

Size effects in microstructured superconductors and quantum materials

Fermin, R.

Citation

Fermin, R. (2022, December 7). *Size effects in microstructured superconductors and quantum materials. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/3492762

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3492762

Note: To cite this publication please use the final published version (if applicable).

Size Effects in Microstructured Superconductors and Quantum Materials

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op woensdag 7 december 2022 klokke 16:15 uur

door

Remko Fermin Geboren te Rotterdam in 1993

Promotor:

Prof. dr. J. Aarts

Promotiecommissie:

Prof. dr.ir. J.W.M. HilgenkampUniversiteit TwenteDr. A. McCollamUniversiteit NijmegenDr. M. P. AllanProf. dr. ir. T. H. OosterkampProf. dr. K.E. SchalmValue of the second of th

Casimir PhD series, 2022-27 ISBN 978-90-8593-538-4

An electronic version of this thesis can be found at: https://openaccess.leidenuniv.nl/.

The research described in this thesis was conducted at the Leiden Institute of Physics, Leiden University. It was financially supported by a grant from the Netherlands Organisation for Scientific Research (NWO) through the Gravitation Program Nanofront and the Casimir Research School.

About the cover: The cover symbolizes the flag of Leiden, where the keys are composed out of stylized sample geometries studied in this thesis.

Cover design: Remko Fermin Copyright © 2022 Remko Fermin

De beloning van de deugd is de deugd zelf -Baruch Spinoza

CONTENTS

1	Introduction		
	1.1	Outline of this thesis	3
		1.1.1 Part one: Josephson physics in thin film planar junctions	3
		1.1.2 Part two: Mesoscopic SF-hybrid Josephson junctions	4
		1.1.3 Part three: Strongly correlated ruthenium oxide microstructures	5
	Refe	erences	6
Part	one:	Josephson physics in thin film planar junctions	11
2	Sup	erconductivity and Josephson physics	13
	2.1	A macroscopic quantum phenomenon	14
	2.2	The Meissner effect and its consequences	15
	2.3	Pairing symmetry	17
	2.4	The proximity effect and Josephson junctions	20
	2.5	Shapiro steps	23
	2.6	Magnetic interference in a Josephson Junction	25
	2.7	Extracting the supercurrent density with Fourier analysis	27
	Appendices		28
		A Experimental set-up and measurement procedure	28
	Refe	erences	29
3	Red	lucing dimensions: the thin film planar Josephson junction	33
	3.1	Introduction	34
	3.2	Review of the Clem model	34
	3.3	Comparing different geometries	37
		3.3.1 Simulation results	38
		3.3.2 Comparison to experiments	42
	3.4	Consequences for the Fourier analysis	44
		3.4.1 Technical details of the Fourier analysis	45
	3.5	Conclusion	47
References			48

Sun	erconducting triplet rim currents in a spin-textured ferromagnetic
disł	(
4.1	Introduction
4.2	Establishing long-range triplet transport
4.3	Triplet currents confined to the rims of the disk.
4.4	Altering the magnetic texture by an in-plane field.
4.5	Modeling LRT generation at the rims of the disk
	4.5.1 Mapping spin texture to spin-orbit coupling
	4.5.2 Mechanism for generating LRT rim currents
4.6	Discussion
4.7	Conclusion
App	pendices
	A Control experiments
Refe	erences
Mes	soscopic superconducting memory elements based on bistable mag-
neti	ic textures
5.1	Introduction
5.2	Ellipse-shaped S–F–S junctions
5.3	Controllable switching
5.4	Stray field driven mechanism
5.5	Pairing symmetry of the supercurrents
5.6	Conclusion and outlook.
App	pendices
	A Micromagnetic simulations
	B Additional data
Refe	erences
three	: Strongly correlated ruthenium oxide microstructures
Uni	versal size-dependent nonlinear charge transport in single crystals of
the	Mott insulator Ca ₂ RuO ₄
6.1	Introduction
6.2	Characterizing microscopic samples
6.3	Comparing samples of different cross section

	6.4	The role of temperature		100
		6.4.1	Micro-scale thermometry	101
		6.4.2	$Comsol \ simulations \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	102
		6.4.3	Consequences of heating	103
	6.5	Discu	ssion	104
	6.6	Concl	usion	106
	App	endice	8	107
		А	Crystal growth and sample fabrication	107
		В	Abrupt transition in a relatively thick microscopic sample	108
		С	The Figure of Merit as a function of other length scales \ldots .	109
		D	Reconstructing the <i>JE</i> -characteristic on basis of Joule heating	
			only	110
		Е	Minimal model for current density inhomogeneity over the	
			cross-sectional area	112
	Refe	erences	3	114
7	Con	trollin	g chiral domain walls in mesosconic SraBuO4 using geometry	
•	and	in-pla	ne magnetic fields	119
	7.1	Intro	luction	120
	7.2	Brief	experimental history of the pairing symmetry in Sr ₂ RuO ₄	121
		7.2.1	An unconventional superconductor	121
		7.2.2	post-2019 results: a shift from the <i>p</i> -wave paradigm	122
	7.3 Trapping a single superconducting domain wall in mesoscopic		ing a single superconducting domain wall in mesoscopic	
		Sr ₂ Ru	O_4	124
	7.4	Detec	tion of Shapiro steps	127
	7.5	Consi	derations on geometry	128
7.6 $I_c(T)$ of a chiral domain wall junction.		of a chiral domain wall junction	130	
	7.7	Field-	induced bistable domain configurations	131
	7.8	Alteri	ng the periodicity of current-phase relation with in-plane mag-	
		netic	fields	135
	7.9	Impli	cations for the pairing symmetry	138
	7.10	Concl	usion and outlook	139
Appendices		98	139	
		А	Sample dimensions of ring samples	139
		В	Stability of chiral domain walls under in-plane fields	140
		С	proposed experiment to establish a- and b-axis in situ	142
	Refe	erences	3	143

Summary	149
Samenvatting	153
Curriculum Vitae	158
List of publications	159
Acknowledgements	161