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Abstract
Single cell metabolomics is an emerging and rapidly developing field that complements developments in single cell analysis 
by genomics and proteomics. Major goals include mapping and quantifying the metabolome in sufficient detail to provide 
useful information about cellular function in highly heterogeneous systems such as tissue, ultimately with spatial resolu‑
tion at the individual cell level. The chemical diversity and dynamic range of metabolites poses particular challenges for 
detection, identification and quantification. In this review we discuss both significant technical issues of measurement and 
interpretation, and progress toward addressing them, with recent examples from diverse biological systems. We provide a 
framework for further directions aimed at improving workflow and robustness so that such analyses may become commonly 
applied, especially in combination with metabolic imaging and single cell transcriptomics and proteomics.
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1 Introduction

The Precision Medicine Task Group of the Metabolomics 
Society and MANA held a virtual Workshop on Single 
Cell Metabolomics on Friday February 26, 2021 (Kaddu‑
rah‑Daouk etal., 2021). This summary overview article 
builds on the presentations and discussions of that meet‑
ing, to highlight the current state of the art, and where 
further effort is needed to enhance metabolic coverage and 
spatial resolution and address issues of data quality and 
reliability. Numerous general and specific questions were 
asked; some of them are addressed directly in the follow‑
ing Discussion, and others remain open questions for the 
future. Of major interest were the technologies, software 
and techniques available and being developed for the field. 
Of special interest for the future is how reliability and 
quality assurance of the results can be assured, such that 
they are both reproducible and reflect in‑vivo metabolism. 
In particular we address or highlight the following points 
that were raised.

1. What is the impact of sorting dissociated cells on metab‑
olism (Llufrio et al., 2018), and what are the technical 
and biological consequences? See Sect. 2.2

2. What are the technical and biological consequences of 
fixed cell versus live cell metabolism? See Sects. 2.2

(a) How can we expand these technologies to infec‑
tious diseases?

(b) How do we enable compatibility with biohazard‑
ous processing pipelines? This is important for 
clinical applications as well, to be able to handle 
human material under Universal Precautions. See 
Sect. 2.1

3. How will we deal with cellular heterogeneity? Will the 
error be small enough to be able to determine minor 
metabolic chances in a single cell as it undergoes malig‑
nant transformation? See Sects. 2.1, 2.3, 2.4

  How will subcellular heterogeneity (cf. compartmen‑
tation) be addressed? See Sects. 2.3, 2.4

4. How do we ensure quality management?
(a) How to assign confidence of metabolite annotations? 

See Sect. 2.5
(b) How to include proper blanks, controls and perfor‑

mance measures? See Sect. 2.8
(c) How can we ensure throughput and robustness, to ena‑

ble sufficient numbers for adequate statistical analyses?
5. What statistical tools are available and what is needed? 

Is it appropriate to use the same statistics tools as single 
cell transcriptomics or flow cytometry for single cell 
metabolomics? See Sect: 2.7.

1.1  What is single‑cell (sc) metabolomics?

The metabolome is often (circularly) defined as the net con‑
tent of metabolites in a cell, tissue or system (Beger, et al., 
2016; Oliver et al., 1998). Metabolites may be defined as 
the consequences of metabolism, i.e. the transformation 
of one molecule into another via enzyme‑catalyzed bio‑
chemical reactions. As such most molecules in a system are 
metabolites, either endogenous, or exogenous, and logically 
include the macromolecules built by anabolic processes 
from smaller, activated precursors, using energy derived 
by catabolic oxidation of a variety of substrates (which 
are metabolites). If metabolomics comprises the determi‑
nation of the parts list and the quantitative analysis of the 
metabolome, then sc metabolomics are the same analyses 
carried out at the single cell level, which requires the ability 
to determine the metabolome of individual cells. Further, 
the cellular metabolome reflects the biochemical activity of 
each cell in its particular environment. In order to cover the 
cellular metabolome, technologies developed for analyzing 
small molecules should be combined with those designed 
for macromolecules, i.e. transcriptomics, proteomics and 
glycomics (Baccin et al., 2019; Kearney et al., 2021; Lun‑
dberg and Borner, 2019; Minoshima et al., 2019; Zilionis 
et al., 2019).

1.2  Why is sc metabolism/omics important?

Measuring the metabolites in a single cell is inherently more 
difficult than measuring the metabolites in a larger sample, 
and so the first and overarching question is why make such 
an effort to make such measurements?  If a particular bio‑
logical question cannot be adequately addressed by analysis 
of bulk samples, then additional or different approaches are 
necessary. Where heterogeneity of cellular interactions is 
fundamental to the biological problem, single‑cell analyses 
become warranted. Tissues in particular are heterogene‑
ous both at the level of the diversity of types of cells pre‑
sent (which have intrinsically different metabolic activities 
related to their function determined by expression profile) 
and positional variability of the same cell type within tissue 
due to cell–cell interactions, different nutrient supply within 
the tissue determined by proximity to capillaries and meta‑
bolic demands of neighboring cells (Cassidy et al., 2015; 
Hensley et al., 2016) (cf Fig. 1). As several exemplars, many 
diseases progress depending on differences between cells; 
some tissues such as the brain function because of differ‑
ences in connections and chemistries between adjacent cells, 
and embryogenesis involves metabolic changes between 
cells. If a sufficient number of individual cells is analyzed in 
detail, then it is possible to generate a population profile of 
the metabolic properties, whereas a bulk sample analyzed as 
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a whole can be rather difficult to decompose in the absence 
of spatial information or the specific origin of the averaged 
levels of various metabolites (Fan et al., 2021). However, 
regional analysis of sequential thinly sectioned tissue slices 
can provide valuable spatially resolved metabolic informa‑
tion (Dean et al., 2021) (Fan et al., 2020; Hossain et al., 
2020) (Quinn etal., 2020) whereas in situ sc‑metabolomics 
can provide greater detail. 

Even knowledge of the chemical variability between 
so‑called identical cells requires SC measurements. Thus 
single‑cell analysis provides information about the state and 
potentially, the activity of different cell types within a sam‑
ple, and if spatial information is retained, how activities vary 
according to position‑dependent interactions among cells 
and nutrient exchange.

As cells can vary greatly in their volumes, connections, 
and contents, the best approaches to use may be cell type 
specific. For example, some individual cells for much of 
their biological lifetime make few long term cell–cell inter‑
actions, the most obvious being circulating cells of various 
kinds (different leukocytes, circulating tumor cells (CTCs) 
for example). Indeed, CTCs are rare cells (Haber and Vel‑
culescu, 2014; Keller and Pantel 2019; Zhong et al., 2020), 
and they are not all necessarily functionally the same, 
depending also on their interactions with other tumor cells 
or with circulating immune cells‑only sc level analysis can 
truly discover the variability within an individual subject. 
Once these cells infiltrate tissues, their state may change 
dramatically with a concomitant change of function and thus 
metabolic activity. Measuring populations of CTCs is thus 
less desirable than measuring them individually.

At the other extreme, a microliter (1  mm3) of a mam‑
malian brain will contain hundreds of thousands of cells 
tightly entwined with each other, with the predominant cell 
types including astrocytes, oligodendrocytes, microglia, and 
a host of distinct neuronal cell types, and within a cell type, 
different (activity‑dependent) connections underlie functions 
such as memory. Understanding such a process requires sin‑
gle cell resolution. Both types of applications are driving 
the development and many of the initial applications of sc 
metabolomics.

Current applications of sc‑MS are revealing highly heter‑
ogenous drug concentrations between cells (Newman et al., 
2017; Pan et al., 2014; 2019). Assessing drug uptake and 
drug metabolism on an individual cell level is and will be 
extremely valuable to generate a comprehensive understand‑
ing of mechanisms of treatment failure and selection of drug 
resistance.

Another field in which sc metabolomic analyses will be 
important is in the field of infectious diseases, either to study 
individual rare dormant or drug tolerant microorganisms 
(e.g. (Mikolajczak et al., 2015; Sanchez‑Valdez et al., 2018), 
or to distinguish between effects of infection on pathogen‑
containing cells versus bystander effects on adjacent unin‑
fected cells versus matched cells from an uninfected animal 
(Liu et al., 2021; Nguyen et al., 2022).

In the context of solid tumors, there is tremendous inter‑
est in understanding the intratumoral heterogeneity, i.e. the 
identity of cells within the tumor microenvironment (cf 
Fig. 1), since heterogeneity is thought to be responsible for 
drug resistance and the evolution of tumors in time towards 
novel clones via mutational acquisition (Greaves and Maley 

Fig. 1  Thin tissue slice of lung cancer‑ Digital Signal Processing. 
Adjacent fresh slices were incubated with 2H glucose + 13C, 15 N Gln 
and analyzed by NMR and ultra‑high resolution mass spectrometry. 
This slice (10  m thickness) was stained for cancer (panCK), CD8 
(T cells), CD68 (macrophages) expressing cells and DAPI (localiz‑
ing nuclei). Circled regions (100 m diameter) were further analyzed 
for the protein expression level of 58 different markers of cancer and 

immune cell functional states using oligonucleotide‑barcoded anti‑
bodies using the NanoString Digital Spatial Profiling system. H&E 
stained sections showed the presence of other cell types including 
fibroblasts and endothelial cells. From Fig.  4C of Fan et  al. (Fan 
et  al., 2021) under creative commons https:// creat iveco mmons. org/ 
licen ses/ by/4. 0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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2012; Temko et al., 2018). In addition, the ability to identify 
single cancer cells within the normal tissue would benefit 
surgeons tremendously in determining tumor margins more 
precisely.

As with all single‑cell ‘omics methods, the goals of sc 
metabolomics are first to identify and quantify the metabolic 
content of individual cells, in each cell type while main‑
taining spatial information. This then defines the metabolic 
phenotype, or functional status of the cells which may be 
impacted by various factors such as age, genetics, and envi‑
ronmental perturbations such as pathologies, or drug treat‑
ment. Such information may also provide the basis for more 
detailed mechanistic analyses, especially when combined 
with single‑cell transcriptomics and proteomics.

Where metabolism differs from transcriptomics and pro‑
teomics is in the tracing of pathways that occur in different 
compartments, such that the same metabolite can occur at 
different concentrations within different compartments of 
the cell, which with some exceptions (Chen et al., 2016) is 
generally not captured by extraction techniques.

2  Discussion

2.1  Current state of the art‑ what is possible 
with existing technology

Single‑cell metabolomics is a rapidly evolving field with 
a number of recent examples (Guo et al., 2021; Liu et al., 
2021; Seydel, 2021a; Steinbeck et al., 2020; Taylor et al., 
2021). However, because of the scale, there are differences 
in what information is obtained at the individual cell level. 
For example, rather than the thousands of metabolites quan‑
tified in bulk samples, tens to hundreds of the most abundant 
metabolites are typically identified in sc experiments. Thus 
the advantages of single‑cell resolution need to outweigh 
the experimental complexity and issues related to limited 
depth of metabolomic coverage. Perhaps not surprisingly, 
there have been several divergent approaches for obtaining 
single cell measurements. Several of the major approaches 
covered here include downscaling separations via capil‑
lary electrophoresis mass spectrometry, direct single cell 
mass spectrometry and mass spectrometry imaging at the 
single cell level. Current work on single‑cell metabolism 
has focused mainly on endogenous cellular heterogeneity 
and cancer (e.g. (Bensen et al., 2021; Lombard‑Banek et al. 
2021; Rappez et al. 2021a; Tian et al. 2021)). In all cases, 
the metabolites measured reflect cellular content and are 
distinct from the metabolome determined from biofluids 
for example. In contrast, there has been limited work in the 
context of heterogeneity in response to infection. Specifi‑
cally, most pathogens will only colonize a subset of avail‑
able cells. Bulk analysis will conflate the metabolome of 

infected cells with adjacent bystander (uninfected) cells. In 
contrast, single‑cell analyses will enable differentiation of 
pathogen‑containing versus uninfected cells. Applying exist‑
ing technology to infection models either requires BSL‑1 
level infectious agents that can safely be handled in the ana‑
lytical laboratory (Samarah et al. 2020a; 2020b; Stopka et al. 
2021), or a method to inactivate pathogens prior to analytical 
analysis, some of which are already compatible with existing 
data acquisition methods (e.g. heat fixation (Cazares et al., 
2015; Wang et al., 2021a, 2021b), glutaraldehyde fixation 
(Li et al., 2021). Recent work has demonstrated that single‑
cell metabolism in the context of infection is feasible and 
provides valuable insight into infection processes, while also 
enabling direct validation that observed heterogeneity is bio‑
logically mediated rather than an analysis artefact (Nguyen 
et al., 2022).

2.2  Experimental design and sample preparation

MS‑based metabolomics measurements can be divided into 
the procedures and protocols related to sampling and sample 
preparation, the spectrometry/spectroscopy‑based measure‑
ment and finally, data analyses. The sample preparation for 
single‑cell metabolomics is distinct from larger scale metab‑
olomics measurements. As illustrated in Fig. 2, there are in 
principle several ways in which single‑cell metabolism can 
sample cells including:

 (i) Capturing and analyzing individual free cells, such as 
circulating cells in the plasma, including individual 
immune cells from peripheral blood or lymph or rare 
circulating tumor cells (Abouleila et al., 2019; Haber 
and Velculescu 2014; Keller and Pantel 2019; Zhong 
et al., 2020).

 (ii) Selecting specific cells based on markers via manual 
isolation or automated cell sorting: Assaying popula‑
tions of individual cells after dissociating tissue into 
single cells and sorting;

 (iii) Measuring metabolites in tissue slices at the single 
cell spatial resolution level.

Many of these approaches have been used for scSeq 
genomic/transcriptomic methods (Al‑Sabah et al., 2020; Asp 
et al. 2019; Baccin et al., 2019; Close et al. 2020; Kalb et al., 
2019; Kyrochristos et al., 2019; Yang et al., 2019; Zilionis 
et al., 2019) (Bartoschek et al., 2018; Cohen et al., 2018; 
Luecken and Theis, 2019; Neal et al., 2018; Nguyen et al., 
2018), as well as proteomics (Liu et al., 2019; Lundberg and 
Borner, 2019; Mistry et al., 2019). Generally, metabolomics 
lags these DNA and RNA based technologies (Ali et al., 
2019a, 2019b; Gilmore et al., 2019; Liu et al., 2019; Misra, 
2020; Neumann et al., 2019a, 2019b; Seth Nanda et al., 
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2019; Thiele et al., 2019), though considerable progress is 
being made. (Seydel, 2021b), (Duncan et al., 2019).

For example, at one extreme, one can select specific 
cells in a living tissue such as a brain slice, and characterize 
their electrical activity (and cell type) via the patch clamp 
method; briefly, this involves patching onto a cell with a 
pulled pipette so that the electrical activity can be meas‑
ured; this pipette can also be used to withdraw some of the 
cytoplasm from the cell soma and introduce it into a char‑
acterization method such as CE‑MS; in this way, electrical 
activity and metabolomics can be performed using the same 
living cell and the sampling does not even kill the cell (Aerts 
et al., 2014) This is a serial sampling approach (one cell at 
a time) but is information rich.

At the other extreme, the Sweedler group has published 
a series of articles where they take a tissue and disperse 
the cells across a slide, label select cells with a probe and 
determine the cell positions on the slide (Comi et al., ). 
They use the positions to determine the spatial coordinates 
to acquire data using a range of MALDI or SIMS MS‑based 
approaches for direct MS acquisitions. As it only takes a 
second or so to probe each cell, they can acquire spectra on 
tens of thousands of individual cells. This has been used for 
rodent brain cells, islets cells and other animal models (Do 
et al., 2018a, 2018b; Jansson et al., 2016; Neumann et al., 
2019a, 2019b). While the approach is high throughput, the 
number of metabolites and lipids measured is reduced but 
still provides enough data to differentiate similar cell types; 
as material is left behind after the MALDI or SIMS meas‑
urement, they are able to assay the same spot using other 
approaches including other types of MS (Comi et al., 2017a, 
2017b, 2017c; Neumann et al., 2019a, 2019b).

The metabolome of a cell can change rapidly to mitigate 
stress and perform necessary tasks based on changes in their 
chemical microenvironment (Llufrio et al., 2018). To meas‑
ure the resting metabolome of an individual cell, the sample 

preparation method needs to conserve it without introduc‑
ing additional stress. There are in principle two strategies: 
either keep the cell alive in an optimal environment or snap 
freeze it. For analysis with MALDI or SIMS cells are prefer‑
ably snap frozen while the currently most popular strategy 
is to keep cells alive for ambient sampling and ionization 
(Lanekoff et al., 2022). Ambient sampling followed by elec‑
trospray ionization mass spectrometry does not require any 
particular sample preparation (Fig. 3). Instead, metabolites 
are extracted direct from the cell using a solvent. An organic 
solvent will directly lyse the cell and enable metabolomics 
from intact individual cells using a plethora of creative strat‑
egies for cells in suspension or cells adhered to a substrate 
(Fig. 4). For subcellular sampling, a dual channel pipette 
with a continuously flowing solvent can be inserted into the 
cell’s interior to extract the material for direct transfer to 
the mass spectrometer inlet (Pan et al., 2014). Alternatively, 
a micropipette can be inserted into the cell and withdraw 
material from the cytosol and subcellular compartments for 
subsequent transfer for mass spectrometric analysis without 
liquid extraction (Mizuno et al., 2008a, 2008b; Pan et al., 
2020).  The choice of sampling approach will be highly 
dependent on the experimental design and research question.

2.3  Metabolic imaging at single cell spatial 
resolution

2.3.1  Mass spectrometry‑based metabolic imaging

Imaging mass spectrometry (IMS) enables cellular metab‑
olite analysis while preserving the spatial architecture of 
the specimen of interest and has significant potential to be 
impactful in measuring metabolic processes at single‑ and 
subcellular resolutions. Since the inception of laser des‑
orption ionization (LDI) by Koichi Tanaka (Tanaka et al., 
1988), through the advances by Michael Karas and Franz 

Fig. 2  Schematic outline of the 
approaches used for isolating 
and preparing cells for single 
cell measurements. The work‑
flow includes tissue sectioning 
and mounting for imaging 
native distributions of analytes, 
isolating specific cells, and cell 
dissociation. Adapted from the 
American Chemical Society 
(J. Am. Chem. Soc. 2017, 139, 
11, 3920–3929). (Comi et al., 
2017). https:// pubs. acs. org/ 
doi/ full/ 10. 1021/ jacs. 6b128 22 
further permissions related to 
the material excerpted should be 
directed to the ACS

https://pubs.acs.org/doi/full/10.1021/jacs.6b12822
https://pubs.acs.org/doi/full/10.1021/jacs.6b12822
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Hillenkamp (Hillenkamp et al., 1991; Karas et al., 1985), 
who demonstrated that small molecules could be used as a 
matrix to assist laser desorption ionization (MALDI), the 
analytical focus of these laser‑based ionization methods 
has focused on molecules with higher mass‑to‑charge (m/z) 
ratio (e.g., peptides, polymers, and proteins). Although the 
amino acids tryptophan and alanine, along with another 

small‑molecule (Vitamin B12, cobalamin), were among 
the first analytes ionized and analyzed by Karas and Hillen‑
kamp using MALDI, the sensitivity for detection of mol‑
ecules with low m/z (70–500 Da) (Hillenkamp et al., 1991; 
Karas et al., 1985), such as metabolites involved in central 
metabolism has been limited. In large part this is attributable 
to spectral interference of the matrix compounds required 

Fig. 3  Sampling a living cell 
with patch clamp pipette, 
enabling physiology, morphol‑
ogy and capillary electropho‑
resis mass spectrometry‑based 
metabolomics on the same cell. 
Adapted from the American 
Chemical Society (Aerts et al., 
2014). Further permissions 
related to this material should 
be directed to the ACS

Fig. 4  Schematics of some strategies for ambient ionization tech‑
niques for single‑cell metabolomics. DESI Desorption Electrospray 
Ionization; LDIDD Laser Desorption/Ionization Droplet Delivery; 

ESI electrospray ionization. Reproduced from Duncan et al. (Duncan 
et al., 2019) with permissionfrom the Royal Society of Chemistry
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for ionization or other ion‑suppressive compounds (such as 
lipids) in the low m/z range. Recent advances in analytical 
chemistry and instrumentation have facilitated the devel‑
opment of MALDI‑IMS‑based methods on cryosectioned 
specimens while achieving spatially resolved metabolite 
measurements at 5–100 µm lateral resolution with signifi‑
cantly higher metabolic coverage.

High spatial resolution MS imaging is beginning to show 
some promise beyond protein analysis, including with sta‑
ble isotope tracers (Wang et al., 2022). MS imaging using 
MALDI ‑FT MS is especially well suited analyzing for 
surface protein glycosylation, with spatial resolution deter‑
mined by the laser spot size which is typically in the range 
10–50 m, close to individual cellular resolution (Hawkinson 
and Sun, 2022; Powers et al., 2014) Using longer wavelength 
lasers (in the near IR), more labile sugars such as sialic acid 
were preserved in paraffin embedded blocks (Pace et al., 
2022). As indicated in Fig. 4, there are several techniques for 
ionization under ambient conditions in addition to MALDI‑
based methods. In addition to MALDI, direct Laser Abla‑
tion Electrospray Ionization (LAESI) using near IR lasers 
has been used for metabolite imaging (Nemes et al., 2008; 
Shrestha et al., 2011) (Roman et al., 2018) which typically 
use a large spot size (≈200  µm) though more recent work 
using fiber optics greatly increased resolution to the single 
cell level (Kiss and Hopfgartner, 2016).

2.3.2  Iso‑imaging

Whereas most metabolomics analyses focus on measuring 
absolute or quasi steady‑state abundances of metabolites, 
additional information about pathway utilization and flux 
analysis can be obtained by stable isotope tracing either 
in vitro or in vivo (DeBerardinis et al., 2007; Le et al., 2012; 
Sellers et al., 2015) (Niedenfuhr  et al., 2015). To date, this 
approach has been limited to bulk samples, but spatial infor‑
mation would greatly enhance the information retrieval and 
modeling.

Infusions of stable‑isotope‑labeled nutrients have been 
coupled to MALDI‑IMS (“Iso‑imaging”) to determine spa‑
tial metabolic activity (Wang et al., 2022). Coupling stable‑
isotope tracing to MALDI‑IMS avoids several problems 
commonly associated with making metabolic measurements 
using MALDI‑IMS. First, spatial differences in tissue com‑
position result in differential ion suppression across the same 
tissue, a situation analogous to the ‘[tissue‑] matrix effect’ in 
conventional liquid‑chromatography coupled to mass spec‑
trometry. Therefore, without isotope labeling, it is difficult 
to know whether observed metabolite changes across a tis‑
sue are biologically meaningful or the result of regional ion 
suppression. Second, stable‑isotope labeling patterns can be 
compared to those obtained by LCMS and offer advantages 

for compound validation if isotopologue distributions match 
between methods.

Isotopically enriched metabolites can also be isolated 
and fragmented by MS2, and fragmentation patterns can be 
compared across regions or tissues or with other mass‑spec‑
trometry modalities. Third, stable‑isotope tracing enables 
the potential of performing additional calculations to either 
determine relative nutrient contribution or perform a more 
rigorous flux analysis (Niedenfuhr et al., 2015) (Bartman 
et al., 2021; Selivanov et al., 2020). Although stable‑isotope 
labeling approaches can add additional information and ana‑
lytical rigor to MALDI‑IMS experiments, unlabeled experi‑
ments that assess regional metabolite or lipid levels have 
also demonstrated utility in various settings. Combining 
MALDI‑IMS data obtained in isotope‑labeled or ‑unlabeled 
studies with other existing and emerging ‘spatial‑omics’ 
methods promises to address critical biological questions 
surrounding regional nutrient use.

2.3.3  The future of MALDI‑IMS

Important advances in MALDI‑IMS technology and accom‑
panying analytical chemistry‑based strategies will facilitate 
the successful implementation of MALDI for broad cover‑
age of the metabolome at the single‑cell level. Atmospheric 
pressure (AP) MALDI has recently exhibited 1.4 µm lateral 
spatial resolution (Kompauer et al., 2017). The application 
of this technology for small molecules is still hindered by 
the general sensitivity for molecules in the low m/z range. 
Improving metabolite sensitivity to sufficient levels will 
likely result from strategies that will enhance ionization or 
reduce ion suppression from interfering compounds (Yang 
et al., 2018), along with hardware advances that better select 
small molecules in the gas phase. Metabolome coverage 
using any single matrix is relatively incomplete compared 
to conventional chromatography‑based methods. The further 
development of different matrices (Qiao and Lissel, 2021), 
including reactive matrices (matrices that act as derivatizing 
agents and absorb the UV laser pulse essential for MALDI) 
(Shariatgorji et al., 2019) and those matrices that may be 
compatible with mixed‑mode (positive–negative switching) 
may improve the metabolome coverage and throughput. The 
relative speed at which data are acquired will be crucial as 
lateral resolution decreases. Fourier‑transform Ion Cyclo‑
tron Resonance (FT‑ICR)‑based mass spectrometers provide 
higher mass accuracy, which is essential for distinguishing 
isotope labeling patterns but is relatively slow compared 
to Time‑of‑flight (TOF) based mass‑spectrometry. With‑
out chromatographic separation, molecule identification is 
challenging, and isobaric (molecules with the same mass) 
are indecipherable. Ion mobility, the process of separating 
ions in the gas phase based on their collisional cross‑sec‑
tion (CCS) with a carrier gas, would theoretically enhance 
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sensitivity and aid in identifying molecules based on an 
added time dimension (similar in principle to chromatog‑
raphy). While ion‑mobility has been particularly useful for 
peptides and lipids, it is unclear whether the utility will be 
extended to enhance small‑molecule metabolites. For cer‑
tain application, targeted imaging by MALDI or DESI by 
tandem quadrupole MS can identify predefined metabolites 
of interest, albeit not at single cell resolution (Lamont et al., 
2018, 2021). Breakthroughs in any of these areas could lead 
to significant improvements in making spatially‑resolved 
metabolite measurements.

2.3.4  Optical imaging

Optical imaging techniques have been explored to quantify 
tumor cell metabolism non‑destructively at cellular level res‑
olution by using endogenous contrast or appropriate probes 
(Madonna et al. 2019b; Walsh et al., 2014; Zhu et al., 2019, 
2018a, 2018b). For example, two endogenous fluorophores, 
reduced nicotinamide adenine dinucleotide (NADH) and 
flavin adenine dinucleotide (FAD) have been explored (Zhu 
et al., 2014) to report the reduction–oxidation (redox) state 
in the electron transport chain of cancer cells (Hou et al., 
2016). Multi‑photon microscopes have been explored for 
cellular level optical redox ratio imaging of in vitro cancer 
cells (Hou et al., 2016) and tumor organoids (Walsh et al., 
2014) for cancer research. These cutting‑edge microscopes 
quantify the auto‑fluorescence of both NADH and FAD, 
and then provide an indirect measurement of the balance 
between glycolysis and OXPHOS by looking at the ratio 
of the two. Although it is an indirect measure of redox bal‑
ance, it has been firmly validated with Seahorse assays in 
cancer research studies (Hou et al., 2016). Being able to 
simultaneously quantify both glycolysis and mitochondrial 
metabolism directly and explicitly would further facilitate 
cancer research and translational applications. To achieve 
this capability, several metabolic probes have been explored 
for intracellular metabolic measurements. The 2‑[N‑(7‑ni‑
trobenz‑2‑oxa‑1, 3‑diazol‑4‑yl) amino]‑2‑deoxy‑D‑glucose 
(2‑NBDG) has been used in cancer cells to report glucose 
uptake, similar to the clinically available FDG‑PET (Yamada 
et al., 2007; Zhu et al., 2018). TMRE has been utilized to 
quantify mitochondrial membrane potential (MMP) to study 
OXPHOS (Perry et al., 2011; Zhu et al., 2017). BODIPY 
has been explored to report fatty acid uptake in cancer cells 
(Megan C Madonna 2021). All of these three key metabolic 
parameters are associated with human cancer therapy resist‑
ance development (Tang et al., 2018). When these metabolic 
probes were used, a labeling procedure was required but it 
was non‑destructive and lasted less than 1 h (Madonna et al., 
2019a). Optical metabolic imaging enables repeatable non‑
destructive measurement on various cancer models and it 
provides spatial information, while these techniques have 

poor coverage which is limited by usable metabolic probes. 
However, an increasing number of fluorescence labeled 
metabolites are becoming available, substantially enhanc‑
ing the metabolic coverage of optical microscopy (Benson 
et al., 2019; Hong et al., 2021).

Redox biochemistry, specifically the determination of 
NAD(P)+, NAD(P)H and their ratios, in different compart‑
ments within live cells is an important area of research that 
has seen the development of numerous fluorescent probes 
that bind the free nucleotides and can be imaged by confo‑
cal microscopy. These studies enable the redox responses to 
experimental conditions in different cell types to be deter‑
mined as a function of time (Bilan and Belousov, 2017; 
Cambronne et al., 2016; Hu et al., 1800; Sallin et al., 2018; 
Steinbeck et al., 2020; Zhao and Yang, 2016). For exam‑
ple, although the total dinucleotide concentration is of the 
order 0.5 mM in mammalian cells, the concentrations and 
redox ratios are significantly different in the cytoplasm ver‑
sus the mitochondria, and indeed, the free concentrations 
are much lower than the total amounts, owing to binding to 
the large number of dehydrogenases present. This also leads 
to  NAD+/NADH and NADPH/NADP+ ratios quite differ‑
ent from the ratios of the totals. Typically, the free  NAD+/
NADH ratio in the cytoplasm is 500–1500 (Christensenet 
al., 2014) compared with < 10 in mitochondria (Williamson 
et al., 1967). In contrast, the free NADPH/NADP+ ratios 
are in the range 20–80 (cytoplasm) and ca. twofold higher 
in mitochondria, whereas the free  NAD+ concentration is 
lower in the cytoplasm (ca. 100 M) than in the mitochondria 
(Sallin et al., 2018).

2.3.5  Raman imaging spectroscopy

Owing to recent progress in the diode lasers and notch 
filters, the study of biological systems became possible 
in the form of Raman Imaging Microscopy. Focusing 
the laser through the microscope allows the collection of 
Raman spectra for each pixel and subsequent movement of 
the stage permits the acquisition of spectra in a new posi‑
tion (Shen et al., 2019). This approach provides a chemi‑
cal and biochemical map of the entire cell without the 
need to remove it from the cellular milieu. Therefore, the 
technique is non‑destructive, non‑invasive, and can accept 
a wide range of samples from bulk to microscopic, from 
solids to liquids or gasses. The differences in the intensity 
and positioning of peaks in the spectra are attributed to 
the compositional changes between the different cells or 
organelles. The variation in the intensity of these peaks is 
due to the variation in the amount of lipids, proteins and 
DNA contents present in that location of the cell. In the 
past, the lack of methodology has hampered the use of 
Raman in biological samples. Recently, the development 
of a single organelle approach for the quantification of 
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DNA, proteins, RNA, and lipids has opened a new way 
to study spatial metabolism (Lita et al., 2019, 2021; Pliss 
et al., 2021). With the introduction of a deconvolution 
method and the use of external markers, it is now possible 
to accurately quantify biomolecular components such as 
total DNA, RNA, lipids, and proteins in organelles of live 
cells. Lipids could be characterized using the lipid unsatu‑
ration parameter (LSU) which describes the ratio of double 
bonds to single bonds; the TCP parameter which describes 
the ratio of trans/cis in the lipid isomer; phosphatidylcho‑
line sphingomyelin (PC); cholesterol and cholesteryl ester 
(CL); and triglycerides (TG). In addition, the spatial reso‑
lution of 500 nm positions this technique at the frontiers 
of metabolic analysis. Since the Raman microscope is not 
able to visualize organelles and distinguish one organelle 
from another, as some other methods can, Figs. 5 and 6, 
show how Lita et al. (Lita et al., 2021) circumvented this. 
They labeled one organelle with a fluorescent dye, and 
with the help of a fluorescence filter they visualize the 
desired organelle is in the field of view. Once they have 
the organelle identified, they can start recording the meta‑
bolic information that is intrinsically hidden in the Raman 
spectra. Lita et al., (Lita et al., 2021) applied this approach 
to gliomas cell that contains either  IDH1wt or  IDH1mut and 
identified a unique lipid profile associated with  IDH1mut, 
which could be exploited for therapeutic purposes. 

Another way to image metabolites is to use a special type 
of Raman spectroscopy named Stimulated Raman Spectros‑
copy (SRS) as done by Zhang et al. (Zhang et al., 2019). 
Contrary to the spontaneous Raman, this method uses two 
synchronized pulsed lasers, and the difference frequency 
between the lasers, accelerates the transitions of molecular 
vibrations that match that difference. By this method the 
signal can be enhanced up to  108 fold, therefore allowing 
detection of low intensity signals.

This approach was used in conjunction with deuterated 
glucose to image the incorporation of glucose into pro‑
teins, lipids, DNA, and glycogen in tissues of live animals 
and cells. The use of deuterium allows for specific path‑
ways to be visualized as more enriched in glucose‑derived 
than others, while the spatial resolution of the technique 
allows for tracing of this isotope in different types of cells 
or organelles.

While these efforts are pushing the limit of current detec‑
tion with Raman spectroscopy both in terms of metabolite 
identification as well as signal sensitivity, more develop‑
ments are needed for this method to increase the number 
of metabolites that it can detect. In the future, the use of 
Raman spectroscopy in combination with mass spectrometry 
such as Nano ESI could increase the potential of subcellular 
metabolomics (Ali et al., 2019a, 2019b). Combining with 
sc proteomics and transcriptomics and the limited Stable 
Isotope Resolved Metabolomics (SIRM) information obtain‑
able (see above) (Lima et al., 2022) and improved compu‑
tational modeling will make the in situ metabolic imaging 
more powerful.

2.4  Technical bottlenecks and new approaches

There are several technical bottlenecks for deep metabolic 
analysis at single cell resolution (see for example (Shrestha, 
2020)), that are being addressed with new approaches as 
discussed below.

2.4.1  Spatial dispersion and sensitivity

Nuclear magnetic resonance (NMR) and high‑performance 
liquid chromatography mass spectrometry (HPLC–MS) are 
the “gold standards” for metabolite identification. How‑
ever, the low sensitivity of NMR means that comparatively 

Fig. 5  Overview of organelle level metabolic characterization of 
cells. Using the Raman Microscope, a single cell can be selected from 
the tumor microenvironment (A) and a more detailed image of orga‑
nelle inside this cell can be obtained (B). Using our methodology, 
different classes of lipids in one organelle in different cell types can 

be quantified. Each organelle measurement is displayed with a differ‑
ent color (lysosomes in blue, mitochondria in green, Golgi apparatus 
in red and Endoplasmic reticulum in black. R132H is an active site 
mutation in isocitrate dehydrogenase, very prevalent in lower grade 
gliomas. From (Lita et al., 2021) with permission
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large amounts of compound are needed, such that Mag‑
netic Resonance Imaging (MRI) cannot achieve single cell 
or near single cell resolution. Sensitivity enhancement via 
dynamic nuclear polarization (DNP) for example allows 
for localized kinetic analysis of a few reactions, but is still 
limited to  mm3 sized volumes (Ehrhardt et al., 2022). The 
great advantage of MRI is that the imaging is in vivo and 
can be carried out at greater depth than optical imaging 
(Ahn et al., 2019; Dang et al., 2019). Mass spectrometry is 
a far more sensitive technique but since it consumes mate‑
rial the sensitivity is inversely proportional to the square 
of the probed area, and being destructive, does not readily 
lend itself to kinetic studies at the same sampling point. 
From an analytical perspective, this creates what can be 
termed the “Metabolite Uncertainty Principle” where the 
more certain we are about a metabolite’s identity, the less 
certain we are about its localization. Many of the pioneer‑
ing efforts over the last decades including sample prepa‑
ration for spatial dispersion or enhancements in sensitiv‑
ity for imaging have focused on escaping this frustrating 
confine. The evolution of these techniques is illustrated in 
Fig. 7 with the width of each evolutionary line indicating 
the approximate number of instruments in the field and the 
color of each label categorizing the certainty of metabolite 

identity from gold (fully identified, level 1) through silver 
(putative annotation, levels 2,3) to bronze (class of metab‑
olite, level 4) according to the classifications in to bronze 
(class of metabolite, level 4) according to the classifica‑
tions in (Blaženović et al., 2018; Sumner et al., 2007). 

Innovation has been driven by the needs to increase 
sensitivity and simultaneously reduce the probe size. In 
electrospray MS this has been achieved extracting material 
with a fine capillary as a probe guided by a stereo micro‑
scope followed by nanospray ionization (Masujima, 2009; 
Mizuno et al., 2014). Whilst not an imaging method per se, 
it is possible to precisely target locations at the organelle 
scale and from live cells (Fujii et al., 2015; Mizuno et al., 
2008a, 2008b). Laser capture micro‑dissection (LCMD) 
may also be combined with electrospray and is increas‑
ingly used to give multi‑omic information with spatial 
localization. Desorption electrospray ionization (DESI) 
(Takats et al., 2004) uses an electrospray as the probe with 
MS analysis of analytes captured in secondary droplets. 
This has the advantage of no sample preparation require‑
ment and gentle electrospray ionization enabling improved 
confidence in metabolite identification but with a spatial 
resolution of above 50 µm (Gilmore et al., 2019).

Fig. 6  Protocol for Raman‑based quantification of lipids at the orga‑
nelle level. In Step 1, a green, fluorescent label is applied to the cells. 
In Step 2, organelles are localized and focused under microscope 
using this tag. In Step 3 and 4, Raman spectra are collected and 
BCAbox algorithm is applied to extract lipid profiles. In the last step, 
the unsaturation of lipid (LSU) is computed based upon the area ratio 

of 1655  cm−1 to 1443  cm−1. Via the same procedure, TCP parameter, 
which characterize trans/cis C = C bonds ratio in lipid species can 
be obtained from the intensities at 1666   cm−1 and 1655 cm.−1. AG, 
Golgi apparatus, LD, lipid droplets. With permission from (Lita et al., 
2019)
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In the desorption mass spectrometries, the probability of 
a neutral molecule being ionized is low (typically < 1 ×  10–3) 
so that much effort has gone into increasing this probabil‑
ity through combining with a laser to post‑ionize neutral 
compounds. The conversion of a neutral molecule in the 
gas phase to an ion requires an energy of around 6–8 eV 
(579–769 kJ   mol−1) so photons in the UV and vacuum 
UV (120–210 nm) are needed. Niehaus et al. developed 
a MALDI‑2 instrument where a second 266 nm laser was 
used to post‑ionize neutral molecules enabling a resolution 
of 600 nm to be achieved (Niehaus et al., 2019) and Walker 
et al. used VUV post‑ionization femtosecond laser desorp‑
tion/ionization mass spectrometry (LDI‑MS) to image the 
distribution of lipids in pancreas tissue (Walker et al., 2018).

Reducing the uncertainty of metabolite identify requires 
high‑performance mass spectrometers which includes high 
m/z resolving power to separate confounding peaks, high 
mass accuracy for searching databases of calculated or 
known mass peaks and MS/MS capabilities for structural 
identification. These attributes, generally, require Fourier 
Transform (FT)‑MS using magnetic trapping (e.g. FT‑ICR) 
or electrostatic trapping (e.g. Orbitrap). Sub‑cellular imaging 
with both MALDI and SIMS in combination with Orbitrap 
Mass Spectrometry detection has been achieved in SMALDI 
(Kompauer et al., 2017), OrbiSIMS (Passarelli et al., 2017) 

and MALDI‑2 (Niehaus et al., 2019). Analysis of samples in 
their native state is another important technological driver. 
Cryogenic sample preparation is also an important direction, 
for example Cryo‑OrbiSIMS where the sophisticated sample 
preparation methods developed for cryo‑SEM are utilized 
(Zhang et al., 2020).

Raman and IR optical methods have the advantage of 
operating directly in ambient conditions. Similarly to MS, 
there have been tremendous advances over the last decades 
to boost signal intensities using non‑linear methods. For 
example, Stimulated Raman Spectroscopy (SRS) is able to 
achieve high‑speed imaging (usually at a selected frequency 
rather than broadband) with a spatial resolution of 400 nm 
and an axial resolution of < 1 μm. The spatial resolution 
of Raman and IR spectroscopies is substantially increased 
when combined with electric field enhancement caused by 
the sharp tip of an Atomic Force Microscopy (AFM probe) 
in Tip Enhanced Raman Spectroscopy (TERS) and IR‑AFM, 
respectively.

2.4.2  Sensitivity

Sensitivity and dynamic range are a significant issue for 
metabolomics. Metabolite concentrations in cells (averaged 
over the entire cell) vary widely from abundant molecules 

Fig. 7  Analytical techniques for metabolite identification and their 
evolution towards single cell metabolomics using either spatial dis‑
persion methodologies or by imaging. The width of each evolution‑
ary line indicates the approximate number of instruments in the field 
(see key) and the color categorizes the certainty of metabolite iden‑

tify from gold (full identification), silver (annotated) to bronze (class 
of metabolite, e.g. not specifically identified). LDI Laser Desorption 
Ionization; LAESI ablation electrospray ionization; SIMS secondary 
ion mass spectrometry; TERS tip‑enhanced Raman spectroscopy



 A. Ali et al.

1 3

77 Page 12 of 22

such as ATP in the mM range, to amino acids and dinucleo‑
tides in the sub millimolar range, to low μM for many inter‑
mediates, and in the nM range for some signaling molecules, 
a range of more than 6 orders of magnitude. For a cell of 
total volume 0.5–5 pL, this range is equivalent to zmol to 
fmol amounts. However, modern mass spectrometers can 
easily measure sub fmol to amol quantities, and the more 
abundant metabolites (100 M to mM) are accessible by con‑
focal light microscopy on live cells (see Sect. 2.3.4). Many 
biological questions can be addressed even with moderate 
metabolic coverage, especially when multiple modalities are 
engaged on the system as a whole. The fast progress in the 
field attests that attomole to femtomole levels provides suf‑
ficient coverage to address may biochemical questions, and 
there have even been examples of individual organelle MS 
(Rubakhin et al., 2000) (and see above).

2.4.3  Microfluidics

The small number of single cells presents another issue for 
metabolomics. As mentioned above, there is a broad range 
of metabolite concentrations in a given cell; however, the 
typical mammalian cell volume is in the picolitre scale. 
Therefore, controlling the sampled volume throughout the 
analytical workflow and preventing sample loss is essential 
to maintain the ability to detect the less abundant, but highly 
relevant molecules such as signaling molecules. As it stands, 
traditional sample preparation and separation techniques 
are ill equipped to handle such small volumes. However, 
techniques that inherently constraint the sample volume in a 
microfluidics format by means of slugs or droplets are much 
more suited to the task. Furthermore, separation techniques 
that can be incorporated into microfluidic chips such as cap‑
illary electrophoresis, or that occur after the sample intro‑
duction to the MS (ion mobility) can improve confidence 
in metabolite identification, in contrast to methods that rely 
on MS measurements alone. The work done by Li et al. 
(Li et al., 2016) highlights the potential of microfluidics in 
single cell analysis. Their work showcased an automated 
microfluidic platform that lyses cells using nanoelectrodes 
followed by a separation step using electrophoresis, and sub‑
sequent introduction into the MS instrument via nanospray.

Controlling perturbations of the cells’ microenvironment 
and the metabolic response to them is an important variable 
of any metabolomic experiment. This is especially so when 
targeting relatively rare cells such as circulating tumor cells, 
where the generated data are highly sensitive to fluctuations 
and outliers due to the low number of cells measured, which 
makes it difficult to discern the source of variation (e.g. het‑
erogeneity, or perturbations of microenvironment). There‑
fore, minimizing the perturbations to the microenvironment, 
as well as rapid quenching of metabolic reactions ensure 
that the variations seen in the metabolome representative to 

the true cellular state, and not in response to experimental 
conditions. Controlling perturbations is especially important 
in methods where the cell is sampled while it is still alive as 
is the case in capillary microsampling techniques. Consider‑
ing that metabolic reactions occur in seconds (Tung et al., 
2017b), quenching the sampled cells by a cold mixture of 
organic solvent and buffer (Reichard and Asosingh 2019) is 
required prior to further cell manipulation and sample prepa‑
ration to ensure that the measured metabolites represent the 
normal cellular state as much as possible (Nhu et al., 2020; 
Tung et al., 2017a).

2.5  Metabolite identification

As already described, NMR is insufficiently sensitive to 
detect and analyze even high abundance metabolites at the 
single cell level, though is important for determining metab‑
olites in bulk samples, which may support conclusions based 
on high resolution experiments. The main source of informa‑
tion is mass spectrometry which with sufficient resolution 
can return accurate masses from which molecular formu‑
lae can be determined (Higashi, 2011; Lane et al., 2009). 
This does not discriminate among structural isomers, for 
which tandem MS at ultrahigh resolution (preferably with 
LC retention time) is the gold standard (Sun et al., 2021), 
but may not always be technically possible. In many cases, 
analysis of an additional bulk sample is still employed to 
assist peak assignment; the greater spectral intensity ena‑
bles better fragmentation data leading to improved analyte 
identification. Increasing mass spectrometer sensitivity can 
be expected to help with tandem MS of lower abundance an 
analytes. Other (orthogonal) biochemical information can 
help in deciding plausible identification.

Stereochemical information will be lacking with most 
LC–MS/MS‑based annotation practices, which may matter 
for chiral drug metabolites, although there are recent exam‑
ples of probing the stereochemistry of compounds in indi‑
vidual cells using CE‑MS coupled to ion mobility MS (Mast 
et al., 2021) and this is expected to become more common 
with the growth of ion mobility enhanced spectrometers. 
Even with MS/MS, annotation may not always be possi‑
ble, either due to lack of diverse enough reference libraries 
combined with persistent (though improving) limitations of 
computational structure prediction approaches, or insuffi‑
ciently informative MS/MS spectra (for example for glyc‑
erophosphocholines in positive ion mode, where often only 
fragments from the head group are observed and there is a 
dearth of informative fragments from the fatty acid tails).

Optical/microscopy methods provide high resolution 
metabolic imaging on cell models (Madonna et al., 2019a, 
2019b; Shah et al., 2014; Shah et al., 2017), organoid model 
(Gil et al., 2021; Walsh et al., 2014) or even tumor slices 
without extraction. However, it is challenging to use the 
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technique for absolute amounts quantification as most of 
the existing optical techniques are semi‑quantitative or ratio‑
metric (Gil et al., 2021) based. It is possible to quantify the 
molecular amounts using optical techniques, while rigorous 
calibration procedures are typically needed.

2.6  Metabolite quantification

Quantification of metabolites in single cells with mass spec‑
trometry is analytically challenging but desirable from sev‑
eral perspectives. In particular, quantification will enable the 
direct comparison of the abundance of individual metabo‑
lites in the cell despite their different ionization efficiency 
and detectability. Furthermore, quantification will allow for 
calculation of significance and fold changes between cells 
and groups of cells that will otherwise be highly depend‑
ent on the sensitivity of individual metabolites. For liquid 
extraction approaches, internal standards are included in the 
extraction and ionization solvent to measure the detected 
concentration of individual metabolites with one point cali‑
bration (Bergman and Lanekoff, 2017). The internal stand‑
ards are typically isotopically labeled to minimize overlap 
with endogenous signals. Another approach is to perform 
relative quantification using the ratio of two similar metabo‑
lites and assuming that they ionize similarly (Bergman and 
Lanekoff, 2017). Although this does not provide a quan‑
titative measure, it allows for direct comparison between 
the metabolome of individual cells. Absolute quantification 
remains a significant challenge in metabolomics.

2.7  Statistical tools‑what is available and what 
is needed?

While the statistical analysis of single‑cell metabolomics 
remains in its infancy, single cell transcriptomics have 
matured to the point where sophisticated statistical tools 
for high‑dimensional data can be routinely applied as part 
of standard data processing workflows (Luecken and Theis, 
2019). This is largely facilitated by the widespread adoption 
among the scRNA community of mature open‑source data 
analysis packages written in modern scripting languages, 
such as ScanPy (Wolf et al., 2018) for Python, its extension 
SquidPy for spatial omics (Palla et al., 2022), and Seurat 
(Hao et al., 2021) for R. Such tools can also be applied to 
MS‑based single‑cell metabolomics data once mass spectra 
are converted to intensities of annotated metabolites. Rappez 
et al. (Rappez et al., 2021b) used ScanPy to perform statis‑
tical analyses on a dataset of 740 metabolites from 29,738 
hepatocytes, including cell‑to‑cell normalization, nonlinear 
batch correction, UMAP dimensionality reduction (Becht 
et al., 2019), Leiden clustering, and pseudotime trajectory 
analysis (Trapnell et al., 2014). This revealed three clus‑
ters of cells corresponding to homeostasis, steatosis, and an 

intermediate metabolic state, for which marker metabolites 
were identified via hypothesis tests of differential expres‑
sion. The ScanPy package was also used (Castro et al., 
2021b) to carry out clustering and differential expression 
testing for mass spectra of single organelles, and by Yuan 
et al. (Yuan et al., 2021) for differential expression analysis, 
dimensionality reduction, and clustering of mass spectra of 
single hepatocyte nuclei in‑situ.

However, single‑cell metabolomics data differs from 
other modalities in ways that may present obstacles to fur‑
ther cross‑application of existing statistical methods. First, 
MS, optical, and vibrational metabolomics data are natively 
continuous‑valued signals, whereas sequencing data is 
count‑valued and often sparse. The meanings of zeroes also 
differ between transcriptomics and MS‑based metabolomics: 
while the technical versus biological origins of sparsity in 
scRNA have been the subject of considerable debate (Jiang 
et al., 2022; Svensson, 2020), metabolite peaks can fail to be 
detected in mass spectra for computational reasons: e.g. if 
they insufficiently exceed background spectral noise during 
peak detection (Alexandrov, 2012), or are mis‑annotated due 
to mass drift (La Rocca et al., 2021). While such events may 
be digitally recorded as zeroes, they are better understood 
and modelled as a form of random missingness (Do et al., 
2018a, 2018b).

Methods based upon MS imaging of single cells also risk 
co‑sampling of neighboring cells:

although Rappez et al. (Rappez et al., 2021b) indicate 
this minimally affected their analysis of cultured hepato‑
cytes, this may bias estimates of spatial autocorrelation of 
metabolites in tissues where cells are tightly packed (and 
irregularly shaped) relative to the MS spatial resolution. 
Finally, a significant promise of single‑cell omics is its 
potential (through sufficiently large sample sizes) to infer 
regulatory relationships de‑novo between biomolecules. 
Many algorithms toward this end have been developed for 
single‑cell RNA data (Aibar et al., 2017; Chan et al., 2017; 
Pratapa et al., 2020), as well as for mass cytometry (Sachs 
et al., 2005; Wang et al., 2019). While in principle such 
methods could also be applied toward learning metabolic 
networks from data, we caution these may not be robust to 
sources of (co‑) variation specific to MS‑based single‑cell 
metabolomics, such as in‑source fragmentation (Dolatmo‑
radi et al., 2021), region‑dependent ion suppression (Taylor 
et al., 2018), or global metabolic shifts arising from cell 
manipulation (Llufrio et al., 2018): these may induce cor‑
relations between metabolites that are primarily technical 
rather than biological in origin.

A goal at times is to determine cell heterogeneity within 
a population of cells and to understand what biochemical 
species drive this heterogeneity. While sc MS can determine 
mass markers that drive cell differences, the gold standard 
for determining cell type remains immunohistochemistry 
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with established markers; Neumann et al. (Neumann et al., 
2019a, 2019b) performed single cell MALDI MS and then 
followed up on the same cells using immunohistochemical 
staining via GFAP and neurofilament antibodies and thus 
were able to correlate both datasets and determine the dif‑
ferences in lipids between astrocytes and neurons (Neumann 
et al., 2019a, 2019b) The lipid markers discovered later have 
been shown to be consistent with data obtained on a distinct 
platform (Neumann et al., 2019a, 2019b). Using these large 
datasets of thousands of individual rodent brain single cell 
MALDI MS spectra, Xie et al. created a new statistical pipe‑
line based on interpretable machine learning. Using these 
same datasets, they were able to classify cells based on their 
original location (e.g., hippocampus and cerebellum) and 
found they could classify cells 96% of the time (Xie et al., 
2020). This does not necessarily mean that the remaining 
4% of the cells are wrongly classified, but perhaps up to 4% 
of the cells do not have features that allow such classifica‑
tion. Additional studies use larger datasets such as 150,000 
human brain cells (Bhaduri et al., 2021).These approaches 
have recently been adapted to work with single organelle MS 
measurements (Castro et al., 2021a).

2.8  QA/QC‑ how to include proper blanks, controls 
and performance measures?

2.8.1  The goals of QA/QC

A scientific measurement must be reliable enough that it 
enables robust conclusions to be drawn from the experiment. 
Quality management (QM) is the process of ensuring such 
reliability. It is divided into quality assurance and quality 
control. Quality assurance describes the procedures that are 
undertaken in the laboratory to have a reasonable confidence 
that quality standards will be met. Quality control describes 
the points in the process where specific measurements are 
recorded to demonstrate that the quality level has been 
achieved (Barwick, 2020). QM gives the researcher confi‑
dence in their biological results and enables experimental 
results to be reproducible in other laboratories. As such, it 
is an essential part of good scientific practice. However, the 
exact requirements for QM will be method specific. Given 
the novelty of much of the latest single cell technologies, 
QM is still very much an active area of development in this 
field. Ultimately, being able to reproduce the results in a 
different independent biological cohort, preferably in a dif‑
ferent laboratory is the ultimate quality assurance test, and is 
improved still further where a second alternative method can 
be applied e.g. optical imaging (see above) with Seahorse 
assays (Little et al., 2020; Wu et al., 2007) although this is 
not available to most studies.

QM has some particular challenges in single cell metab‑
olomics, not only because of new technology, but also 

because, by its definition, it is difficult to conduct proper tests 
of reproducibility on single cell data. Traditional methods 
in metabolomics for measuring repeatability or reproduc‑
ibility across an experiment by identifying a suitable quality 
control sample for regular measurement is more challeng‑
ing in SC metabolomics, especially given that small sample 
volumes often preclude replicate measurements on the same 
samples. However, several of the other QA practices can be 
taken direct from more traditional metabolomics. Readers 
are directed to some seminal and some more recent reviews 
on this e.g. (Beger et al., 2019; Broadhurst et al., 2018; Sum‑
ner et al., 2007).

All experiments should have a clear, easy to follow 
experimental protocol. This should highlight not only the 
important steps in the procedure, but also which steps have 
been previously shown to be most critical for quality and 
reproducibility. This reduces the risk that new technologies 
are only successful in the hands of a particular scientist. 
While written protocols are still most useful in the lab, sup‑
plementary video protocols are often a clearer way of shar‑
ing new technologies. Standard experimental practice such 
as randomizing the order in which samples are analyzed 
(and the order of analysis of rastering patterns in the case of 
metabolic imaging), are also to be strongly recommended.

As for any metabolomics experiments, high quality rea‑
gents, especially solvents are required. Before starting an 
analysis, an instrument should be calibrated, and demon‑
strated to be properly working with an appropriate system 
suitability test (SST). While manufacturers often provide 
SST reagents to use for such a purpose, some laboratories 
prefer to use their own, more complex mixtures. This ena‑
bles a much better overview of the complete scan range of 
interest. Both calibration and the SST results can be used 
as points of quality control. As such, their results should be 
recorded (Broadhurst etal., 2018).

Appropriate blank samples should also be used, both to 
demonstrate that the instrument is free from contamination 
before starting, and from carryover midway through experi‑
mentation, and the software must be set up to identify impu‑
rities from the sample preparation and instrumental artefacts 
as extensive manual curation is impractical.

In some technologies such as optical microscopy, a 
background fluorescence needs to be measured as a start‑
ing point (Sun and Zhu 2021). For mass spectrometry and 
similar methods, process blanks (i.e. solvent mixtures that 
have followed the exact processing steps of the samples) 
enable identification and removal or concentration adjust‑
ment of peaks that appear to come from the processing steps 
themselves.

Since single cell analyses are likely to be subject to the 
same intra and inter‑batch effects seen in more traditional 
metabolomics analysis, this should be monitored where pos‑
sible. This has typically been achieved with some form of 
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representative quality control (QC) sample which can be 
repeatably analyzed across and between batches. There are 
already proven batch effects in most currently used methods 
for single cell analysis (Balluff et al., 2021; Rappez et al., 
2021b). The ideal QC sample is a pooled sample consisting 
of aliquots of all, or a representative cohort, of the samples 
to be analyzed. This mimics better the matrix (and therefore 
the matrix effects) of the samples themselves and should 
also enable detection of a very similar range of metabo‑
lites. For obvious reasons, such a QC sample is difficult to 
achieve in most single cell analyses with the exception of 
some techniques which extract cell contents before analysis. 
Alternatives to a traditional QC have included the analysis 
of technical replicates (Choi et al., 2021; Nemes et al., 2012; 
Onjiko et al., 2016), as well as several of the approaches 
already described above including the use of larger cellular 
populations to obtain robust results, the measurement of the 
cells using more than one platform and monitoring reproduc‑
ibility and precision of internal standards.

Some methods have additional requirements for QM, such 
as addressing the effects of variation in slice or matrix thick‑
ness on MALDI results for example. For many technologies, 
such considerations still need to be defined and appropriate 
solutions found.

So far, the discussion has concentrated on technical vali‑
dation; that an instrument is carrying out reliable and repro‑
ducible measurements. However, biological degradation as 
a result of the process itself needs also to be considered. As 
with other metabolomics measurements, single cell metabo‑
lomics typically requires multiple steps to process samples 
before the point of an analysis. Some methods also take 
many hours (e.g. MALDI imaging). Both may lead to post‑
harvesting changes being measured as part of the metabo‑
lome. Currently, little research has been published on how 
these processes may themselves be affecting the measure‑
ments. Some methods lend themselves better to testing this 
hypothesis than others e.g. analyzing monocultures of cells 
before and after FACs sorting may enable an estimate of 
how much the FACS process changes the metabolome. Deg‑
radation, which occurs over the time course of an analysis, 
is easier to measure, either in technical replicates (Nemes 
et al., 2012) of samples, or by analyzing the trend of analyses 
over a single slide in the case of MALDI imaging. Some 
recent developments such as fluidic force microscopy (Guil‑
laume‑Gentil et al., 2017) claim to circumvent this problem 
by extracting intracellular fluid directly from living cells in 
a two‑step process. Obviously, short lived metabolites (e.g., 
nitric oxide) would be difficult to measure with all of these 
approaches.

Many single cell metabolomics methods rely on relative 
differences between groups of cells. However, as the technol‑
ogies move toward true quantification, quantitative methods 
need themselves to be validated. Existing guidelines from 

the EMA and FDA will probably require some adaptation to 
allow for the unique challenges of sc metabolomics.

3  Future directions: prospects 
for integration with large scale ‘omics’

Major advances have been made in metabolic analyses of 
individual cells that provide biological mechanisms and 
complement the information available from metabolomics 
studies of biofluids. Nevertheless, there remain several tech‑
nological issues. In addition to numerous technical develop‑
ments to increase sensitivity and reliability of identification 
and quantification discussed above, it is desirable to inte‑
grate metabolic information with protein and gene expres‑
sion data. As changes in metabolite abundances can have 
more than one origin (altered synthesis routes and/or altered 
utilization routes), for mechanistic purposes (and overall 
confidence), it may be important to determine the levels 
of the relevant enzyme isoforms (enzyme catalyzed rates 
are usually proportional to enzyme concentration), and any 
post translational modifications that may impact the intrin‑
sic enzymic activity independent of the expression level. 
If enzyme abundances are important determinants of the 
fluxes and metabolite levels, then transcriptomics can deter‑
mine whether this is transcriptionally controlled versus post 
translationally (protein degradation). The metabolite levels 
corresponding to enzyme activities (or groups of enzymes) 
may also shed light on the possible importance of non‑cova‑
lent enzyme modifications of intrinsic activity (cf. allosteric 
interactions). There have been attempts to link, for example, 
metabolomics information with transcriptomics (Al‑Sabah 
et al., 2020; Baccin et al., 2019; Fan, 2012; Zhang et al., 
2013), such as using the confirmation from isotope tracer 
methods to interrogate RNAseq data sets with metabolic 
modeling (Fan et al., 2019). As it is now possible to apply 
metabolomics methods at the single cell level, at least for 
relatively abundant metabolites, as well as proteomics and 
near single cell resolution spatially resolved transcriptomics 
(e.g. the Visium system from 10X Genomics and single cell 
resolution via CosMx from NanoString) major issues are 
corresponding coverage of the different omics levels, and 
to what extent these ‘omics can be acquired on the same 
cells, or at least similar cells from (for example) adjacent 
regions of tissue. Different workflows might be envisaged, 
such that tissues are first interrogated by non‑destructive 
imaging modalities prior to fixing, staining and subsequent 
proteomic/transcriptomic processing. Incorporating meta‑
bolic tracer information even for a few metabolites greatly 
increases the information content in the context of interact‑
ing metabolic pathways.

To do justice to the very large amounts of quantitative 
data that such multiomics approaches imply, a major growth 
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area will be in the construction of detailed integrative mod‑
els of cells in complex (tissue) environments, incorporating 
large data bases (Lorenzi et al., 2021; Muraro et al., 2016; 
Robinson et  al., 2020; Thul and Lindskog 2018; Wang 
et al., 2021a, 2021b; Wishart et al., 2022) and informatics 
approaches to enhancing overall throughput.
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