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Abstract

Several hypotheses have been invoked to explain the pantropical distribution of
many plant taxa today. In this study, we reconstruct the historical biogeography of
the monophyletic tribe Phyllantheae, of which the majority consists of Phyllanthus
s.l. and study the processes that have given rise to the clade's pantropical
distribution. A molecular dataset consisting of two nuclear markers and three
plastid markers was analysed in BEAST to reconstruct divergence times for 212
species of tribe Phyllantheae. Ancestral area estimations were performed using the
BioGeoBears package as implemented in RASP and the R package 'Bamm' was used
to study shifts in species diversification rates. Tribe Phyllantheae originated during
the Late Palaeocene close to the Palaeocene-Eocene Thermal Maximum, but we
were unable to reconstruct the origin of this group. Fossil evidence from the Eocene
in Europe together with the wide distribution of early diverged taxa could hint at

a boreotropical origin with early dispersals to Africa, Asia and North America. We
detected multiple dispersal events within and between the major clades of tribe
Phyllantheae. These occurred sometimes at similar time intervals, which coincide
with known dispersal routes, but many dispersal events support an explanation
through long-distance dispersal. Species diversity of tribe Phyllantheae is unevenly
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distributed among clades and a pollination mutualism involving moths has not lead
to increased speciation rates in all associated taxa possibly because differences in
dispersal vectors might have been a limiting factor.

Keywords: BEAST, boreotropics, diversification rate shifts, Glochidion, Phyllanthus
subgenus Gomphidium, molecular dating, Phyllantheae, pollination mutualism

Introduction
Intercontinental disjunctions associated with pantropical plant lineages have been
the subject of many studies that generated different explanations with varying
biogeographical implications in nonconcurrent timeframes. The presence of older
taxa that occur predominantly in the southern hemisphere have been attributed to
vicariance driven by plate tectonics after the break-up of Gondwana in the Jurassic
(Raven & Axelrod 1974; Nelson & Platnick 1981; Wiley 1988; Humphries & Parenti
1999; Givnish & Renner 2004). Indications from micro- and macrofossil evidence
from the Eocene of Europe and North America, have generated the theory of the
boreotropical forests (Wolfe 1975; Tiffney 1985). A hypothesized tropical belt in the
Northern hemisphere in the Early Eocene during the Paleocene-Eocene Thermal
Maximum (PETM), which is supported by fossil evidence (Wolfe 1975). Subsequent
cooling in the Late Eocene shifted the tropical belt closer to the equator, causing
plant taxa to disperse and become isolated in Africa, Asia and North America
(Wolfe 1975; Zachos et al. 2001). Boreotropical patterns have also been observed
in plant clades such as Annonaceae (Thomas et al. 2015), Burseraceae (Weeks et
al. 2005), Urticaceae (Huang et al. 2019) and the fern genus Diplazium Sw. (Wei
et al. 2015). However, the boreotropical hypothesis does not account for post-
Eocene dispersal events, which have sometimes been explained in the context of
the Miocene geodispersal hypothesis (Zhou et al. 2012; van Welzen et al. 2014a),
the Antarctic land-bridge between Australia and South America (van den Ende et
al. 2017) or long-distance dispersal (Renner et al. 2001). Pantropical taxa present a
valuable study subject to evaluate these theories.

The former pantropical plant genus Phyllanthus s.]. contained more than
800 species that were organized in eighteen morphologically defined subgenera
(Bouman et al. 2018). However, this high species number is not equally distributed
among all subgeneric groups and a radiation in some specific groups has been
linked to the presence of mutualistic moths as pollinators (Kato et al. 2003;
Kawakita & Kato 2004a; Kawakita & Kato 2009). The genus was found to be
paraphyletic and nested within it were the Australasian genera Breynia ].R .Forst. &
G.Forst., Glochidion J.R Forst. & G.Forst. and Synostemon EMuell. (Kathriarachchi
et al. 2006; Pruesapan et al. 2012; Bouman et al. 2020; Falcon et al. 2020). If
combined, Phyllanthus s.1. would be a giant genus with more than 1200 species
(Hoftmann et al. 2006; van Welzen et al. 2014b). Recent revisions have proposed
to split the genus into 10 morphologically distinguishable and monophyletic
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genera (Bouman et al. 2022), a summary of the new classification is shown in table
9-1. Here we discuss the various taxa according to the new classification while
mentioning their treatment in the previously broader definition of Phyllanthus.

The species of Phyllanthus s.l. are characterized by small unisexual flowers
with only sepals, usually nectar disc/glands and many species possess a specialized
branching system called phyllanthoid branching (Webster 1956). Species with
phyllanthoid branching have their axes specialized in orthotropic branches where
the leaves are reduced to scales (cataphylls) and the plagiotropic branchlets are
deciduous and they bear laminate leaves (Webster 1956). Several dispersal strategies
have been inferred from morphological characters of the seeds and fruits in tribe
Phyllantheae. The fruits and seeds are variable and are often diagnostic for specific
genera or clades. The majority of fruits are dehiscent capsules that do not require
additional dispersal vectors. In a few clades, dispersal by animals (probably birds)
is more likely, such as with the bright blue sarcotestal seeds of Margaritaria L.f.
(Webster 1979) or the berries of Kirganelia A.Juss. (Phyllanthus subgenus Kirganelia,
Brunel 1987). Dispersal by large animals is largely unexplored, but could be present
in a few species with larger, more indehiscent fruits such as those found in Cicca
L. (specifically section Omphacodopsis (Jean EBrunel) R.W.Bouman) and possibly
in Emblica Gaertn. (Prasad et al. 2006). Considering the broader treatment of
Phyllanthus s.1., this clade has a distribution traditionally attributed to Gondwanan
origins, but dated reconstructions suggest that the group originated in the Early
Eocene (Kawakita & Kato 2009; Luo et al. 2011; Kawakita et al. 2019). Dispersal
events must therefore have occurred after the break-up of Gondwana, but there are
few studies that focus on the distribution of Phyllanthus s.1. (for a pre-molecular
analysis, see Holm-Nielsen 1979). Cai et al. (2019) also found many whole-genome
duplication events in the Malpighiales with the majority occurring during the
Paleocene-Eocene transition. Although sampling for some families was limited,
these genome duplications were hypothesized to be related to subsequent survival
under climate change and adaptation to new conditions.

Fossils of Phyllanthus s.1. or Phyllanthaceae are scarce, but findings in Asia
include Eocene wood (Mehrotra et al. 2010), leaves (Srivastava & Mehrotra 2014;
Shukla et al. 2016), pollen (Hofmann et al. 2019) and possibly Cretaceous fruits
(Kapgate et al. 2017). Findings from palynological studies from the Early Eocene of
Europe at the end of the PETM also found pollen attributed to tribe Phyllantheae
(Gruas-Cavagnetto & Kohler 1992; Hofmann et al. 2015; Hofmann & Gregor 2018).
Leaf imprints, wood or incomplete fruits and seeds remain difficult to assign with
certainty to any specific clade of tribe Phyllantheae due to a lack of diagnostic
characters (van Welzen et al. 2015).

Several dispersal events can already be deduced from the molecular phylogeny
(see Bouman et al. 2020; Falcén et al. 2020), but have not been studied in a
historical and biogeographical context. The aims of this present paper are: (1)
to date the existing phylogeny and provide a more detailed exploration than
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Table 9-1. Classifications of Phyllanthus s.1., left as previously treated as a
paraphyletic genus with 17 subgenera (P. subgenus Cyclanthera (G.L.Webster)
G.L.Webster was transferred as a section to P. subgenus Xylophylla (Hidalgo et

al. 2020), while P. section Lysiandra was shown to be distinct from P. subgenus
Phyllanthus (Bouman et al. 2021), right following the new classification as presented
in Bouman et al. (2022). The numbering of the clades as in Fig. 9-2.

Clade |Taxa of Phyllanthus s.1. New classification sensu
Bouman et al. 2022 (genera)

A Phyllanthus subgenus Isocladus Nellica

Bl Phyllanthus subgenus Macraea Cathetus subgenus Macraea

B2 Phyllanthus subgenus Ceramanthus Cathetus subgenus .

Cl Phyllanthus subgenus Kirganelia Kirganelia

C3 Phyllanthus section Lysiandra Lysiandra

C4 Phyllanthus subgenus Eriococcus Nymphanthus

D1 Phyllanthus subgenus Tenellanthus Moeroris subgenus Tenellanthus

D3 Phyllanthus subgenus Swartziani Moeroris subgenus Swartziani

D4 Phyllanthus subgenus Afroswartziani | Moeroris subgenus Moeroris

E2 Phyllanthus subgenus Conami Phyllanthus subgenus Conami

E4 Phyllanthus subgenus Phyllanthus Phyllanthus subgenus Phyllanthus

E5 Phyllanthus subgenus Xylophylla Phyllanthus subgenus Xylophylla

F1 Phyllanthus subgenus Anesonemoides | Cicca subgenus Anesonemoides

F1 Phyllanthus subgenus Cicca subgenus Menarda
Pseudogomphidium

F1 Phyllanthus section Cicca, Polyanthi & | Cicca subgenus Cicca
Omphaocodopsis

F1 Phyllanthus subgenus Betsileani Cicca subgenus Betsileani

F2 Phyllanthus subgenus Gomphidium Dendrophyllanthus

G Phyllanthus subgenus Emblica Emblica

H Phyllanthus subgenus Glochidion subgenus
Phyllanthodendron Phyllanthodendron

H Glochidion Glochidion

I Synostemon Synostemon

] Breynia Breynia
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previous studies; (2) to analyse the historical biogeography of the genera in tribe
Phyllantheae that made up Phyllanthus s.1.; and (3) to explain the speciation-
distribution of the various clades and to assess the evidence for of pollinator related
diversification.

Materials and methods

Sampling of tribe Phyllantheae

In this study we used a subset of the datasets employed in Bouman et al. (2021),
which presents the largest sampling of Phyllanthus s.1. to date. To limit the extent
and possible effects of missing data, we used the reduced dataset where we had
genetic information for each accession with a minimum of 3500 nucleotides out of
5500. Species present with multiple samples in Bouman et al. (2021) are here limited
to include only one accession, except for the P. virgatus complex where samples of
Australia were retrieved in a different clade from those in Asia (presumed here to
be P. simplex). The trimmed dataset contains 21 species of Breynia, four species of
Synostemon, five species of Glochidion, four species of Margaritaria L.f., one species
of Flueggea Willd. and 173 species of Phyllanthus s.1. Leptopus chinensis (Bunge)
Pojark. and Notoleptopus decaisnei (Benth.) Vorontsova & Petra Hoffm. of tribe
Poranthereae were used as an outgroup for tribe Phyllantheae. Almost all genera of
the tribe were included except Heterosavia (Urb.) Petra Hoffm. and Lingelsheimia
Pax as we did not have the full set of markers for any species from these genera. The
sampling for Phyllanthus s.]. covers all reinstated genera (Table 9-1), the majority
of sections and most of its distribution. Some geographical areas like India and the
Neotropics are not well represented in this dataset and should be expanded upon in
future studies.

Dating
A two-step approach was implemented to date the molecular phylogeny of
Phyllanthus. In the first step, the molecular dataset presented by Kathriarachchi
et al. (2005) and dated by Kawakita & Kato (2009) was re-calibrated with one
additional fossil calibration point (see below) to obtain a base for the divergence
time between tribe Phyllantheae and tribe Poranthereae (see supplementary table
9-1 for Genbank numbers). Outgroups were taken from the closest related family,
the sister family Picrodendraceae (Xi et al. 2012). The dataset of Kathriarachchi
et al. (2005) used the molecular markers PHYC, atpb, matK and ndhF and we
therefore did not combine this with the dataset of Bouman et al. (2020), which
consists of the molecular markers ITS, PHYC, accD-psal, matK and trnS-trnG. In
the second step, we implemented the divergence time between tribe Phyllantheae
and tribe Poranthereae as a secondary calibration as indicated by the phylogeny of
the Phyllanthaceae (Supplementary figure S9-1).

The molecular phylogeny of tribe Phyllantheae was dated using BEAST v.
1.10.4 (Suchard et al. 2018). The input file was prepared using BEAUTI v. 1.10.4
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(within the BEAST package). MrModeltest v.2 (Nylander 2004) was used to obtain
the best-fitting model according to the lowest Akaike Information Criterion (AIC)
for each marker, selecting the same model for all markers. Substitution rates were
calculated under the General Time Reversal (GTR) model with a discrete Gamma
distribution (K, 4 categories of evolutionary rates among sites and a certain number
of invariable sites (+I). Divergence times were estimated using an uncorrelated
relaxed clock model (Drummond et al. 2007) with an exponential distribution of
rates and the Yule process was selected as a tree prior (Yule 1925; Gernhard 2008)
and a random starting tree was used. Two independent runs were done, each with
220 million generations of Markov Chain Monte Carlo (MCMC) and trees were
sampled every 22,000 generations. Effective Sampling Sizes (ESS), representing
the convergence of the two runs, were checked in Tracer v. 1.7.1 (Rambaut &
Drummond 2018), while the Maximum Clade Credibility (MCC) tree for each
run was checked for topological differences before combining the tree files using
Logcombiner v.1.10.4 (part of the BEAST package) with a burnin of 20 % per tree
file. TreeAnnotator v.1.10.4 (within the BEAST package) was used to find the MCC
tree and this was visualized using Figtree v.1.4.3 (Rambaut 2014). Our analyses of
divergence times were estimated using several fossils as calibration points. These
were set as priors for specific taxon groups with an exponential distribution:
1. An Early Eocene calibration with a median age of 52.2 MA was put
as offset for the prior with an exponential distribution and a mean
of 1.5 to allow for older ages for the clade comprising Flueggea and
Phyllanthus s.1. including Glochidion, Breynia and Synostemon. Fossil
3-colporate pollen of the Early Eocene (c. 47-56 Ma) Woolwich
bed in Kent, England, was determined to be related to Flueggea or
Phyllanthus (Gruas-Cavagnetto & Kohler 1992; Sagun & van der Ham
2003). Additional findings of Flueggea-type pollen from London (also
Woolwich formation) and the Knopffeld formation in Austria from
the Early Eocene (Hofmann et al. 2015) provided further support for
this calibration point. The Woolwich bed finding has been used as a
calibration point by Kawakita & Kato (2009), Luo et al. (2011b) and van
Welzen et al. (2015). Older fruits from the Late Maastrichtian (66-72)
Ma of India have been suggested to be related to the genus Phyllanthus,
but could not be assigned with full certainty as fruits are notoriously
difficult and there was no exhaustive comparison with fruits of
other genera within the Phyllanthaceae family (Kapgate et al. 2017).
Therefore we have opted to not include this in our analysis.
2. Leaf impressions tentatively assigned to Glochidion from the Middle
Miocene (c. 11.6 Ma with a mean of 1.5) of India (Prasad 1994; Antal &
Prassad 1996) were used as an offset minimum age constraint for Clade
H, which contains Glochidion (also used in Kawakita & Kato 2009).
3. Recent findings of pantoporate pollen from the Changchang Formation
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(Hainan Island, South China) have been attributed to Phyllanthus s.1.
(Hofmann et al. 2019). The material is estimated to be of late Early
Eocene (Bartonian, 37.8-48 Ma; Aleksandrova et al. 2015). This specific
pollen type can be found in Nymphanthus Lour. (Phyllanthus subgenus
Eriococcus) and subgenus Ceramanthus (listed as subgenus Isocladus
section Ceramanthus in Hofmann et al. 2019, here listed in table 9-1

as Cathetus Lour.), but pollen sizes were more similar to those found
in the latter. Therefore, this was used as an offset fossil calibration
point for the clade comprising the sister groups Phyllanthus subgenus
Ceramanthus and subgenus Macraea (Cathetus, Fig. 9-2; clade B) and
the offset was set to 37.8 Ma with a mean of 1.5.

The stem age for the analysis of our dataset of tribe Phyllantheae was
calibrated using divergence time estimates with tribe Poranthereae
and Wielandieae taken from our analysis of the Phyllanthaceae

family dataset and compared to Kawakita et al. (2009). The node was
calibrated using an offset of c. 75 Ma with a mean of 1.5 to allow for
older ages (see supplementary Fig. 9-1)

Additionally, to date the family Phyllanthaceae other calibration points similar to
those implemented in Kawakita & Kato (2009) were implemented as an offset.

5.

Figure 9-1.

Bischofia pollen from the Middle Eocene (37.2-41.2 Ma) also from the

Map with biogeographical regions as specified for this study of Tribe

Phyllantheae: A, North America to Mexico; B, West Indies; C, South America and
part of the Panama Isthmus; D, West Africa with eastern border following Namibia,
Democratic Republic of Congo and Central African Republic; E, South and Eastern
Africa; F, Madagascar and the Mascarene Islands; G, mainland Asia stretching from
India to Peninsular Malaysia; H, W. Malesia including Philippines; I, E. Malesia
(mainly Papua New Guinea); ], Australia; K, Pacific Islands.
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Woolwich formation in England was used as a minimum age constraint
for the subfamily Antidesmatoidea (Gruas-Cavagnetto & Kohler 1992
as implemented in Kawakita & Kato 2009).

6. The clade containing tribe Poranthereae and tribe Wielandieae (sensu
Hoffmann et al. 2006) was constrained with a calibration point based
on Actephila Blume pollen type from the Late Eocene (median 33.9
Ma) of France (Gruas-Cavagnetto & Kohler 1992 as implemented in
Kawakita & Kato 2009).

7. 'The stem age for the split between Phyllanthaceae and Picrodendraceae
was conservatively set to 80 Ma based on molecular dating from Xi
etal. (2012). Similar age estimates, but with varying 95% Highest
Posterior Density (HPD) intervals have been obtained by Magallon
et al. (2015), Davis et al. (2005) and Li et al. (2019). Kawakita & Kato
(2009) opted to use the occurrence of Eudicot pollen as the root age for
their phylogeny. As this is unlikely, since Phyllanthaceae occurred later,
we decided to use the base estimate from the former papers.

Ancestral range estimation
Eleven biogeographical areas were specified based on levels of species endemism
and tectonic history (Fig. 9-1). Distributions of the various species were taken
from various monographs and floras (e.g. Webster 1956, 1957, 1958; Airy Shaw
1975, 1980; Bouman et al. 2018). The biogeographic area that covers islands in
the Pacific Ocean covers mostly New Caledonia with over 100 endemic species of
Dendrophyllanthus S.Moore (Phyllanthus subgenus Gomphidium). However, to not
create separate areas for other islands, we also include islands from the rest of the
Pacific. Most discussions below focus on New Caledonia unless specified otherwise.

The MCC tree resulting from our BEAST analysis was trimmed by
excluding the outgroups of tribe Phyllantheae. Ancestral Range estimations were
performed using RASP (Reconstructed Ancestral State in Phylogenies) 4.2 (Yu et
al. 2015, 2020). We tested for different models for biogeographic inferences using
the R package 'BioGeoBears' as implemented in RASP (Matzke 2013a, 2014). These
were the S-Diva model (called Divalike in 'BioGeoBears'), DEC and BAYAREA
(BAYAREALIKE), which is based on the likelihood of a given history and takes
into account the relative probability of each biogeographic change and waiting
times between events in a Bayesian framework (Landis et al. 2013). With the S-Diva
model, the frequencies of ancestral ranges of specific nodes is averaged over all trees
while alternative ranges are weighted by their frequency and node occurrence (Yu
etal. 2010). 'BioGeoBears' additionally tests whether these models show a different/
better fit when the founder effect (+]) is taken into account (Matzke 2013b, 2014).
Usage of the founder effect as implemented by '‘BioGeoBears' has recently been
cautioned by Ree & Sanmartin (2018).

Dispersal constraints were defined for four time periods based on the
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geological history of the various continents involved. Dispersal constraints were
defined similarly to those implemented by Buerki et al. (2011), Wei et al. (2015)
and Thomas et al. (2015). These were mostly defined based on distance, but had

a correction for specific land bridges and were categorized as very low dispersal

= 0.01; low dispersal = 0.25; medium dispersal = 0.5; moderate dispersal = 0.75;
high dispersal and adjacent areas = 1.0 (see Supplementary table 9-2). We allowed
for 2-3 areas per node, as higher numbers gave far longer computation times

with more ambiguous results. The model selection from BioGeobears, retrieved
the highest Akaike Information Criterion (AIC) and weighted AIC score for

the BAYAREALIKE model and DEC model (Table 9-2). BiogeoBears is able to
compare the various models, but also incorporates a possible founder effect (+]).

A likelihood Ratio test (LRT) was used to see if incorporating the founder effect
gives a significantly different result. Table 9-2 shows a significant (P <0.05) result
for the comparisons DEC/DEC+] and BAYAREALIKE/BAYAREALIKE+]. The null
hypothesis that the standard model and the model+founder effect show similar
likelihoods for our data is therefore rejected and the analysis including the founder
effect is omitted here as it has a lower AIC score.

Estimating and comparing speciation rates and identifying shift rates

To determine whether diversification rates differed per clade and could be
associated with any specific ecological variable, we used BAMM v. 2.5 (Rabosky
2014) and the R package BAMMtools v. 2.1 (Rabovsky et al. 2014). In this method
different models are fitted to the MCC tree to explore shifts in diversification rates.
Speciation rates were calculated on the trimmed MCC tree and priors were adjusted
to the scaling of our trees by using the command "setBAMMpriors". Differences in
sampling number were adjusted for each clade according to the estimated number
of species per subgenus (corrected with latest taxonomic findings sensu Bouman

et al. 2020; Falcdn et al. 2020). Rounded global sampling fractions for each clade
were: Nellica Raf. 20%, Cathetus Lour. 40%, Kirganelia A.Juss. 54%, Nymphanthus
20%, Lysiandra ((EMuell.) R W.Bouman, I.Telford & J.J.Bruhl 41%, Moeroris Raf.

20 %, Phyllanthus s.s., the Neotropical clade 30%, Dendrophyllanthus 10%, Cicca
44%, Emblica 23%, G. subgenus Phyllanthodendron ((Hemsl.) R.-W.Bouman) and
Glochidion subgenus Pseudoactephila (Croizat) R.-W.Bouman 10%, Glochidion 1.4%,
Synostemon 10% and Breynia 25% (see table 9-1 for names under Phyllanthus s.1.).
Initial runs indicated high speciation rates for Glochidion, so additional analyses
were run with sampling of Glochidion set to 5% and 10% to compare overshadowing
of signals. The MCMC was run for 10,000,000 generations and was saved every
1000 generations. Expected number of shifts was set to 3. A burn-in of 10% was
discarded and Effective Sampling Sizes (ESS) were determined by using the Coda
Package for R (Plummer et al. 2006). The output was further analysed using
BAMMtools to determine the single best shift configuration and the maximum shift
credibility configuration. Independent speciation rates for the various clades (Fig.
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9-2: clades A-] while separating C1, C3, C4, F1 & F2) were also extracted in R.

Results
Divergence time estimation
Our reconstruction of Phyllanthus s.]. and related genera indicate that the clade
originated sometime during the Late Paleocene or Early Eocene. The MCC tree
resulting from BEAST for the Phyllanthaceae had generally high node support
(Supplementary Fig. 9-1). Node support was only a bit lower within a few genera
and within the subfamily Antidesmatoideae between genera (PP>0.74). Despite
differing constraints on the divergence node between Picrodendraceae and
Phyllanthaceae, both family-level analyses resulted in an estimated age for the
divergence between tribe Phyllantheae with tribe Wielandieae and Poranthereae
around 75 Ma (HPD 94-63 MA; Supplementary Fig. 9-1). This resulted in our
setting of 75 as a median age for the stem age of our analysis of Phyllanthus s.1. and
the other genera.

The phylogeny focusing on Phyllanthus s.l. and related genera showed
no major topological differences with previous analyses (Fig. 9-2). Additional
age estimations in BEAST while excluding the calibration point for the genus
Glochidion (based on Prasad 1994; Antal & Prassad 1996), did not result in
significant changes to age estimations of this (12.41 Ma; Table 9-3) and other
clades. Placing the fossil calibration point of pantoporate pollen (Aleksandrova et
al. 2015) as the crown age of Nymphanthus instead of Cathetus resulted in slightly
older nodes for the outgroups, Nellica (Clade A) and Cathetus (Clade B), but with
lower ESS scores. The crown age of tribe Phyllantheae was dated to c. 60 Ma (HPD
53.45-72.38 Ma) (Fig. 9-2). The crown age of Clade C, which corresponds here
to Kirganelia, Nymphanthus and the Australian "Lysiandra clade" is estimated to
be around 36 Ma (HPD 28.83-45.08). Similarly the crown age of Clade D ("large
African" clade) and Clade E (Neotropical clade) are 34.44 Ma (HPD 27.30-41.87)
and 32.01 Ma (HPD 24.65-39.34), respectively. Clade F can be divided into two
major taxonomical subclades: F1 which corresponds to Dendrophyllanthus; F2
which corresponds to the reinstated genus Cicca L., which contains several sections
and subgenera from Phyllanthus s.1. (Table 9-1). Clade F1 includes species from
a multitude of areas and the crown age is estimated to be 27.69 Ma (HPD 19.71-
35.76). The crown age of Emblica (node G) was inferred to be 18.7 Ma (HPD 10.98-
26.50). The genera Glochidion (including P. subgenus Phyllanthodendron), Breynia
and Synostemon are estimated to have diverged from other species of Phyllanthus s.1.
in the Late Oligocene/Early Miocene at 26.24 Ma (HPD 19.34-38.44).

Ancestral area estimation

Node 1 and 2 (Fig. 9-2) were omitted from the biogeographic analysis as outgroups
were removed. While nodes 9-11 show medium support for an ancestral area in
mainland Asia, support for nodes 3-8 is generally low and could only infer a wide
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ancestral area for Phyllanthus s.1. Node 3 (common ancestor of Phyllanthus s.1.
+ Glochidion + Breynia + Synostemon) was inferred to be Africa, Mainland Asia
or Australia by BAYAREA (PP 0.33) while DEC indicated a wider area of North
America, Eastern Africa and mainland Asia (Relative Probability 0.33).

The ancestral area of Clade A was reconstructed to be in North America
or Africa (PP = 0.20, RP =0.35; Fig. 9-2). Both BAYAREALIKE and DEC indicate
an ancestral area of Africa to Asia for Cathetus (P. subgenus Cathetus and Macraea,
Clades B1 & B2; Fig. 9-2). Both subclades in this group show dispersal exchanges
between Africa and Asia, but only C. subgenus Macraea has species present in
Australia.

Clade C (Fig. 9-2) consists of three major clades, which correspond
respectively to Kirganelia (C1); Lysiandra (C3) and Nymphanthus (C4). While
BAYAREALIKE reconstructed the area to be quite wide, ranging from West Africa
to Asia (PP = 0.51), DEC indicated an African origin (C1 RP = 0.56) with two
separate instances of dispersal events to Asia. One dispersal and speciation event
into Madagascar is found in Kirganelia in both analyses. Lysiandra consists of
species occurring only in Australia, which is consistent with a single dispersal and
subsequent speciation event found for node C3 (PP = 0.72, RP = 1). Nymphanthus
is inferred to have originated in mainland Asia (C4 PP = 0.45, RP = 0.73) with two
independent dispersals to Malesia and further.

The ancestral area of Moeroris (P. subgenus Tenellanthus, Swartziani and
Afroswartziani, Clade D) is estimated to be in Africa (BAYAREALIKE: DE, PP
= 0.46; DEC: D, RP = 0.39; Fig. 9-2). The majority of species are distributed in
Africa, but we find one dispersal event to North America (M. aranaria (A.Gray)
R.W.Bouman) and one to South America (Moeroris stipulata Rafinesque) and
dispersal event to Madagascar (Fig. 9-2).

The large Neotropical clade (E), consisting of Phyllanthus subgenus
Phyllanthus, Conami (Aubl.) G.L.Webster and Xylophylla (L.) Pers., is inferred
to have originated in South America (node E, PP = 0.27; DEC: AC, RP = 0.98;

Fig. 9-2). Some species of P. subgenus Phyllanthus are currently found in North
America. Within subgenus Xylophylla we find an exchange between South America
and the Carribean, but we were unable to reconstruct the ancestral area for this.

The ancestral area of the speciose genus Dendrophyllanthus (F2) is inferred
to be Australia (PP = 0.65, RP = 0.74) and it gave rise to independent dispersals to
New Caledonia in both subclades (Fig. 9-2). One clade contains two independent
dispersals from Australia to Papua New Guinea. The ancestral area of Cicca (F1) is
inferred to be in Madagascar with one lineage (corresponding to C. subgenus Cicca)
subsequently dispersing to Africa and South America.

Emblica (G), and the genera Glochidion (H), Synostemon (I) and Breynia (]),
were reconstructed to have an ancestral area in mainland Asia, with for Synostemon
a single dispersal event to Australia.
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Table 9-3. Summary of the dated phylogeny and ancestral area reconstruction for
major clade nodes following figure 9-2. Shown are for each major node node the
posterior probabilities, mean ages of the nodes, 95% height of the Posterior Density
intervals, BAYAREA reconstruction with next to it the Posterior Probability and
DEC with relative probability.

Node|Posterior| Age 95% HPD Bayarea| PP DEC RP
label

1 0,58 60,51 72.38-53.45

2 1 55,11 61.36-53.00

3 0,98 51,79 58.36-46.00 DGJ | 0,3255 | AEG | 0,3286
4 1 48,74 55.09-42.78 DGJ | 0,3369 | G | 0,4675
5 1 44,64 51.24-38.17 DGJ | 0,3247 | G | 0,2325
6 1 38,84 45.54-32.22 DEG | 0,2293 | A | 0,1134
7 0,99 35,48 42.47-28.86 DG | 0,1774 | AC] | 0,1453
8 0,91 32,75 39.62-25.66 G 0,2281 J 0,4717
9 1 26,24 33.44-19.34 G 0,6 G | 09155
10 1 22,13 28.59-16.32 G 0,6576 | G | 0,5304
11 1 16,95 22.99-11.80 G 0,5834 | GJ | 0,7594
A 1 22,66 41.25-9.05 AE | 0,2049 | AEG | 0,3526
B 1 38,17 41.16-37.20 DG ] 03682 | G | 0,3432
Bl 1 25,72 34.27-17.14 DG | 0,5034 | DG | 0,9719
B2 1 13,5 25.58-5.32 DG | 0,7446 | DG 1

C 1 36,84 45.08-28.83 DGJ | 31,02 G | 0,5763
Cl 1 21,24 36.01-9.87 DG | 05147 | D | 0,5557
C2 1 29,58 38.12-21.93 G 0,3519 | GJ | 0,5531
C3 1 23,62 31.62-15.72 ] 0,7152 J 1
C4 1 23,74 31.88-16.28 G 0,451 G | 0,7299
D 1 34,44 41.87-27.30 DE | 04641 | D | 0,3933
D1 1 21,32 33.45-10.24 DE | 0,7973 | D | 04275
D2 0,95 31,7 39.06-24.56 DE | 0,6249 | AD | 0,2895
D3 1 19,83 30.83-9.81 DE | 0,7246 | AD | 0,4768
D4 1 27,4 34.32-21.07 DE | 08499 | E | 0,6935
E 0,99 32,01 39.34-24.63 C 0,2731 | AC | 0,9773
El 1 29,48 36.74-22.50 C 0,4156 | C | 0,9867
E2 0,57 21,32 31.34-11.75 C 0,6525 | C | 0,6188
E3 0,4 28,09 35.38-21.46 C 0,3893 | C | 0,7495
E4 0,47 26,21 34.10-19.12 C 0,3853 | C | 0,9812
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E5 1 23,47 30.72-16.81 BC 0,5265 | BC | 0,9842
F 0,66 27,69 35.76-19.72 J 0,1184 | FJ | 0,7084
F1 1 23,58 31.92-15.02 F 0,5128 F 0,6396
F2 1 20,11 29.49-11.96 J 0,6532 ] 0,7425
G 1 18,7 26.42-10.98 GH | 0,8815 | GH | 0,6422
H 1 12,41 14.10-11.60 G 0,9435 G 1

I 1 12,84 18.48-8.17 G 0,965 G 0,9924
] 1 10,02 15.70-4.98 J 0,8953 ] 1

Figure 9-2. Chronogram (MCC tree) of tribe Phyllantheae generated via Bayesian
analysis in BEAST. Axis scaled to node ages and with designated time periods
according to International Commission on Stratigraphy (ICS) V. 2020/03.
Calibration points are indicated with *, major nodes are numbered 1-11 while
clades follow A-J as discussed in text. Ancestral area estimation as inferred from
the BAYAREALIKE model from BiogeoBears given for selected nodes in squares
with legend for the different areas, colours correspond to map of figure 1. A broader
definition of Phyllanthus from previous classifications is shown with a dotted line
on the right. Figure shown on following two pages
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Diversification rate heterogeneity

Effective sample sizes after burnin were >600 for both the number of shifts and

log likelihoods and MCMC chain convergence was confirmed. Speciation rates

(M) overall were 0.19 species/million years [95% interval 0.16-0.21] while mean
extinction rates (pt) were 0.03 sp/Ma [95% interval 0.01-0.06]. Speciation rates were
relatively similar between the clades of Nellica (Clade A) and the Neotropical Clade
E at 0.15 species/Myr (Table 9-3). Extinction rates for these clades was relatively
low at 0.01 species/Myr. An increase in speciation rates can be seen in Clades F-],
with highest speciation occurring in Clade H (Glochidion) at 0.56 species/Myr. The
95 % credible set of rate shift configurations sampled with BAMM included fifteen
distinct shift configurations, mostly indicating a shift in speciation of the genus
Glochidion (Fig. 9-3, clade H). This shift was also found by the Maximum shift
credibility plot. Additional shift changes were found at node 8, which encompasses
the clades with higher speciation as seen in Table 9-4. The rate-through-time plot
of tribe Phyllantheae shows a steady increase from its inception, with a sudden
increase in speciation rate around 10 Ma. Plots of Kirganelia (Clade C1) and Cicca
(Clade F1) show a slight increase, but then decreasing of the curve. The genus
Dendrophyllanthus (Clade F2) shows an increasing speciation rate through time, but
not as drastic as observed for Glochidion (clade H), which is close to exponential.
The rate through time plot of Breynia and Synostemon (supplementary figure 4)
also show a rate higher than the mean speciation rate through time with a slight
smoothing of the curve towards the present.

Discussion

Age estimates

Our reconstruction of Phyllanthus s.]. and related genera indicates that the clade
originated sometime during the Late Paleocene or Early Eocene. The MCC tree
resulting from BEAST for the Phyllanthaceae showed no major topological
differences with the one presented by Kathriarachchi et al. (2005) and node support
was generally high (Supplementary Fig. 1) The dated phylogeny is largely congruent
with the results of previous studies (e.g. Kawakita & Kato 2009; Luo et al. 2011b;
van Welzen et al. 2015), but provides a better supported backbone between the
major clades of tribe Phyllantheae. The recent species-level dated phylogeny of
angiosperms by Janssens et al. (2020) inferred that Angiosperms originated before
the Cretaceous, which would indicate older ages for the major clades of flowering
plants. Nevertheless, the crown age of tribe Phyllantheae is inferred in their study
at 65.92 Ma (HPD 74.33-45.58; Janssens et al. 2020; derived from supplementary
material 5), which is comparable to our results (60.51 Ma; HPD 72.38-53.45).
Divergence times estimations of Breynia and Synostemon were comparable to those
found in van Welzen et al. (2015). The crown age of Breynia, 12.84 Ma (Table 9-3;
HPD 18.48-8.17) was found to be more recent than the reconstruction of van
Welzen et al. (2015; 20.6 Ma), while Glochidion seemed older (12.41 Ma here vs 5.61
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Historical biogeography of tribe Phyllantheae

Ma in van Welzen et al. 2015). This is not entirely explained by the fossil calibration
point for Glochidion, as additional analyses without this fossil gave similar results.
More likely, it is caused by a combination of including more fossil calibration points
as well as a larger sampling.

Origin of Phyllanthus and related genera

Fossil pollen indicates that several taxa of tribe Phyllantheae were already present
in Europe during the early Eocene and pollen attributed here to Clade B (Cathetus)
indicates an early dispersal to China (Gruas-Cavagnetto & Kohler 1992; Hofmann
et al. 2015, 2019). The pantropical genus Margaritaria is reconstructed to have
diversified during the Middle Miocene (Fig. 9-2), but it was not used in our
reconstruction of the ancestral areas. The Asian species M. indica (Dalzell) Airy
Shaw was previously retrieved as sister to the other species from South America
and Africa (Webster 1979; Bouman et al. 2021). Fossil findings from the Eocene
could indicate that boreotropic migration was part of the history of Phyllanthus

s.1. and possibly Flueggea Willd. and that taxa later dispersed to Asia, Africa and
North America while becoming extinct in Europe. The genus Flueggea might have
persisted in Europe as E tinctoria (L.) G.L.Webster is native to Spain and Portugal
(Webster 1984), while there is only one invasive species of Phyllanthus (P. tenellus
Roxb. to be placed in Moeroris Raf.) in Europe (Crisafulli et al. 2011). Limited
sampling of Nellica and Flueggea, however, prevents us from further inferences; the
European species E tinctoria would be especially interesting to include in future
studies. The major nodes 3-5 of the backbone phylogeny of Phyllanthus s.l. are
reconstructed to have a wide ancestral area with an unclear area of origin (Fig. 9-2).
Our reconstruction shows this wide ancestral area for the nodes in the time period
just after the PETC till the start of the late Eocene (38.84 Ma; HPD 45.54-32.22,
Table 9-3). Species of Nellica (Clade A) are found in North America, Africa and
Asia, which is consistent with a boreotropic origin. However, the estimate for the
crown age for Clade A (22.66 Ma; HPD 41.25-9.04) shows a wide margin, which
could start in the Eocene, but also could be quite recent. Clade A needs to be
further explored as not all species from India have been confidently assigned to this
taxonomic group based on morphology (Bouman et al. 2018) and the connection
with North America has only recently been confirmed for one species (Bouman

et al. 2021). A higher sampling might give a better resolution when these species
diverged and spread to different continents.

Our results confirm earlier studies (Kawakita & Kato 2009; Luo et al.
2011b), that tribe Phyllantheae probably diverged from other tribes after the
breakup of Gondwana and the breakup of India and Madagascar at 90-85 Ma. The
sampling from India in our study is sparse and could represent an interesting aim
for future studies. Some species from Sri Lanka (Cathetus gardnerianus (Wight)
R.W.Bouman and Nymphanthus floribundus (Wight) R W.Bouman), are firmly
nested in clades B and C and are found to be of more recent origins in the Miocene
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(Fig. 9-2). The separation of India from Africa and Madagascar is reconstructed
to have occurred in the Cretaceous (Ali & Aitchinson 2008; Hall 2012). The much
later collision of India with the Asian plate probably occurred somewhere around
35 Ma (Ali & Aitchinson 2008) with a possible earlier connection with Malesia
and Myanmar around 57 Ma (Aitchinson et al. 2007). The flora of India harbours
species of several clades from tribe Phyllantheae, but not many from those found
on Madagascar (see Bouman et al. 2018). The species included here seem to have
diverged much more recently and do not support the Indian raft hypothesis for
tribe Phyllantheae. However, an expanded sampling of for example the genera
Cathetus and Nellica is necessary to further investigate the relationship of Indian
taxa within the tribe.

Out of Africa

Many clades in tribe Phyllantheae contain species distributed in Africa, but
unfortunately the major nodes between these groups show less resolution and
are usually reconstructed with wide ancestral areas. Dispersals from Africa to
other areas can still be inferred in a few clades. Kirganelia (Fig. 9-2, node C1) was
reconstructed to have an ancestral area in Africa and Asia. Kirganelia purpurea
(Miill.Arg.) R-W.Bouman and a clade containing several African species is found
to be sister to a mixed clade of African, Asian and Malagasy species, which show
several dispersal events in the Late Miocene.

Clade D, which consists of three subgenera in Phyllanthus in now
transferred to the reinstated genus Moeroris Raf. (Bouman et al. 2022). This group
was estimated to contain almost 200 species (Bouman et al. 2022), which are mostly
distributed in Africa. A single dispersal event to Madagascar is found in Clade D
during the Miocene and two independent dispersals are found to the Americas.
Moerorist stipulata Raf. was included here as the only representative of a specific
West Indian clade with some species also distributed in South America (see Falcén
et al. 2020; Bouman et al. 2021) and it is reconstructed to have diverged from other
African species around the Oligocene-Miocene transition. No land bridges are
known between these continents at the time when they were much closer to their
present day distribution, so this event was likely due to long-distance dispersal.
Dispersal from Africa to Madagascar has been inferred to have been easier before
a shift in ocean currents around 20-15 Ma (Samonds et al. 2012). Interestingly, the
dispersal event within Clade D to Madagascar around the Mid-Miocene (C. 9.8 Ma,
HPD 15.76-4.55) occurred either at the end or after this shift. Over-water dispersal
could still occur, but was complicated and it is unclear how the species of Moeroris
crossed this barrier as the capsular fruits are usually not eaten by other dispersal
vectors such as birds.

Colonizing the Americas and West Indies
The large Neotropical clade of Phyllanthus s.s. (Clade E) seems to have arrived
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in South America during the Late Eocene-Oligocene (Fig. 9-2). Following our
reconstruction, it diverged from an African ancestor (Fig. 9-2, node 7) at the end
of the Eocene. Similar dispersal events were found in other taxa such as platyrrhine
monkeys (Seiffert et al. 2020), Arecaceae (Cuenca et al. 2008) and the Clusioid clade
of the Malpighiales (Ruhfel et al. 2016), which were attributed also to sea currents
(Renner 2003) or a possible boreotropical origin. The majority of Neotropical
species of Phyllanthus, but also those of the African Clade D, have schizocarpic
fruits that self-disperse the seeds. Some observations have been made on how

these seeds behave in water (Breteler, pers. comm.), but larger studies on dispersal
in Phyllanthus have not been done. The ancestral area of Clade E was estimated to
be the Neotropics, but P. purpusii Brandegee, which is sister to the other species

of Clade E (Fig. 9-2; Bouman et al. 2021), is from Mexico. This indicates an early
dispersal between North and South America at the formation of the Isthmus

of Panama (Jaramillo 2018). Other dispersals to North America are difficult to
reconstruct here due to sampling limitations as these are from more widespread
species. There are some taxa like P. pseudocicca Griseb. and P. subcarnosus C.Wright
ex Griseb. that were proposed to have arrived independently (Falcén et al. 2020),
but their phylogenetic position could not be reconstructed with full certainty.

The Phyllanthus flora of the West Indies seems to have originated in the
Neotropics and it reached the Carribean at the end of the Oligocene (P. pachystylus
Urb.) or in the Miocene (majority of P. subgenus Xylophylla, Fig. 9-2, node E5).

To explain the origin of the Caribbean flora, some authors have hypothesized that
there was a land-bridge or island chain between South America and the Antilles

at the Eocene-Oligocene boundary (Iturralde-Vinent & McPhee 1991). However,
this connection was not found for taxa that seemingly originated in South America
and dispersed after this period (Nieto-Blazquez et al. 2017). These results seem to
be congruent with our findings, that Phyllanthus dispersed to the West Indies on
several independent occasions, but after the Eocene. A higher sampling of the South
American species of Phyllanthus could allow for a further scrutiny in dispersal areas
between countries as the area is defined here rather wide.

East Malesia, Australia and the New Caledonian interchange

The main diversity of the more than 150 species of Phyllanthus subgenus
Gomphidium is found today on the islands of New Caledonia and Papua New
Guinea (Airy Shaw 1980; McPherson & Schmid 1991). The ancestral area of this
subgenus is estimated to be Australia with subsequent dispersals to Papua New
Guinea and New Caledonia during the Miocene (Fig. 9-2, clade F2). New Caledonia
separated from Australia during the Mesozoic and discussions are ongoing whether
it and the surrounding islands were completely submerged before the Eocene
(Heads 2019). The flora is characterized by high levels of endemism (Pillon et

al. 2017), which is also the case with Dendrophyllanthus (treated as P. subgenus
Gomphidium in McPherson & Schmid 1991).
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Sister to Dendrophyllanthus is clade F1, which corresponds to the
genus Cicca of which the majority of species occur in Madagascar. Node F was
reconstructed as Australia in the Bayarea analysis with low support (Table 9-3),
and as Australia & Madagascar by the DEC model around the Mid-Oligocene.
This relationship indicates an interesting connection and probable long distance
dispersal between Australia and Madagascar (Fig. 9-2). However, it could also be
due to incomplete sampling or possible extinction of taxa in areas between these
distribution centers, but this cannot be inferred here. Within Clade F1, one group
(Cicca subgenus Cicca) dispersed from Madagascar to Africa around and from there
to South America during the Miocene.

Asian spread and diversification

More than 200 species of Phyllanthus s.l. occur in Asia and it has been suggested

as the area where the genus originated (Govaerts et al. 2000). While this seems
unlikely based on our results, Asia still harbours a large diversity of Phyllanthus
species, which is a mix of several groups. The Asian genus Nymphanthus (previously
Phyllanthus subgenus Eriococcus) with a crown age of 23.74 Ma (HPD 31.88-16.28)
is reconstructed to have originated on continental Asia, with two independent
movements into West Malesia in the Miocene (Fig. 9-2, node C4). Two species

of Nymphanthus are known from Australia, but only N. lamprophyllus (Miill.

Arg.) R-W.Bouman is included here and this species also crossed Wallace’s line. It
diverged from the Australian Lysiandra at the Eocene-Oligocene boundary. Another
large Asian clade diverged from Node 8 with one group diverging into a clade
comprising Dendrophyllanthus and the other giving rise to a large Malagasy and
African clade.

The origin of the genera Glochidion and Breynia was inferred to be on the
mainland of Asia (Fig. 9-2, node 9). The number of species of the genus Glochidion
included here is limited and the inclusion of more species could lead to a different
interpretation. As inferred here, Glochidion is a recently diverged lineage, which
has speciated extensively, originating in the Late Miocene (Fig. 9-2). More than
300 species are currently recognized and their radiation has been attributed to a
co-diversification with its pollinator (Kato et al. 2003; Kawakita & Kato, 2009). Our
reconstruction of Breynia is comparable to the results by van Welzen et al. (2015),
but their analysis discusses dispersal and vicariance at regional to country levels.
The genus Synostemon consists of about 40 species and diverged from Breynia
around 16 Ma (Fig. 9-2, node 11) as the lineage reached Australia and subsequently
speciated there.

Diversification of tribe Phyllantheae

Phyllanthus s.1. is composed of several major clades showing distinctly different
species numbers, some of which have been inferred to be linked to their specialized
pollination system involving a mutualism with parasitic moths (Kato & Kato
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2004a). This pollination system and variations of it have been found in several
groups of tribe Phyllantheae, most notably in Glochidion (Kato et al. 2003), Breynia
(Kwakita & Kato, 2004b), Kirganelia (Kawakita & Kato 2009; Kato & Kawakita
2017), Dendrophyllanthus (as P. subgenus Gomphidium; Kawakita & Kato 2004a)
and with some indications for species from Madagascar (Kawakita & Kato 2009;
Kato & Kawakita 2017) and the Neotropics (Kawakita et al. 2019). This mutualism
has not always resulted in higher species numbers or speciation rates (Fig. 9-3).
Speciation rates in Kirganelia were similar to Nymphanthus and Cathetus, for
example (Table 9-4), which have been inferred to have different pollination

systems (Luo et al. 2011b; Kato & Kawakita 2017). There are about 30 species in the
palaeotropical Kirganelia (Bouman et al. 2018), which are often widespread and
characterized by small pentamerous flowers and berries that are probably dispersed
by birds. In contrast, there are more than 150 species in Dendrophyllanthus with
most of this diversity found in Papua New Guinea and New Caledonia. Glochidion
contains more than 300 species throughout Southeast Asia. While species in
Dendrophyllanthus often have capsular fruits, fruits of Glochidion also dehisce to
present brightly coloured sarcotestal seeds to attract birds. Bird dispersal seems to
have resulted in species with wide distributions in Kirganelia, possibly constraining
speciation rates, but similar patterns are not observed and should be further
explored for Glochidion and Dendrophyllanthus. While the number of studies
exploring the finesse and differences of this extraordinary pollination mutualism are
steadily increasing, dispersal studies should be included to see how quickly genetic
barriers can be raised between populations following isolation.

Conclusion

The evolutionary history of tribe Phyllantheae is explored here in more detail. The
origin of Phyllanthus s.1. is dated to the Early Eocene, congruent with the PETM,
while fossil findings in Europe hint at the possibility for a boreotropic origin and or
migration pattern. Other theories, such as the Indian Raft hypothesis are unlikely
to have played a role in the present distribution of the clade, but enhanced sampling
of Indian taxa and taxa associated with Nellica (Clade A in Fig. 9-2) should be
investigated in future studies to exclude this. Numerous dispersal events in the
Cenozoic can be traced to the Miocene geothermal hypothesis or long-distance
dispersal. Diversification rates were in general quite low, but a shift detected

on node 8 (Fig. 9-2) could be linked to a starting pollination mutualism with

moths (Kawakita & Kato 2009), although this was not the only factor as dispersal
strategies seem to have constrained further speciation in other clades. Future
studies should focus on detailing the various clades of tribe Phyllantheae, where the
genera Flueggea and Margaritaria represent interesting pantropical taxa with bird-
dispersed seeds.
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Supplement

Supplementary figure S9-1. Summarized chronogram of Phyllanthaceae

with tribes collapsed, relevant nodes are shown with 95% HPD; median age of
divergence between tribe Phyllantheae and tribe Wielandieae and Poranthereae
is given for the different reconstructions above HPD bar. (a) Chronogram of
Phyllanthaceae with divergence age with Picrodendraceae constrained at 84 Ma.
(b) Chronogram of Phyllanthaceae with divergence age with Picrodendraceae
constrained at 108 Ma.
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Supplementary figure S9-2. Ancestral area estimations of Phyllanthus and ingroup
genera following the BAYAREA model. Distributions of taxa are shown at branch
tips. Reconstructions on nodes with highest probability are shown. The figure is
shown on pages 383 - 386. A full size pdf is available with the author.
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Supplementary figure S9-3. Ancestral area estimations of Phyllanthus and ingroup
genera following the DEC model. Distributions of taxa are shown at branch tips.
Reconstructions on nodes with highest probability are shown. The figure is shown
on pages 388 - 391. A full size pdf is available with the author.
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Supplementary figure $9-4. Additional plots of speciation rates through time of
specific clades. Black line represents mean speciation rate through time of the whole
phylogeny, red that of a selected clade.
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Supplementary figure S9-4. Continued.
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