatment with anti-PD-L1 antibodies inhibited TRAIL-mediated metastasis

in mice [47].

yes

glioblastoma In glioblastoma multi-forme cells, PD-L1 overexpression downregulated E-

cadherin and upregulated N-cadherin and Vimentin, as well as the

upstream transcription factors SLUG and β-catenin (but not ZEB1).

Mechanistically, PD-L1 activated the EMT process via Ras binding and

activating the downstream MEK/ERK signalling [48].

partlya

hepatocellular carcinoma PD-L1 expression promoted EMT in sorafenib-resistant HepG2 SR and Huh7

SR cell lines via the PI3K/Akt pathway by activating SREBP-1

expression [49].

yesa

(Continued.)
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Table 1. (Continued.)

cancer type description match

lung cancer Tumour cell PD-L1 expression is regulated by the miR-200/ZEB1 axis in non-

small cell lung cancer (NSCLC). Chen et al. postulate that this is caused

by miR-200 binding sites on the mRNA of PD-L1. Induction of EMT using

TGFβ upregulated ZEB1 and PD-L1 expression, and constitutive ZEB1

expression enhanced PD-L1 expression on epithelial lung cancer cell lines.

Conversely, PD-L1 was suppressed in mesenchymal cells upon ZEB1

knockdown or miR-200 overexpression [13].

yes

Cytokine-driven EMT signalling reversibly upregulated PD-L1 expression in

NSCLC cell line A549. Mechanistically, this was regulated by DNA

methylation and NF-κB signalling and required both 1 and TNF-α [50].

yesa

There is a positive association between PD-L1 and phosphorylated Smad2 in

NSCLC tumours, and 1 upregulated PD-L1 gene transcription in NSCLC in

a Smad2-dependent manner [51].

yesa

Knockdown of PD-L1 by small interfering RNAs (siRNAs) suppressed

expression of mesenchymal markers and upregulated E-cadherin

expression in H460 and H358 cells, and PD-L1 overexpression showed the

opposite effect [52].

yesa

renal cell carcinoma Downregulation of PD-L1 led to downregulation of the mesenchymal marker

vimentin and upregulation of the epithelial marker E-cadherin, while PD-

L1 upregulation enhanced vimentin and suppressed E-cadherin expression

through activation of SREBP-1 [53].

yesa

aHowever, different mechanisms/pathways (also) appear to be involved.
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in certain cell lines is reportedly affected by silencing of ZEB1 but not of SNAIL1 [14,45]. Although
SNAIL1 drives ZEB1 expression in the EMT core regulatory network model we used, this apparently
contradictory finding can be reconciled by appreciating that the EMT transcriptional response is
highly context specific [59,60]. Indeed, sustained expression of ZEB1 can be achieved by various EMT
regulators and even by ZEB1 itself, resulting in an irreversible switch to the mesenchymal phenotype
[39,61,62]. Thus, SNAIL1 silencing may be insufficient to affect PD-L1 in settings where ZEB1 is
maintained via other means.

Even though partially conflicting findings between our model and published data can be reconciled,
it is also likely that additional mechanisms by which PD-L1 and EMT mutually influence each other play
a role depending on the studied cell line or cancer. For instance, PD-L1 expression can induce EMT by
activating the TF SREBP-1c in hepatocellular and renal cell carcinoma [49,53], or by preventing SNAIL1
ubiquitination in triple-negative breast cancer [63]. In addition, ZEB1 can bind and silence IRF1, a TF of
PD-L1 [64], and the activity of the CMTM family, which stabilizes PD-L1, correlates with EMT-TFs such
as SLUG [65,66].

In the related mathematical model presented by Sahoo et al. [22], an indirect feedback mechanism of
PD-L1-mediated E/cadherin inhibition was included. Results of their model agree qualitatively with
those of our model in terms of the prediction that hybrid E/M cells are expected to be PD-L1 positive
and hence immune-evasive. However, the predicted PD-L1 expression levels for the different EMT
phenotypes differ substantially: Sahoo et al. [22] predict that the hybrid and mesenchymal phenotypes
have almost equally high PD-L1 expression, whereas we predict that hybrid cells are closer to
epithelial cells with respect to PD-L1 expression. They substantiated that PD-L1 expression increases
with EMT scores by an analysis of gene expression in pan-cancer datasets and analysis of responses in
several cell lines. For some of these data, intermediate EMT scores (interpreted as hybrid cells) have
the tendency to only moderately increase the PD-L1 expression (e.g. figs 1E and F and 5E in [22]),
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which is more in line with our model predictions. A key difference in our respective approaches is
that Sahoo et al. [22] employed RACIPE (random circuit perturbation) [67], which yields semi-
quantitative predictions based on network topology, whereas we used a mechanistic approach based
on appropriate miRNA–mRNA dynamics. As a consequence, only the inhibition of miR-200 on PD-L1
is present in the model by Sahoo et al. [22], because the inhibition of PD-L1 by miR-200, which arises
as a consequence of miRNA–mRNA dynamics, cannot be captured by using the Hill-type dynamics
in RACIPE. Nevertheless, the experimental work is required to investigate whether miR-200
degradation is enhanced upon binding to PD-L1. Moreover, the involved mechanisms and factors
affecting PD-L1 expression and EMT are probably context and cell-line specific, and further research
will be required to unravel this complicated interplay between factors. Our model forms a basis to
include such factors.

A limitation of our model is its relatively crude description of IFNγ-induced PD-L1 expression. To
keep the model simple, we used a steady-state approximation of the simplified model by Quaiser
et al. [25], which only describes the first 15 min of JAK–STAT signalling before transcriptional
feedback occurs. Nevertheless, our model’s predicted IRF1 temporal dynamics roughly agree with the
JAK–STAT model by Rateitschak et al. (cf. fig. 4A in[37]). Comparison of these results with those of a
highly simplified IFNγ-driven PD-L1 expression model showed that the role of JAK–STAT signalling
primarily creates a ‘switchlike’ response to IFNγ (cf. figure 2b and electronic supplementary material,
figure S4b).

The predicted decrease of SNAIL1 levels required for EMT in the presence of IFNγ (as indicated by
the leftward shift in the bifurcation diagrams in figure 2c,d ) is noteworthy in itself; although several
studies report on the modulation of PD-L1 expression as a result of EMP, the mechanism by which
PD-L1 could modulate EMT remains unclear [12]. Here, we show that the additional degradation of
the PD-L1–miR-200 complex in the presence of IFNγ could be affecting miR-200 levels sufficiently to
affect EMT, without the need for additional mechanisms.

Another interesting result is the acceleration of EMT by IFNγ as a result of the increased interaction
between miR-200 and PD-L1. This is reminiscent of recent theoretical work that showed that intermediate
EMT states or unobservable microstates might accelerate the EMT process [68,69], i.e. an increased PD-L1
level could be viewed as such a microstate. (Single-cell) transcriptomics experiments with sufficient time
resolution would help decipher the different involved mechanisms and how they influence the EMT
temporal dynamics.

The results reported here may have diagnostic and therapeutic implications. PD-L1 has been
proposed as a biomarker to predict the efficacy of PD-1/PD-L1 blockade therapy [70], yet the multi-
factorial mechanisms underlying PD-L1 membrane expression complicate its use as an exclusive
biomarker [71,72]. For example, oncogene-driven PD-L1 expression caused by EMT is constitutive,
diffuse and distinct from inflammation-driven PD-L1 expression, which may occur more focally and
during a limited time window. The latter is often associated with the presence of an immune
infiltrate, while the former is associated with a lack thereof [71], and it has been proposed that this
combination of PD-L1 expression and the presence of immune infiltrate affects the response to PD-1/
PD-L1 blockade therapy [73]. Our findings highlight how oncogenic and inflammation-driven PD-L1
expression might interact and give rise to strongly increased PD-L1 levels. PD-L1 on tumour cells is
an important contributor to immune evasion through inhibition of CD8+ T cell cytotoxicity [74].
Consistently, in metastatic urothelial cancer, lack of response to anti-PD-L1 treatment occurred
particularly in patients with tumours that showed exclusion of CD8+ T cells [75]. Combined treatment
with TGFβ-blocking and anti-PD-L1 antibodies invoked anti-tumour immunity and tumour regression
by facilitating T cell infiltration, which could be due to EMT-independent TGFβ signalling [76],
but possibly also via the EMT-dependent path we have presented here. Another opportunity could
be the use of therapeutic siRNA [77]: in contrast to anti-PD-L1 antibodies, siRNA affects
PD-L1 mRNA, which, according to our model, should free up miR-200 for its anti-EMT effect, a
prediction that is supported by (partial) EMT reversal following downregulation of PD-L1 using
siRNA/shRNA [40,52].

In conclusion, we developed a mathematical model that describes the crosstalk between IFNγ-
induced PD-L1 and EMT, which is in good agreement with experimental findings. In addition, our
model sheds light on potential mechanisms behind EMT-mediated immune evasion, and primary,
adaptive, or acquired resistance to immunotherapy. Our (simplified) model can serve as a starting
point to explore additional EMP and immune crosstalk mechanisms. In particular, we propose
embedding the presented model in a multi-scale model to explicitly describe the local effects of the
adaptive immune response and the effects of TGFβ on the tumour microenvironment. Improved
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understanding of the interaction between the immune response and EMP is indispensable for developing
better diagnostic and therapeutic options for cancer patients.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220186
4. Material and methods
4.1. Simplified ternary chimera switch model
The simplified TCS model [26] is built on the theoretical framework for microRNA-TF chimera toggle-
switches defined in the study by Lu et al. [28]. See electronic supplementary material, Methodsfor the
model definition, theoretical framework, and used parameters.

4.2. IFNγ-PD-L1 model
The IFNγ–PD-L1 model consists of two parts: (IFNγ–)JAK–STAT signalling, for which we use a steady-
state approximation of an existing model, and STAT–PD-L1 regulation which we developed following the
theoretical framework underpinning the simplified TCS model. We discuss these parts in more detail
below.

4.2.1. (IFNγ–)JAK–STAT

For the IFNγ–PD-L1 model, we use the JAK–STAT model presented in [25] (see electronic supplementary
material, Methods). The dynamics of IFNγ–STAT and STAT–PD-L1 are well separated in time (figure 1c,
d ), with JAK–STAT dynamics happening on a time scale of minutes [34] and STAT–PD-L1 dynamics
happening on a time scale of hours [35,36]. Therefore, we simplified our IFNγ–PD-L1 model by
assuming the JAK–STAT model is in aquasi-steady state; we fitted its steady state by a Gompertz
function (see electronic supplementary material, figure S8) and inserted this approximate relationship
between IFNγ and STAT in our STAT–PD-L1 model.

4.2.2. STAT–PD-L1

The STAT–PD-L1 submodel (see also electronic supplementary material, figure S1A) consists of the
following ordinary differential equations (ODEs):

IRF1 mRNA :
dmF

dt
¼ gmFH

SðSTAT, lSTAT,mFÞ � kmFmF, ð4:1Þ

IRF1 protein :
dF
dt

¼ gFmF � kFF; ð4:2Þ

PD-L1 mRNA :
dmP

dt
¼ gmPH

SðF, lF,mPÞ � kmPmP; ð4:3Þ

PD-L1 in ER :
dPER

dt
¼ gPERmP � kER,GPER; ð4:4Þ

PD-L1 in Golgi :
dPG

dt
¼ kER,GPER � kG,MPG ð4:5Þ

and PD-L1 membr: :
dPM

dt
¼ kG,MPG � kPMPM: ð4:6Þ

This model uses the abundance of STAT (in molecules) as input and includes IRF1 and PD-L1 using
appropriate TF-TF dynamics (HS) from the theoretical framework by Lu et al. [28] (see electronic
supplementary material, Methods). Transport of PD-L1 through various cellular compartments is
modelled with a constant rate from compartment to compartment, with rates assumed to be similar to
Lippincott-Schwartz et al. [78]. Model parameters are provided in table 2; some parameters were
considered to be similar to those of the simplified TCS model.

4.3. Combined model
To create our combined model, we connected the IFNγ-induced JAK–STAT signalling model and
simplified TCS model to the central STAT–PD-L1 model (see figure 1b). In this combined model,



Table 2. Variables and parameters used for the STAT–PD-L1 model. The top panel shows variable names and production and
degradation rates; the bottom panel shows parameters for the shifted Hill functions of the interactions. Degradation rates k are
in h−1, production rates g in molecules h−1 and thresholds B0A in molecules.

prod. rate g degr. rate k

IRF1 mRNA mF gmF 30 kmF 0.5

IRF1 protein F gF 100 kF 0.1

PD-L1 mRNA mP gmP 30 kmP 0.5

PD-L1 in ER PER gPER 100 kER,G 1.68

PD-L1 in Golgi complex PG kG,M 1.8

PD-L1 on membrane PM kPM 0.15

threshold B0A Hill coefficient nBA max. fold change lBA

Act. mF by STAT STAT0mF
2 × 106 nSTAT ,mF 10 lSTAT ,mF 10

Act. mP by F F0mP
105 nF ,mP 3 lF ,mP 10

Table 3. Rates used in the L(μ), Ym(μ) and Ym,mP (m) functions in the combined model for n = 2.

n (no. of miRNA binding sites) 0 1 2

li [h
−1] 1 0.3 0.05

γmi [h
−1] 0 0.2 1

γμi [h
−1] 0 0.05 0.5
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equations (4.7) to (4.9) are used instead of equations (4.3), (4.4) and electronic supplementary material,
(S7) (see electronic supplementary material, Methods) to include the interaction of miR-200 with PD-
L1. Here, Ym,mZðmÞ in the updated miR-200 equation (equation (4.9)) corresponds to Yμ(μ) in the
simplified TCS model (electronic supplementary material, equation (S7)).

PD-L1 mRNA :
dmP

dt
¼ gmPH

SðF, lF,mPÞ �mPYmðmÞ � kmPmP; ð4:7Þ

PD-L1 in ER :
dPER

dt
¼ gPERmPLðmÞ � kER,GPER ð4:8Þ

and miR-200 :
dm
dt

¼ gmHSðZ, lZ,mÞHSðS, lS,mÞ �mZYm,mZðmÞ �mPYm,mPðmÞ � kmm: ð4:9Þ

The connection betweenmiR-200 and PD-L1 is done using appropriatemiRNA–mRNAdynamics (L andY
functions) from the theoretical framework by Lu et al. [28] (see electronic supplementary material,
Methods). To accommodate a low number of binding sites for miR-200 on the mRNA of PD-L1 (i.e. two
binding sites according to Chen et al. [13]), we adapted the parameters for L(μ), Ym(μ) and Ym,mPðmÞ from
electronic supplementary material, table S1 (n = 6) to the values as shown in table 3 (n = 2). Note that the
inhibition of miR-200 on PD-L1 automatically leads to inhibition of PD-L1 on miR-200 as the included
miRNA–mRNA dynamics [28] result in additional miR-200 degradation (mPYm,mPðmÞ in equation (4.9);
see electronic supplementary material, figure S6). We approximately matched the results of our
combined model in the absence of IFNγ with the results of the TCS model by compensating for this
additional degradation of miR-200. We achieved this by decreasing the basal degradation rate of miR-
200 from km ¼ 0:05 (electronic supplementary material, table S2) to km ¼ 0:0475 (see electronic
supplementary material, figure S2). We considered μ0 = 104 molecules, following Jolly et al. [26].

In addition, since the JAK–STATmodel has [STAT1p_2] as output in nMwe need to convert to number
ofmolecules to use STAT1p_2 as input in the STAT–PD-L1model. As in the study by Jolly et al. [26], we use a
cell volume of 10 000 μm3, such that 1 nM amounts to roughly 6020molecules (6.02 × 1023 · 10−9 ·
10 000 × (10−5)3). Note that this cell volume is on the high side, as typical animal cells are 10–20 μm
in diameter (approx. 500–4000 μm3) [79, p. 529]). However, because of our IFNγ–STAT steady-state
approximation, a decrease in cell volume by a factor 10 can be compensated by multiplying the inducing



Table 4. List of regulators in the combined model.

regulator symbol units

aextra-cellular IFNγ [IFNγ] nM

[STAT1p_2] x10 nM

STAT1p_2 STAT no. molecules

IRF1 mRNA mF no. molecules

IRF1 protein F no. molecules

PD-L1 mRNA mP no. molecules

PD-L1 in endoplasmatic reticulum PER no. molecules

PD-L1 in Golgi complex PG no. molecules

PD-L1 on cell membrane PM no. molecules

miR-200 μ no. molecules

ZEB1 mRNA mZ no. molecules

ZEB1 protein Z no. molecules
aSNAIL1 protein S no. molecules

aModel inputs.
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IFNγ signal also by a factor 10 to yield the same amount of STAT, and hence, the samemodel result. Table 4
shows all model components and their units in our combined model.

4.4. Simulation and analysis
For model simulations, we used COPASI (complex pathway simulator) (RRID:SCR_014260) [80], and
model files are included in the electronic supplementary material [81].

Analysis in R (R Project for Statistical Computing, RRID:SCR_001905) [82] was performed with
RStudio (RStudio, RRID:SCR_000432) [83] and the tidyverse [84] packages.

Data accessibility. COPASI models supporting this article have been uploaded as part of the electronic supplementary
material [81]. Data and code to generate the article figures are available at https://doi.org/10.5281/zenodo.
7034918 (G. Burger et al. 2022) [85].
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