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Noise! Noise! Noise!
That’s one thing he hated! The NOISE!

Dr. Suess, How the Grinch stole Christmas!

PART I:

PREPROCESSING MEDICAL SOCIAL

MEDIA TEXT
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DATA-DRIVEN SPELLING

CORRECTION

Edited from: Anne Dirkson, Suzan Verberne, Abeed Sarker & Wessel Kraaij (2019), Data-
Driven Lexical Normalization for Medical Social Media, Multimodal Technologies and
Interaction 3(3): 60.

The extraction of knowledge from medical social media is complicated by colloquial lan-
guage use and misspellings. This noisiness can be reduced through lexical normalization:
the transformation of non-standard text to a standardized vocabulary. Yet, lexical normal-
ization of such data has not been addressed effectively.

To this end, we present a data-driven lexical normalization pipeline with a novel spelling
correction module for medical social media. We find that our method significantly
outperforms state-of-the-art spelling correction methods and can detect mistakes with an
F1 of 0.63 despite an extreme imbalance in the data.

Additionally, we present the first corpus for spelling mistake detection and correction in
a medical patient forum. We make this corpus publicly available for the community to
facilitate further research on this topic.
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2.1. INTRODUCTION
In recent years, user-generated data from social media that contains information about
health, such as patient forum posts or health-related tweets, has been used extensively
for medical text mining and information retrieval (IR) [116]. This user-generated data
encapsulates a vast amount of knowledge, which has been used for a range of health-
related applications, such as the tracking of public health trends [267] and the detection
of adverse drug events [266]. However, the extraction of this knowledge is complicated by
non-standard and colloquial language use, typographical errors, phonetic substitutions,
and misspellings [65, 229, 261]. This general noisiness of social media text is only
aggravated by the complex medical domain [116].

The noisiness of medical social media can be reduced through lexical normalization:
the transformation of non-standard text to a standardized vocabulary. Nonetheless,
lexical normalization for medical social media has not been explored thoroughly. Medical
lexical normalization methods (i.e., abbreviation expansion [210] and spelling correction
[168, 230]) have mostly been developed for clinical records or notes. Although clinical
records also contain many domain-specific abbreviations and misspellings, their contents
are typically focused solely on the medical domain. In contrast, social media text typically
covers a wider vocabulary including colloquial language and layman’s terms for medical
concepts [116, 352]. For medical social media, some recent studies have explored the
related task of concept normalization (i.e., the mapping of tokens to standardized concept
IDs in an ontology) [116].1 Community-driven research on the topic has been boosted by
the public release of relevant annotated data sets.2 However, these available annotated
data sets for concept normalization do not annotate misspellings explicitly and are thus
not suitable for evaluating lexical normalization. As of yet, there are no publicly available
annotated data sets for lexical normalization in medical social media.

Currently, the most comprehensive benchmark for lexical normalization in general-
domain social media is the ACL W-NUT 2015 shared task3 [19]. The current state-of-the-
art system for this task is MoNoise [318]. However, this system is supervised and uses
a lookup list of all replacement pairs in the training data as one of its important features.
The training data from the task consists of 2,950 tweets with a total of 3,928 annotated non-
standard words [19]. As extensive training data is unavailable for medical social media,
such supervised systems cannot be employed in this domain. The best unsupervised
system available is a modular pipeline with a hybrid approach to spelling, developed by
Sarker [261]. Their pipeline also includes a customisable back-end module for domain-
specific normalization. However, this back-end module relies on (i) a standard dictionary
supplemented manually with domain-specific terms to detect mistakes and (ii) a language
model of distributed word representations (word2vec) of generic Twitter data to correct
these mistakes (for more detail see Section 2.3.2). For domains that have many out-of-
vocabulary (OOV) terms compared to the available dictionaries and language models,

1For example, lexical normalization of ‘pounding hed’ would output ‘pounding head’, whereas concept
normalization would aim to map it to the concept of Headache in a medical ontology such as SNOMED CT.
A major difference between lexical and concept normalization is that the latter is constrained to terms of a pre-
defined category (e.g., symptoms), whereas lexical normalization is unconstrained and can include any term.

2CADEC [151], PsyTAR [353] and the shared tasks of the SMM4H task [268, 335]
3https://noisy-text.github.io/norm-shared-task.html

https://noisy-text.github.io/norm-shared-task.html


2.2. RELATED WORK

2

25

such as medical social media, this is problematic.
Manual creation of specialized dictionaries is an unfeasible alternative: medical social

media can be devoted to a wide range of different medical conditions and developing
dictionaries for each condition (including laymen terms) would be very labor-intensive.
Additionally, there are many different ways of expressing the same information and the
language use in the forum evolves over time. In this chapter, we present an alternative: a
corpus-driven spelling correction approach. Our method is designed to be conservative
and to focus on precision to mitigate one of the major challenges of correcting errors
in domain-specific data: the loss of information due to the erroneous correction of
already correct domain-specific terms. Although dictionary-based retrieval will capture all
mistakes, because any word that is not in the dictionary is considered a mistake, thereby
attaining a high recall, its precision will be low. This is a result of words that are correct
but not present in the dictionary as they will be erroneously marked as mistakes. Many
domain-specific terms will fall in this category. In contrast, data-driven methods can
capture patterns to recognize these non-mistakes as correct words and thereby improve
precision, while recall could go down as these patterns might miss mistakes, for example
because they are common. A data-driven detection approach will thus be more precise
than dictionary-based retrieval.

In this chapter, we address two research questions:

1. To what extent can corpus-driven spelling correction reduce the out-of-vocabulary
rate in medical social media text?

2. To what extent can corpus-driven spelling correction improve the accuracy of
health-related classification tasks with social media text?

Our contributions are (1) an unsupervised data-driven spelling correction method that
works well on specialized domains with many OOV terms without the need for a
specialized dictionary4 and (2) the first corpus for evaluating mistake detection and
correction in a medical patient forum.5

The rest of the paper is organized as follows: In Section 2.2, we briefly review related
work. In Section 2.3, we discuss the data sets we employ (Section 2.3.1) followed by a
detailed description of our methodology (Section 2.3.2). In Section 2.4, we present our
evaluation results, which are discussed further in Section 2.5. Lastly, in Section 2.6 we
conclude our paper with final insights and an outline of future work.

2.2. RELATED WORK

2.2.1. CHALLENGES IN CORRECTING SPELLING ERRORS IN MEDICAL SOCIAL

MEDIA
A major challenge for correcting spelling errors in small and highly specialized domains is
a lack of domain-specific resources. This complicates the automatic creation of relevant
dictionaries and language models. Moreover, if the dictionaries or language models are
not domain-specific enough, there is a high probability that specialized terms will be

4Our lexical normalization pipeline is available at: https://github.com/AnneDirkson/LexNorm
5The corpus is available at https://github.com/AnneDirkson/SpellingCorpus

https://github.com/AnneDirkson/LexNorm
https://github.com/AnneDirkson/SpellingCorpus
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incorrectly marked as mistakes. Consequently, essential information may be lost as these
terms are often key to knowledge extraction tasks (e.g., a drug name) and to specialized
classification tasks (e.g., does the post contain a side effect of drug X?).

This challenge is further complicated by the dynamic nature of language on medical
social media: in both the medical domain and social media novel terms (e.g., novel
drug names) and neologisms (e.g., group-specific slang) are constantly introduced.
Unfortunately, professional clinical lexicons are also unsuited for capturing the domain-
specific terminology on forums, because laypersons and health care professionals
express health-related concepts differently [348]. Another complication is the frequent
misspellings of key medical terms, as medical terms are typically difficult to spell [352].
This results in an abundance of common mistakes in key terms, and thus, a large amount
of lost information if these terms are not handled correctly.

2.2.2. LEXICAL NORMALIZATION OF SOCIAL MEDIA

The emergence of social networks and text messaging has redefined spelling correction to
the broader task of lexical normalization, which may also involve tasks like abbreviation
expansion [19]. In earlier research, text normalization for social media was mostly
unsupervised or semi-supervised (e.g., [121]) due to a lack of annotated data. These
methods often pre-selected and ranked correction candidates based on phonetic or lexical
string similarity [120, 121]. Han and Baldwin [120] additionally used a trigram language
model trained on a large Twitter corpus to improve correction. Although these methods
did not rely on training data to correct mistakes, they did rely on dictionaries to determine
whether a word needed to be corrected [120, 121]. The opposite is true for modern
supervised methods: they do not rely on dictionaries but do rely on training data for both
misspelling detection and correction. For instance, the best performing method at the
ACL W-NUT shared task of 2015 used canonical forms in the training data to develop their
own normalization dictionary [144]. Other competitive systems were also supervised and
often used deep learning to detect and correct mistakes [175, 208] (for more detail on W-
NUT systems see Baldwin et al. [19]). More recent competitive results for this shared task
include MoNoise [318]. As mentioned, this system is also supervised and uses a lookup
list of all replacement pairs in the training data as an important feature in their spelling
correction. Since such specialized resources (appropriate dictionaries or training data)
are not available for medical forum data, a method that relies on neither is necessary. We
address this gap in this chapter.

Additionally, recent approaches (e.g., [261]) often make use of language models for
spelling correction. Language models, however, require a large corpus of comparable text
from the same genre and domain [261], which is a major obstacle for employing such an
approach in niche domains. Since forums are often highly specialized, the resources that
could capture the same language use are limited. Nevertheless, if comparable corpora are
available, language models can contribute to effectively reducing spelling errors in social
media [261] due to their ability to capture the context of words and to handle the dynamic
nature of language.

Recent developments in the NLP field towards distributional language models based
on byte-pair (BPE) or character-level encoding instead of word-level encoding call into
question the need for prior spelling correction. In general, character-level models
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are more robust to noise than word-level models, as they can exploit the remaining
character structure regardless of errors. Niu et al. [218] recently developed a character-
level attentional network model for medical concept normalization in social media
which can alleviate the problem of out-of-vocabulary (OOV) terms by using a character-
level encoding. Their model is robust to misspellings resulting from double characters,
swapping of letters, adding hashtags and deletions.

However, firstly, the robustness to noise of character-based models appears to rely on
whether they have been trained on noisy data [26, 132]. Otherwise, they are prone to
breaking when presented with synthetic or natural noise [26, 132]. Thus, if sufficiently
large amounts of data with similar types of noise are available, character-based models
may negate the need for spelling correction. However, in domains lacking such resources,
spelling correction in the pre-processing stage is still needed. Secondly, character-based
models have computational disadvantages: their computational complexity is higher
and it becomes harder to model long-range dependencies [132]. Alternatively, word
embeddings designed to be robust to noise [196] could be used. Yet, also for this
method, sufficiently large amounts of comparable noisy data are necessary. To provide
an indication, Malykh et al. [196] use the Reuters CV-1 corpus consisting of 800,000 news
stories ranging from a few hundred to several thousand words in length [177] to generate
their robust English word embeddings.

2.2.3. LEXICAL NORMALIZATION OF CLINICAL RECORDS

Like medical social media, clinical notes made by doctors are user-generated and noisy.
In fact, Ruch et al. [255] reported about one spelling error per five sentences. Yet, most
normalization research for clinical notes has focused on concept normalization instead of
lexical normalization [116]. A prominent shared task for concept normalization of clinical
notes is Task 2 of the CLEF e-Health workshop in 2014. Its aim was to expand abbreviations
in clinical notes by mapping them to the UMLS database [210]. The best system by Wu
et al. [343] applied four different trained tagging methods depending on the frequency
and ambiguity of abbreviations. Unfortunately, the abbreviations used by doctors are not
the same as the ones used by patients, and thus these methods do not transfer.

To correct misspellings in clinical notes, Lai et al. [168] developed a spell checker
based on the noisy channel model by Shannon [273]. Noisy channel models interpret
spelling errors as distortions of a signal by noise. The most probable message can then
be calculated from the source signal and noise models. This is how spelling correction is
modeled traditionally [64]. Although their correction accuracy was high, their method
relied on an extensive dictionary compiled from multiple sources to detect mistakes.
Similarly, the method by Patrick et al. [230] also used a compiled dictionary for detecting
errors. For correction, Patrick et al. [230] used edit distance-based rules to generate
suggestions which were ranked using a trigram model. Fivez et al. [110] was the first
to leverage contextual information to correct errors in clinical records. They developed
an unsupervised, context-sensitive method that used word and character embeddings to
correct spelling errors. Their approach outperformed the method proposed by Lai et al.
[168] for the benchmark MIMIC-III [146]. However, they did not perform any mistake
detection, as they simply tried to correct the annotated misspellings of MIMIC-III. In
conclusion, the methods developed for spelling correction in clinical records either only
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focus on correction or rely solely on extensive, compiled dictionaries to find mistakes.
Therefore, they are not applicable in domains lacking such resources.

2.3. MATERIALS AND METHODS

2.3.1. DATA
Data collection For evaluating spelling correction methods, we use an international
patient forum for patients with Gastrointestinal Stromal Tumor (GIST). It is moderated
by GIST Support International (GSI). This data set was donated to Dr. Verberne by GSI in
2015. We use a second cancer-related forum to assess the generalisability of our methods:
a sub-reddit community on cancer, dating from 16/09/2009 until 02/07/2018.6 It was
scraped using the Pushshift Reddit API.7 The data was collected by looping over the
timestamps in the data. This second forum is roughly four times larger than the first in
terms of the number of tokens (See Table 2.1).

Table 2.1: Raw data without punctuation. IQR: Inter-quartile range

GIST forum Reddit forum
# Tokens 1,255,741 4,520,074
# Posts 36,277 274,532
Median post length (IQR) 20 (35) 11 (18)

Data annotation Spelling mistakes were annotated for 1000 randomly selected posts
from the GIST data. Each token was classified as a mistake (1) or not (0) by the first
author. For the first 500 posts, a second annotator checked if any of the mistakes were
false positives. In total, 99 of the 109 non-word spelling errors were annotated for
correction experiments. The remaining 10 errors were found later during error detection
experiments and were therefore only included in these experiments. The corrections for
the 53 unique mistakes present in the first 500 posts were annotated individually by two
annotators, of which one was a GIST patient and a forum user. Annotators were provided
with the complete post to determine the correct word. The initial absolute agreement
was 89.0%. If a consensus could not be reached, a third assessor was used to resolve the
matter. The remaining mistakes were annotated by the first author. For the correction
‘reoccurrence’, the synonym ‘recurrence’ was also considered correct. As far as we are
aware, no other spelling error corpora for this domain are publicly available.

To tune the similarity threshold for the optimal detection of spelling mistakes, we used
60% of the annotated data as a development set. The split was done per post and stratified
on whether a post contained mistakes or not. Since the data is extremely unbalanced, we
balanced the training data to some extent by combining the mistakes with a ten-fold of
random correct words with the same word length distribution (see Table 2.2). These words
were not allowed to be numbers, punctuation, or proper nouns, because these are ignored
by our error detection process. The development set was split in a stratified manner into
10 folds for cross-validation.

6http://www.reddit.com/r/cancer
7https://github.com/pushshift/api

http://www.reddit.com/r/cancer
https://github.com/pushshift/api
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Table 2.2: Annotated data for spelling detection experiments. *excluding punctuation, numbers and proper
nouns.

Mistakes (%) Total word count*

Training set 57 (9.1%) 627
Test set 45 (0.42%) 10760

Corpus for calculating weighted edit matrix Since by default all edits are weighted
equally when calculating Levenshtein distance, we needed to compute a weighted edit
matrix in order to assign lower costs and thereby higher probabilities to edits that occur
more frequently in the real world. We based our weighted edit matrix on a corpus of
frequencies for 1-edit spelling errors compiled by Peter Norvig.8 This corpus is compiled
from four sources: (1) a list of misspellings made by Wikipedia editors, (2) the Birkbeck
spelling corpus, (3) the Holbrook corpus and (4) the Aspell error corpus.

Specialized vocabulary for OOV estimation in cancer forums To be able to calculate
the number of out-of-vocabulary terms in the two cancer forums, a specialized vocabulary
was created by merging the standard English lexicon CELEX [46] (73,452 tokens), the NCI
Dictionary of Cancer Terms [215] (6,038 tokens), the generic and commercial drug names
from the RxNorm [314] (3,837 tokens), the ADR lexicon used by Nikfarjam et al. [217]
(30,846 tokens) and our in-house domain-specific abbreviation expansions (DSAE) (42
tokens) (see 2.3.2 for more detail). As many terms overlapped with those in CELEX, the
total vocabulary consisted of 118,052 tokens (62.2% CELEX, 5.1% NCI, 26.1% ADR, 6.5%
RxNorm and <0.01% DSAE).

2.3.2. METHODS
Preprocessing URLs and email addresses were replaced by the strings -URL- and -
EMAIL- using regular expressions. Furthermore, text was lower-cased and tokenized using
NLTK. The first modules of the normalization pipeline of Sarker [261] were employed:
converting British to American English and normalizing generic abbreviations (see Figure
2.1). Some forum-specific additions were made: Gleevec (British variant: Glivec)
was included in the British-American spelling conversion, one generic abbreviation
expansion that clashed with a domain-specific one was substituted (i.e., ‘temp’ defined
as temperature instead of temporary), and two problematic medical terms were removed
from the slang dictionary (i.e., ‘ill’ corrected to ‘i’ll’ and ‘chronic’ corrected to ‘marijuana’).

Moreover, the abbreviations dictionary by Sarker [261] was lower-cased. As
apostrophes in contractions are frequently omitted in social media posts (e.g., im instead
of i’m), we expanded contractions to their full form (e.g., i am). Firstly, contractions with
apostrophes were expanded and subsequently those without apostrophes were expanded
only if they were not real words according to the CELEX dictionary. Lastly, domain-specific
abbreviations were expanded with a lexicon of domain-specific abbreviation expansions
(DSAE). The abbreviations were manually extracted from 500 randomly selected posts of
the GIST forum data. This resulted in 47 unique abbreviations. Two annotators, of which

8http://norvig.com/ngrams/count_1edit.txt

http://norvig.com/ngrams/count_1edit.txt
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one was a domain expert, individually determined the correct expansion term for each
abbreviation, with an absolute agreement of 85.4%. Hereafter, they agreed on the correct
form together.9
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raw text
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Spelling 
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Generic Domain-specific
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Figure 2.1: Sequential processing pipeline

Spelling correction

Baseline methods We used the method by Sarker [261] as a baseline for spelling
correction. Their method combines normalized absolute Levenshtein distance with
Metaphone phonetic similarity and language model similarity. For the latter, distributed
word representations (skip-gram word2vec) of three large Twitter data sets were used. In
this chapter, we used the largest available version of the DIEGO LAB Drug Chatter Corpus
(around 1 Billion tweets) [263], as it was the only health-related corpus of the three. We
also use a purely data-driven spelling correction method for comparison: Text-Induced
Spelling Correction (TISC) developed by Reynaert [248]. It compares the anagrams of
a token to those in a large corpus of text to correct mistakes. These two methods are
compared with simple absolute and relative Levenshtein distance and weighted versions
of both. To evaluate the spelling correction methods, the accuracy (i.e., the percentage of
correct corrections) was used. The weights of the edits for weighted Levenshtein distance
were computed using the log of the frequencies of the Norvig corpus. We used the log to
ensure that a 10x more frequent error does not become 10x as cheap, as this would make
infrequent errors too improbable. In order to make the weights inversely proportional to
the frequencies and scale the weights between 0 and 1 with lower weights signifying lower

9This abbreviations lexicon is shared at https://github.com/AnneDirkson/LexNorm

https://github.com/AnneDirkson/LexNorm
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costs for an edit, the following transformation of the log frequencies was used: Weight Edit
Distance = 1

1+log ( f r equenc y) .

Correction candidates Spelling correction methods were first compared using the terms
from the specialized vocabulary for cancer forums (see section 2.3.1) as correction
candidates. This enables us to evaluate the methods independently of the vocabulary
present in the data. Hereafter, we assessed the impact of using correction candidates
from the data itself, since our aim is to develop a method that is independent of manually
compiled lexicons. Numbers, proper nouns, and punctuation are ignored as possible
correction candidates.

We inspected whether restricting the pool of eligible correction candidates based
on their corpus frequency relative to that of the token aids correction. We use relative
corpus frequency thresholds ranging from at least 0 times (no restriction) to 10 times more
frequent than the token. The underlying idea is that the correct word will be used more
often than the incorrect word and by restricting the candidates we prevent implausible but
similar words from hindering correction. This, for instance, prevents mistakes from being
corrected by other similar and roughly equally frequent mistakes. A relative, instead of
absolute, threshold that depends on the frequency of the mistake enables us to also correct
mistakes even if they occur more commonly (e.g., misspellings of a complex medication
name). Candidates are considered in order of frequency. Of the candidates with the
highest similarity score, the first is selected.

We tried two different approaches to further improve correction by altering the pool of
correction candidates. Firstly, we tested whether prior lemmatization of the spelling errors
with or without prior lemmatization of the correction candidates could improve spelling
correction. Secondly, we investigated the effect of imposing an additional syntactic
restriction on the correction candidates, namely only allowing those with the same Part-
of-Speech tag at least once in the data or the same surrounding POS tags to the left and
right (i.e., the POS context) at least once in the data. McNemar tests were used to test
whether the predictions of various correction methods are significantly different. In all
follow-up experiments, correction candidates were derived from the respective data set
and constrained by the optimal relative corpus frequency threshold.

Improving the baseline method For the best baseline method with data-driven
candidates, we explored whether the context of the token could aid the correction further
using (1) language models of the forum itself or (2) publicly available distributed and
sequential language models of health-related social media data. This last category
includes the distributed word2vec (dim= 400) and sequential trigram language models
developed by Sarker and Gonzalez [263] and the distributed word2vec (dim = 200)
HealthVec model developed by Miftahutdinov et al. [207]. The models by Sarker and
Gonzalez [263] are based on around 1 billion Twitter posts derived from user timelines
where at least 1 medication is mentioned. A smaller version of this language model is used
in the current state-of-the-art normalization pipeline for general social media [261].10

The HealthVec model is based on the Health Dataset consisting of around 2.5 million

10Language models can be obtained from: https://data.mendeley.com/datasets/dwr4xn8kcv/3
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user comments from six web resources: WebMD, Askapatient, patient.info, Dailystrength,
drugs.com, and product reviews from the Amazon Dataset.11 Besides employing these
language models, we explored whether adding double Metaphone phonetic similarity
[233] improves correction. Phonetic similarity is a measure of how phonetically similar
an error is to the potential correction candidate.

The best baseline method was combined with these similarity measures (i.e., phonetic
similarity or the similarity based on a language model) in a weighted manner with weights
ranging from 0 to 1 with steps of 0.1. The inverse weight was assigned to the baseline
similarity measure. For all language models, if the word was not in the vocabulary, then
the model similarity was set to 0, essentially rendering the language model irrelevant in
these cases. To investigate the impact of adding these contextual measures, Pearson’s r is
used to calculate the correlation between the correction accuracy and the assigned weight.

Correcting Concatenation Errors If a word is not in the Aspell dictionary12, but is also
not a spelling mistake, our method checks if it needs to be split into two words. It is split
only if it can be split into two words of at least 3 letters which both occur more in the
corpus more frequently than the relative corpus frequency boundary. For each possible
split, the frequency of the least frequent word is considered. The most plausible split is
the one for which this lower frequency is the highest (i.e., the least frequent word occurs
the most). Words containing numbers (e.g., 3months) are the exception: they are split so
that the number forms a separate word.

Spelling mistake detection We manually constructed a decision process, inspired by
the work by Beeksma et al. [25], for detecting spelling mistakes (See Figure 2.7). The
optimal relative corpus frequency threshold determined for spelling correction in our
earlier experiments is adopted. On top of this threshold, the decision process uses the
similarity of the best candidate to the token to identify mistakes. If there is no similar
enough correction candidate available, then the word is more likely to be a unique
domain-specific term we do not wish to correct than a mistake. The minimum similarity
threshold is optimized with a 10-fold cross validation grid search from 0.40 to 0.80 (steps of
0.02). The loss function used to tune the parameters was the F0.5 score, which places more
weight on precision than the F1 score. We believe it is more important to not alter correct
terms than to retrieve incorrect ones. Candidates are considered in order of frequency. Of
the candidates with the highest similarity score, the first is selected. The error detection
automatically labels numbers, punctuation, proper nouns, and words present in the
Aspell dictionary as correct. We used the word list 60 version of the Aspell dictionary, as is
recommended for spelling correction. To verify that medication names were not being
classified as proper nouns and thereby excluded from spelling correction, we checked
the part-of-speech tags of the most common medication for GIST patients (gleevec) and
two of its common misspellings (gleevic and gleevac). For gleevec, 81.4% of the mentions
were classified as nouns (NN). The next two largest categories were adjectives (JJ) (7.2%),
plural nouns (NNS) (4.7%) and verbs (VB) (3.9%). The remaining 2.8% were divided over
10 POS-tags (ranging from 0.6% to 0.0005%). Most importantly, none were classified as

11Available at: http://jmcauley.ucsd.edu/data/amazon
12Available at: http://Aspell.net/

http://jmcauley.ucsd.edu/data/amazon
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proper nouns (NNP or NNPS). Similarly, gleevic and gleevac were labeled as nouns (NN)
78.1% and 83.9% of the time and neither was ever labelled as a proper noun. For gleevic,
the remaining cases were divided amongst plural nouns (11.4%), adjectives (8.3%) and
verbs (2.2%). For gleevac, the remainder was divided between verbs (11.9%) and adjectives
(4.2%).

We compared our optimized decision process with and without concatenation error
detection (see Section 2.3.2) with error detection using two commonly used dictionaries,
CELEX [46] and Aspell, with Microsoft Word and with TISC, another data-driven detection
method [248]. Significance was calculated with McNemar tests. Any mistakes overlapping
between the training and test set were not included in the evaluation.

Impact of the corpus size on detection To measure the influence of the size of the
corpus on spelling mistake detection, we varied the size of the corpus from which
correction candidates are derived. The token frequencies of errors and candidates were
both calculated using this corpus. Therefore, the frequencies of mistakes and potential
corrections would vary and we could estimate for each corpus size how much the error
detection in 1000 posts would change. We used Jaccard similarity to measure the overlap
between the error predictions of each possible combination of two different corpus sizes.

As our relative corpus frequency threshold is a minimal threshold, bigger corpora
and thus larger differences between the token frequency of the error and that of the
correct variant would not pose a problem. Consequently, we randomly selected posts to
artificially downsize our two cancer forums exponentially. We used sizes ranging from
1000 posts to all forum posts. The 1000 posts for which errors were detected were always
included in the corpus. For the GIST forum, we used the 1000 annotated posts.

Impact of the degree of noisiness of the data To investigate the impact of the level of
noise in the data on spelling correction and detection, we simulated data sets with varying
proportions of misspellings. As our method was designed on data with few errors (< 1%
in our sample), this will help us to understand to what extent our method can generalize
to more noisy user-generated data. We generated artificial data by altering the number of
misspellings in two cancer-related fora.

In line with the work by Niu et al. [218], we generated artificial noise typical of social
media text by (i) deleting a single letter, (ii) doubling a letter and (iii) swapping two
adjacent letters. Niu et al. [218] also added hashtags to words, but as this is only relevant
for Twitter we omit this transformation. Words are randomly selected based on a pre-
determined probability of occurrence (1,2,3,4,8 and 16%). Which letter is removed or
swapped in the word is dependent on the normalized likelihood of a deletion or swap
occurring in real-word data. We use the normalized log frequencies of the Norvig corpus
[219]. Additionally, the log frequencies were normalized per word to sum to 1. Which letter
is doubled is randomly selected, as frequencies for such operations are not available. We
evaluated the spelling correction and detection for each forum with the average of three
runs of 1000 randomly selected posts with 3 different seeds.

Effect on OOV rate The percentage of out-of-vocabulary (OOV) terms is used as an
estimation of the quality of the data: less OOV-terms and thus more in-vocabulary (IV)
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terms are a proxy for cleaner data. As the correction candidates are derived from the data
itself, one must note that words that are not part of Aspell may also be transformed from
IV to OOV. OOV analysis was done manually.

External validation To evaluate the impact of lexical normalization as a preprocessing
step on the performance of separate downstream tasks, we perform extrinsic evaluation
of our pipeline by running six text classification experiments. We obtained six publicly
available health-related Twitter data sets ranging in size from 588 to 16,141 posts (see Table
2.3). As can be seen in Table 2.3, the data sets also have varying degrees of imbalance. It is
not uncommon for social media data sets to be highly imbalanced and thus we investigate
whether the impact of spelling correction is influenced by imbalance. The data sets were
retrieved from the data repository of Dredze13 and the shared tasks of Social Media Mining
for Health Applications (SMM4H) workshop 2019.14

Text classification was performed before and after normalization using default sklearn
classifiers: Stochastic Gradient Descent (SGD), Multinomial Naive Bayes (MNB) and
Linear Support Vector Machines (SVC). Unigrams were used as features. A 10-fold cross-
validation was used to determine the quality of the classifiers and a paired t-test was
applied to determine significance of the absolute difference. Only the best performing
classifier is reported per data set. For the shared tasks of the SMM4H workshop, only the
training data was used.

Table 2.3: Six classification data sets of health-related Twitter data. *SMM4H: Social Media Mining for Health
Applications workshop

Data set Task Size Positive Class
Task 1 SMM4H 2019* Presence adverse drug reac-

tion
16,141 8.7%

Task 4 SMM4H 2019* Flu vaccine Personal health mention of flu
vaccination

6,738 28.3%

Flu Vaccination Tweets [141] Relevance to flu vaccination 3,798 26.4%
Twitter Health [231] Relevance to health 2,598 40.1%
Task4 SMM4H 2019* Flu infection Personal health mention of

having flu
1,034 54.4%

Zika Conspiracy Tweets [91] Contains pseudo-scientific in-
formation

588 25.9%

To evaluate our method on generic social media text, we used the test set of the
ACL W-NUT 2015 task [19]. The test set consists of 1967 tweets with 2024 one-to-one,
704 one-to-many, and 10 many-to-one mappings. We did not need to use the training
data, as our method is unsupervised. We omitted the expansion of contractions from our
normalization pipeline for the W-NUT task, because expanding contractions was not part
of the goals of the task. Error analysis was done manually on the 100 most frequent errors.

13http://www.cs.jhu.edu/~mdredze/data/
14https://healthlanguageprocessing.org/smm4h/challenge/

http://www.cs.jhu.edu/~mdredze/data/
https://healthlanguageprocessing.org/smm4h/challenge/
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2.4. RESULTS
In this section, we will report the distribution of spelling errors in our corpus (2.4.1), the
evaluation of spelling correction (2.4.2) and detection methods (2.4.3) on our spelling
corpus and the impact of corpus size (2.4.4) and the level of noise in the corpus (2.4.5)
on the efficacy of our method. Hereafter, we assess the impact of our method on the OOV
rate in two cancer-related fora (2.4.6) and on classification accuracy of six health-related
Twitter benchmarks (2.4.7). We also evaluate the performance of our method on the W-
NUT shared task for generic social media normalization (2.4.7).

2.4.1. ERROR DISTRIBUTION
Spelling errors can be divided into non-word errors (i.e., errors that are not valid words)
and real-word errors (i.e., errors that result in another valid word) [164]. Incorrect
concatenations and splits can be either. For example, ‘scan’ to ‘scant’ is a real word error
whereas ‘side effects’ to ‘sideeffects’ is a non-word error. We focus on correcting non-word
errors, as we are not interesting in correcting syntactic or semantic errors [164].

Nonetheless, we investigate the prevalence of these error types in the data to gain
insight into which types of errors are made in medical social media text. As can be seen
in Table 2.4, our corpus of 1000 medical posts from the GIST forum mainly contains
non-word errors. Moreover, non-word errors contain the highest percentage of medical
misspellings (47.7%). Comparatively, only 20% of real word errors are medical terms. Most
posts do not contain any errors (see Figure 2.2), but for those that do, there was in most
cases only one error per post.

Table 2.4: Error distribution in 1000 GIST posts

Error type Non-word Incorrect splits Incorrect concatenations Real word

Amount 109 17 24 30
Non-Medical/Medical 57/52 25/5 14/3 18/6
Percentage of tokens 0.32% 0.05% 0.07% 0.09%
Example mistake gleevac gall bladder sideeffects scant
Example correction gleevec gallbladder side effects scan

2.4.2. SPELLING CORRECTION
The normalization step prior to spelling correction (see Figure 2.1) corrected 12 of the
99 spelling errors, such as ‘feelin’ to ‘feeling’. These errors are all on the fuzzy boundary
between spelling errors and slang. Thus, spelling correction experiments were performed
with the remaining annotated 87 spelling errors.

The state-of-the-art method for generic social media by Sarker [261] performs poorly
for medical social media: it corrects only 19.3% of the mistakes (see Table 2.5). In
fact, it performed significantly worse (p < 0.0001) than all edit distance based methods.
Computationally, it is also much slower (see Table 2.6). A second established data-
driven approach, TISC [248], performed even more poorly (14.8%). TISC was also
significantly worse than all edit-based methods (p < 0.0001). Relative weighted edit
distance performed the best with an accuracy of 68.2%. The theoretical upper bound
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Figure 2.2: Distribution of non-word and real word errors across posts in the GIST forum.

for accuracy was 92.0%, because not all corrections occur in the specialized dictionary.
Examples of corrections can be seen in Table 2.7.

Table 2.5: Correction accuracy using a specialized vocabulary. AE: absolute edit distance. RE: relative edit
distance. WAE: weighted absolute edit distance. WRE: weighted relative edit distance. *Only the best corpus
frequency threshold is reported

Source of candidates Ceiling AE RE WAE WRE Sarker TISC

Specialized vocabulary 92.0% 58.0% 64.7% 63.3% 68.2% 19.3% 14.8%
GIST forum text* 97.6% 73.9% 73.9% 70.4% 72.7% 44.3% -

Table 2.6: Mean computation time over 5 runs

AE RE WAE WRE Sarker

13.36 ms 14.04 ms 29.45 ms 32.00 ms 904.33 ms

However, when using candidates derived from the data itself, unweighted absolute
and relative edit distance perform the best. Relative edit distance accurately corrects
73.9% of all mistakes at a relative corpus frequency threshold (θ) of 9, while absolute
edit distance does so at a θ of 2 to 5 (See Table 2.5 and Figure 2.3). A θ of 9 means that
candidates are only considered plausible if they occur 9 times more frequently than the
spelling error. We elect to use relative edit distance, because it is more fine-grained than
absolute edit distance, especially for short words. Using data-driven candidates increases
the theoretical upper bound from 90.2% to 97.6%. This showcases the limitations of using
dictionaries for correction.

Nonetheless, simply using all words from the data as possible candidates (i.e., a
corpus frequency threshold of 0) for every spelling error results in a very low correction
accuracy (see Figure 2.3). However, imposing the restriction that the corpus frequency of
a viable correction candidate must be at least double (2x) that of the mistake, significantly
improves correction (p < 0.0001) for all correction methods. In that case, for a mistake
occurring 10 times, only words occurring at least 20 times are considered. Thus, the
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Table 2.7: Corrections by different methods with candidates from a specialized vocabulary. *Gleevec and Sutent
are important medications for GIST patients.

Mistake Correction AE RE WAE WRE Sarker TISC

gleevac gleevec* gleevec gleevec gleevec gleevec colonic gleevac
stomack stomach stomach stomach smack stomach smack smack
ovari ovary ovary ovary ovary ovary ova atari
sutant sutent* mutant mutant sutent sutent mutant dunant
mestastis metastasis miscasts metastasis metastasis metastasis miscasts mestastis

assumption that corrections are more common than mistakes appears to hold true.
However, at any threshold all edit distance based methods still significantly (p < 0.001)
outperform the state-of-the-art method [261], in line with previous results (Table 2.5).
Examples of corrections with data-driven candidates are reported in Table 2.8.
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Figure 2.3: Correction accuracy of unique mistakes using correction candidates from the data at various
minimum relative corpus frequency thresholds. Dotted line indicates the best correction accuracy using
dictionary-derived candidates.

Table 2.8: Corrections by different methods with data-driven candidates. AE: absolute edit distance. RE: relative
edit distance. WAE: weighted absolute edit distance. WRE: weighted relative edit distance.

Mistake Correction AE RE WAE WRE Sarker

gleevac gleevec gleevec gleevec gleevec gleevec gleevec
stomack stomach stomach stomach stomach stomach stuck
ovari ovary ovary ovary ovary ovary ovarian
sutant sutent sutent sutent sutent sutent mutant
mestastis metastasis metastis metastis metastis metastis metastis

The accuracy of the best baseline method, namely relative edit distance with a θ of 9,
is unaffected by prior lemmatization of the spelling errors (see Table 2.9). It thus appears
that if prior lemmatization can correct the error, our method automatically does so. In
contrast, additional lemmatization of their corrections and of the correction candidates
significantly reduces accuracy (p = 0.021 and p = 0.011) compared to omitting prior
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lemmatization. Thus, lemmatization of the data or candidates prior to spelling correction
is not recommended.

NoLemmatization LemmatizedInput + LemmatizedOutput + LemmatizedCandidates

73.6% 73.6% 64.7% 67.0%

Table 2.9: Effect of lemmatization of the errors (LemmatizedInput), their corrections (LemmatizedOutput) and
correction candidates (LemmatizedCandidates) on spelling correction accuracy using RE (θ= 9)

Adding weighted phonetic similarity Previous research has shown that when users are
faced with the task of writing an unfamiliar, complex word like a drug name, they tend
to revert to phonetic spelling [235]. Therefore, we investigate whether adding a weighted
phonetic component may improve correction. This is not the case: The weight assigned to
phonetic similarity has a strong negative correlation (-0.92) with the correction accuracy
(p < 0.0001) (see Figure 2.4). This suggests that such phonetic errors are already captured
by our frequency-based method.
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Figure 2.4: Correction accuracy with additional weighted double Metaphone phonetic similarity. Dotted line
indicates the best accuracy with relative edit distance alone.

Adding weighted contextual similarity Previous work has indicated that the context of
spelling mistakes might be helpful to improve spelling correction [110]. Since domain-
specific resources are scarce, one potential approach is to use the contextual information
present in the corpus itself. Based on work by Beeksma et al. [25], we tried to use the Part-
of-Speech (POS) tag of the error or the POS tags of its neighbors to constraint correction
candidates. However, as can be seen in Figure 2.5, adding these constraints reduces
correction accuracy, although not significantly. Aside from some additional errors, using
POS context as a constraint results in identical errors as enforcing a similar POS tag for
potential correction candidates, regardless of whether NLTK or Spacy is used.

As many modern methods use language models to aid spelling correction [261], we
also examine whether we can leverage contextual information by using language models
of the corpus itself to improve correction accuracy. For both Word2vec and FastText
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(a) NLTK POS tags

� � � � 	 ��
���� ������ ���"����������

�

��

��

��

��

��

��

��


�
� 
��
�"

���������
������
��������!�

(b) Spacy POS tags

Figure 2.5: Correction accuracy of spelling mistakes with additional POS tag filters. Dotted lines indicate the best
accuracy with relative edit distance alone.

distributed models of the data, we find that the higher the weight assigned to the language
model similarity, the more the accuracy drops. This inverse correlation is significant and
almost equal to -1 for all dimensionalities (p < 0.000001) (see Figure 2.6a and 2.6b). Our
data is possibly too sparse to place contextual constraints on the correction candidates
or to employ language model similarity in this manner. It is also too small for building a
sequential trigram model [327].

Alternatively, we can employ more generic language models based on medical social
media, but not specific to a particular disease domain. We find that a distributed language
model based on a collection of health-related tweets, the DIEGO Drug chatter corpus
[263], does not manage to improve correction accuracy (see Figure 2.6c). Nevertheless,
a sequential trigram model based on this same Twitter corpus does improve correction
accuracy with 2.2% point to 76.1% at a weight of 0.6 (see Figure 2.6c). The weight assigned
to the probability of a trigram with the correction in place of the error is positively
correlated (r = 0.58) with the correction accuracy. However, the HealthVec distributed
language model can improve the correction accuracy up to 79.5% at a weight of 0.6
(see Figure 2.6d). Overall, its assigned weight is also positively correlated (r = 0.63)
with the correction accuracy. Table 2.10 shows that adding the HealthVec model mostly
improves accuracy for non-medical errors (e.g., ‘explane’) and for medical errors for which
it is difficult to determine whether they should be singular or plural (e.g., ‘ovarie and
surgerys’). One medical term (i.e., ‘surgerys’) is no longer corrected accurately. We opt
to employ this weighted method due to its higher overall accuracy, but one could opt to
not include the HealthVec model depending on the importance of non-medical terms for
the downstream task.

2.4.3. SPELLING MISTAKE DETECTION
A grid search results in an optimal similarity score threshold of 0.76. As higher similarity
scores indicate that tokens are more dissimilar, this means that if the best correction
candidate has a higher similarity score than this threshold, the token is not corrected (see
Figure 2.7). This combination attains the maximum F0.5 score for 8 of 10 folds. For the
other two folds, 0.74 was optimal. See Figure 2.7 for the tuned decision process. On the



2

40 2. DATA-DRIVEN SPELLING CORRECTION

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���
�������������������������������

�

��

��

��

��

��

��

	�
��
��
��
��

�������
�������
�������
�������

(a)
Word2Vec distributed language model
trained on the GIST forum data
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(b)
Fasttext language model
trained on the GIST forum data
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(c)
Language models trained on
the DIEGO Drug chatter corpus
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(d)
Distributed Word2vec (dim= 200) model
(HealthVec) trained on Health Dataset

Figure 2.6: Correction accuracy of spelling mistakes with additional weighted language model (LM) similarity.
Weight of the LM similarity is the inverse of the weight of the relative edit distance. Dotted line indicates the best
accuracy with relative edit distance alone.

Table 2.10: Changes in corrections when HealthVec is added (weight = 0.6) to the relative edit distance (weight =
0.4) with θ = 9. LM = language model.

Error Correct word Correction
Without LM With LM

Improved

alse else false else
lm im am im
esle else resolve else
explane explain explained explain
ovarie ovary ovary ovaries
surgerys surgeries surgeries surgery

Missed surgerys surgery surgery surgury
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test set, our method attains a significantly higher precision (p < 0.0001) and F0.5 score
(p < 0.0001) than all other detection methods (see Table 2.11). Our method does attain a
slightly lower recall than dictionary-based methods, although its recall is very high at 0.91.
Adding concatenation correction to our method improves recall and precision by 0.05 and
0.01, respectively. See Table 2.12 for some examples of errors made by our decision process
and the corrections our method will output.

Although the recall of generic dictionaries is maximal at 1.0, their precision is low
(0.11 and 0.26). Both are logical: The high recall is a result of dictionary-based methods
classifying all terms not included in the dictionary as mistakes, which will include all
non-word errors, whereas the low precision is a result of the misclassification of correct
domain-specific terms that are not included in the dictionary. Aspell outperforms
CELEX due to its higher coverage of relevant words such as ‘oncologist’, ‘metastases’ and
‘facebook’. Microsoft Word and TISC perform the worst overall: their precision is low but
they also have a lower recall than both dictionary-based methods and our method.

TOKEN 

Is the token part of 

ASPELL? 

Do not correct

no 

yes Is there a candidate with:

   9x corpus frequency 

                          of the token 

                                     0.76 SimilarityScore* 

Correct 

≤

 

≤ 

 

yes

no

Figure 2.7: Decision process. *SimilarityScore = 0.6 * LM similarity + 0.4 * RE

Table 2.11: Results for mistake detection methods on the test set

Method Mistakes found Recall Precision F0.5 F1

CELEX 395 1.0 0.11 0.13 0.20
Aspell dictionary 163 1.0 0.26 0.31 0.42
TISC 270 0.74 0.12 0.14 0.21
Microsoft word 395 0.88 0.10 0.12 0.18
Our method (RE = 0.76) 90 0.91 0.46 0.51 0.61
Our method (RE= 0.76) + ConcatCorrection 92 0.96 0.47 0.52 0.63

2.4.4. IMPACT OF CORPUS SIZE
Despite the fact that a relative corpus frequency threshold is more robust to different
corpus sizes than an absolute one, it is likely that the ratio between tokens and their
corrections will vary if the corpus size becomes smaller. Thus, we investigated to what
extent the multiplication factor of 9 would be robust to such ratio changes.
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Table 2.12: Examples of false positives and negatives of our error detection method.

Mistakes (their corrections with our method)

False positives intolerances
(intolerant)

resected
(removed)

reflux
(really)

condroma
(syndrome)

False negatives istological
(histological)

vechile
(vehicle)

Figure 2.8 shows that our threshold is highly robust to corpus size with maximal
Jaccard similarity (1.0) for all comparisons. Figure 2.9 demonstrates this with an example
of one common (‘gleevac’) and one uncommon misspelling (‘gllevec’) for the medication
Gleevec. The corpus frequency for each misspelling relative to the corpus size is shown
with unbroken lines. The minimum corpus frequency threshold for correction candidates
of each misspelling is indicated with dotted lines of the same color for the range of corpus
sizes. Irrespective of the corpus size, the correct variant ‘gleevec’ (the purple line) remains
above the minimum corpus frequency (i.e., the dotted lines) for the complete range of
corpus sizes.
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Figure 2.8: Stability of error detection in 1000 posts with varying corpus size

2.4.5. IMPACT OF THE DEGREE OF NOISINESS OF THE DATA
As our method was designed on data with few errors (< 1% in our sample), we investigate
to what extent our method can generalize to more noisy user-generated data using
simulated data sets with varying proportions of misspellings. As can be seen in Figure
2.10a and 2.10b, correction accuracy is either stable or increases when the level of noise
increases from 1 to 8%, whereas it appears to diminish at a noise level of 16%. As
relative Levenshtein distance does not depend on the noise in the corpus, this possibly
indicates that at 16% noise the corpus is affected to the degree that the frequency of correct
counterparts of errors often drops below the θ of 9 times the frequency of the error. This
is not surprising: due to the equal probability that each word has of being transformed
into a mistake, increasingly more words necessary for correction are transformed into
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Figure 2.9: Corpus frequency of one uncommon and one common misspelling of the medication Gleevec in the
GIST forum with increasing corpus size. The dotted line indicates the corpus frequency threshold for correction
candidates for each misspelling.

errors. However, no conclusions can be drawn about the exact turning point, as we did
not measure the impact of noise levels between 8 and 16%. If necessary, re-tuning of the
threshold on a more noisy corpus may resolve this issue.

Except for errors due to doubling of letters, the absolute correction accuracy is far
lower than on our real-world data set (79.5%). We believe there may be two reasons for
this: firstly, users are more likely to misspell medical terms than other words [352] and thus
this random distribution is unrealistic. Such medical terms are likely to be longer than the
average word in social media text. Indeed, we find that in our real-world sample of 1000
posts from the GIST forum the 109 non-word errors are significantly longer than average
(p < 1e−22) according to a Mann Whitney U test: The errors have a mean character length
of 6.8 compared to an overall average of 4.2 characters. Since deletions or swaps in shorter
words lead to more ambiguous words (e.g., ‘the’ to ‘te’) or even other real words (e.g., ‘the’
to ‘he’), this will lower the overall correction accuracy of methods designed to correct non-
word medical errors. The second reason ties into this: these artificial data sets do not
allow for differentiation between real word and non-word errors and thus are not suited to
evaluating absolute non-word error correction. Nonetheless, although absolute accuracy
on synthetic data may thus not be a reliable indicator, the relative accuracy at different
noise levels does provide a good indication for the impact of the level of noise in the data
on the efficacy of our method.

Regarding the detection of errors, recall appears to drop as the level of noise increases
for swaps and deletions and remains roughly constant for errors due to doubling of
characters (i.e., doubles) (see Figure 2.10c and 2.10d). In contrast, precision increases
with increasing noise for swaps and doubles and remains mostly stable for deletions
(see Figure 2.10e and 2.10f). These results may indicate that the relative frequency
ratios of false positives to their predicted corrections are more frequently close to the
detection threshold (θ) of 9 than those of true positives. As an artificial increase in noise
by a certain percentage (e.g., 4%) will cause the frequency of correct words to drop by
approximately that percentage due to random chance selection of words to transform
into errors, increasing noise will lead to a slight drop in the ratio between a token and its
predicted correction. If the ratio was far larger than 9, this does not alter the outcome.
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(a)
GIST forum

Correction accuracy
(b)

Reddit forum
Correction accuracy

(c)
GIST forum

Recall for error detection
(d)
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Recall for error detection

(e)
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Precision for error detection
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Precision for error detection

Figure 2.10: Impact of degree of noisiness of the data (1,2,4,8 and 16% noise) on the detection (c-f) and correction
accuracy (a-b) of three types of spelling errors (deletions of a single letter, doubling of a single letter and swaps
of adjacent letters) in two cancer-related forums. The lines indicate the mean result while the band indicates the
variance in results over three runs.
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However, if the ratio was only slightly above 9, then it is liable to dropping below the
detection threshold when the noise is increased. In that case, the token will no longer
be marked as an error. Thus, if false positives more frequently have ratios slightly above 9
than true positives do, this could explain the increase in precision.

To investigate this idea, we consider swaps in the GIST forum at different levels of
noise. It appears that indeed false positives have a higher % of ratios between 9 and 10
than true mistakes at lower noise levels (2,4 and 8%) across all random seeds. This flips for
16%: false positives now have a lower percentage of ratios liable to dropping below the θ

of 9 than true positives. Thus, possibly false positives that were ‘at risk’ for dropping below
the required θ have done so. This increased precision does come at a cost: some errors
will also have ratios close to 9 leading to a drop in recall with increasing noise levels.

Due to the presence of common errors, the impact of noise might be less pronounced
for real data. Although the artificial data does contain common errors (e.g., ‘wtih’ (218x)),
their frequency depends on the frequency of the word of origin (e.g., ‘with’ (9635x))
because each word has an equal, random probability of being altered. Consequently,
their ratio will be much higher and they will be easier to detect than real common errors.
Moreover, absolute precision and recall on synthetic data may not be transferable. Overall
relative trends, however, do provide an first indication for the generalisability of our
method to noisier data sets. Further experimentation with noisier, annotated real world
data will be necessary to assess the true effect of noise on our error detection.

For both error correction and detection, results are consistent across the two forums
and variance of the results is low except at tail end (16%). This can be explained by
the random assignment of transformations for each run: depending on which words are
randomly transformed in a certain run, the frequency of certain correct words may either
fall below the θ of 9 or not.

2.4.6. EFFECT ON OOV RATE

The reduction in out-of-vocabulary (OOV) terms is higher for the GIST (0.64%) than for
the Reddit forum (0.36%) (See Figure 2.11b). As expected, it appears that in-vocabulary
terms are occasionally replaced with out-of-vocabulary terms, as the percentage of altered
words is higher than the reduction in OOV (0.72% vs 0.64% for the GIST and 0.50% vs 0.36%
for the Reddit forum). The vast majority of the posts do not contain any mistakes and of
the posts with mistakes, the majority have only one (see Figure 2.11a). Thus, it appears
that the spelling mistakes are not caused by a select group of individuals that are poor at
spelling, but by various forum users making the occasional mistake.

Interestingly, the prior OOV count of the GIST forum is more than double that of the
sub-reddit on cancer. This could be explained by the more specific nature of the forum:
it may contain more words that are excluded from the dictionary, despite the fact that
the dictionary is tailored to the cancer domain. This again underscores the limitations of
dictionary-based methods.

Many of the most frequent corrections made in the GIST forum are medical terms
(e.g., gleevec, oncologists, tumors). Similarly, the most frequent mistakes found in this
forum are common misspellings of medical terms (e.g., gleevac and gleevic) (see Figure
2.12a). It appears that for common medical corrections, there are often various less
commonly occurring misspellings per term since their misspelt equivalents do not show
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up amongst the most common mistakes. We also found that our method normalizes
variants of medical terms to the more prevalent one (e.g., reoccurrence to recurrence).
Thus, although the overall reduction in OOV-terms may seem minor, our approach
appears to target medical concepts, which are highly relevant for knowledge extraction
tasks. In addition, our method incorrectly alters plural to singular variants (e.g., gists to
gist), probably due to their higher prevalence in the data. Additionally, due to the addition
of the distributed language model, prevalent terms can be replaced by their synonyms as
‘corrections’ (e.g., resected to removed). Fortunately, the resulting information loss will be
minimal for medical downstream tasks.

In the sub-reddit on cancer, frequent corrections include medical terms (e.g.,
chemotherapy, medication and hospital), normalization from plural to singular (e.g., wifes
to wife) but also both incorrect alterations of slang (e.g., gon to got) and of medical terms
(e.g., immunotherapy) (see Figure 2.12b). Additionally, the change from didn to did is
problematic due to the loss of the negation. Our method thus appears to work less well for
more general fora.

Nonetheless, when we consider the 50 most frequent remaining OOV terms, only
a small proportion of them are non-word spelling errors, although slang words could
arguably also be part of this category (see Table 2.13 for examples). A significant portion
consists of real words not present in the specialized dictionary. Importantly, also some
drug names and medical slang (e.g., ‘scanxiety’ or anxiety about being scanned) are
considered OOV. Since they can be essential for downstream tasks, it is promising that
they have not been altered by our method.
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(a) Distribution of found mistakes across posts
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(b) Change in out-of-vocabulary terms

Figure 2.11: Internal validation on two cancer forums

2.4.7. EXTERNAL VALIDATION
As can be seen in Table 2.14, normalization leads to a significant change in the F1 score
for two of the six classification tasks (p = 0.0096 and p = 0.0044). For the Twitter Health
corpus, this change is mostly likely driven by a significant increase in recall (p = 0.0040),
whereas for the detection of flu infection tweets (Task4 SMM4H2019) it is the precision
that is increased significantly (p = 0.0064). In general, these changes are of the same order
of magnitude as those made by the normalization pipeline of Sarker [261]. Although the
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(a) GIST forum
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(b) Reddit forum on cancer

Figure 2.12: Most frequent mistakes and corrections in two cancer forums

Table 2.13: Manual error analysis of 50 most frequent OOV terms after spelling detection

GIST Example Reddit Example

Real word 33 unpredictable, internet 42 misdiagnosed, website
Spelling mistake 5 side-effects, wildtype, copay 2 side-effects, inpatient
Abbreviation 2 mos, wk 3 aka
Slang 6 scanxiety, gister 1 rad
Drug name 2 stivarga, mastinib 1 ativan
Not English 2 que, moi -
TOTAL 50 50

overall classification accuracy on Task 1 of the SMM4H workshop is low, this is in line with
the low F1 score (0.522) of the best performing system on a comparable task in 2018 [335].

Especially the expansion of contractions and the splitting of hash tags (e.g., ‘#flushot’
to ’#flu shot’) appear to impact the classification outcome. In contrast, neither the goal
of the task, the relative amount of corrections nor the initial result seem to correlate with
the change in F1 score. The lack of a correlation between the amount of alterations and
the change in F1 score may be explained by the weak reliance of classification tasks on
individual terms. Unlike in Sarker [261], the improvements also do not seem to increase
with the size of the data. This is logical, as we do not rely on training data. The imbalance
of the data may be associated with the change in accuracy to some extent: the two most
balanced data sets show the largest increase (see Table 2.3). Further experiments would
be necessary to elucidate if this is truly the case.

On generic social media text, our method performs only slightly worse than the state-
of-the-art methods (see Table 2.15). We did not need to use the training data, as our
method is unsupervised. For comparison, our method attains a F1 of 0.726, a precision
of 0.728, and a recall of 0.726 on the W-NUT training data.

Error analysis reveals that 46 of the 100 most frequent remaining errors are words
that should not have been altered according to the W-NUT annotation (see Table 2.16).
Yet, in fact, these words are often slang that our method expanded correctly (e.g., info to
information). It is thus debatable whether these are errors. Of the remainder, 33 are either
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Table 2.14: Mean classification accuracy before and after normalization for six health-related classification tasks.
Only the results for the best performing classifier per data set are reported. ∗∗ indicates p<0.005; ∗ indicates
p<0.01; † indicates absolute change

F1 Recall Precision

Data set Words
altered

Pre ∆ † Pre ∆ † Pre ∆ †

Task1 SMM4H 2019 1.53% 0.410 -0.0007 0.373 +0.014 0.470 -0.025
Task4 SMM4H 2019
Flu Vaccination

0.50% 0.780 +0.006 0.834 +0.008 0.733 +0.005

Flu Vaccination Tweets 0.50% 0.939 +0.002 0.935 +0.004 0.943 +0.0004
Twitter Health 0.71% 0.702 +0.016* 0.657 +0.028* 0.756 -0.0009
Task4 SMM4H 2019
Flu Infection

0.57% 0.784 +0.012** 0.842 +0.013 0.735 +0.019**

Zika Conspiracy 0.36% 0.822 -0.005 0.817 +0.012 0.835 -0.021

uncorrected abbreviations or slang terms. This may partially be explained by the fact that
the slang usage of medical forum users differs from the general Twitter population. Lastly,
16 of these 100 can be considered non-word errors that were missed by our method and
another 4 are errors that were correctly detected but corrected inaccurately.

F1 Precision Recall
MoNoise [318] 0.864 0.934 0.803
Sarker’s method [261] 0.836 0.880 0.796
IHS_RD [292] 0.827 0.847 0.808
USZEGED [31] 0.805 0.861 0.756
BEKLI [24] 0.757 0.774 0.742
LYSGROUP [89] 0.531 0.459 0.630
Our method 0.743 0.734 0.753

Table 2.15: Results for unconstrained systems of ACL W-NUT 2015

2.5. DISCUSSION
The state-of-the-art normalization method for generic social media [261] performs poorly
for medical social media with a spelling correction accuracy of only 19.3%. It is
significantly outperformed by all edit-based methods regardless of whether the correction
candidates are derived from a specialized vocabulary or the data itself. The highest
correction accuracy (73.9%) is attained by unweighted relative edit distance combined
with the constraint that correction candidates need to be at least 9 times more frequent
than the error. This accuracy is further increased by 5.6% point to 79.5% when it is
combined with model similarity based on the HealthVec language model. Our preceding
decision process is capable of identifying mistakes for subsequent correction with a F0.5 of
0.52 and a significantly higher precision than all other methods while retaining a very high
recall of 0.96. Additionally, it is almost completely independent of the size of the corpus
for the two cancer-related forums, which is promising for its usage in other even smaller,
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Table 2.16: Manual analysis of 100 most frequent errors in W-NUT. *also considered non-word mistakes

Type of error Freq. Example Our correction W-NUT annotation

Should not have been altered 46 info, kinda information, kind of info, kinda
Abbreviation not or
incorrectly expanded

19 smh smh shaking my head

Uncorrected slang 14 esp esp especially
Missed concatenation error* 6 incase incase in case
Missed apostrophe* 5 youre youre you’re
Wrong correction 4 u your your
Missed split mistake* 3 i g g y i g g y iggy
Missed non-word spelling
mistake

2 limites limites limits

American English 1 realise realize realise
TOTAL 100

domain-specific data sets. Our method can also function well for more noisy corpora up
to a noise level of 8% (i.e., 1 error in every 12.5 words).

In the two cancer forums that we used for evaluation, the spelling correction reduces
OOV-terms by 0.64% point and 0.36% point. Although the reduction may seem minor,
relevant medical terms appear to be targeted and, additionally, many of the remaining
OOV-terms are not spelling errors but rather real words, slang, names, and abbreviations.
Furthermore, our method was designed to be conservative and to focus on precision to
mitigate one of the major challenges of correcting errors in domain-specific data: the loss
of information due to the ‘correction’ of correct domain-specific terms.

Our method also significantly improves the classification accuracy on two tasks,
although the absolute change is marginal. On the one hand, this could be because
classification tasks do not rely strongly on individual terms. On the other hand, it may
be explained by our use of only unigrams as features. Feature extraction would likely also
benefit from normalization and could possibly increase performance differences. Further
experimentation is required to further assess the full effect of lexical normalization in
downstream tasks.

As named entity recognition (NER) tasks rely more strongly on individual terms, we
speculate that our method will have a larger impact on such tasks. Unfortunately, NER
benchmarks for health-related social media are limited. We have investigated three
relevant NER tasks that were publicly available: CADEC [151], ADRMiner [217], and
the ADR extraction task of the SMM4H 2019. For all three tasks, extracted concepts
could be matched exactly to the forum posts, thus negating the potential benefit of
normalization. The exact matching can perhaps be explained by the fact that data
collection and extraction from noisy text sources such as social media typically rely on
keyword-based searching [264].

Our study has a number of limitations. Firstly, the use of OOV-terms as a proxy for
the quality of the data relies heavily on the vocabulary that is chosen and, moreover, does
not allow for differentiation between correct and incorrect substitutions. Secondly, our
method is currently targeted specifically at correcting non-word errors and is therefore
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unable to correct real word errors. Thirdly, the evaluation data set for developing our
method is small: a larger evaluation data set would allow for more rigorous testing.
Nonetheless, as far as we are aware, our corpora are the first for evaluating mistake
detection and correction in a medical patient forum. We welcome comparable data
sets sourced from various patient communities for further refinement and testing of our
method.

2.6. CONCLUSIONS AND FUTURE WORK
To what extent can corpus-driven spelling correction reduce the out-of-vocabulary rate in
medical social media text? Our corpus-driven spelling correction reduces the OOV rate
by 0.64% point and 0.36% point in the two cancer-related medical forums we used for
evaluation. More importantly, relevant medical terms appear to be targeted.

To what extent can corpus-driven spelling correction improve accuracy of health-related
classification tasks with social media text? Our corpus-driven method could significantly
improve the classification accuracy on two of the six tasks. This is driven by a significant
increase in precision for one and by a significant increase in recall for the second.

In conclusion, our data-driven, unsupervised spelling correction method can improve
the quality of text data from medical forum posts. We have demonstrated the success of
our method on data from two cancer-related forums. The automatic spelling corrections
significantly improve the F1 score for two of the six external classification tasks that involve
medical social media data. Our method can also be useful for user-generated content
in other highly specific and noisy domains, which contain many OOV terms compared
to available dictionaries. Future work will include extending the pipeline with modules
for named entity recognition, automated relation annotation and concept normalization.
Another possible avenue for future work could be to determine whether a word is or is
not from the domain at hand (the medical domain in our case) prior to normalization and
apply different normalization techniques in either case. Furthermore, despite a lack of
domain-specific, noisy corpora for training character-level language models, it would be
interesting to investigate to what extent our spelling correction can improve classification
accuracy using character-level language models pretrained on other source domains.


