

Forces and symmetries in cells and tissues Eckert, J.

Citation

Eckert, J. (2022, December 6). *Forces and symmetries in cells and tissues*. *Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/3492626

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University of</u> <u>Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3492626

Note: To cite this publication please use the final published version (if applicable).

Forces and Symmetries in Cells and Tissues

Julia Eckert

Forces and Symmetries in Cells and Tissues

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdeding op dinsdag 6 december 2022 klokke 10.00 uur

door

Julia Eckert

geboren te Dresden, Duitsland in 1991

Promotor:	Prof. dr. T. Schmidt
Promotiecommissie:	Dr. M. Gloerich (UMC Utrecht)
	Dr. B. Ladoux (DR CNRS, Institut Jacques Monod)
	Prof. dr. J. Aarts
	Prof. dr. ir. S.J.T. van Noort
	Prof. dr. B.E. Snaar-Jagalska

@2022 by J. Eckert. All rights reserved.

Cover: Polygonal shape of cells in a monolayer. The front cover shows the nematic director field as rods superimposed to the apical part of cells, forming two topological defects represented as dots. After moving the focus through all pages of this thesis, the back cover ends with the basal part of the monolayer in which actin stress fibers are connected to micropillars.

Casimir PhD Series, Delft-Leiden, 2022-28 ISBN 978-90-8593-536-0 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl The only source of knowledge is experience.

- Albert Einstein -

Contents

0	Outline of this thesis			
1	Hol	ing it together: when cadherin meets cadherin	3	
	1.1	Introduction	5	
	1.2	The toolbox of adhesion	6	
		1.2.1 Biological components of cell-cell adhesion	6	
		1.2.2 Mechanical characterization of cell-cell adhesion	8	
	1.3	Cell-cell contact formation: from molecules to cells and tissues 1	10	
		1.3.1 The role of molecular interactions over the contact . 1	1	
		1.3.2 The role of intercellular forces arising at the contact 1	13	
		1.3.3 The role of interfacial tension in cell aggregates 1	16	
	1.4	Conclusion and perspectives	20	
2	Sing	le cell micro-pillar-based characterization of endothe-		
	lial	and fibroblast cell mechanics 3	3	
	2.1	Introduction	35	
	2.2	Results	36	
		2.2.1 Endothelial cells apply less traction forces compared		
		to fibroblast cells	36	
		2.2.2 Averaged force dipole distribution is independent of		
		cell type	37	
		2.2.3 Force pole is cell morphology and cell type dependent 3	38	
	2.3 Discussion		39	
	2.4 Materials and methods			
3	Cell	Cell Separation Device: measurement of intercellular		
	deta	chment forces 4	19	
	3.1	Introduction	51	
	3.2	Results	52	
		3.2.1 The intercellular adhesion strength increases with an		
		increase of the total traction force	52	
		3.2.2 Stretching a homogeneous elastic micropillar field cau-		
		ses deformations	53	

		3.2.3	CC-SD: the Cell-Cell Separation Device	55	
	3.3	Discus	sion and conclusion	60	
	3.4	Mater	ials and methods	61	
	3.5	Supple	ementary	65	
4	Epi	thelia a	are multiscale active liquid crystals	75	
	4.1	Introd	uction and results	77	
	4.2	Discus	sion and conclusion	83	
	4.3	Mater	ials and methods	84	
	4.4	Supple	ementary	89	
		S4.4.1	The p -fold shape tensor	89	
		S4.4.2	Defect representation in p -atic liquid crystals	94	
5 Hexanematic crossover in epithelial monolayers depends on					
	cell	adhesi	ion and cell density	103	
	5.1	Introd	uction	105	
	5.2	Result	S	106	
		5.2.1	Reduced cell-cell adhesion increases the shape index		
			and decreases the monolayer density	106	
		5.2.2	Hexagonality in epithelia increases with density	108	
		5.2.3	The absence of E-cadherin shifts the hexanematic		
			crossover towards small length scales	110	
		5.2.4	Multiscale hexanematic order strengthen with the mo-		
			nolayer density	111	
		5.2.5	Lower substrate stiffnesses reinforce the length scale of the hexatic order driven by cell-matrix and cell-cell		
			adhesions	113	
	5.3	Discus	sion and conclusion \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	115	
	5.4	Mater	ials and methods	116	
	5.5	Supple	ementary	119	
Sı	ımm	ary		129	
Sa	amen	vatting	r 5	135	
Zι	usam	menfa	ssung	141	
\mathbf{P}_{1}	Publications				
\mathbf{C}	Curriculum Vitae			151	

Outline of this thesis

The way organisms develop from the initial single-cellular state to a complex final assembly like the human body, and how the final body is maintained throughout life, is one of the greatest mysteries and it's understanding one of the biggest scientific challenges. What has been surprising in the last decade is that the initial assembly and also later maintenance of integrity is not only determined by intricate biochemical communication networks, but in part by physical forces that cells, their neighbors, and their environment apply in a bidirectional manner. The resulting collectivity of cells determines the development of organisms and are crucial to the health and disease state of the organism.

In this thesis, we develop and utilize concepts from physics to quantitatively understand forces that develop between cells and their environment and neighboring cells, and how the interplay between these forces regulates the arrangement, shape, and topology of tissue. These topics range from the development of novel experimental methods to the combination of experimental observations with theoretical descriptions. Thus, this thesis is at the interface of physics and biology, for which we collaborated with groups from both fields. Our results contribute to a better understanding of cell and tissue integrity.

Chapter 1 reviews the current knowledge about cell-cell adhesion from the molecular and cellular level to tissue and organs. The central focus is set on finding a common base for understanding the biological and physical principles of cell-cell adhesion. This chapter covers a description of the molecular interaction between cells and describes the role of intracellular signaling processes. The chapter appeared as a scientific review article written in a collaboration with the Heisenberg lab in Klosterneuburg (ISTA, Austria).

In **Chapter 2**, we compare the mechanics of single endothelial and fibroblast cells. Using elastic micropillar arrays, we study differences in traction forces of both cell lines. Comparing the morphology-dependent force distribution, we find that endothelial cells exert less traction forces

on substrates and tend to be more circular in their morphology with a broader force distribution when compared to fibroblasts. This study is conducted in collaboration with the Mashaghi lab in Leiden (LACDR, Leiden University).

In **Chapter 3**, we develop a novel methodology to measure the maximum intercellular adhesion force between two cells adhered to a substrate. We name our design the Cell-Cell Separation Device (CC-SD). The CC-SD makes it possible to separate cells in doublet configurations while simultaneously measuring the traction forces, and hence the modulation of intercellular forces. It allows us to get information about the maximum resistance against detachment of cells in tissues. For this project, we collaborate with Stefan Partel and his team in Dornbirn (FHV, Austria).

In **Chapter 4**, we describe the methodology to study the symmetry of tissues by combining *in vitro* experiments with numerical simulations. By detecting the orientational order of cells in monolayers, we identify that the nematic and hexatic order in epithelial monolayers coexist at different length scales. Cells are hexatic at small length scales, changing to nematic at larger length scales. This novel description creates the basis for a correct identification of topological defects, which were identified as location of biological functionality. The project is performed in collaboration with the Giomi group in Leiden (LION, Leiden University).

In **Chapter 5**, we study the hexatic and nematic symmetry of epithelial monolayers as a function of the cell-cell adhesion, monolayer density, and the influence of the underlying substrate stiffness. We find that the crossover from the dominant hexatic order at short length scales to the nematic one at larger length scales strongly depends on the monolayer density and is affected by the cell-cell adhesion. Our results indicate that the length scale of the crossover is controlled by the interplay of the cell-matrix and cell-cell adhesion in confluent monolayers. The work resulted from a collaborative project with Ladoux - Mège lab in Paris (Institut Jacques-Monod, France) and Luca Giomi in Leiden (LION, Leiden University).