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JOSEPHSON PHYSICS IN THIN FILM
PLANAR JUNCTIONS





2
SUPERCONDUCTIVITY AND

JOSEPHSON PHYSICS

Since all chapters in this thesis, except one, concern superconductivity and Josephson
junctions, these concepts need some introduction. In this chapter, I will describe that a
superconductor is characterized by a transition from fermionic to bosonic behavior of
the charge carriers, which leads to a macroscopic quantum state that drives currents by
the quantum mechanical phase, expels magnetic fields from the bulk, and exhibits zero
electrical resistance. I will discuss the allowed symmetries of the paired electrons and
conclude by introducing Josephson junctions and their response to a magnetic field. A
part of this chapter is based on the excellent course material on applied superconductiv-
ity by Rudolf Gross and Achim Marx[1].
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14 2. SUPERCONDUCTIVITY AND JOSEPHSON PHYSICS

2.1. A MACROSCOPIC QUANTUM PHENOMENON

In a normal metal, charge is carried by electrons. These elementary particles are

fermions and thus cannot occupy the same quantum state. Rather, they fill up k-space;

therefore, finding a wavefunction that describes such a fermionic system is far from

trivial. Including electron-electron interactions, this typically involves solving for 1023

degrees of freedom. The quantum mechanical description of a solid radically changes

once it enters the superconducting phase. In a superconductor, the electrons experi-

ence an attractive force, below a critical temperature (Tc), which introduces pairwise

phase-coherent interactions between them. These pairs are called Cooper pairs and

can be regarded as composite particles that are bosonic of nature, which allows them

to condense into a single ground state, forming a Bose-Einstein condensate. Since the

distance over which electrons pair up is typically much larger than the average distance

between electrons, this condensate can be regarded as a fluid, where we think of a den-

sity of Cooper pairs instead of individual particles. In this case, the condensate can be

captured by a rather simple wavefunctionΨ that describes the collection of all Cooper

pairs on the macroscopic scale:

Ψ(rrr , t ) =
√

ns(rrr , t )e iγ(rrr ,t ) (2.1)

Here ns is the density of Cooper pairs, which is equal to the expectation value of Ψ

(|Ψ|2 = ns), i is the imaginary unit, and γ is the phase of the wavefunction. By combin-

ing the Schrödinger equation and Lorentz’s law, it can be shown that a current density

of charged particles JJJ , driven by an electromagnetic field, equals1:

JJJ = q Re

(
Ψ∗ P̂

m
Ψ

)
= q Re

(
Ψ∗

( ħ
mi

∇∇∇− q

m
AAA

)
Ψ

)
(2.2)

Here P̂ is the momentum operator, q is the charge of the particle, m its mass, ħ the

reduced Planck constant, AAA is the vector potential and Re indicates the real part the

argument. Filling in the wavefunction of Eq. 2.1 yields (omitting the space and time

dependencies):

JJJ =−nsq2

m

(
AAA− ħ

q
∇∇∇γ

)
(2.3)

Realizing that for Cooper pairs q =−2e (twice the electron charge e), and definingΦ0 =
h
2e , the magnetic flux quantum, we can write

1This is the quantum mechanical analogue of JJJ = qvvvns.
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JJJ =− Φ0

2πµ0λ
2
L

(
2π

Φ0
AAA+∇γ

)
(2.4)

Here λL is a characteristic length scale of a superconductor, called the London pene-

tration depth. Its meaning will become clear under the application of magnetic field,

discussed below. It is defined as:

λL =
√

m

4µ0nse2 (2.5)

Eq. 2.4 is called the second Ginzburg-Landau eqation and is one of the central results

of Ginzburg-Landau theory describing the phenomenology of superconductivity. In-

terestingly, electromagnetic fields couple to supercurrents by a linear combination of

the vector potential and the phase of the wave function. Since J is a gauge-invariant

property, and both AAA and γ are not, we require the quantity between brackets in Eq. 2.4

to be gauge-invariant. Therefore Eq. 2.4 is often written as:

JJJ = Φ0

2πµ0λ
2
L

θ (2.6)

Where θ is the called the gauge-invariant phase gradient. Clearly, the macroscopic su-

percurrents are driven by a microscopic quantum mechanical quantity. Therefore, su-

perconductivity is a direct manifestation of quantum effects on the macro scale.

2.2. THE MEISSNER EFFECT AND ITS CONSEQUENCES

In this section, I will describe two more macroscopic properties that result from the

quantum nature of the superconducting phase: the zero-resistance state and the

Meissner effect. In order to do so, first note that we can combine two of the Maxwell

equations (∇∇∇·BBB = 0 and ∇∇∇×BBB =µ0JJJ ) with some vector calculus to find:

∇∇∇2BBB =∇∇∇(∇∇∇·BBB)−∇∇∇× (∇∇∇×BBB) =−∇∇∇× (µ0JJJ ) (2.7)

By virtue of Eq. 2.4, we can obtain the curl of the quantity µ0JJJ in a superconductor,

noting that the curl of a gradient is zero:
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Figure 2.1: Schematic representation of the Meissner effect for a superconductor covering x > 0, under an
applied field B in the z-direction. Due to the Meissner effect, screening currents run along the boundary of
the superconductor, i.e., the y ,z-plane. These decay exponentially, giving rise to an exponential decay of the
magnetic field in the bulk of the superconductor.

∇∇∇× (µ0JJJ ) =−∇∇∇×AAA

λ2
L

=− BBB

λ2
L

(2.8)

This Equation is known as the second London equation. Combined with the identity of

Eq. 2.7, it describes the Meissner effect:

∇∇∇2BBB = BBB

λ2
L

(2.9)

Clearly, a magnetic field in a superconductor decays exponentially over a length scale

λL, which can be seen if we solve the differential Equation 2.9 for a superconductor

covering the space x > 0, subject to a field B in the z-direction (see Figure 2.1):
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Bz (x, y, z) = Be
− x
λL (2.10)

The origin of the exponential decay is a supercurrent that runs along the edge of the

superconductor and screens the magnetic field. It is aptly called screening or Meissner

current and is given by ∇∇∇×BBB =µ0JJJ :

Jy (x, y, z) = B

µ0λL
e
− x
λL (2.11)

These screening currents play an important role in the discussion on Josephson junc-

tions. Since Eq. 2.8 is known as the second London equation, this naturally leads to

the question of what the first London equation is. The first London equation is derived

using a combination between Lorentz’s law and the second London equation; it reads

in its linearized form2:

dJJJ

dt
= EEE

µ0λ
2
L

(2.12)

From this Equation, we see that a superconductor can host a stationary supercurrent

without the application of an electric field, meaning a zero-resistance state. Interest-

ingly, the first London equation is derived using the second one. This implies that

the Meissner effect is a more fundamental property of the condensate than its lack

of electrical resistance. The reason why the latter coined the name of the phase can

be traced to Heike Kamerlingh Onnes’ discovery proceeding that of Walter Meissner.

To conclude, the pairing of electrons in Cooper pairs and their entailing change from

fermionic to bozonic character directly leads to the expulsion of magnetic fields from

the bulk of the solid and the appearance of a zero-resistance state.

2.3. PAIRING SYMMETRY

In section 2.1, I did not discuss the origin of the pairing interaction between the elec-

trons. The microscopic mechanism behind this pairing differs between classes of su-

perconductors and is still the subject of ongoing research, although it is not relevant for

the phenomenological description of superconductivity that I present here. However,

2Here I have omitted a second term which captures the kinetic energy of the electrons composing the Cooper

pairs
µ0λ

2
Le

m ∇∇∇JJJ 2. This is valid if we assume that the magnetic contribution to Lorentz’s law is much smaller
than the electric one.



18 2. SUPERCONDUCTIVITY AND JOSEPHSON PHYSICS

the symmetry of the wavefunction describing a single Cooper pair will be pivotal for

explaining its properties in later chapters. Therefore, I will briefly review this so-called

pairing symmetry.

Although the Cooper pair is a bosonic composite particle, its fundamental constituents

are fermionic and, therefore, still obey the Pauli exclusion principle. This implies that

the wave function describing the pair must be anti-symmetric under the permutation

of the two electrons that make up the Cooper pair, which can best be seen by regarding

the anomalous Green’s function describing the Cooper pair[2]. It is given by the time-

ordered expectation value of two electron annihilation operators3:

fαβ,ab(rrr 1,rrr 2, t1, t2) = 〈T âα,a(rrr 1, t1)âβ,b(rrr 2, t2)〉 (2.13)

The Greek indices here indicate the spin state, the alphabetic indices represent the

electron band, rrr is the position coordinate, and t is the time coordinate of each electron

(labeled 1 and 2). Therefore, âα,a(rrr , t ) removes an electron with spin α from electron

band with label a, which is located at position rrr at time t . Creating a Cooper pair

requires two electrons, thus f must be of the form ââ. The Pauli exclusion principle

states that the electrons cannot be in the same quantum state at equal times (t1 = t2 =
t ). Therefore, the Pauli exclusion principle is expressed as:

fαβ,ab(rrr 1,rrr 2, t , t ) =− fβα,ba(rrr 2,rrr 1, t , t ) (2.14)

Anti-symmetry can be expressed by permutation of any of the individual components

(spin, spatial coordinate, time, and the electron band of the individual electrons. The

latter results in interband or intraband pairing). However, only the total wave function

of the pair is required to be anti-symmetric, which lets us classify the pairs on the ba-

sis of their underlying symmetries. Figure 2.2 depicts a classification scheme for the

allowed pairing states.[3] Below, I will discuss the spin, relative position, and time sym-

metries in more detail.

The Fourier dual of the relative position between the electrons is their angular mo-

mentum. As in the case of electrons orbiting a nucleus, the angular momentum of the

Cooper pair is described by a quantum number L. Each of its integer values is assigned

a letter, i.e., s, p, d, f etc. and is subsequently called L-wave (e.g., s-wave). This notation

is borrowed from molecular physics and was chosen due to the similarity between the

shape of the superconducting gap structure and atomic orbitals. s-wave and d-wave

pairs are symmetric and p-wave and f -wave are anti-symmetric.

3Creation and annihilation operators are part of the second quantization formulation of quantum mechan-
ics, used in describing BCS theory.
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Figure 2.2: Overview of allowed pairing symmetries based on the Pauli exclusion principle. The wavefunc-
tion of the Cooper pair is required to be anti-symmetric under the permutation operation, which can result
from either the spin, time, or momentum component of the wavefunction. All pairing symmetries can be
classified as either spin singlet (S=0) or spin triplet (S=1). The schematics show the resulting allowed pair-
ing symmetries in the last two columns. Here the letter denotes the angular momentum quantum number
(Fourier dual of relative position), and the oscillating lines indicate an anti-symmetric time component of
the wavefunction. Note that anti-symmetry can also result from interband pairing, which is not shown here.
Image adapted from [3].

The spin part of the wavefunction is described by a quantum number S, allowing for

two different possibilities: either S = 0, which is singlet pairing, or S = 1, which is called

triplet pairing. In a singlet pair, the electrons have opposite spin and therefore this is

an anti-symmetric state, in Dirac notation: 1p
2

(|↑↓〉− |↓↑〉). The triplet state is its sym-

metric counterpart, where the electrons are paired with equal spin, i.e., S = 1, which

is divided in three options. Either the electrons have a finite spin projection along the

quantization axis(|↑↑〉 and |↓↓〉) or they have zero spin projection: 1p
2

(|↑↓〉+ |↓↑〉). Con-

ventional superconductors are of singlet s-wave nature. The antipathy to magnetic

fields, described in section 2.2, is clearly reflected in the opposite spin of the singlet

pairs, since magnetic fields tend to align the spins in a solid. Generally, materials with

a different pairing symmetry as classified as unconventional.

The concept of time asymmetry is less easily grasped at first sight. It is best understood

mathematically. Therefore, we return to the anomalous Green’s function. The class

of superconductors characterized by an asymmetry in time, also called odd-frequency

pairing, are classified by acquiring a minus sign under exchange of time variables:

fαβ,ab(rrr 1,rrr 2, t1, t2) =− fαβ,ab(rrr 1,rrr 2, t2, t1) (2.15)

This means that naturally f = 0, when t1 = t2. Therefore, strictly spoken odd-frequency

superconductivity is not a consequence of the Pauli exclusion principle. Instead, it
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arises due to a constraint on the relative time coordinates of the anomalous Green’s

function. Yet it does allow for an electron pairing that is symmetric in momentum,

spin and electron band that still meets the Pauli exclusion principle.

Pairing symmetry is an important topic in researching superconductivity, which is re-

flected in this thesis. For example, the pairing symmetry of the unconventional su-

perconductor Sr2RuO4, which is the topic in Chapter 7, was thought to be equal-spin

triplet p-wave for over 20 years. Only in 2020 this hypothesis was found to be unlikely,

and currently, the pairing symmetry of Sr2RuO4 is a hotly debated topic: the propos-

als range from ‘shadow-triplet’ interband s+id-wave pairing to accidental degeneracies

between d- and g-wave pairing[4, 5]. Another manifestation of triplet pairing will be

encountered in Chapters 3 and 4, which discuss the proximity effect in a strong fer-

romagnet. Such superconducting correlations require spin-triplet pairing with finite

spin (|↑↑〉 or |↓↓〉), exhibiting an odd time component to fulfill the anti-symmetry re-

quirement. Before discussing the proximity effect in ferromagnets, I will introduce the

superconducting proximity effect in normal metals in the next section.

2.4. THE PROXIMITY EFFECT AND JOSEPHSON JUNCTIONS

In section 2.1 omitted the space dependence of the superconducting condensate den-

sity, but naturally we can ask what governs this space dependence. For this we turn to

the first Ginzburg-Landau equation, which reads in the absence of magnetic fields:

αψ+β|ψ|2ψ+ ħ2

2m
∇∇∇2ψ= 0 (2.16)

This equation is derived from minimizing the free energy associated with an order pa-

rameter (ψ) near a phase transition. The solution of Eq. 2.16 is expressed in exponen-

tial functions that contain a characteristic length scale ξ, called the coherence length,

which is given in Ginzburg-Laundau theory as4:

ξ=
√

ħ
2m|α| (2.17)

This length scale can be interpreted as the distance over which the density of the su-

perconducting condensate can change its magnitude. Since the coherence length is

finite, the magnitude of the condensate cannot fall to zero over an infinitesimally small

4In BCS theory, which I do not discuss in this thesis, the coherence length is defined as well. It signifies the
typical length scale corresponding to the pairing interactions and is, therefore, sometimes explained as the
average size of the Cooper pair.
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Figure 2.3: Schematic drawing of a Josephson junction: two superconducting leads (blue) separated by thin
barrier layer of size d (pink). In dark red the amplitude of the superconducting wavefunctions is shown. As
there is overlap between them, there can be a supercurrent flowing through the junction. A uniform mag-
netic field (BBB = B ẑ) is applied to the junction, which results in an interference pattern observed in the critical
current Ic(B) (see section 2.6). This is calculated by computing a contour integral of the gauge covariant-
phase gradient over the red dotted contour.

distance, like the interface between a superconductor and a non-superconducting ma-

terial. Therefore, superconducting effects ‘leak’ into the material adjacent to the super-

conductor. This is known as the superconducting proximity effect.

The fact that a normal metal can show superconducting effects through the proximity

effect raises the question whether a supercurrent can pass from one superconduct-

ing electrode to another if separated by a proximized material. The answer is yes, but

only if the proximized material is thin enough to let the superconducting wave func-

tions overlap. A sketch of such a geometry is given in Figure 2.3: two superconducting

electrodes separated by a so-called weak link or barrier. This fundamental supercon-

ducting element is called a Josephson junction and forms the centerpiece of research

on superconductors and their technological applications. Generally, the nature of the

weak link determines the transport through the junction and can be insulating (I), nor-

mal metal (N), or ferromagnetic (F). A normal metal junction is denoted as an S−N−S

junction. Chapter 4 will discuss S−F−S junctions; below, I will describe what drives the

current through a Josephson junction.

If we assume that the coupling between the two electrodes is weak, the Cooper pair

density of the electrodes remains largely unaffected. Instead, supercurrents in the

weak link are driven by the gauge-invariant phase gradient, as is the case in the bulk of

the superconductor. Specifically, when comparing the phase difference between two

sides of the junction, we define the gauge-invariant phase difference, which is given by

(omitting any z-dependence):
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ϕ(y) =
∫ d/2

−d/2
θdl = γ(−d

2
, y)−γ(

d

2
, y)− 2π

Φ0

∫ d/2

−d/2
Ax (x, y) dx (2.18)

Since we now know that the current through the junction is given by JJJ = JJJ (ϕ), we can

follow the arguments of Landau and Lifschitz to find a relation between the current

and the gauge-invariant phase difference, aptly called the current-phase relation[6].

From Eq. 2.1 we see that the wavefunction is 2π-periodic in the electrodes. This is

consequently transferred to the junction such that JJJ (ϕ) = JJJ (ϕ+2π). Furthermore, in the

absence of any phase difference, no currents can be running, which means: JJJ (2πn) = 0,

where n is an integer. Combined, this limits the current-phase relation to the following

set of functions:

JJJ = JJJ c sinϕ+
∞∑

m=2
JJJ c,m sin

(
mϕ

)
(2.19)

This current-phase relation is also known as the general formulation of the first Joseph-

son relation, after Brian Josephson, who derived it when studying pair-wise tunneling

in S−I−S junctions[7]. More commonly, in the case of weak coupling between the two

electrodes, we can neglect the higher harmonics, and Eq. 2.19 is reduced to:

JJJ = JJJ c sinϕ (2.20)

Here JJJ c is the maximum current density the junction can sustain, called the criti-

cal current density. Above this current, a finite voltage is measured over the junc-

tion. This manifests itself as a critical current (Ic) during the measurement of the IV -

characteristic of a junction, which is the most fundamental measurement of a Joseph-

son junction, repeated many times throughout this thesis. In such measurement, a DC

current is applied through the junction, and the voltage across the junction is recorded

(see Figure 2.4). More technical details on obtaining IV -characteristics and the set-up

used to gather the data presented in this thesis are provided in Appendix A. The re-

markably simple result of Eq. 2.20 is yet another manifestation of macroscopic currents

driven by the microscopic quantum mechanical phase, leading to junction properties

that reveal the wave-like nature of the condensate. Two of those, I will review below.
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2.5. SHAPIRO STEPS

In the previous section we found a relation between the current through a junction

and the gauge-invariant phase difference over the junction. How is this related to an

electric field applied to the junction? Electric (E)-fields can be written as a linear com-

bination between a scalar potential (φ) and a vector potential (AAA):

EEE =−dAAA

dt
−∇∇∇φ (2.21)

Also, from the time-dependent Schrödinger equation, one can show that the time evo-

lution of the gauge covariant phase follows:

−ħdγ

dt
= µ0λ

2
L

2ns
JJJ 2 +2eφ (2.22)

This can be combined with Eq. 2.18, to obtain the time evolution of the gauge invariant

phase difference:

Figure 2.4: A schematic example of an IV -characteristic of a junction. If no microwave radiation is applied
to the junction (orange curve), zero voltage is measured over the junction, as long as the current does not
exceed the critical current Ic. Irradiation with RF-radiation results in quantized voltage steps that are spaced
by ∆V = f Φ0, which are called Shapiro steps. The measurement of a IV -characteristic is the most funda-
mental measurement in this thesis and is widely used to extract the critical current of Josephson junctions.
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dϕ

dt
=− 1

ħ

(
µ0λ

2
L

2ns

(
JJJ 2(

d

2
)− JJJ 2(−d

2
)

)
+2eφ

)
− 2π

Φ0

∫ d/2

−d/2

dAx (x, y)

dt
dx (2.23)

Since the current is conserved in the junction (JJJ 2( d
2 ) = JJJ 2(−d

2 )), we can write:

dϕ

dt
= 2π

Φ0

∫ d/2

−d/2
−dφ

dx
− dAx (x, y)

dt
dx (2.24)

Here we recognize the expression from Eq. 2.21 and we arrive at the second Josephson

equation:

dϕ

dt
= 2π

Φ0

∫ d/2

−d/2
Ex dx = 2π

Φ0
V (2.25)

The consequence of this equation is that a finite voltage V over the junction, entails a

linear increase of the gauge invariant phase difference in time (ϕ= 2π
Φ0

V t ). Combining

this with the current-phase relation, yields:

JJJ = JJJ c sin
2π

Φ0
V t (2.26)

In other words, the application of a constant DC voltage yields an AC current through

the junction with a frequency of f = V
Φ0

, which translates to roughly 500 MHz per ap-

plied µV. The inverse of this effect can be encountered throughout this thesis. If a

junction is irradiated with RF-radiation while driving a DC supercurrent through the

junction, phase locking between the radiation and the supercurrents occurs. This re-

sults in a DC voltage over the junction, which appears as quantized steps in the IV -

characteristic, spaced by ∆V = f Φ0. These steps are called Shapiro steps; a schematic

example of which is shown in Figure 2.4.

The measurement of Shapiro steps serves as definitive evidence for the Josephson ef-

fect without the use of static magnetic fields that might, for example, alter the mag-

netic texture of the S−F−S Josephson junctions presented in Chapter 4 and 5. Further-

more, they are conclusive proof of the emergence of spontaneous Josephson junctions

in mesoscopic Sr2RuO4 structures, discussed in Chapter 7. Besides, the detection of

Shapiro steps enables us to examine the periodicity of the current-phase relation. If

the current-phase relation is not 2π periodic, for example, fractional Shapiro steps can

be observed when it is dominated by a higher harmonic.
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2.6. MAGNETIC INTERFERENCE IN A JOSEPHSON JUNCTION

One of the most fundamental measurements of a Josephson junction is the depen-

dence of critical current on a magnetic field applied perpendicular to the junction

(e.g., the y-direction or z-direction in Figure 2.3). Experimentally this is also known

as superconducting quantum interferometry measurements, i.e., obtaining the Ic(B)-

pattern of a junction. To calculate the expected Ic(B), define a narrow rectangular loop

of width d , with the bottom located at the origin and a height y (See the dotted contour

in Figure 2.3). We integrate ∇∇∇γ (using Eqs. 2.3 and 2.18) along this path to obtain5:

0 =
∫

C
∇∇∇γdlll =−ϕ(y)+ϕ(0)+ 2π

Φ0

∫
C

AAA dlll + 2πµ0λ
2
L

Φ0

(∫ y

0
Jy,R (

d

2
, y ′) dy ′+

∫ 0

y
Jy,L(−d

2
, y ′) dy ′

)
(2.27)

Using Stokes theorem, we can transform the integral over the vector potential into

one over the magnetic field that penetrates the integration contour, resulting in the

magnetic field flux (Φ = ydB). Furthermore, in the case of a symmetric geometry:

Jy,R ( d
2 , y ′) =−Jy,L(−d

2 , y ′). Therefore we find for ϕ(y):

ϕ(y) =ϕ(0)+ 2π

Φ0

(
ydB +2µ0λ

2
L

∫ y

0
Jy,R (

d

2
, y ′) dy ′

)
=ϕ(0)+ϕB (2.28)

We recognize two parts in ϕ(y): the first, ϕ(0) is the phase difference at the origin. This

can be thought of as the phase difference resulting due to a current or voltage bias

between the two electrodes. The second, ϕB , results from the magnetic induction to

the junction (see the inset of Figure 2.5). The current that runs along the junction might

not be trivial to compute. However, in the case of a junction between two macroscopic

superconducting leads, we have already found this quantity in the form of the Meissner

effect (Eq. 2.11). At the boundary we have Jy,R ( d
2 , y ′) = Bµ0

λL
; filling in yields:

ϕ(y) =ϕ(0)+ 2π(2λL +d)B

Φ0
y =ϕ(0)+ 2πLeffB

Φ0
y (2.29)

Where in the right-hand side we defined the effective junction length Leff = 2λL +d . We

see that ϕB scales with fields penetrating the barrier and with fields penetrating the

electrodes over a length scale λL on either side of the junction. Therefore Leff can be

considered as the length of the Josephson junction. Using the current-phase relation

5Actually
∫

C∇∇∇γdlll = 2πn, but we can set n = 0 if the current-phase relation is dominated by the first har-
monic. In that case: sin(ϕ+2πn) = sin(ϕ).
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Figure 2.5: The interference pattern of the critical current in a Josephson junction due to the application of a
field Ic(B). This result corresponds to a typical Fraunhofer interference pattern commonly observed in op-
tical diffraction patterns. The inset shows the gauge-invariant phase difference resulting from the magnetic
induction to the junction, as a function of the length parameter running along the junction.

(Eq. 2.20), we can find the current that passes through the junction as a function of

field:

I (B) =
∫

JJJ dSSS =
∫ W /2

−W /2
D Jc sin

(
ϕ(0)+ 2πLeffB

Φ0
y

)
dy (2.30)

For now we assume that the critical current density at zero field is distributed uniformly

over the junction, yielding Jc = Ic(0)
DW . Also, note thatϕ(0) is independent of y and there-

fore merely is a phase factor. Therefore, the critical current is reached if we current-bias

the junction by setting ϕ(0) =π/2, from which follows:

Ic(B)

Ic(0)
=

∣∣∣∣ 1

W

∫ W /2

−W /2
cos

(
2πLeffB

Φ0
y

)
dy

∣∣∣∣=
∣∣∣∣∣∣

sin
(
πLeffW B
Φ0

)
πLeffW B
Φ0

∣∣∣∣∣∣=
∣∣∣∣∣∣

sin
(
πΦ
Φ0

)
πΦ
Φ0

∣∣∣∣∣∣ (2.31)

Here Φ is the total flux penetrating the junction. This result is the classic Fraunhofer

pattern, obtained in an optical diffraction experiment of light waves in a single slit. I

plot this result in Figure 2.5. Here we see a clear example of the wave-like nature of

the condensate determining the macroscopic properties of the junction. As discussed

below, measuring the magnetic interference pattern of the critical current is the ideal

tool for understanding supercurrent transport in a Josephson junction.
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In the discussion so far, I assumed a uniform distribution of critical current throughout

the weak link. In their 1971 paper, Dynes and Fulton [8] relax this criterion and discuss

a relation between the shape of the SQI pattern and the supercurrent distribution in a

junction. They realized that the current distribution in the junction can be extracted

by complex inverse Fourier transform of Ic(B). For simplicity, consider a Jc that only

has a y-dependence, such that:

I (B) =
∫

JJJ dSSS =
∣∣∣∣∫ W /2

−W /2
D Jc(y)sin(ϕ(0)+ϕB ) dy

∣∣∣∣= Im

(
e iϕ(0)

∫ ∞

−∞
Jc(y)e iϕB dy

)
(2.32)

On the right-hand side, the integration bounds have been extended to infinity since

there are no supercurrents outside the sample boundaries, and therefore the integral

is zero. Besides, I dropped the D , so Jc can be considered as the critical current den-

sity per unit length. The critical current is given by the absolute value of the complex

expression. Note that this equal to setting ϕ(0) =π/2 in Eq. 2.31.

Ic(B) =
∣∣∣∣∫ ∞

−∞
Jc(y)e iϕB (B ,y) dy

∣∣∣∣= |Ic| (2.33)

From this equation a general expression for a Fourier transform can be recognized;

conceptually depicted in Figure 2.6. For a junction with macroscopic leads discussed

above, we have ϕB (B , y) = 2πLeffB
Φ0

y and therefore:

Ic(β) =
∣∣∣∣∫ ∞

−∞
Jc(y)e2πiβy dy

∣∣∣∣ (2.34)

Here we have defined the reduced field β = LeffB
Φ0

, such that the position along the

junctions y and β form conjugate variables. The Fourier relation of Eq. 2.34, inter-

estingly, gives rise to the possibility of extracting Jc(y) by inverse Fourier transform of

Ic(B). This allows for studying the edge supercurrents in, for example, topological and

semiconductor-based S−N−S junctions[9–12]. It also plays an important role in deter-

mining the rim currents in Chapter 4. In the next chapter, I will describe the technical

details of the Fourier transform and its use to analyze experimental data. In light of the

subject of this thesis, we are specifically interested in mesoscopically sized samples.

Therefore we need to adjust the theory from this chapter first accordingly, which is the

topic of the next chapter.
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Figure 2.6: Conceptual representation of the Fourier relation between the magnetic interference pattern
of the junction and the distribution of critical current density throughout said junction. For example, a
uniform Jc(y) leads to a Fraunhofer interference pattern. Practically, Ic(B) is used to examine Jc(y), which is
a powerful tool to find possible current channels in a junction, when the interference pattern deviates from
the Fraunhofer case.

APPENDICES

A. EXPERIMENTAL SET-UP AND MEASUREMENT PROCEDURE

The data presented in this thesis is acquired in an Oxford Instruments IntegraAC cryo-

stat equipped with a vector magnet, aptly called the Vectormagnet. Since it features

a vector magnet, it can apply a one Tesla magnetic field in any direction, and on top

of that, it can reach a 6 T and 2 T magnetic field along two specified directions. The

Vectormagnet is a ‘wet cryostat,’ having a dewar with liquid 4He. It cools samples by

letting in liquid 4He in the cooling chamber. The spent helium is recycled and lique-

fied by the integrated pulse tube attached to the dewar. We have two different inserts

(sample rods) for measurements: the high-T insert and the Heliox insert. The first is

a home-built insert capable of reaching a 1.5 K base temperature, which is the base-

T of the Vectormagnet sample chamber. The Heliox insert contains an inner vacuum

chamber with an integrated 3He system that is capable of reaching sub-300 mK tem-

peratures. Finally, in both inserts, we can irradiate samples with RF radiation using an

open-ended coax cable antenna placed in close proximity to the samples.

Considerable effort was put into the grounding of the Vectormagnet and its inserts.

The entire system has a single ground connection to prevent ground loops; the rest of

the physical or electrical grounds are decoupled by plastic o-rings and low-pass filters,

respectively. The computer that controls the Vectormagnet is decoupled electrically

from the measurement equipment by a purely optical data transmission system. To

further reduce the electrical noise, only the measurement wire cores are used for mea-

surements. The wire shields are always connected to the ground of the Vectormagnet.
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Independent of the measurement insert, we have both DC and AC measurement

equipment available. First, we can apply DC currents using a Keithley 6221 current

source and obtain DC voltages using a Keithley 2182A volt meter. We can also obtain

AC voltages using a Synktek MCL1-540 multichannel lock-in. The latter allows the si-

multaneous measurements of up to 6 AC voltages. Therefore, we can measure many

samples at the same time. Besides, we can use the MCL1-540 in combination with

a shunt resistor to generate a DC bias current that is superimposed on the AC current.

Therefore, the Synktek lock-in can also be used to obtain IV -characteristics of the sam-

ples. In conclusion, using the equipment described above, we can measure voltages as

a function of several parameters:

V (IDC, IAC,T,BBB , fRF,PRF) (2.35)

Here IDC and IAC are the applied DC and AC current, T is the sample temperature, BBB

the applied magnetic field, fRF is the frequency of the applied RF radiation, and PRF the

power of the applied RF radiation. In practice, we scan the parameter space with the

Vectormagnet and use the measured voltages to extract the properties of our samples.

For example, the resistance is defined using a DC measurement as:

R(IDC) = VDC(IDC)−VDC(−IDC)

2IDC
(2.36)

Likewise, we establish the resistance using the lock-in as:

R(IAC) = VAC(IAC)

IAC
(2.37)

Another example is the critical current (Ic) of a Josephson junction. It is defined as the

current corresponding to a voltage measured over the junction that exceeds a certain

threshold value (typically chosen just larger than the noise floor).
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