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CHAPTER 4

Epithelia are multiscale
active liquid crystals

Biological processes, such as embryogenesis, wound healing and cancer pro-
gression, crucially rely on the ability of epithelial cells to coordinate their
mechanical activity over length scales larger than the typical cellular size.
While regulated by various signaling pathways, it has recently become ev-
ident that this behavior can additionally hinge on a minimal toolkit of
physical mechanisms, of which liquid crystal order is the most prominent
example. Yet, experimental and theoretical studies have given so far in-
consistent results in this respect: whereas nematic order is often invoked in
the interpretation of experimental data, computational models have instead
suggested that hezatic order could in fact serve as a linchpin for collective
migration in confluent cell layers. In this article, we resolve this dilemma.
Using a combination of in vitro experiments on Madin-Darby canine kidney
cells (MDCK), numerical simulations and analytical work, we demonstrate
that both nematic and hexatic order are in fact present in epithelial layers,
with the former being dominant at large length scales and the latter at small
length scales. In MDCK GII cells on uncoated glass, these different types
of liquid crystal order crossover at 34 um, corresponding approximately to
clusters of 21 cells. Our work sheds light on the emergent organization
of living matter, provides a new framework for deciphering the emergent
organization of epithelia and paves the way toward a comprehensive and
predictive mesoscopic theory of tissues.

This chapter is based on: Armengol-Collado, J.-M., Carenza, L. N., Eckert, J.,
Krommydas, D., and Giomi, L. (2022). Epithelia are multiscale active liquid crystals.
arXiv:2202.00668, under revision.
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4.1 Introduction and results

An increasingly large body of evidence suggests that liquid crystal order
could lie at the heart of a myriad of cellular processes that are instrumental
for life (1-7). These include the extrusion of apoptotic cells (2), the devel-
opment of sharp morphological features in developing embryos (8, 9) or the
onset of organism-wide cellular flows during morphogenesis (10). In con-
fluent epithelial layers, detecting liquid crystal order is commonly achieved
by tracking the longitudinal direction of individual cells by diagonalizing a
rank—2 tensor — i.e. the so-called structure tensor (11) or equivalently the
shape tensor (12, 13) in case of segmented images — that embodies the
geometry of the polygonal cells (Fig.4.1A). The resulting two-dimensional
orientation field is then used to identify topological defects (1—4), which
in turn provide a fingerprint of the underlying orientational order. Liquid
crystal defects (also known as disclinations) are isolated singularities in the
orientational field and can be classified according to their winding number
or ’strength’, s, defined as the number of revolutions of the orientation
field along an arbitrary contour encircling the defect core (14). Because
in a two-dimensional liquid crystal with p—fold rotational symmetry (i.e.
symmetry under rotations by 27 /p) this number must be an integer multi-
ple of 1/p, defects such as vortices, asters and spirals, for which s = 1, are
a signature of a polar phase (i.e. p = 1); comet- and star-shaped disclina-

tions, whose winding numbers are s = 1/2 and s = —1/2 respectively, are
representative of a nematic phase (i.e. p = 2); whereas 5—fold and 7—fold
disclinations, with s = 1/6 and s = —1/6, are the elementary topological

defects in hexatics (i.e. p = 6).

Although inferring order from defects represents a consolidated strategy
in liquid crystals science since the times of Georges Friedel (15) — who
used it to decipher and classify phases such as nematic, cholesteric, and
smectic — this specific protocol, based on tracking the cells’ longitudinal
direction, becomes progressively less reliable as p increases. To illustrate
this issue, we show in Fig.4.1B how applying the same protocol to a perfect
honeycomb lattice can lead to the misdetection of a pair of +1/2 nematic
disclinations. This originates from the fact that, while regular hexagons are
invariant under rotations by 60°, the orientation field constructed from the
longitudinal direction of hexagonal cells cannot discriminate between the
three equivalent directions defined by pairs of opposite vertices. Similarly,
in Fig.4.1C and Fig.4.1D we show how detecting an elementary hexatic
disclination correctly yields a topological defect, but with incorrect winding
number s = 1.
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Figure 4.1: Topological defects and p—fold rotational symmetry. (A), A typi-
cal configuration of the nematic orientation field (white rods), obtained from a sample
of MDCK GII cells upon diagonalizing the shape tensor (12, 13). Yellow rods repre-
sent the interpolated nematic field. Here and in the following, positive and negative
defects are marked in red and blue, respectively, regardless of the magnitude of their
winding number. (B), Because of the 6—fold symmetry of regular hexagons, there is
no well-defined longitudinal direction, thus it is possible to construct a defective con-
figuration, featuring a pair of £1/2 disclinations, even though the lattice is defect free.
(C,D), Disclinations in hezatics consist of pentagonal (i.e. s =1/6) and heptagonal
(i.e. s = —1/6) sites embedded in an otherwise 6—fold background. Attempting to
detect these elementary defects by tracking the longitudinal direction of the cells (with
rods), correctly yields a defect at the center of the clusters, however, because of the
mismatch between the 6—fold symmetry of the configuration and the 2—fold symme-
try of the order parameter both defects are detected with the incorrect winding number
s = 1. (E), Graphical representation of the p—fold order parameter, Eq.(4.2), for a
generic polygon (heptagon). The quantities v, = {xk,yr} and ¢ = arctan(yx/xr)
represent, respectively, the position of the vertices of the polygon with respect to its
center of mass (i.e. com) and their orientation with respect to the horizontal direction
(i.e. polar azis). The inset shows the nematic (top) and hexatic (bottom) order pa-
rameter, vp, superimposed on the polygonal shape of the main panel. (F), Example of
the vp order parameter, Eq.(4.2), for an elongated hexagon. The irregular heptagon
in panel (E) is closer in shape to a regular hexagon, thus the order parameter s is an
order of magnitude larger than ~2. The outcome is reversed in the irregular hexagon
in panel (F), which, as a consequence of its elongation and despite being 6—sided,
yields v2 > 6. In both panels, the blue rods and the 6—legged stars correspond re-
spectively to the 2—fold and 6—fold orientations of the polygons and are oriented in
such a way that mazximizes the overall probability of finding a vertex in the direction
of the legs. (H,I), The correct recognition of the hexatic disclinations are shown in
panels (C) and (D) using 6. In both panels, one of the legs of the order parameter
has been colored as a guide to the eye. By following the order parameter along a pos-
itive oriented (anticlockwise) close loop encircling the defect core, the red leg rotates
anticlockwise for the positive defect in panel (E). After a full rotation, the colored leg
rotates of an angle 27 /6 corresponding to a winding number s = 1/6. Conversely, in
panel (I) the blue leg rotates clockwise and covers an angular displacement of —m/3
corresponding to a winding number s = —1/6.
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To overcome this difficulty, here we introduce a generalized rank—p
shape tensor, able to capture arbitrary p—fold rotational symmetries, with
p any natural number. Given the polygonal contour of a cell, whose V
vertices have coordinates 7 = {xg, yr} with respect to the cell’s center of
mass (Fig.4.1E), our generalized shape tensor can be defined as

1 \%
Gy=|Dmorne---ar|, (4.1)
Ap k=1

ptimes

where A, = 32}, |r%|?, and the operator [---] has the effect of rendering
its argument symmetric and traceless. For tensors whose rank is higher
than two, the property of being traceless implies that contracting any two
indices of the tensor yields zero. For p = 2, Eq.(4.1) gives, up to a normal-
ization constant, the traceless part of the standard rank—2 shape tensor
(12, 13). Regardless of its rank, the tensor G, has only two linearly in-
dependent components in two dimensions (16, 17), from which one can
extract information about the cells’ orientation and anisotropy. In particu-
lar, using a generalization of the spectral theorem to tensors with arbitrary
rank (18), one can show that all elements of G, are proportional to either
the real or the imaginary part of the complex order parameter

1 , -
= g e = byl (4:2)

where ¢ = arctan(y/z)) the angular coordinate of the k—th vertex of a
given cell (Fig.4.1E). The angle 9,, on the other hand, corresponds to the
p—rfold orientation of the whole cell with respect to the horizontal direction.
In practice, this is equivalent to the inclination of a p—legged star centered
at the cell’s center of mass and oriented in such a way to maximize the
probability of finding a vertex in the direction of either one of the legs.
Some examples of this construction are shown in Fig.4.1E and Fig.4.1F,
where 7, is computed for more or less elongated irregular polygons. When
applied to defective configurations, our method yields the correct winding
numbers s = £1/6 (Fig.4.1G and Fig.4.1H).

With the tensor G, in hand, we next investigate the emergent orien-
tational order in confluent monolayers of MDCK GII cells (Fig.4.2A and
Fig.4.2B). After segmenting the images by taking advantage of the previous
labeling of E-cadherin, we track the cells’ contour and from the coordinates
of the vertices we compute the order parameter v,, Eq.(4.2). We analyze
a total of 68 images of confluent monolayers (see the Methods for details)
with each one of them comprising 140 + 31 cells (mean + s.d.). Fig.4.2C
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shows the probability distribution of «, for p = 2 and p = 6. Interest-
ingly, the distribution of 4 is symmetric and spreads over a broad range of
values; conversely, the distribution of ~ features a peak at approximately
0.35, with a decreasing tail at larger values. The MDCK GII cells analyzed
in this study are, therefore, more prone to arrange in isotropic rather than
elongated shapes.
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Figure 4.2: Symmetry of MDCK cells in confluent monolayers. (A,B), Con-
focal image of a confluent MDCK GII monolayer (green, E-cadherin and blue, nucles).
The dashed yellow lines trace the contour of the cells as identified after image segmen-
tation. The white rods (A) and stars (B) respectively mark the 2—fold and 6—fold
orientation of cells and have been obtained from the order parameter ~vp, Eq.(4.2).
(C), Probability distribution of the magnitude of the order parameter |y,| for p = 2
(blue) and p = 6 (red). Ezperimental data points are obtained by averaging over 68
different images, with each containing 140 + 31 (mean £ s.d.) cells. The mean value
of the distributions are {|y2|) = 0.370 + 0.030 (mean + s.d.) and (|ve|) = 0.49 +
0.05 (mean £ s.d.). The bozplot in the inset shows the average magnitudes of the
order parameters of 68 imaged monolayers. {|y2|) and (|ye|) are significantly different
with a p-value < 0.0001, calculated by using the two-sided Wilcoxon rank sum test.
Dashed and dotted lines are obtained from numerical simulations of the multiphase-
field (mpf) and Voronoi models. (D), Probability distribution of cell coordination
number for experiments and simulations. The height of the bar represents the mean
of 68 analyzed images. The mean values of the coordination number distributions are
5.8+ 0.9 (mean + s.d.) for experiments, 5.9 £ 0.9 (mean £ s.d.) for multiphase
field simulations, and 6.0 £ 0.6 (mean + s.d.) for Voronoi simulations. In (C) and
(D), error bars are computed from the standard error of mean. (E), Contour plot of
the local cell concentration of a multiphase-field simulation with 360 cells in a mag-
nified region of the simulation boxr, showing approrimately one third of the system.
Darker regions correspond to areas dense with cells and lighter regions to areas where
cells are sparser (see legend boz). (F), Configuration of a numerical simulation of the
Voronoi model. The cells in red (blue) have 5 (7) neighbors, while others have 6.
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This results in a disordered and yet orientationally coherent tiling of
the plane, where a majority of hexagons coexists with large minorities of
pentagons and heptagons, as indicated by the distribution of the number
of neighbors in Fig.4.2D. We compare these observations with numerical
simulations of two different theoretical models of epithelia: i.e. a continuous
multiphase field model (mpf) (Fig.4.2E; (19-21)) and the discrete Voronoi
model (Fig.4.2F; (22)), both in qualitative agreement with experimental
data.

In order to quantify the amount of orientational order in the system,
we next compare the orientation of each cell with that of its neighbors,
by means of the following coarse-graining procedure. Given a disk Qp =
Qpr(r), with radius R and centered at r, and letting 7. be the position of
the center of mass of the c—th cell, we define the coarse-grained order field
I')y =Tp(r) as

N
1 )
Tp = 2 Wlre) = [Tple, (4.3)
c=1

where IV is the number of cells whose center of mass lies within (g, while
Iy = |Ip(r)| and 6, = 0,(r) are respectively the magnitude and phase of
the complex order parameter I',, conveying information about the amount
and direction of p—fold orientational order at the length scale R (Fig.4.3A).

The outcome of this analysis is shown in Fig.4.3B and Fig.4.3C. At
length scales comparable with the average cell size — i.e. R < Reepp, with
Reen= 7.4 £ 1.9 um the average cell radius computed as half of the dis-
tance between the cells’ centers of mass — both the nematic (Fig.4.3B) and
the hexatic (Fig.4.3C) coarse-grained fields are populated by topological
defects. For p = 6, in particular, the monolayer appears organized into re-
gions characterized by spatially uniform hexatic order, separated by arrays
of +1/6 disclinations, similarly to grains and grain boundaries in polycrys-
tals (23). Increasing R has the effect of smoothing the I's field, thereby
absorbing neutral pairs of disclinations into a gently varying 6—fold orien-
tation field, resulting in a power law decreasing defect density (Fig.4.3D).

The scenario differs dramatically for p = 2 (Fig.4.3B). In this case, many
of the defective structures identified in the configuration of the hexatic field
at the small length scales are replaced by very sharp and yet defect-free
textures. This peculiarity originates precisely from the mismatch between
the actual 6—fold symmetry of the configuration at the cellular scale and
the 2—fold symmetry of the order parameter used to describe it, in a similar
fashion as using a (polar) vector field to describe a nematic disclination gives
rise to singular lines where the polar field ’jumps’ by an angle 7 (Fig.4.3E).
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Figure 4.3: Coarse-graining and multiscale features of confluent cell mono-
layers. (A), Illustration of the coarse-graining procedure entailed in Eq.(4.3). A
disk Qr = Qgr(r) (encircled in gray), with radius R and centered at the point v (in
general not coincident with the center of mass of any specific cell) is superimposed
to a segmented image of the cell monolayer and the cells in its interior are used to
compute the coarse-grained filed I'y. The large yellow star at the center of the disk
shows the orientation of the whole cluster. (B,C), Nematic (top row) and hezatic
(bottom row) coarse-grained fields I's and T's versus the coarse-graining radius R, ex-
pressed in units of the average cell size Reeyp = 7.4 um. In both panels, positive and
negative defects are marked in red and blue, respectively (£1/2 for nematic and +1/6
for hexatic). (D), Defect density at varying the coarse-graining radius R. (E), A mis-
match between the defect charge and the symmetry of the p—atic liquid crystal gives
rise to unphysical singular line (see Sec. S4.4.2). Top (bottom) panel shows a pair of
nematic (hexatic) defects of winding number s = £1/2 (s = £1/6). (F), Magnitude
of T2 and T's versus the coarse-graining radius R measured from experimental and
numerical mpf data. Both data sets fit the power law |Up| = (yp)(R/Reer) ™"/, with
Np a non-universal exponent (16, 17), with the following fitting parameters: (experi-
ments) nz = 0.41+0.01, ns = 0.49+0.01; (mpf) n2 = 0.43+0.02, ns = 0.48+0.01. In
both experiments and multiphase field simulations, the |T'z| and |Ug| order parameters
crossover at the length scale Ry, with: (experiment) Ry /Rcen = 4.6 £ 1.0; (mpf)
Ry /Rcen = 5.0+ 1.2. In (D) and (F), the error bars correspond to the standard
error of the mean.

Conversely, at larger length scales, the majority of nematic defects is
replaced by regions where the nematic field I's smoothly varies across the
sample, with exception for a small number of isolated +1/2 disclinations
(Fig.4.3B and Fig.4.3D). These observations are further supported by the
scaling behavior of the magnitude of the fields I's and I'¢ as the coarse-



4.2 Discussion and conclusion 83

graining radius R varies (Fig.4.3F). In particular, both |T's| and |T'g| are
finite at all length scales in the range 1 < R/Rcq < 10, but, while |T'g|
is prominent at small length scales, this is overweighted by |I'2| at large
length scales. For our MDCK GII cells on uncoated glass, the crossover
occurs at Ry /Reen = 4.6 £ 1.0, corresponding to clusters of approximately
21 cells. The same crossover is also observed in our numerical simulations
of the multiphase field model, with the crossover scale Ry /Rcen = 5.01+1.2,
while it is not found in simulations of the Voronoi model, where hexatic
order is dominant at all length scales.

Taken together, our experimental and numerical results demonstrate
that epithelial monolayers behave as multiscale active liquid crystals, with
6—fold hexatic order characterizing the spatial organization of the cells at
small length scales, while nematic order dictates the large-scale structure
of the monolayer. The crossover length scale is, as intuitive, non-universal,
but depends on the molecular repertoire and the material properties of the
specific phenotype, as well as on the mechanical properties and the surface
chemistry of the substrate.

4.2 Discussion and conclusion

In conclusion, we have investigated the multiscale physics of epithelial lay-
ers, finding that multiple types of liquid crystal order can coexist at differ-
ent length scales. In particular, hexatic order is prominent at the cellular
scale (i.e. in clusters of up to 21 cells in our MDCK GII samples) while
nematic order characterizes the structure of the monolayer at larger length
scales. This hierarchical structure is expected to complement the complex
network of regulatory pathways that tissues have at their disposal (24)
to coordinate the activity of individual cells to achieve multicellular orga-
nization (25). The novel approach introduced here creates the basis for
a correct identification of topological defects — whose biophysical role in
epithelia has recently focused great attention (1—3), especially in the con-
text of morphogenesis (8, 10, 26, 27) — and further provides the necessary
knowledge for the foundation of a comprehensive and predictive mesoscopic
theory of collective cell migration (28). In addition, our findings highlight
a number of potentially crucial properties of epithelial tissues. First, col-
lective cell migration in epithelia relies on both remodeling events at the
small scale — such as cell intercalation and the rearrangement of multicel-
lular rosettes (29, 30) — as well as large scale flows (10). Therefore, the
underlying hexanematic multiscale organization and the specific magnitude
of the crossover scale Ry are expected to have a profound impact on how
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the geometry of the environment affects the specific migration strategy.
E.g. metastatic cells traveling through micron-sized channels in the extra-
cellular matrix during cancer invasion (31) will more likely rely on local
hexatic-controlled remodeling events, whereas unconfined wound healing
processes (32) are more likely to leverage on system-wide nematic-driven
collective flows. Second, as both hexatic and nematic liquid crystals can
feature topological defects, these are expected to interact, thereby affecting
processes such as the extrusion of apoptotic cells (2), the development of
sharp features during morphogenesis (8, 9) and, in general, any remodeling
or morphogenetic event that can take advantage of the persistent pressure
variations introduced by active defects (&#). Finally, in the light of what
said above, it is evident that understanding how the crossover scale Ry can
be controlled, either chemically or mechanically, may ultimately represent
the key toward deciphering tissues’ collective dynamics.

4.3 Materials and methods

Cell culture

Parental Madin-Darby Canine Kidney (MDCK) GII cells stably express-
ing E-cadherin-GFP (33) (kindly provided by M. Gloerich, UMC Utrecht)
were cultured in a 1:1 ratio of low glucose DMEM (D6046; Sigma-Aldrich,
St. Louis, MO) and Nutrient Mixture F-12 Ham (N4888; Sigma-Aldrich,
St. Louis, MO) supplemented with 10% fetal calf serum (Thermo Fisher
Scientific, Waltham, MA), and 100 mg/mL penicillin/streptomycin, 37 °C,
5% CO,. For experiments, cells were seeded on uncoated cover glasses,
grew to confluence, and nuclei were live-stained with 2 pg/mIL Hoechst
34580 (Thermo Fisher, H21486) before imaging.

Microscopy

Samples were imaged at high resolution on a home-build optical microscope
setup based on an inverted Axiovert200 microscope body (Zeiss), a spin-
ning disk unit (CSU-X1, Yokogawa), and an emCCD camera (iXon 897,
Andor). IQ-software (Andor) was used for setup-control and data acqui-
sition. Illumination was performed using fiber-coupling of different lasers
(405 nm (CrystalLaser) and 488 nm (Coherent)). Cells on over glasses were
inspected with an EC Plan-NEOFLUAR 40x 1.3 Oil immersion objective
(Zeiss). Images were taken in three focal-planes within a distance of 352
nm for a maximal intensity projection.
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Analysis

Shape order parameter. Cell boundaries of confluent monolayers were an-
alyzed using a maximum intensity projection of z—stack images. Cell seg-
mentation and vertex analysis were performed using home-build Matlab
scripts (Mathworks, Matlab R2018a). The number of nearest neighbors
corresponds to the number of vertices surrounding a cell. The centroid of
the polygon was calculated by r. = EY:1 r;/V, where V is the number of
vertices and 7; their positions. For each cell, the shape order was derived
by using Eq.(4.2). On average, we analyzed 140 + 31 cells per image. For
the probability distribution of the shape order for each analyzed image, we
choose a binning of 20 ranging from 0 to 1.

Coarse-graining. The radius used to construct the coarse-grained field,
given by Eq.(4.3), was chosen according to the typical cell radius Reen =
7.4 £ 1.9 um, calculated as half of the average cell-cell nearest neighbor
distance. For calculating the crossover point, we set the center point of the
disk equal to the center point of the image. The radius of the disk in which
the complex order parameters were averaged ranged from R to half of
the image size (176 x 176 um). For computing the nematic and hexatic
coarse-grained director field, we set the grid-distance to Rce.

Topological defects. Topological defects were identified by first interpo-
lating the p—fold orientation field on a square 22 x 22 grid by means of
the coarse-graining procedure in Eq.(4.3) and then computing the winding
number along each unit cell. That is:

! 21 §4 : ( )] ( )
S ’l' r mod 4.4
2 p n+1 p n

where the symbol [0 denotes a square unit cell in the interpolation grid
and the mod operator constraints the difference 0,(r,4+1) — 6p(7y) in the
interval [—7/p, w/p].

Statistics
In total, 68 images of confluent monolayers (nine coverslips, three inde-
pendent experiments) were taken and analyzed. In total, 9496 cells were
considered for the analysis.

Numerical simulations
We make use of two different numerical models for ET previously intro-
duced in literature: (i) the multiphase field model and (%) the Voronoi
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model.

Multiphase field model. This model has been used to study the dynamics
of confluent cell monolayers (19) and the mechanics of cell extrusion (20).
It is a continuous model where each cell is described by a concentration field
Ve = @e(r), with e = 1, 2... Ngoy and Neepp the total number of cells. The
equilibrium state is defined by the free energy F = [ dA f where the free
energy density f is given by

f= %Z <P2(<Pc - 900)2 + % Z(V(PC)Q

2
1

c<c! c
Here, o and k, are material parameters which can be used to tune the

surface tension v = /8k,a and the interfacial thickness { = /2k,/a
of isolated cells and thermodynamically favor spherical cell shapes. The
constant € captures the repulsion between cells. The concentration field is
large (i.e. ¢; =~ g) inside the cells and zero outside. The contribution
proportional to A in the free energy enforces cell incompressibility whose
nominal radius is given by R,. The phase field ¢; evolves according to the
Allen-Cahn equation

Orpe +ve - Vo, =—M g—f, (4.6)

Pe

where v; = vo(cosf. e, + sinf.ey) is the velocity at which the c—th cell
self-propels, with vy a constant speed and 6. an angle. The latter evolves
according to the stochastic equation

(iftc =V2DW,, (4.7)

where D is a constant controlling noise diffusivity and W, = W,(t) is a
Wiener process. The constant M in Eq.(4.6) is the mobility, measuring
the relevance of thermodynamic relaxation with respect to non-equilibrium
cell migration. Eq.(4.6) is solved with a finite-difference approach through
a predictor-corrector finite difference Euler scheme implementing second
order stencil for space derivatives (21). Simulation details and scaling to
physical units are given in Tab.4.1.

Voronoi model. This model portrays a confluent tissue as a Voronoi
tessellation of the plane (22). Each cell is characterized by two dynamical
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variables: the position 7. and the velocity v. = vo(cos 6. e, +sin 0. e,) with
vo a constant speed and 6. an angle, with ¢ = 1, 2... Neep and Negpp the
total number of cells. The dynamics of these variables is governed by the
following set of ordinary differential equations

dr,
g Ve uVy E, (4.8a)
dé.
e _ 4.8b
=" (4.8b)

where p is a mobility coefficient and E = E(r1,7r2... Tx

1) IS an energy
function defined as

E=)" {KA (Ae— Ag)” + Kp (Pe — PO)Q} : (4.9)

Here, A. and P. are respectively the area and perimeter of each cell and Ag
and Py their preferred values. The variable 7. in Eq.(4.8b) is white noise,
having zero mean and correlation function

(ne(t)ne (t')) = 2Drbeed(t — 1) (4.10)

with D; a rotational diffusion coefficient. Simulation details and scaling to
physical units are given in Tab.4.1.
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Numerical model
Multiphase field model

Model parameter Dimension Simulation value(s) Physical scaling
Neen 361
. Az L 1 0.685 pm
Lattice parameters At T 1 1414 s
Ly, Ly, L 380 246.6 um
Ma /T 0.006 0.0042 s~
Mk, LT 0.012 0.0040 pm? st
Me 1T 0.01 0.0071 71
M 1/T 600 424,4 71
Free energy parameters
$o — 2.0 —
R L 10.86 7.4 pm
&= /2k,/a L 2 1.37 pm
My = M,/8/9%k,a L/T 0.008 0.0039 pm s~
Dynamical equation parameter Dyf 1T 0.0001 0.00007 5~
un cquation parameter |, LT 0.0035 0.00169 pm s~!
Di ionl bers Peclét number Pe = vy/(D,R) — 3.22 —
(MENSIONIESs mumbers Cell deformability d = €/« — 1.66 —

Voronoi model

Neell — 22500 —
Lattice parameters At T 0.01 0.53 s
Ly, Ly, L 150 2220 um
1K 4 1/(L2T) 1 0.0086 ps~!
uKp 1T 1 0.98 57!
Energy parameters Ao 2 1 919,04 ym-2
50 L 3.9 57.72 um
o v L/T 0.1 27.8 pm st
Dynamical equation parameter D! T 1 0.019 s-1
. . Peclét Pe = vy/(DY \/Ap) 0.1
D £ X 2 . !
imensionless numbers Shape index po — Po/v/Ag 3.9

Table 4.1: Physical scaling of simulation parameters. The table provides the
parameters used to perform simulations for both the multiphase field and the Voronoi
model, together with their dimensions and scaling to physical units. For the multiphase
field model, scaling is performed by equating the mean cell radius Reen (=~ 7.4 pum,)
measured in experiments with the nominal cell radius R and a typical migration speed
of cells in MDCK monolayers (4) (=~ 2 pm h™') with that measured in our simulations
(~ 0.0011 Ax/At). This allows us to find the physical scaling of the lattice grid unit
Az and the iteration unit At. For the Voronoi model, we equated the mean cell
radius Reey in experiments with that measured in simulations (~ 1). The time-step
was derived with the same procedure as described for the multiphase field model. In
the table, simulation values are given in both lattice and physical units, in columns
four and five, respectively. Notice that we did not introduce an energy scale as this
cancels out with the mobility parameter M in Eq.(4.6) and u in Eq.(4.8), respectively.

Acknowledgements

This work is supported by the European Union via the ERC-CoGgrant
HexaTissue (L.N.C., D.K. and L.G.) and by Netherlands Organization for
Scientific Research (NWO/OCW) as part of the research program "The ac-
tive matter physics of collective metastasis’ with project number Science-



4.4 Supplementary 89

XL 2019.022 (J.-M.A.-C. and L.G.). Part of this work was carried out
on the Dutch national e-infrastructure with the support of SURF through
the Grant 2021.028 for computational time. J.E. and L.G. acknowledge
M. Gloerich, UMC Utrecht, for providing us the MDCK cells. All authors
acknowledge Ludwig Hoffmann for fruitful discussions.

Author contributions

J.-M.A.-C. performed analytic work, Voronoi model simulations and an-
alyzed data. L.N.C. coordinated the research, performed the multiphase
field simulations and analyzed data. J.E. performed analytic work, exper-
iments and analyzed data. D.K. performed analytic work and analyzed
data. L.G. devised and coordinated the research. All authors wrote the
paper. J.-M.A.-C., L.N.C., J.E. and D.K. contributed equally to this work.

Author information

The authors declare no competing financial interests.

4.4 Supplementary

S4.4.1 The p—fold shape tensor

Definition and basic properties
In this supplementary Section, we explain the relation between the p—fold
shape tensor G, Eq.(4.1), and the complex order parameter -,, Eq.(4.2).
To build up intuition, we start from observing that the standard rank—2
shape tensor for a V' —sided polygon, is given by (9, 34)

1 14
= — 4.11
S V};m@m, (S )

where, as in the main text, r; represents the coordinate of the k—th vertex
with respect to the center of mass of the cell. The spectral theorem allows
one to represent S, as well as any other symmetric tensor, in terms of two
irreducible components, one diagonal and the other traceless:

S:X1+A/\<el®e1—;1> , (S4.12)
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where we have set

- A t+A
A:%, AN = A1 — \g,
with A1 > A the two eigenvalues of S, e; = cos e, + sin? e, the unit
eigenvector associated with the largest eigenvalue A\; and 1 the rank—2
identity tensor. The two terms in Eq.(S4.12) entail information about the
polygon’s size and anisotropy. The latter property can be further high-

lighted by introducing the tensor

Gs = [[Sj] AA[[@92]] (S4.13)

where Ay = Y/_ |r|?, the operator [---] has the effect of rendering its
argument traceless and symmetric (13, 14) and the (- - - )*? implies a p—fold
tensorial product of the argument with itself: i.e.

e =e1®e1®-- Qe . (S4.14)

ptimes

In two dimensions, the tensor G2 has only two linearly independent com-
ponents and expressing it in the basis {e;, e, } readily gives

Gy = (S4.15)

AX fcos29  sin2d
2Ay |sin29 —cos29

Furthermore, explicitly diagonalizing Eq.(S4.11) gives

1 by |7%|? sin 2
¥ = = arctan (Z‘k/_l ‘TkL > ¢k> , (S4.16a)
2 > or—1 |Tk|? cos 2¢y

2 2

|4 1%
AA= (Z |7“k|251112¢k> +<Z |rk|2C052¢k> : (S4.16b)

k=1 k=1

where ¢ = arctan(yi/xy) denotes the angular position of the k—th vertex
with respect to the center of mass (Fig.4.1E). This construction implies
that all components of the tensor G5 are proportional to either the real or
imaginary part of the complex order parameter

1 . .
_ KQ Z |Tk|2e2z¢k — Ee , (S4.17)
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so that

| |_Q ﬁ_Arg72
72—A27 = 9 .

Now, the same construction can be carried out for a generic rank—p
shape tensor, by defining

1 [<&- ep
G, = APH:I;T,C H : (S4.18)

where A, = Y0_; |rx[P. As for the rank—2 tensor defined in Eq.(S4.13),
this tensor has only two linearly independent components, that are

1 \%4

91 = Gpazez = 5o 2 il cos (pow) (54.19a)
2r—1A, =
1 %

92=Gpazy = 571 Z |rx|P sin (pog) (S4.19b)
2-1A, o~

and can be cast as in Eq.(S4.13), that is

G, = AAAPP [e®F] , (S4.20)

where the positive scalar A\, and the unit vector e = cos, e, +sin?, e,
are analogous to the difference A\; — A2, quantifying the anisotropy of the
polygon, and the eigenvector e; associated with the largest eigenvalue.
This problem ultimately relies on a generalization of the spectral theorem
for tensors whose rank is larger than two. A possible strategy to achieve
such as generalization was proposed by Virga in the context of rank—3
tensors (15) and consists of defining ¥, as the inclination of a p—legged
star oriented in such a way to maximize the probability of finding a vertex
of the polygon in the direction of either one of the legs. The latter task is
equivalent to solving the system of equations

G,oe®rt=""Le, (S4.21)

where ® denotes a contraction of all matching indices of the two tensors on
the left-hand side. After some lengthy calculations, partially summarized
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in Sec. S4.4.1, one finds

1% Do
Up = 1arctan (E‘k/:l Iri]” sin (p(bk)) ) (54.22a)
P > k=1|7rk[P cos (por)

v 2 v 2
ANy = <Z |71 [P cos (por) ) <Z |7)[P sin p¢kz)> - (54.22b)

k=1

As in the case of the rank—2 shape tensor, one can then express all compo-
nents of G, in terms of the real and imaginary parts of the p—fold complex
order parameter

AN,

~ |rp,[PePPr = ZCP ciply (54.23)
5% 5,
so that
AN Arg~,
ol =50, 9=
P p

Derivation of Eqgs.(54.22)
For sake of completeness, here we elaborate on the solution of Eq.(S4.21),
leading to Eqs.(S4.22). The strategy, pioneered in Ref. (15), consists of
mapping the diagonalization of a rank—p tensor to an optimization prob-
lem where A\, € R is the Lagrange multiplier subjected to the constraint
le|? = 6%4—65 = 1. This task requires computing the tensorial power e*P~1,
which, in turn, amounts to constructing all possible order—(p— 1) products
of e, and e,. The latter is facilitated by the fact that, as previously stated,
the two-dimensional tensor G, has only two linearly independent compo-
nents, proportional to the functions g; and gy introduced in Eqgs.(S4.19). In
particular, depending on whether the number of y—indices of the generic
element Gj,j,...;,, With i, = {z,y}, is even or odd, the element is pro-
portional to g1 and g9 respectively. Taken together, the aforementioned
considerations result into the following expressions for the components of
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the e vector:

AX Ep—=1) h 1k k
Appengllz (—1)2< f )65 ey

k€even

S (- (p ; 1) eglke’;] : (S4.24a)
keodd

—a | > (-1)%(1’;1)@5—1—%’; . (S4.24b)
keodd

Despite their apparently complexity, these equations can be considerably
simplified leading to

% cosVp = gicos[(p—1)0,] + gasin[(p — 1) V] , (S4.25a)
P

A

A)\p sind, = gacos[(p — 1), —gisin[(p — 1) Y] . (S4.25b)
P

If g1 = 0, Egs.(S4.25) reduces to
cot¥p =tan[(p — 1), , (54.26)

which has 2p solutions in the range 0 <, < 27 given by

2k+1
p

k
9 =

r, k=0,1...2p—1. (S4.27)

Conversely, when g1 # 0, setting 0 = g2/¢1 and solving Eqgs.(S4.25) with
respect to 9, gives

cos [(p — 1) 3] + osin[(p — 1) 9,
ocos[(p —1)9,] —sin[(p — 1)9,] ’ (S4.28)

from which one can readily find

cot ¥, =

o0 = tanpdp , (S4.29)
whose solution is given by

& arctan o + km
19§,>:f, k=0,1...2p—1, (S4.30)
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thereby completing the derivation of Eq.(S4.22a). To compute A\, one
can use again Eqs.(S4.25) and express g; and go in terms of coordinates.
This gives, after some direct calculations,

IS

1 v 2 1%
= 51 (Z |ri|P cos (pczﬁi)) + (Z |7 |P sin (pg;)
i=1 ;

=1

)2 (S4.31)

Note that, because of the periodicity of ﬁl()k), then A)\I(;k) = —)xékﬂ), whereas

the sign of A,(,O) depends on g and g;. Finally, to cast the tensor G, in the

form given in Eq.(S4.20), one can write g1 = A\,g1 and go = AX,g2 where

1 .
1= cos pUp, , Jo =

m sin p’ﬁp

Q>

20—1A,

are the two independent components of [e®F] /A,. Then, using the expres-
sion of ¥, given in Eq.(54.27) and Eq.(S4.30), one obtains

AN, = 277! ‘mgﬂ‘ . k=0,1...2p—1, (S4.32)

which completes the derivation of Eq.(54.22b).

S4.4.2 Defect representation in p—atic liquid crystals

In two-dimensional liquid crystals, topological defects consist of point-like
singularities in the orientational field, that are points where the orientations
of the director field are not univocally defined, and can be classified in
terms of the winding number s defined in the main text. In liquid crystals
with p—fold rotational symmetry, the latter is an integer multiple of the
elementary winding number 1/p. By contrast, it is impossible to correctly
describe a defect of winding number s = £+ 1/p in terms of an orientation
field with rotational symmetry other than p—fold.

To substantiate this statement, we consider here the common case of a
pair of + 1/2 disclinations in a nematic liquid crystal (p = 2), respectively
located at positions v = x e, +y e, and r_ = z_e,+y_e,. The far-field
configuration of the phase 99 = Arg(I'2)/2 is given by

Vo = % {arctan (y—er) — arctan (y — U= )] . (54.33)

T — Ty T —x_

In turn, the 2—fold orientation field can be visualized as the standard head-
less nematic director — i.e. a 2—legged star — as in Fig.4.1A of the main
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text. Now, as illustrated in Fig.4.3E, attempting to describe the same
2—fold symmetric configuration with a, say, 1—fold symmetric orientation
filed — i.e. a standard vector field — results in a discontinuity of magnitude
7 of the associated phase 11 across the x—axis.

The same issue occurs while attempting to describe a pair of s = +n/p
defects (with n a real number) in by means of a g—fold orientation filed,
with ¢ < p. In this case, the far-field configuration of the phase v, is given
by

Uy = % [arctan <y—y+> — arctan <y — Y= )] , (S4.34)

T — Ty T —z_

and it can be graphically represented by a p—legged star oriented at an-
gles ¥, + 2mn/p, with n = 1, 2... p, so that the order parameter I', =
IT',| exp(ip?¥,) is continuous everywhere, but at the defect position. We at-
tempt to describe the same configuration in terms of the order parameter
I'y = |I'y| exp(igdy), corresponding to g—legged stars oriented at an angle
Vg +2mn/q, withn =1, 2... ¢ < p. For the purpose of this discussion, and
without loss of generality, we set y+ = y_ = yo and compute the variation
of I';. While crossing the line, the axis y = yo in the region comprised
between the two defects (z— < x < z4). Since the g—legged star asso-
ciated with the order parameter I'; is invariant under rotations by 27/q,
the inclination of the leg closer to the x—axis undergoes a discontinuity of
magnitude

180, = 2 (2, | ”q’) . (54.35)
p pq

Thus, the field 9, is continuous everywhere, but at the defect position
(|AY4| = 2mm/p with m any natural number) only when p = g or ng is an
integer multiple of p. In particular, describing a defect of winding number
s=1/6 (n =1 and p = 6) by means of a nematic field with ¢ = 2 would
result into a jump of magnitude |AvYs| = 7/3 as shown in Fig.4.3E in the
main text. The resulting configuration of the nematic director features a
singular line connecting defects of opposite charge.
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oo N Ll L
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[val =0.09  |ys|=0.12 |y, =0.06 lysl=0.52  |yg| = 0.68
8, =-67°  §;=27°  §,=-20° 9 =-37°  85=16°

4 >< _____

Ival =063  |ys| =022 |ys[=0.54  |ys|=0.39  |ys[ =0.36
8,=-44°  g;=-50° ¢, =-37° 85 = 29° g =18°

Figure S4.4: Order parameter v,. Top and bottom panels show the p—atic star
for the polygonal shapes in Fig.4.1E and Fig.4.1F, respectively. The magnitude of
the order parameter |vp| and its orientation ¥, with respect to the polar azis (dashed
horizontal line) are given for p =2,...,6.
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Figure S4.5: Coarse-graining the multiphase field model. (A), A typical config-
uration of the multiphase field simulations with 360 cells. Darker regions correspond
to areas dense with cells and lighter regions to areas where cells are sparser. (B,C),
Nematic (top row) and hezatic (bottom row) coarse-grained fields T's and I's versus
the coarse-graining radius R, expressed in units of the nominal cell size Reeir. In both
panels, positive and negative defects are marked in red and blue respectively (£1/2 for
nematic and +1/6 for hezatic).
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Multiphase field model Voronoi model
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Figure S4.6: Decay of defect density in simulations. Left and right panels show
the decay of the defect density at varying the coarse-graining radius in simulations of
the multiphase field model (left) and Voronoi model (right). The scaling of multi-
phase field model data is compatible with that shown in Fig.4.3D in the main text
for experimental data. In the right panel, curves of oppositely charged defects overlap
exactly.
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Figure S4.7: Separation of hexatic and nematic defects at varying the
coarse-graining radius. The graph shows the mean distance between a hexatic defect
and the closest nematic defect, regardless of their charge, computed for experimental
data, multiphase field simulations and Voronoi simulations (inset). Ezperimental data
(red curve) and multiphase field simulation (blue curve) are in qualitative agreement.
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