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3
REDUCING DIMENSIONS: THE

THIN FILM PLANAR JOSEPHSON
JUNCTION

R. Fermin, B. de Wit & J. Aarts

The magnetic field dependent critical current Ic(B) of a Josephson junction is determined
by the screening currents in its electrodes. In macroscopic junctions, a local vector po-
tential drives the currents, however, in thin film planar junctions, with electrodes of
finite size and various shapes, they are governed by non-local electrodynamics. This
complicates the extraction of parameters such as the geometry of the effective junction
area, the effective junction length and, the critical current density distribution from the
Ic(B) interference patterns. In Phys. Rev. B, 81, 144515 (2010), John Clem derived Ic(B)
for Josephson junctions separating a rectangular superconducting strip of length L and
width W . In this chapter, we will extend his technique to find Ic(B) for junctions with
ellipsoid and rhomboid geometries. We find the periodicity of the interference pattern
∆B to have common limits for L ≫ W and L ≪ W , independent of the geometry. By
fabricating elliptically shaped S−N−S junctions with various aspect ratios, we experi-
mentally verify the L/W dependence of ∆B. We show that these results greatly affect the
Fourier relation between Ic(B) and the distribution of critical current in the junction,
which makes incorporating these alterations essential for the correct analysis of current
channels in topological and magnetic planar Josephson junctions.

A paper based on this chapter is under review for publication in Phys. Rev. B
and is published as preprint at arXiv.org under the identifier 2210.05388.
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34 3. REDUCING DIMENSIONS: THE THIN FILM PLANAR JOSEPHSON JUNCTION

3.1. INTRODUCTION

The previous chapter deals with junctions that are orders of magnitude larger than the

physical length scales governing their physics. The discussion of Josephson junctions

and their associated interference patterns becomes radically different when the size of

the superconducting electrodes is constricted in one or more dimensions. Specifically,

when the junction is formed between two superconducting thin films, with a thickness

below λL, the shielding current running along the junction, responsible for the shape

and periodicity of the magnetic interference in the critical current Ic(B), is no longer

determined by the Meissner effect in its macroscopic form (i.e., by the local vector po-

tential). Rather non-local electrodynamic effects start to play a role[1–4]. This can be

understood by considering that the magnitude of the shielding currents remains the

same when the thickness of the superconducting electrode is decreased (there are no

sample dimensions in Eq. 2.11). Therefore, the current density in the electrodes in-

creases, and it becomes energetically favorable to extend the shielding currents deeper

into the electrodes, yielding a larger penetration depth or effective junction length. In

numerous theoretical and experimental studies, it was found that in thin film planar

junctions, Ic(B) becomes completely independent of λL and is solely determined by

the geometry of the sample[4–8]. Moreover, John Clem provided a method to calculate

Ic(B) for planar junctions that are also restricted in their lateral size, i.e., a Josephson

junction separating a rectangular superconducting strip of width W and length L in

two halves[7].

In light of the disk- and ellipse-shaped thin film planar S−F−S junctions presented in

Part two, we will review his technique in this chapter and extend his work by cover-

ing two more geometries: the ellipse and the rhomboid, both of width W and length

L. First, we calculate Ic(B) for these geometries and extract the periodicity of the in-

terference pattern ∆B for different ratios of L/W . Next, we experimentally verify the

geometry dependence of ∆B by fabricating elliptically shaped S−N−S junctions with

different ratios of L/W . Finally, we analyze how the Fourier relation between Ic(B)

and the critical current density distribution is altered for these planar junctions. We

find that adapting the Fourier transform is crucial in predicting the location of possible

current channels in thin film planar junctions.

3.2. REVIEW OF THE CLEM MODEL

As we examine the thin film limit, the screening current density is uniform in the film,

which effectively reduces the problem to a semi-2D one. Therefore, we consider a nor-

mal metal Josephson junction (dimensions W and d) that divides a symmetric super-

conducting thin film into two halves. We specifically consider the junction to be in

the short junction limit, as the original model by Clem treats an infinitesimally thin in-

sulating tunnel junction. Furthermore, it is assumed that the electrode the electrode
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Figure 3.1: Schematics of the three geometries used for calculations in this chapter, being (a) the rectangle,
(b) the ellipse and (c) the rhombus. They resemble superconducting thin films of width W and length L,
which are separated by a normal metal junction of width d (colored red). By numbers we indicate different
sections of the right electrode edge. The boundary conditions for these are summarized in Table 3.1. In (d)
we show a zoom of the junction area under the magnetic induction BBB = B ẑ. The dark blue path is used as
loop integral to determine Ic(B).

dimensions are smaller than the Pearl length, given by:

Λ= 2λ2
L

tfilm
(3.1)

Here tfilm the thickness of the superconducting films. This implies that the self fields of

the screening currents are far smaller than the applied external field. Additionally we

assume that the junction is in the narrow limit, meaning that the junction is less wide

than the Josephson penetration length, which for planar junctions in the thin film limit

is the given by[4, 5, 7]:
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l = Φ0tjuncW

4πµ0λ
2
LIc(0)

(3.2)

Here tjunc is the thickness of the junction. Figure 3.1 shows a schematic of three of such

films, having different geometries. The junction, colored red in Figure 3.1, is running

along the y-direction from −W /2 to W /2. In Figure 3.1d, we sketch a zoom of a junc-

tion, where we specify the integration contour (similar to Figure 2.3) under a magnetic

induction of BBB = B ẑ. In order to calculate Ic(B), the current running along this integra-

tion contour Jy ( d
2 , y) needs to be evaluated. To do so, first note that the supercurrent is

conserved and therefore∇∇∇·JJJ = 0. By choosing the convenient gauge AAA =−yB x̂, we find

∇×AAA = B ẑ =BBB and ∇·AAA = 0. Therefore, the divergence of the second Ginzburg-Landau

equation (Eq. 2.4) reduces to:

∇2γ= 0 (3.3)

Here γ is the gauge-covariant phase of the superconducting wave function, and we

recognize that we mapped the second Ginzburg-Landau equation onto the Laplace

equation. With sufficient boundary conditions, it can be solved for a unique solution,

which allows us to calculate Jy ( d
2 , y). The boundary conditions arise from the prerequi-

site that no supercurrent can exit the sample at its outer boundaries. Furthermore, we

assume a weak Josephson coupling, meaning that the shielding currents in the elec-

trodes are far larger than the Josephson currents between the electrodes, which we

approximate as Jx ( d
2 , y) = 0. Therefore we can write:

JJJ · n̂̂n̂nR = 0 (3.4)

Where n̂̂n̂nR is the unit vector, normal to the outer edges of the right electrode. Combined

with the second Ginzburg-Landau equation, this leads to a set of Neumann boundary

conditions:

(∇∇∇γ) · n̂̂n̂nR =−2π

Φ0
AAA · n̂̂n̂nR (3.5)

Which is sufficient to solve for γ(x, y). Next, Eq. 2.28 allows us to find the gauge-

invariant phase difference over the junctionϕ(y). Note that we have conveniently cho-

sen Ay = 0. We then find:
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2µ0λ
2
L

∫ y

0
Jy,R

(
d

2
, y ′

)
dy ′ = 2

∫ y

0

dγ

dy ′

(
d

2
, y ′

)
dy ′ = 2γ

(
d

2
, y

)
(3.6)

Therefore, ϕ(y) is given by the simple expression:

ϕ(y) =ϕ(0)+ 2πdB

Φ0
y +2γ

(
d

2
, y

)
(3.7)

Finally, Ic(B) is found by following the discussion in Chapter 2:

Ic(B)

Ic(0)
= 1

W

∣∣∣∣∫ W /2

−W /2
cos

(
2πdB

Φ0
y +2γ

(
d

2
, y

))
dy

∣∣∣∣ (3.8)

We see that finding Ic(B) becomes equal to a boundary condition problem of solving

the Laplace equation in the geometry of the electrodes. Indeed, the solution is com-

pletely determined by the geometry of the sample and is independent of λL.

3.3. COMPARING DIFFERENT GEOMETRIES

As it is not trivial to find a general analytical solution to the boundary problem of Eq.

3.3 for the ellipsoid and rhomboid geometries, we solve the Laplace equation numer-

ically using COMSOL Multiphysics 5.4. We define the right electrode geometry in 2D,

divided into a triangular grid, on which COMSOL carries out the calculations. Crucial

for correctly solving Eq. 3.3, is a grid size that is small enough to capture small changes

Table 3.1: The Neumann boundary conditions for each edge section, listed by the numbering used in Figure
3.1.
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in γ and, on the edges, n̂̂n̂nR. We found a maximum element size (i.e., the grid edge size)

of 0.01ln(1+L/W ) nanometer to be a good compromise between computation time

and precision. Using trigonometry we evaluate AAA · n̂̂n̂nR for each geometry and list the

corresponding boundary conditions in Table 3.1 (here the numbering corresponds to

the numbers in Figure 3.1).

3.3.1. SIMULATION RESULTS

Clem showed that the analytical solution for the rectangular geometry is an infinite

series of sines and hyperbolic tangents. For the rectangle, this leads to the maximum

in γ
(

d
2 , y

)
to occur at W /2, which can be approximated as:

γ

(
d

2
,

W

2

)
= 7 ζ(3)

π2

BW 2

Φ0
tanh

(
π3

28 ζ(3)

L

W

)
(3.9)

Here ζ is the Riemann zeta function. Now we generalize this approximation to include

the other geometries. We find that the simulated γ
(

d
2 , y

)
universally follows:

γ

(
d

2
, y

)
= 7 ζ(3)

π2

BW 2

Φ0
tanh

(
π3

28 ζ(3)

A

W 2

)
f
( y

W

)
(3.10)

Where f
( y

W

)
is a dimensionless function defined by the specific geometry and A is the

total surface area of the electrodes. Note that we have substituted L
W in the argument

of the hyperbolic tangent for A
W 2 ; the reason for this choice will become apparent be-

low when discussing the period of the Ic(B)-pattern. Figure 3.2a shows the calculated

γ(x, y) for a disk geometry (i.e., an ellipse where L = W ), normalized to the applied

magnetic field and width of the junction γΦ0/BW 2. We plot f
( y

W

)
for this disk in Fig-

ure 3.2b. Since γ(y) (and therefore ϕ(y) as well) scale linearly with the magnetic field,

we can evaluate the integral of Eq. 3.8 numerically for different values of B . The re-

sulting interference pattern (Figure 3.2c) resembles a Fraunhofer pattern at first sight.

However, the peak height decreases less strongly than 1/B , and the width of the mid-

dle lobe is not twice the width of the side lobes. In the inset of Figure 3.2c, we plot the

width of the nth side lobe (∆Bn); the width increases and reaches an asymptotic value

for large n.

In order to compare the interference patterns of junctions of different geometry, we

define the period of the oscillations to be the width of the fifth side lobe (∆B =∆B5). In

the inset of Figure 3.2c, this is shown by the vertical reference line. The width of the fifth

side lobe is not only sufficiently close to the asymptotic value but also experimentally

accessible without the need for large magnetic fields. We now compare the periodic-

ity of the interference patterns for different geometries by plotting the dimensionless
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Figure 3.2: (a) Gauge-covariant phase simulated in the right electrode of a disk-shaped planar Josephson
junction, normalized to the applied magnetic field and width of the junction γΦ0/BW 2. The junction is
shown as a green line. This result lets us extract the gauge-covariant phase along the junction. It follows
the scaling of Eq. 3.10, and it is determined by a dimensionless function, which is plotted in (b). (c) Shows
the interference pattern calculated integration of the result in (a) using Equation 3.8 for different values of
B . The typical interference pattern looks like a Fraunhofer pattern at first sight. However, the peak height
decreases less strongly than 1/B , and the width of the side lobes is larger than half of the middle lobe, which
is 10.76 mT wide. Furthermore, the width of the nth side lobe increases and reaches an asymptotic value for
large values of n, which is evident from the inset of (c), where we plot the width of the nth side lobe. The
width of the fifth side lobe is used for comparisons between simulations and experiments.

value ∆BW 2/Φ0 as a function of the aspect ratio L/W in Figure 3.3a on a log-log scale.

First, we find the results obtained on the rectangular junction to match the analytical

results obtained by Clem[7]. Furthermore, the periodicity of the pattern increases as

the sample dimensions are diminished. In a laterally smaller sample, the screening

currents are more confined to the junction, and therefore the effective length Leff is

smaller, yielding a larger ∆B . Finally, we evaluated the width of the junction (d) to be

irrelevant in determining ∆B . Specifically, its contribution to the period is in the µT

range for realistic sizes of d . The consequence is that ∆B is determined by the maxi-

mum of γ, i.e., γ( d
2 , W

2 ).
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Figure 3.3: dimensionless measure of the period ∆B (the width of the fifth side lobe) of the calculated in-
terference pattern Ic(B) for the three geometries. In (a) we plot this value on log-log scale versus the aspect
ratio L/W , in (b) it is plotted versus the total electrode area A, scaled by the width of the film squared. Figure
(b) reveals two limits for ∆B for L ≫ W and L ≪ W . The first corresponds to the limit of an infinite super-
conducting strip∆B = 1.842Φ0/W 2, whereas in the latter we find∆B = 2Φ0/A. Contrary to∆B , Ic(B) itself is
not geometry independent in this limit.

∆B reaches asymptotic values for the limits L ≫W and L ≪W for all three geometries.

The value of ∆B becomes geometry independent in these limits, as revealed by rescal-

ing the results from Figure 3.3a to a A
W 2 dependence, displayed in Figure 3.3b. In the

first limit, L ≫W , all three geometries become an infinite superconducting strip. Here

we find ∆B = 1.842Φ0/W 2, which matches literature[6, 7]. In this limit, we find γ
(

d
2 , y

)
to follow:

γ

(
d

2
, y

)
= 7 ζ(3)

π2

BW 2

Φ0
fstrip

( y

W

)
= π

2

1

1.842

BW 2

Φ0
fstrip

( y

W

)
(3.11)

Where fstrip
( y

W

)
is a dimensionless function running from -1 to 1, plotted in Figure

3.4a. In the other limit, L ≪W , Eq. 3.10 reduces to:

γ

(
d

2
, y

)
= πAB

4Φ0
f
( y

W

)
= π

2

AB

2Φ0
f
( y

W

)
(3.12)

Figure 3.4b shows f
( y

W

)
in the limit L ≪ W , for all three geometries. Since the max-

imum of f
( y

W

)
becomes independent of the underlying geometry and equal to unity,

we find a geometry independent period, where ∆B = 2Φ0/A. We can generalize this

concept to find a general expression for ∆B :

∆B = π

2

1

max(γ/B)
= π

2

B

γ( d
2 , W

2 )
(3.13)
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Figure 3.4: dimensionless scaling functions f
(

y
W

)
from Eq. 3.10, for the limit L ≫ W in (a) and L ≪ W in

(b). The maximum of these functions is located at y = |W /2| and equals unity. Therefore, ∆B (large n limit of

the nth side lobe of Ic(B)) is universal for these limits. However, for the limit L ≪W , f
(

y
W

)
is not geometry

independent, which means Ic(B) itself is not geometry independent in this limit.

Note that max( f
( y

W

)
) ≈ 1 for all ratios L/W , and thus Eq. 3.13 can serve as a good

approximation for ∆B . Therefore, we justify the relation of Eq. 3.10 as it demonstrates

the emerging universal limits where ∆B = 2Φ0/A and ∆B = 1.842Φ0/W 2, as well as

provides a good approximation of ∆B between the limiting cases.

Although ∆B is geometry independent in the limit L ≪ W , Ic(B) itself is not univer-

sal in this limit. This is caused by the fact that f
( y

W

)
differs between geometries for

y ̸= |W /2|. For the rectangular geometry, for example, this function is linear in y :

f
( y

W

)= 2y
W . Therefore, we retrieve the Fraunhofer pattern, where Leff = L/2+d . The ef-

fective length equals the length of a single superconducting electrode plus the junction

length. This can be understood by considering that the screening currents trace loops

in the electrodes, that reduce to two parallel and opposite current tracks, when L ≪W .

The tracks that contribute to Jy ( d
2 , y) effectively cover half of each electrode, yielding

Leff = L/4+L/4+d . γ
(

d
2 , y

)
in the rhomboid geometry is radically different; it is well

approximated by a sine function: f
( y

W

) = sin
(πy

W

)
. This leads to an interference pat-

tern that is far closer to the pattern shown in Figure 3.2c, and not a Fraunhofer pattern.

In conclusion: the shape and periodicity of the Ic(B)-pattern for low magnetic fields is

independent of ∆Bn in the limit of large n, which is universal for L ≪W .
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3.3.2. COMPARISON TO EXPERIMENTS

In order to verify the dependence on the geometry, we have fabricated five ellipse-

shaped planar S−N−S junctions for different ratios of L/W . Besides, we made a

rectangular-shaped junction with dimensions well in the L ≫W limit.

First, a four-probe contact geometry is patterned on Si substrates using electron-beam

lithography. Next, an Ag (20 nm), MoGe (55 nm) bilayer is deposited by sputter depo-

sition. Next, we use Focused Ion beam (FIB) milling to structure elliptical devices in

the bilayer. By applying an ultra-low beam current of 1.5 pA, the weak link is formed

by a line cut in the MoGe layer at the center of the device. This completely removes

the superconductor on top but leaves a normal metal connection. The resulting trench

Figure 3.5: Two S−N−S junction samples with a circular and ellipsoid geometry, produced from an Ag/MoGe
bilayer and their corresponding Ic(B)-patterns. (a) A false colored scanning electron micrograph of a disk-
shaped sample, viewed under an angle. The white arrow indicates the junction. Note the notches on the side
of the sample due to an increased milling rate at the edges of the disk. The scale bar equals 500 nm. The
corresponding Ic(B), displayed in (b), is a Fraunhofer-like pattern. As expected, the peak height of the side
lobes is decreasing less rapidly than 1/B . Contrary to the calculated pattern in Figure 3.2c, the middle peak
is twice as wide as the neighboring ones. (c) depicts a top-view false colored scanning electron micrograph
of an ellipse-shaped junction. Again we indicate the notches with white arrows; the scale bar represents
1 µm. In (d), we plot the corresponding interference pattern, which is used to extract the periodicity of the
oscillations.
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Figure 3.6: Calculated periodicity ∆B of the fifth lobe of the interference pattern Ic(B) obtained for the
ellipse-shaped samples, compared to experimentally acquired values. We plot the dimensionless measure
∆BW 2

Φ0
versus the aspect ratio L/W . The blue star indicates the periodicity of the cobalt disk junctions dis-

cussed in Chapter 4 and the green star represents the results obtained on a bar shaped sample. Although we
can well predicted the L/W -dependence, we find a constant offset between the experimental values and the
simulations. This can be explained by the notches visible in Figure 3.5a and 3.5c, which make the junction
width shorter than the width of the electrodes (W ).

separates the MoGe electrodes by a roughly 20 nm weak link, allowing Josephson cou-

pling in this S−N−S system. Figures 3.5a and 3.5c show false colored scanning electron

micrographs of two of such devices, for L = W and L = 4W respectively. We follow the

same fabrication procedure for the S−F−S devices presented in Chapters 4 and 5.

Two corresponding interference patterns obtained on the samples in 3.5a and 3.5c are

shown in Figure 3.5b and 3.5d. Clearly, the period of the interference patterns scales

with L/W . However, we find that the middle peak is twice the width of the neighboring

ones and the amplitude of the side lobes of the Ic(B)-pattern feature a similar width,

instead of the asymptotic behavior predicted by our theory (see Figure 3.2c). This can

be explained by the fact that l ≈ 100 nm (Eq. 3.2; based on λ = 535 nm[9]), which is

small with respect to W . Our samples are therefore not in the narrow junction limit

and allow Josephson vortices to stabilize in the junction. The width of the middle lobe

can therefore not be predicted by our theory. However, Boris et al. have shown that

∆Bn for large n still follows the predictions of non-local electrodynamics[4]. Therefore,

we can still compare the measured ∆B to our theoretical model.

To compare the period of the Ic(B)-pattern to our theory, we extract the width of the

fifth lobe of the interference pattern for all measured samples and plot it along with the

calculated values in Figure 3.6a. By star symbols, we also mark the periodicity of the os-
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cillations of the Co-based S−F−S junctions discussed in Chapter 4 and the periodicity

of the bar-shaped sample. Although there is a constant offset between the measured

periodicity and the calculated values, the overall trend is well predicted.

This constant offset can be explained by a trivial side effect of the FIB structuring

method. During FIB processing, removed material is redeposited elsewhere on the

sample. Even though redeposition does not affect the devices, it leads to a dependence

of the milling rate on the geometry. A more exposed part of the sample, i.e., the edges of

the device, will mill faster than in the bulk of the material. Consequently, notches de-

velop on the side of the device when milling the trench. These notches make the width

of the weak link slightly smaller than the width of the electrodes, which can result in a

constant offset between the simulations and experiments. A method of accounting for

the influence of the notches is modifying the Fourier transform for application to thin

film planar junctions, which I will discuss below.

However, there is also an inconsistency between our experimental data and the theory.

We cannot explain why the rectangular-shaped junction exhibits an ∆BW 2/Φ0 that is

larger than our ellipses with high L/W -ratios. In fact, in the limit of L ≫W , we expect a

universal limit that is independent of the size of the notches (see for example references

[10] and [11]). At the moment this is unexplained.

3.4. CONSEQUENCES FOR THE FOURIER ANALYSIS

In Chapter 2 it became clear that Ic(B) is related to the critical current distribution in

the junction, by Fourier transform. For macroscopic junctions, where the screening

currents are Meissner-like, we have evaluated ϕB (y) = 2πLeffB
Φ0

y . For the mesoscopic

devices discussed here, this quantity needs to be replaced by Eq. 3.7, yielding:

Ic(B) =
∣∣∣∣∫ ∞

−∞
Jc(y)e

i 2γ
(

d
2 ,y

)
dy

∣∣∣∣= ∣∣∣∣∫ ∞

−∞
Jc(y)e

i 2π
(

7 ζ(3)
π3

BW 2
Φ0

tanh
(

π4

112 ζ(3)

)
fdisk

( y
W

))
dy

∣∣∣∣ (3.14)

Where we omitted the contribution from the weak link, as its magnitude is negligible.

In the second part we specified γ
(

d
2 , y

)
for a disk-shaped junction. Now we can define

a new pair of conjugate variables: the length ỹ =W fdisk
( y

W

)
and the reduced field β̃=

7 ζ(3)
π3

BW
Φ0

tanh
(

π4

112 ζ(3)

)
, to arrive at:

Ic(β̃) =
∣∣∣∣∫ ∞

−∞
J̃c(ỹ)e i 2πβ̃ỹ dỹ

∣∣∣∣= |Ic| (3.15)
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Where we made a change of coordinates and J̃c is defined as:

J̃c

(
ỹ

W

)
= dg

dỹ

(
ỹ

W

)
Jc

(
W g

(
ỹ

W

))
(3.16)

Here the function g
(

ỹ
W

)
is the inverse of f

( y
W

)
, or g

(
ỹ

W

)
= f −1

( y
W

)
, dropping the sub-

script, as a similar procedure can be done for the general scaling relation of Eq. 3.10.

We conclude that the Fourier transform is still valid, albeit including a rescaling of the

axes to retrieve the actual current density distribution Jc(y). In the next section I will

detail how the Fourier analysis is carried out technically for a disk-shaped junction.

3.4.1. TECHNICAL DETAILS OF THE FOURIER ANALYSIS

The transform Ic is complex and therefore its real and imaginary parts encode for the

even and odd components in Ic (β) respectively. Since the interference patterns dis-

cussed in this thesis are relatively symmetric (i.e., an even function of the applied mag-

netic field), we can assume Ic to be dominantly real:

Ic,even(β̃) =
∫ ∞

−∞
J̃c,even(ỹ)cos

(
β̃ỹ

)
dỹ (3.17)

Therefore the real part of Ic is an oscillating function that flips sign at each zero cross-

ing. The imaginary part is expected to be significantly smaller than the real part, except

at the zero-crossing where the even part vanishes. Therefore, the imaginary part of Ic

(Ic,odd(β̃)) can be approximated by the critical current at the minima in the experi-

mental interference pattern. Also Ic,odd(β̃) is flipping its sign between each minimum

and between the minima we approximate Ic,odd(β̃) by linear interpolation. The inverse

transform yielding J̃c(ỹ) from Ic(β̃) is then given by:

J̃c(ỹ) =
∣∣∣∣∫ ∞

−∞
(
Ic,even(β̃)+ i Ic,odd(β̃)

)
e−i β̃ỹ dβ̃

∣∣∣∣= ∣∣∣∣∫ ∞

−∞
Ic e−i β̃ỹ dβ̃

∣∣∣∣ (3.18)

As discussed in the previous chapter, we find Ic from the data by a defining a voltage

threshold; this is depicted in Figure 3.7a for a disk-shaped junction. We vertically trans-

late the extracted Ic values such that the global minimum equals zero current. This step

in the data analysis prevents the overestimation of Ic,odd(β̃), which would result in an

overly anti-symmetric current density distribution. Ic,even(β̃) is found by multiplying

the translated Ic by a flipping function that changes the sign of each subsequent lobe

of the interference pattern, as can be observed in Figure 3.7b.
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Figure 3.7: Overview of the subsequent steps of the Fourier transform analysis. (a) Extracted critical current
on the basis of a voltage cut-off. In order to not overestimate the imaginary part of the complex critical cur-
rent, the global minimum of the interference pattern is shifted to zero current. (b) and (c) respectively show
the real and imaginary part of the complex critical current extracted from the interference pattern depicted
in (a). Here the subsequent lobes are flipped to obtain the real part, and the minima are interpolated to ob-
tain the imaginary part. (d) The resulting critical current density distribution, calculated using the Fourier

transform described in Eq. 3.18. The result of (d) is scaled using fdisk

(
y

W

)
, to retrieve the actual Jc(y), which

is plotted in (e). Finally, in (f), we carried out a regular Fourier analysis using a linear approximation of

fdisk

(
y

W

)
, circumventing the need for rescaling the axes. In (d), (e), and (f), we indicate the boundaries of

the electrodes (−W /2 and W /2) by solid reference lines and the boundaries of the actual weak link (W mi-
nus the notches) by dotted reference lines. We find a uniform current density distribution, as expected for a
single junction. The influence of the notches can be seen since no current flows outside the actual width of
the weak link.
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Here we also rescale the field axis to β̃. We follow the above procedure for finding

Ic,odd(β̃), which is depicted in Figure 3.7c. The corresponding critical current den-

sity distribution is found by a numerical Fourier transform carried out in Python us-

ing the Numpy package, yielding the distribution J̃c(ỹ), depicted in Figure 3.7d. Finally

both axes are rescaled using fdisk
( y

W

)
to retrieve Jc(y), which is shown in Figure 3.7e.1

Here we indicate −W /2 and W /2 by solid reference lines and the boundaries of the

actual weak link by dotted reference lines. We observe a constant distribution of criti-

cal current throughout the junction, which is expected for a uniform S−N−S junction.

Furthermore, the current is confined to the actual junction, not the full width of the

superconducting film. This explains the constant offset in Figure 3.6a.

Note that the spatial resolution of current density distribution is determined by the

field range in the measured Ic(B)-pattern, which is limited by the possible discontinu-

ities, typically found in junctions with a ferromagnetic weak link. This sets a bound to

the precision in determining the width of possible current channels. Furthermore, due

to rescaling J̃c(ỹ) to Jc(y), the binning becomes non-uniform, yielding a lower resolu-

tion near the edges of the device. As alternative, we carry out the Fourier transform

using a linear approximation of fdisk
( y

W

)
, depicted in Figure 3.7f. This mitigates the

need for rescaling the axes and improves point density on the position-axis. Obviously,

the linear approximation of fdisk
( y

W

)
breaks down near the edges, yielding less precise

results.

3.5. CONCLUSION

In conclusion, this chapter analyzed the periodicity ∆B of the interference pattern

Ic(B) for thin film planar S−N−S Josephson junctions, both theoretically and exper-

imentally. Specifically, we examine junctions separating rectangular, ellipsoid, and

rhomboid films of width W and length L. By mapping the second Ginzburg-Landau

equation to the two-dimensional Laplace equation, we solve Ic(B) for different ratios

of L/W . We show that∆B has two universal limits for L ≫W and L ≪W , independent

of the sample geometry. The first corresponds to an infinite superconducting strip, and

the latter is caused by an emerging universal dependence of the phase difference on the

junction electrode surface area. By fabricating elliptically-shaped S−N−S junctions,

having different ratios for L/W , we experimentally verify the geometry dependence of

∆B . Lastly, we adapt the Fourier relation between Ic(B) and the critical current density

distribution to suit planar junctions in the thin film limit. This proves to be vital in cor-

rectly predicting the location of current channels in the disk- and elliptically-shaped

S−F−S junctions discussed in the next part of this thesis.

1For illustrative purposes, I have chosen to absorb part of the prefactor in ỹ , as this this yields a larger con-
trast between Figure 3.7d and Figure 3.7e. Naturally, any choice of ỹ and β̃ is allowed, as long as it is consis-
tent with γ.
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