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Anti‑cancer treatment schedule 
optimization based on tumor 
dynamics modelling incorporating 
evolving resistance
Anyue Yin1,2, Johan G. C. van Hasselt3, Henk‑Jan Guchelaar1,2, Lena E. Friberg4,5 & 
Dirk Jan A. R. Moes1,2,5*

Quantitative characterization of evolving tumor resistance under targeted treatment could help 
identify novel treatment schedules, which may improve the outcome of anti‑cancer treatment. 
In this study, a mathematical model which considers various clonal populations and evolving 
treatment resistance was developed. With parameter values fitted to the data or informed by 
literature data, the model could capture previously reported tumor burden dynamics and mutant 
KRAS levels in circulating tumor DNA (ctDNA) of patients with metastatic colorectal cancer treated 
with panitumumab. Treatment schedules, including a continuous schedule, intermittent schedules 
incorporating treatment holidays, and adaptive schedules guided by ctDNA measurements were 
evaluated using simulations. Compared with the continuous regimen, the simulated intermittent 
regimen which consisted of 8‑week treatment and 4‑week suspension prolonged median progression‑
free survival (PFS) of the simulated population from 36 to 44 weeks. The median time period in which 
the tumor size stayed below the baseline level  (TTS<TS0) was prolonged from 52 to 60 weeks. Extending 
the treatment holiday resulted in inferior outcomes. The simulated adaptive regimens showed to 
further prolong median PFS to 56–64 weeks and  TTS<TS0 to 114–132 weeks under different treatment 
designs. A prospective clinical study is required to validate the results and to confirm the added value 
of the suggested schedules.

Emerging treatment resistance during anti-cancer therapy is one of the major causes for cancer patients expe-
riencing treatment  failure1,2. The occurrence of treatment resistance is mediated by a range of  mechanisms1,2. 
Evolutionary mechanisms driven by intra-tumor heterogeneity and the evolving adaptation of tumor cells to 
the selection pressure of treatment are increasingly acknowledged as a key factor related to the development of 
treatment  resistance3–7.

To improve the treatment outcome in cancer patients, it may be important to take the intra-tumor hetero-
geneity and evolutionary dynamics of tumors into consideration when designing treatment strategies. A clini-
cal genetic biomarker that is useful to capture the tumor heterogeneity and to monitor the evolving treatment 
resistance in a quantitative way is circulating tumor DNA (ctDNA), i.e. tumor DNA fragments circulating in 
the  bloodstream2,8–10. Different from tumor size, which is commonly used as an indicator of anti-cancer treat-
ment  effect11, ctDNA can be detected from liquid biopsies and allows real-time monitoring with limited patient 
burden. It has been demonstrated that mutations present in multiple biopsies of primary tumor and metastasis 
can be detected in ctDNA including those being missed in certain  biopsie12. In addition, the genetic alternations 
captured by ctDNA can also be quantified. The relative change of genetic alterations in serial ctDNA analysis 
could provide important insight into the molecular evolution of the tumor and reveal the mechanisms of resist-
ance to targeted  agents8–10. Previous studies of ctDNA in colorectal cancer patients have demonstrated a positive 
selection of mutant KRAS clones during epidermal growth factor receptor (EGFR)  blockade10,13, and a decline 
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in mutant KRAS clones upon the withdrawal of the  therapy9. The concentration of ctDNA has also shown to 
correlate with tumor burden and stage, and is associated with therapeutic response, such as disease progression 
and recurrence, in different kinds of  cancers8,9,14–18.

Monitoring tumor-specific genetic alternations can facilitate selection and adjustment of drugs that target 
newly developed actionable  mutations2,8. Such adaptive treatment suppresses the proliferation of resistant tumor 
clones and thereby overcome or at least delay treatment  resistance2,8.

Considering evolutionary dynamics, suppressing the emergence of resistance by applying intermittent treat-
ment has also been previously  proposed19,20. Intermittent treatment allows sensitive cells to utilize their fitness 
advantage during the withdrawal of treatment to suppress the growth of the resistant population, so that the same 
treatment can remain effective when it is reinitiated, which is especially relevant in the metastatic setting when 
cure is not  possible19,21. This principle was demonstrated in silico with game theory models and with a pilot study 
of abiraterone in prostate cancer  patients19. For colorectal cancer, it has been shown that tumor genomes adapt 
dynamically to intermittent drug schedules and re-challenge of EGFR blockade can be  efficient9. This strategy is 
also of emerging clinical interest and has been investigated in several clinical  studies22–27.

Mathematical modelling and simulation is a widely accepted tool in pharmaceutical research to characterize 
and understand the interaction among drug treatment, the human body, and  disease11,28–30. Various mathemati-
cal model structures have been used to characterize the tumor dynamics and drug resistance evolution for solid 
 tumors19,31,32. Tumor proliferation, regression due to treatment, heterogeneity, and treatment resistance are key 
elements that are commonly considered in those  models32. The dynamics of biomarkers can also be incorporated 
which enables better understanding and prediction of tumor  progression32. A non-linear mixed-effect modeling 
approach is commonly applied to account for inter-individual variability (IIV)32. Studies developing models for 
tumor dynamics and evolving drug resistance are mostly aimed at optimizing and individualizing current treat-
ments. Furthermore, they are also aimed at better understanding of emerging drug resistance and identification 
of outcome  predictors32. Connecting these models to patients survival and adverse effects with time-to-event 
modelling is also common to support the understanding of treatment efficacy and enables exploration of opti-
mized dosing  schedules33. These models could guide the interpretation and clinical decision making process 
based on observed tumor size dynamics and associated evolution of tumor progression during treatment, and 
thereby supporting identification of novel personalized strategies to optimize anti-cancer treatment schedules 
and overcome treatment resistance.

The aim of the current study was to develop a mathematical model to quantitatively characterize the dynam-
ics of treatment response and evolving resistance, based on tumor sizes and mutant KRAS levels in ctDNA from 
metastatic colorectal cancer (mCRC) patients. We also aimed to evaluate anti-cancer treatment designs which 
consider cancer resistance evolution and demonstrate the use of ctDNA as a marker to guide adaptive treatment. 
These aspects might be beneficial to improve the treatment outcome especially in the metastatic setting. Data 
identified from the literature were used for model development. Anti-cancer treatment schedules, including 
continuous, intermittent, and adaptive schedules guided by ctDNA measurements were designed to evaluate 
optimal treatment schedules.

Results
Data and model evaluation. A dataset containing longitudinal tumor burden measurements and mutant 
KRAS levels in ctDNA was identified from 28 mCRC patients treated with the anti-EGFR inhibitor panitu-
mumab in a previous clinical  study13 (Fig. 1). Among the 28 patients, 25 were identified to be initially KRAS 
wild-type and 9 of those 25 developed KRAS mutation after 5–34 weeks’ (median 22 weeks’) treatment. The 
remaining 3 patients had detectable mutant KRAS at the start of treatment. The characteristics of the patients are 
summarized in Supplementary Table S1.

The developed model consists of three clonal tumor populations, including Ts which was sensitive to anti-
EGFR inhibitor ( D1 ), TR1 which harbored KRAS mutation and was resistant to D1 , and TR2 which was resistant 
to both D1 and a hypothetical second treatment targeting TR1(D2) , as well as two compartments for mutant 
KRAS ( MctDNA1 ) and a hypothetical second mutation ( MctDNA2 ) in ctDNA (Fig. 2). MctDNA1 and MctDNA2 were 
assumed to emerge during treatment. Shedding rates of ctDNA depended on the size of TR1 and TR2 , and Hill 
equations with tumor size as independent variable were applied to describe the delayed emergence (or ability to 
detect) of mutant genes in ctDNA. Values of model parameters were obtained by fitting to the data or informed 
by literature (Table 1). Parameters describing tumor dynamics under D1 therapy were estimated based on the 
observed raw data and the results are shown in Supplementary Table S2.

The model evaluation results show that the 50th percentiles of the simulated time-courses of total tumor 
size ( TS ) and mutant KRAS ( MctDNA1 ) concentrations were generally in line with the 50th percentiles of cor-
responding observations (Fig. 1). The 50th percentiles of observations were also adequately covered by the 
95% confidence intervals (CIs) of corresponding percentile obtained from the simulations. Upon a treatment 
suspension after 20 weeks of treatment, a decay of KRAS levels that was observed in previous  studies9 could also 
be described by the model. The median and 90% prediction interval of corresponding simulations of 100 virtual 
patients were shown in Fig. 1E. The predicted median half-life of KRAS levels was 4.98 months.

An available dataset on 16 non-small cell lung cancer (NSCLC) patients was utilized as an evaluation cohort 
(Supplementary Table S3)14. Patients included in this study had detectable EGFR L858R mutation / exon 19 
deletion at the start of treatment and developed EGFR T790M mutation during treatment. The model used in 
the validation cohort was adjusted according to the findings of the study, the details of which can be found in 
Supplementary method and Fig. S1. Model evaluation results show that the distribution of the model simula-
tions was also in line with the distribution of the tumor size and concentrations of mutant EGFR obtained from 
NSCLC patients (Supplementary Fig. S2).
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Treatment schedule evaluation. Based on the developed model, multiple dosing schedules, including 
a continuous D1 schedule, intermittent D1 schedules with different on- and off-dosing durations, and adaptive 
schedules where the use of D1 and D2 were guided by ctDNA measurements, were simulated and evaluated to 
identify optimal treatment designs (Table 2). For adaptive schedules, the treatment started with a continuous D1 
and switched to a continuous D2 when the ctDNA measurements increased to an upper limit for drug adjust-
ment. When the mutation concentration decreased back to a lower limit for drug adjustment, the treatment was 
switched back to D1 and the loop continued.

Predicted median progression-free survival (PFS) and time until the tumor size had grown back to the base-
line level  (TTS<TS0) of the simulated population under all evaluated regimens are shown in Fig. 3, the detailed 
results of which can be found in Supplementary Table S4. The median predicted PFS under continuous drug 
exposure was 36 weeks and median  TTS<TS0 was 52 weeks. Five out of 9 designs of intermittent schedule prolonged 
median PFS and median  TTS<TS0 compared with continuous treatment (Fig. 3). Four- or 8-week treatment sus-
pension was introduced in these regimens. Extending the treatment holiday from 4 to 4 weeks more than the 
treatment period mostly resulted in inferior results (Fig. 3). A regimen consisting of 4-week treatment and 4-week 
suspension  (Sinterm(4on_4off)) provided the longest median PFS (48 weeks), while a schedule consisting of 8-week 
treatment and 4-week suspension  (Sinterm(8on_4off)) provided the longest  TTS<TS0 (60 weeks). A survival prediction 
also illustrated a better clinical outcome provided by regimen  Sinterm(8on_4off) than continuous regimen (Fig. 4).

As for the adaptive regimen guided by ctDNA measurements, all designs further prolonged median PFS to 
56–64 weeks and  TTS<TS0 to 114–132 weeks (Fig. 3). Comparable results were obtained when the monitoring 
frequency of ctDNA altered and slightly longer median PFSs were observed when the monitoring frequency of 
ctDNA was once every 12 weeks. Under the same monitoring frequency, the different upper and lower ctDNA 
limits for drug adjustment only resulted in small changes in median PFS and  TTS<TS0, especially when the ctDNA 
was less frequently monitored. Overall, the longest median PFS and  TTS<TS0 were mostly observed when the upper 
and lower ctDNA limits for drug adjustment were 5 fragments/ml and 10 fragments/ml, respectively (Fig. 3). A 
regimen with 5 and 10 fragments/ml as ctDNA limits for drug adjustment and a monitoring frequency of once 
every 12 weeks  (Sadapt(5_10_Freq12)) provided the longest median PFS. The survival prediction of  Sadapt(5_10_Freq12) also 
showed a better clinical outcome than the regimen  Sinterm(8on_4off) and the continuous regimen (Fig. 4).

Figure 5 shows the simulated time-curves of each tumor clonal population and each mutation in ctDNA 
over time from a typical subject under the continuous schedule, the intermittent schedule  Sinterm(8on_4off), and 

Figure 1.  Model evaluation results on the data of tumor burden (a, c) and mutant KRAS (b, d) collected from 
a previous clinical trial on patients with metastatic colorectal cancer who were identified to be initially KRAS 
wild-type (a, b) or had detectable mutant KRAS at the start of treatment (c, d); Model predicted mutant KRAS 
concentrations under a regimen of 20-week treatment and 20-week suspension (e).
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the adaptive schedule  Sadapt(5_10_Freq12). The corresponding results of the simulated population are shown in Sup-
plementary Fig. S3. It can be seen that the schedule  Sinterm(8on_4off) and  Sadapt(5_10_Freq12) suppressed the growth of 
resistant clonal population TR1 . In addition, predicted time until detectable mutation  (Tmutant_test) under each 
evaluated regimen was evaluated. It was shown that MctDNA1 under both continuous and intermittent regimens 
could become detectable before disease progression (Fig. 5, Table S4). In the setting of adaptive treatment, as 
the MctDNA1 level was applied as a biomarker to guide the treatment switching, the median  Tmutant_test of MctDNA2 
was evaluated. The results indicate that MctDNA2 would be observed after disease progression has occurred but 
before the tumor size grows back to baseline level (Fig. 5).

Sensitivity analysis. While the value of the parameters describing tumor dynamics were estimated based 
on the data or adapted from literature, that of other parameters were set based on a visual fit to the data since the 
amount of data did not support estimation of parameters. These parameter values may however not be optimal, 
and therefore the parameter sensitivity to the simulated curves was assessed by increasing or decreasing param-
eters by 50% one at a time.

The predicted PFS and  Tmutant_test derived from each time of simulation, which represent the dynamics of 
tumor burden and mutation concentrations in ctDNA respectively, are shown in Fig. 6 and Supplementary 
Table S5. Both simulated tumor sizes and mutation concentrations were affected when any of the parameters 
characterizing the tumor burden dynamics, including net growth rate constants ( kg ), tumor shrinkage rate due 
to treatments ( ks ), and mutation rate constants ( kM ) varied. In contrast, the change of the parameters character-
izing the mutation concentrations, including the Hill coefficient ( H ), max releasing rates ( kmax ), the tumor size 
that provide half-maximal releasing rate ( KT50 ), and elimination rate constant of ctDNA ( ke ), only affected the 
simulated mutation concentrations but not the simulated tumor size except for KT50 and H under an adaptive 
treatment design. The predicted PFS was mainly sensitive to parameters kg2 and kM1 , and the predicted  Tmutant_test 
was mainly sensitive to parameters ks1 , kM1 , H and KT50 . Nonetheless, the intermittent regimen and the adaptive 
regimen still resulted in better treatment outcomes (i.e. longer PFS) than the continuous regimen, no matter 
how the parameter values varied (Table S5). More detailed simulated time-curves of tumor burden and MctDNA1 

Figure 2.  The model that characterizes the dynamics of tumor size and mutation concentrations in ctDNA 
from metastatic colorectal cancer patients. Ts , TR1 , and TR2 represent the sizes of three tumor clonal populations, 
respectively. MctDNA1 and MctDNA2 represent the concentration of mutant KRAS and a hypothetical mutation in 
ctDNA. kg1 , kg2 , kg3 represent the net growth rate constants of three clonal populations. ks1 and ks2 represent the 
tumor shrinkage rate due to treatments. kM1 and kM3 represent the mutation rate constant from drug susceptible 
clonal population to drug resistant clonal population during the course of anti-EGFR treatment ( D1 ) and a 
hypothetical treatment ( D2 ), respectively. kM2 and kM4 represent the transition rate constant from drug resistant 
clonal population to drug susceptible clonal population upon the withdrawal of treatments. k1 and k2 represent 
the shedding rate constant of ctDNA which carries mutations. ke represent the elimination rate constant of 
ctDNA.
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Table 1.  Parameters values of the developed model characterizing the dynamics of tumor size and mutation 
concentrations in metastatic colorectal cancer (mCRC) patients. ctDNA, circulating tumor DNA; IIV, inter-
individual variability; WT-KRAS patients, patients who were initially identified as KRAS wild-type in ctDNA; 
M-KRAS patients, patients who had detectable mutant KRAS in ctDNA pre-treatment.

Parameters (units) Description

Typical values

ReferenceWT-KRAS patients M-KRAS patients

Ts_0(mm2) Baseline of Ts (clonal population that is sensi-
tive to anti-EGFR inhibitor ( D1 ) ) 5500 100 Data/Estimated value; Mutation was assumed 

to be acquired during treatment

TR1_0(mm2)
Baseline of TR1 (clonal population that is 
resistance to D1 but is sensitive to the second 
hypothetical treatment ( D2))

0 1700 Data/Estimated value; Mutation was assumed 
to be acquired during treatment

TR2_0(mm2) Baseline of TR2  (clonal population that is 
resistance to both treatments) 0 0 Data/Estimated value; Mutation was assumed 

to be acquired during treatment

MctDNA1_0(fragments/ml) Baseline of mutant KRAS (MctDNA1) in ctDNA 0 500 Data/Estimated value; Mutation was assumed 
to be acquired during treatment

MctDNA2_0(fragments/ml) Baseline of a second hypothetical mutation 
(MctDNA2) in ctDNA 0 0 Data/Estimated value; Mutation was assumed 

to be acquired during treatment

kg1(/week) Growth rate constant of Ts 0.03 40

kg2(/week) Growth rate constant of TR1 0.021 43,44

kg3(/week) Growth rate constant of TR2 0.015 43,44

ks1(/week) Tumor shrinkage rate constant due to D1 0.1 Estimated value

ks2(/week) Tumor shrinkage rate constant due to D2 0.1 ks1

kM1(/week) Mutation rate from Ts to TR1 when D1=1 0.05 Estimated value

kM2(/week) Mutation rate from TR1 to Ts when D1=0 0.03 Lower than kM1
9

kM3(/week) Mutation rate from TR1 to TR2 when D2=1 0.05 kM1

kM4(/week) Mutation rate from TR2 to TR1 when D2=0 0.03 kM2

H Hill coefficient 5 Visually matching the slope of data and the 
detectable time of mutant KRAS

KT50(mm2) The size of tumor that provide half-maximal 
shedding rate of ctDNA 3500 Visually matching the slope of data and the 

detectable time of mutant KRAS

kmax_1((fragments/ml)/(week*mm2)) Maximum shedding rate of MctDNA1 0.015 1.5 Visually matching the slope of data and the 
detectable time of mutant KRAS

ke(/week) ctDNA eliminate rate constant 0.5 Visually matching the slope of data and the 
detectable time of mutant KRAS

kmax_2((fragments/ml)/(week*mm2)) Maximum shedding rate of MctDNA2 0.015 1.5 kmax_1

IIV_ B ( ω1) Standard deviation of IIV of baselines 0.6 Data

IIV_ kg ( ω2) Standard deviation of IIV of kg 0.2 Data

Table 2.  Evaluated treatment schedules. D1 , anti-EGFR inhibitor; D2 , a hypothetical second treatment to 
which the newly acquired clone is susceptible; ctDNA, circulating tumor DNA. Drug exposure variability was 
not considered in this study but only the presence ( Dn=1) or absence ( Dn =0) of a drug were considered.

Schedules Details

Continuous schedule (standard of care) D1 was continuously administered resulting in continuous drug exposure for 180 weeks

Intermittent schedules D1 was administered for N weeks and suspended for M weeks. Total treatment time was 180 weeks

N (weeks) M (weeks)

4 4, 8

8 4, 8, 12

12 4, 8, 12, 16

Adaptive schedules with a hypothetical second treatment
D1 was continuously given, and suspended and switched to D2 when the ctDNA measurement increased to higher than UP 
fragment/ml. Treatment switched back to D1 when ctDNA measurement decreased back to lower than LOW fragment/ml. 
Total treatment time was 180 weeks

LOW (fragment/ml) UP (fragment/ml) Monitoring frequency of ctDNA (weeks)

5 10, 15, 20, 25 4

10 15, 20, 25 4

5 10, 15, 20, 25 8

10 15, 20, 25 8

5 10, 15, 20, 25 12

10 15, 20, 25 12
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Figure 3.  The predicted median progression-free survival (PFS) (a) and the time until the tumor size had 
grown back to the baseline level  (TTS<TS0) (b) of evaluated regimens.

Figure 4.  The survival plot of 100 virtual patients under continuous treatment, intermittent treatment (8-week 
treatment and 4-week suspension), and adaptive treatment with the second hypothetical drug (ctDNA limits for 
drug adjustment: 5 and 10 fragments/ml, monitor frequency: 12 weeks).
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concentrations under each setting, and the relative changes of predicted total tumor sizes and MctDNA levels 
compared with original results are shown in Supplementary Fig. S4 and Fig. S5.

Discussion
In the current study, a mathematical model was developed to characterize the tumor size dynamics and tumor 
resistance development in response to treatment. The model was built based on findings from previously pub-
lished studies and the collected raw data itself. The model well captured the reported time curves of tumor sizes 
and mutant KRAS levels in ctDNA from mCRC patients. A similar model could also characterize the time-curves 
of EGFR mutation and tumor sizes obtained from NSCLC patients.

The current model assumed that for patients who had no detectable KRAS mutation pre-treatment, there 
was no primary resistance, despite that the original study estimated that drug resistance is likely to be present 
prior to the initiation of  treatment13. However, since the size of the resistant clonal population was estimated to 
only account for a small part of the total tumor cell population (2300 cells out of one billion cells)13, the primary 
resistance was eventually not included in our model.

Figure 5.  The simulated time-curves of total tumor burden and each clonal population (a, d, g), mutation 
concentrations (b, e, h), and dosing strategies (c, f, i) of a typical subject with metastatic colorectal cancer 
undergoing continuous treatment (a, b, c), intermittent treatment (8-week treatment and 4-week suspension) 
(d, e, f), and adaptive treatment with the second hypothetical drug (ctDNA limits for drug adjustment: 5 and 10 
fragments/ml, monitor frequency: 12 weeks) (g, h, i). Estimated PFS (black dashed vertical line),  TTS<TS0 (red 
dashed vertical line), and  Tmutant_test (blue dash vertical line) are also shown in the figure.
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During treatment interruption, a back transfer process from drug resistant clonal population to drug sensitive 
clonal population was incorporated to capture the recovery of sensitivity to the treatment. This assumption was 
supported by in vitro  observations9. This process could also describe the phenomenon that in the absence of the 
drug, susceptible tumor cells have the benefit to grow back again at the expense of resistant tumor cells. When 
the back transfer process was removed ( kM2 and kM4 fixed to 0), prolonged predicted median PFSs under the 
schedule  Sinterm(4on_4off) and  Sadapt(5_10_Freq12) compared with the continuous regimen were still observed, although 
not for schedule  Sinterm(8on_4off) in contrast to when the back transfer was allowed (Supplementary Fig. S6, Fig. S7). 
However, the decline of ctDNA upon withdrawal of treatment, which has been observed in mCRC  patients9,34, 
could not be captured when removing the back transfer process (Supplementary Fig. S8). It was also observed 
that under this circumstance, the remaining susceptible cells had no growth advantage over the resistant cells 
during the withdrawal of treatment, hence tumor would not regain susceptibility (Supplementary Fig. S7, Fig. 
S8). Therefore, the back transfer process is considered to be a reasonable assumption to describe the dynamics of 
and the competition among different clonal populations upon treatment withdrawal based on current available 
data. More data under intermittent therapy would be valuable to better characterize this dynamic process, and 
to better estimate parameters.

A delayed emergence of a mutation indicating treatment resistance in ctDNA was observed in both origi-
nal studies on mCRC patients (after in median 22 weeks’ treatment)13 and NSCLC patients (after in median 
10.5 months’ treatment)14. This phenomenon was characterized by the Hill equations with tumor size as the 
independent variable (Eq. (4) and (5)) in the current study, assuming a delayed shedding of ctDNA from the 
tumor tissue. We also investigated a model where the delayed process was incorporated in the mutation from 

Figure 6.  Relative change (Δ) of predicted progression-free-survival (weeks) (a) and time until detectable 
mutation (weeks) (b) compared with using original parameters in the sensitivity analysis. No result, the 
mutant gene concentrations did not reach the detectable limit (5 fragments/ml) by the end of simulation time 
(180 weeks).
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one clonal population to another by applying transit compartments. This model could also capture the delayed 
emergence of mutation in ctDNA.

The designs of intermittent and adaptive regimens aim to prolong the duration of suppressing treatment 
resistance since they considered intra-tumor heterogeneity and evolving adaptation of tumor to treatment. In 
addition, the evaluated adaptive schedules also enabled personalized design of therapy since the switch of drug 
was guided by individual ctDNA measurements. Here we focused explicitly on the use of ctDNA and therefore 
the change in tumor size was not considered as a criterium to switch therapy, despite the fact that tumor size is 
a common marker in clinical practice for the efficacy of anti-cancer  treatment11. In the future, the help of tumor 
size could be further evaluated when data regarding ctDNA and tumor size dynamics under adaptive therapy 
are available to facilitate better understanding of their relationship and refining the current model.

In the current study, the intermittent and adaptive regimens, with appropriate designs, were shown to out-
perform the conventional continuous treatment by simulations (i.e. median PFS was prolonged) (Fig. 3). This 
is in line with the evolutionary principle of control and the findings from clinical observations. For example, 
an adaptive intermittent treatment of abiraterone based on prostate-specific antigen (PSA) levels was shown to 
result in a better clinical outcome than the typical continuous  treatment19, although the study design may need 
to be  refined35. Another recent retrospective analysis demonstrated that intermittent use of enzalutamide in 
metastatic castration-resistant prostate cancer patients prolonged the time to PSA failure and improved overall 
 survival20. Traditional approaches to cancer therapy have not exploited these theoretical advantages. For example, 
current protocols typically apply a treatment agent or agents at the maximum tolerated dose (MTD) until there 
is unequivocal clinical evidence of  progression21.

The intermittent therapy has also been investigated in several clinical studies. In contrast to our simulation 
results and the clinical observations, these studies did not show improved outcome in patients undergoing inter-
mittent  therapy22–27. One study on BRAF and MET inhibitors in melanoma patients even showed an inferior 
result under the intermittent therapy compared to continuous  therapy22. The underlined mechanism remains 
unclear. Nevertheless, in these cases, the developed mathematical model may be helpful for understanding these 
conflicting results. Further identification of optimal designs based on different resistance mechanism and dynam-
ics of cancers can be supported by the model-based approach. For example, a previous in silico study showed that 
an intermittent abiraterone followed by a lead-in period was not beneficial for prostate cancer patients, and the 
adaptive intermittent treatment guided by PSA was demonstrated to be the best  option19. Moreover, the simula-
tion results derived from the current study suggest that although introducing a treatment holiday may improve 
the treatment outcome, the length of treatment holiday still needs to be controlled. Extending the treatment 
holiday mostly resulted in inferior results, especially when the holiday was longer than the treatment period. This 
is in accordance to a previous finding that chemotherapy with shorter intervals (dose-dense therapy) resulted in 
better treatment outcome even though the total dose amounts were  same36.

When evaluating the adaptive treatment, a second hypothetical treatment ( D2 ) targeting TR1  was introduced. 
An example of this idea can be seen from the treatments of NSCLC patients. For NSCLC patients, acquisition 
of T790M mutation is the main mechanism of acquired resistance upon treatment of erlotinib/gefitinib, and 
osimertinib can be selected for T790M-positive  patients37. Lately, the Food and Drug Administration (FDA) also 
granted accelerated approval to the first KRAS-blocking  drug38. This indicates a potential feasibility of the here 
suggested adaptive treatment design. Due to the use of D2 , a hypothetical newly acquired mutation ( MctDNA2 ) 
was also considered in the model. Unlike MctDNA1 (KRAS mutation), MctDNA2 only became detectable after 
disease progression in the current study. This brings on a question about the predictive value of mutations in 
ctDNA. Most likely the dynamics of the sensitive clones are also very important to predict emerging resistance 
at an earlier phase. However, to answer this question, more data is required to support the understanding of the 
dynamics of the hypothetical mutation.

With the sensitivity analysis we showed that the choice of parameter values can affect the simulated curves. 
The predicted tumor sizes were mainly sensitive to the parameters kg2 and kM1 using the developed model, and 
the predicted mutation concentrations were mainly sensitive to the parameters ks1 , kM1 , H and KT50 (Fig. 6). This 
suggests that an accurate estimation of these parameters is of importance for this model. However, the intermit-
tent and adaptive treatment still provided better treatment outcome when parameter values varied, indicating 
that the value of the parameters didn’t affect the conclusion that the intermittent and adaptive regimens with a 
certain design outperform the conventional continuous treatment.

To apply the novel treatment strategy, there are still some challenges. Firstly, for patients who had detectable 
KRAS mutation pre-treatment, the intermittent treatment provided similar treatment outcome compared to 
continuous treatment (Supplementary Fig. S9). Therefore, for these patients, a better option will be to choose 
another treatment from start. In fact, in clinical practice panitumumab is contraindicated for patients with KRAS 
mutation. Secondly, to be able to monitor the development of resistance with ctDNA, the mutations that are 
associated with the resistance to a target treatment need to be acknowledged beforehand. If multiple mutations 
have been reported, a selection may be required based on the capability of the applied quantification technique, 
such as the selection of gene panel in the assay and the number of mutations that can be detected simultaneously. 
Thirdly, as can be seen from the previous study, only 9 out of 25 patients developed detectable KRAS mutations 
and the median disease progression time of the 9 patients was same as for the remaining 16 patients (23 weeks). It 
was also noticed when the individual results were compared, 4 out of 100 virtual patients were predicted to have 
longer PFS under a continuous schedule than under regimen  Sinterm(8on_4off). Additionally, despite that adaptive 
regimens provided longer median PFS than intermittent regimens, 31 out of 100 patients had longer PFS under 
regimen  Sinterm(8on_4off) than under regimen  Sadapt(5_10_Freq12). These results indicate that ctDNA guided treatment 
may not be feasible for all patients and variability between individuals can affect the choice of regimen.

Our study has some limitations. First of all, the amount of data we obtained limited the ability to adequately 
estimate all parameters of the developed model. We were also not able to fully consider pre-treatment tumor 
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heterogeneity and incorporate the eco-evolutionary dynamics in the model. Additionally, due to the lack of drug 
exposure records, dose- or exposure–response relationship was not incorporated in the model and was not inves-
tigated in this study. However, for panitumumab, it has been shown that with standard treatment regimens, even 
the trough concentrations are maintained above the 90% saturation levels, meaning almost maximum effect in all 
 patients39. However, for other molecules such as tyrosine kinase inhibitors (TKIs), drug levels are also important 
to be included in the analysis. In these cases, drug exposure measurements can be helpful for the understand-
ing of exposure–response relationship under the evaluated regimens. Secondly, alternative mutations that are 
related to anti-EGFR treatment resistance in addition to the reported mutant genes were not considered in this 
study. However, KRAS mutation and EGFR mutation were the most commonly reported gene mutations that are 
associated with resistance to anti-EGFR treatment in mCRC and NSCLC patients  respectively18. Therefore, we 
mainly considered the most representative mutations. Thirdly, the idea of individual intermittent treatment could 
be further investigated. Because of the above limitations, an external dataset is needed to validate the results and 
a clinical pilot study is required to confirm the added value of the suggested schedules.

In conclusion, a mathematical model incorporating evolving cancer resistance was developed to characterize 
tumor size dynamics and resistance development under treatment. The model well captured the clinical data from 
colorectal cancer patients as well as from NSCLC patients. Compared with a conventional continuous anti-cancer 
treatment schedule, intermittent and adaptive schedules were predicted to better suppress the evolving cancer 
resistance and suggested a potential improvement of clinical outcome. However, a prospective study is required 
to validate the results and to confirm the added value of the suggested approach.

Methods
Dataset. A dataset containing longitudinal tumor burden measurements and mutant KRAS levels in ctDNA 
was identified from a published study where patients diagnosed with mCRC were treated with the anti-EGFR 
inhibitor  panitumumab13. Patient demographic information, time-courses of tumor burden that was reported 
as the aggregate cross-sectional diameter of all index lesions  (mm2), and the time-courses of mutant KRAS con-
centrations (fragments/ml) of 28 patients were collected from the supplementary tables of the  paper13. When 
corresponding time of a data point was not shown in the table, the time information was digitized from the cor-
responding supplementary figures using WebplotDigitizer (https:// apps. autom eris. io/ wpd/).

All data in this study were collected from publicly available materials (i.e. supplementary material or figures) 
in literature from which the studies were approved by corresponding ethical committees and all informed con-
sents were obtained. Therefore, for this study, no additional ethical approval or written informed consent was 
required. All procedures in this study were performed in accordance with relevant guidelines.

Model structure. A mathematical model was developed to describe the obtained time-courses of tumor 
burden and mutant KRAS concentrations under anti-EGFR therapy. The model structure is shown in Fig. 2.

Six assumptions were made when developing the model structure:

1. The growth of the tumor was assumed to follow an exponential growth  pattern40,41.
2. Tumor tissue was assumed to consist of multiple clonal sub populations which are defined as sets of cancer 

cells that share a common  genotype5. One clonal population ( Ts ) was defined to be sensitive to the anti-EGFR 
inhibitor panitumumab ( D1) . Another clonal population ( TR1) harbored KRAS mutation ( MctDNA1 ) and was 
consequently resistant to D1 . This is based on previous evidence where patients harboring RAS variant in 
pre-treatment ctDNA did not benefit from EGFR  blockade13,42. The emergence of KRAS mutation was also 
suggested to be a mediator of acquired resistance to EGFR  blockade13,42.

  For patients who were initially identified as KRAS wild-type in ctDNA (WT-KRAS patients), Ts was 
assumed to form the whole tumor at the start of treatment. While for patients who had detectable mutant 
KRAS in ctDNA pre-treatment (M-KRAS patients), tumor tissue was assumed to consist of both Ts and TR1 
at the start of treatment. In addition, given that the resistant clonal population may have fitness  cost43, the 
proliferation rate of resistant clones was assumed to be lower than that of the sensitive  clones44.

3. A KRAS mutation could be acquired during the treatment of D1 , as WT-KRAS patients could develop detect-
able  mutations13.

4. A hypothetical treatment next to panitumumab ( D2) was incorporated in the current study and assumed 
to target KRAS-mutated colorectal cancer and thereby inhibiting the growth of TR1 . In the meantime, a 
second mutation ( MctDNA2 ) was able to be acquired which resulted in a third clonal population ( TR2 ) that 
was resistant to D2 . The mutation rate was assumed to be the same as that of the acquiring KRAS mutation 
clonal population.

5. During treatment interruption, a back transfer process from the drug resistant clonal population to drug 
sensitive clonal population was assumed to be present and was incorporated in the model with a rate lower 
than the mutation rate. This assumption was supported by a previous in vitro study in colorectal cancer 
(CRC)  cells9, which showed that CRC cells that acquired resistance to cetuximab with amplification of KRAS 
gene regained partial sensitivity to cetuximab when cultured in the absence of the  drug9. This process could 
also be understood as the competition between drug susceptible and resistant cells in the absence of the 
drug. When the pressure of the drug was gone, the susceptible cells have the benefit to grow back again at 
the expense of resistant cells in the tumor.

6. ctDNA which carries the target mutations was shed from resistant clonal populations and the shedding rate 
depends on the corresponding tumor tissue size.

https://apps.automeris.io/wpd/
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In order to be able to capture the following features observed from clinical studies, two features were incor-
porated in the model structure:

1. The mutant KRAS concentration became detectable after 5–34 weeks’ (median 22 weeks) treatment for WT-
KRAS patients who developed detectable mutant KRAS13. Therefore, the Hill equations (Eq. (4) and (5)) were 
applied to describe this delayed emergence (or ability to detect) of MctDNA1 and MctDNA2.

2. Mutant KRAS levels in ctDNA increased when challenged with D1 and declined upon the withdrawal of 
 treatment9. The elimination half-life of resistance mutations is approximately 4  months34,42. Therefore, in 
addition to the back transfer process, a first-order ctDNA elimination was incorporated. The half-life of a 
typical patient was confirmed to be 4.15 months with the given parameter values.

The ordinary differential equations of the model were as follows:

TS represents the total tumor size as detected by CT scan. kg1 , kg2 , and kg3 represent the net growth rate 
constants of three clonal populations. ks1 and ks2 represent the tumor shrinkage rate due to treatments. Drug 
exposure variability was not considered in this study but only the presence ( Dn=1) or absence ( Dn=0) of a drug 
were considered ( n =1 and 2 represent panitumumab and the hypothetical treatment, respectively). kM1 and kM3 
represent the mutation rate constants governing the transfer from the drug susceptible clonal population to the 
drug resistant clonal population during D1 and D2 treatment, respectively. kM2 and kM4 represent the mutation 
rate constants from drug resistant clonal population to drug susceptible clonal population upon the withdrawal 
of treatments. k1 and k2 represent the shedding rate constants of ctDNA which carries mutations. Hill equations 
(Eq. (4) and (5)) was applied to capture the concentration change of MctDNA . kmax_1 and kmax_2 are max releasing 
rates, KT50 is the tumor size that provide half-maximal releasing rate, H is the Hill coefficient.ke represent the 
elimination rate constant of ctDNA.

When performing simulations, the baseline levels of TS (Eq. (8)) and MctDNA1 were set to the median of the 
real observations in different patient groups (Supplementary Table S1). For WT-KRAS patients, the baseline TR1 
( TR1_0 ) and TR2 ( TR2_0 ) were both set to 0. For M-KRAS patients, TR2_0 were set to 0 while TR1_0 was set accord-
ing to the median of observations.

Parameter values. The values of all model parameters used in the simulation are shown in Table 1.
To assist the setting of parameter values, the parameters describing tumor dynamics under D1 therapy ( ks1 

and kM1 ) were estimated by fitting the collected tumor sizes data using the first order conditional estimation 
method with interaction (FOCEI) implemented in the NONMEM software, version 7.4.1 (ICON Development 
Solutions). The detailed method on parameter estimates can be found from the Supplementary methods.

The estimated typical values of ks1 and kM1 were adopted to simulations. Assuming the tumor growth follows 
an exponential growth pattern, kg1 was fixed as 0.03/week (= ln2/(6.8 months * 4 weeks/month)) according to 
a previously reported median placebo tumor doubling time of colorectal carcinomas, i.e. 6.8 months (range: 
3–24 months)40. Accordingly, kg2 was fixed as 0.021/week (0.03 * 70%). kM2 was set to be lower than kM1 based 
on the 5th assumption. The parameters that are related to the emergence of mutations ( H , KT50 , and kmax ) 
were set by visually matching the slope of mutant KRAS time-courses and the detectable time of mutant KRAS.

Random IIV was incorporated on kg and baselines, which was assumed to be log-normally distributed, when 
performing the simulations (Table 1). It was due to the fact that patients in the dataset had different baseline 
tumor burden and mutant KRAS levels, and different growth rates of CRC were reported in different  studies13,40. 

(1)
dTs

dt
= kg1 · Ts − ks1 · D1 · Ts − kM1 · D1 · Ts + kM2 · (1− D1) · TR1

(2)
dTR1

dt
= kM1·D1·Ts+kg2·TR1−ks2·D2·TR1−kM2·(1− D1)·TR1−kM3·D2·TR1+kM4·(1−D2)·TR2

(3)
dTR2

dt
= kM3 · D2 · TR1 + kg3 · TR2 − kM4 · (1− D2) · TR2

(4)k1 = kmax_1 · TR1
H/(TR1

H
+ KT50

H )

(5)k2 = kmax_2 · TR2
H/(TR2

H
+ KT50

H )

(6)
dMctDNA1

dt
= k1 · TR1 − ke ·MctDNA1

(7)
dMctDNA2

dt
= k2 · TR2 − ke ·MctDNA2

(8)TS = Ts + TR1 + TR2
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If data from more patients can be included, the IIV on parameters will be able to be added on more parameters 
and be estimated.

Model evaluation. To evaluate the suitability of the model, five hundred times of simulation were per-
formed for TS and MctDNA1 concentrations under continuous drug exposure. The  50th percentiles and the cor-
responding 95% CIs of simulations derived from the model were plotted along with the real observation points 
and the  50th percentiles of observations. In addition, assuming D1 was administered continuously for 20 weeks 
(leading to a continuous drug exposure) and then stopped for 20 weeks, the time-course of MctDNA1 concentra-
tions were simulated for 100 virtual patients to demonstrate if the decay upon the withdrawal of treatment could 
be captured by this model.

The performance of the model was also evaluated using another dataset from a study on NSCLC patients 
receiving EGFR inhibitors (icotinib/gefitinib) with the same method as  above14. The time curves of tumor size 
which was reported as the longest diameter (mm) and that of EGFR mutation (L858R, exon 19 deletion and 
T790M) concentrations (mutation copies/ml plasma) detected from ctDNA were digitized from published figures 
using WebplotDigitizer (https:// apps. autom eris. io/ wpd/). The model used in the evaluation cohort was adjusted 
according to the findings of the study. More detailed introduction of the model and parameter values is shown 
in Supplementary methods.

Treatment schedule evaluation. Treatment schedules that were considered in the current study are 
shown in Table 2. These schedules were evaluated on WT-KRAS patients.

A continuous schedule with D1 was first considered. The continuous schedule is the conventional treat-
ment strategy in clinical practice where a therapy is administered continuously until disease progression (i.e. in 
schedules leading to continuous drug exposure)19. Monitoring frequency, i.e. the frequency of taking a blood 
samples for ctDNA analysis and assessing tumor sizes, was set as once every 4 weeks according to the frequency 
of the obtained data.

To identify an optimized anti-cancer treatment schedules that suppresses the development of treatment resist-
ance, intermittent schedules with D1 and adaptive schedules with D1 and D2 guided by ctDNA measurements, as 
proposed in previous  studies2,8,19,21, were considered. For the intermittent schedules, drug-exposure interruption 
was introduced and multiple combinations of on- and off-dosing durations were evaluated. For the adaptive 
schedules, the ctDNA measurements were monitored and applied as a biomarker to determine the time point of 
switching treatment between D1 and D2 . The treatment started with D1 and continued till the ctDNA measure-
ments increased to an upper limit for drug adjustment. Then D1 was suspended and switched to a continuous 
D2 . When the mutation concentration decreased back to a lower limit for drug adjustment, the treatment was 
switched back to D1 and the loop continued. In this case, multiple monitoring frequencies of ctDNA and multiple 
threshold of mutation concentrations for treatment switching were explored for comparison. The frequency of 
assessing tumor sizes was set as once every 4 weeks.

Simulations were performed with the package RxODE (version 1.0.8) implemented in R (version 4.0.2). One 
hundred virtual patients were simulated under each regimen. PFS of each virtual patient under each schedule 
was derived from the simulated total tumor size at every monitoring time point. PFS was defined based on WHO 
criteria (i.e. 25% increase in TS ) as was applied in the original  study13,45. The  TTS<TS0 was also estimated to compare 
the effect of different regimens. In addition,  Tmutant_test was estimated assuming a lower limit of quantification 
for target mutant genes in ctDNA of 5 fragments/ml which was set based on the observed data. This aimed to 
determine if detectable mutation in ctDNA can be a predictor of disease progression.

Sensitivity analysis. A sensitivity analysis was performed to evaluate the impact of all parameter values on 
the model predictions. Every parameter was set as 50% or 150% of the original typical values one at a time. The 
continuous schedule, one intermittent schedule  Sinterm(8on_4off), and one adaptive schedule  Sadapt(5_10_Freq12) were 
simulated. IIV was not incorporated here. The sensitivity to the parameters was assessed by comparing the newly 
simulated time-courses of total tumor size and mutation concentrations with the original simulations results. 
Median PFS and  Tmutant_test derived from each simulation was also estimated for comparison.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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