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ARTICLE

Large-scale targeted sequencing identifies risk
genes for neurodevelopmental disorders
Tianyun Wang et al.#

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an

excess of de novo mutations (DNMs) but the significance in case–control mutation burden

analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an addi-

tional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a

total of 125 genes in over 16,000 NDD cases and compare the mutation burden to non-

psychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing sig-

nificant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of

which reach family-wise error rate (FWER) significance (p < 1.25E−06). Among these 125

targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism

trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which,

61 reach FWER significance (p < 3.64E−07; e.g., CASZ1). In addition to doubling the number

of patients for many NDD risk genes, we present phenotype–genotype correlations for seven

risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale

targeted sequencing effort.
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Neurodevelopmental disorders (NDDs) are a group of
disorders primarily associated with neurodevelopmental
dysfunction that include autism spectrum disorder

(ASD), developmental delay (DD), intellectual disability (ID), and
attention-deficit/hyperactivity disorder (ADHD)1. Children with
NDDs experience difficulties with motor skills, learning and/or
memory, language and/or nonverbal communication, and/or other
neuropsychiatric problems. Considerable heterogeneity is common
at both the phenotypic and genetic levels. With the advent of next-
generation sequencing technologies, such as targeted sequencing2–5,
exome sequencing6–9, genome sequencing10–12, and copy number
variation (CNV) studies13,14, hundreds of genes and genomic
regions have been implicated in NDDs almost exclusively based on
the enrichment of de novo mutations (DNMs). But relatively few
genes or loci have enough cases identified to prove statistical sig-
nificance at the genome-wide level.

Ultra-rare and de novo gene-disruptive variants have been
shown to play important roles in NDDs15. While DNMs from
over 10,000 NDD families have been identified and cataloged16,
the number of sequenced samples is still insufficient to reach the
most stringent genome-wide significance levels, and samples from
different ancestries and regions around the world are required to
capture the whole picture of the genetics. Sample sizes in excess of
20,000 are projected to be necessary to reach significance levels by
standard case-control criteria17. The discovery of large numbers
of families with a disruptive variant in a specific gene, never-
theless, has facilitated establishing more meaningful genotype–
phenotype correlations, such as in CHD818, POGZ19, and
ADNP20. However, relatively few ASD or NDD genes have been
interrogated at this level, emphasizing the need for conducting
more candidate gene studies where patients and their families can
be reassessed21.

Using single-molecule molecular inversion probes (smMIPs) is
a relatively cheap and efficient approach to target sequence can-
didate genes in a large number of individuals where exome or
genome sequencing is not feasible, or in situations where the
amount of DNA is limited2. Here, we present targeted sequencing
using smMIPs and analysis of the coding and splicing regions of
125 NDD candidate genes in a cohort with over 16,000 NDD
patients from the international Autism Spectrum/Intellectual
Disability (ASID) network, which includes 18 clinical groups
across the world3. We identify 48 genes (25 newly reported)
showing significant mutation burden of ultra-rare (MAF < 0.01%)
gene-disruptive mutations (FDR 5%) by comparing to ExAC
nonpsychiatric controls. Among these 125 targeted genes, we also
identify 90 genes enriched for DNMs (FDR 5%) by reevaluating
DNM excess in 17,426 NDD trios, including 6499 new autism
trios. With this large-scale targeted sequencing effort, we further
double the number of patients for many NDD risk genes and
present deep phenotype–genotype correlations for seven NDD
risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN,
and LEO1).

Results
Targeted sequencing and variant discovery. We initially selected
127 genes for targeted sequencing based primarily on published
cases of recurrent DNM16, dividing the genes into two targeted
sequencing panels (Fig. 1, Supplementary Data 1). The first panel
(NDD1) consisted of 65 candidate genes selected for the first time
in our study for sequencing in 17,832 NDD cases; the second
panel (hcNDD) represented 62 genes, generally regarded as higher
confidence NDD risk genes that had already been sequenced in a
smaller subset (12,000–14,000) of ASID samples3–5. We applied
this second panel to an additional 6,666 NDD cases in this study.

de novo
de novo muta�ons

Fig. 1 Overview of study design. Targeted sequencing was performed in probands for two gene panels: NDD1 (63 genes) and hcNDD (62 genes). Gene
and variant counts are after QC. The same categories of variants were retrieved from three previously published smMIP studies for 62 hcNDD genes. All
smMIP variants were combined; redundant samples were eliminated and compared to the same category of variants from ExAC non-psych controls. The
number of variants is after the exclusion of false positive variants and variants with insufficient coverage in ExAC. Mutation burden analysis identified 48
FDR significant genes (qmutBurden < 0.05, Benjamini–Hochberg correction for 125 genes), of which six reached FWER significance (pmutBurden < 1.25E−06,
Bonferroni correction for 20,000 genes and two tests); DNMs of the 125 genes used in this study were identified from exome sequencing in 10,927
published NDD trios and 6,499 new ASD trios that combined as 17,426 NDD parent–child trios. A separate de novo enrichment analysis, using two
statistical methods (CH model and denovolyzeR), identified 90 FDR significant genes (qdnEnrich < 0.05, Benjamini–Hochberg correction for 18,946 genes in
CH model and 19,618 genes in denovolyzeR), of which, 61 genes reach FWER significance (pdnEnrich < 3.64E−07, Bonferroni correction for 19,618 genes and
seven tests) for excess DNM. There is a significant overlap (40 genes) of the significant genes suggested by the two approaches. Then we performed
genotype–phenotype correlation analysis for seven NDD risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) and present a clearer clinical
picture of each gene.
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We selected patient samples from the international ASID network
of 18 clinical groups where ASD and DD/ID samples existed but
neither exome nor genome sequence had been generated (Sup-
plementary Fig. 1, Supplementary Table 1).

In panel NDD1, we designed 2,400 smMIPs to sequence the
coding and splicing regions (exons plus five bases at each end) for
65 NDD candidate genes (Supplementary Data 2) among 17,832
NDD cases (8,738 and 9,094 cases with the primary diagnosis of
ASD and DD/ID, respectively) (Supplementary Table 1). There
were 1,538 samples (784 ASD and 754 DD/ID) and two genes
(KCNQ2 and PAXX) that failed quality control (QC) based on read-
depth coverage statistics (Supplementary Figs. 2, 3); these samples
and genes were removed from subsequent downstream analyses. In
total, we identified 31,659 putative single-nucleotide variants
(SNVs) or insertions/deletions (indels) for 63 genes in 16,294 sam-
ples after QC. This included 586 ultra-rare (minor allele frequency
[MAF] < 0.01%, i.e., allele count [AC] ≤ 3 in this study) severe
variants, where 212 were likely gene-disruptive (LGD) variants
(either a frameshift, nonsense, or canonical splice donor/acceptor
variant) in 241 patients, and 374 were missense variants with a
Combined Annotation Dependent Depletion (CADD) score22

greater than or equal to 30 (MIS30) in 465 patients. Using Sanger
sequencing, we validated 183 LGD variants in 204 patients and 196
MIS30 variants in 233 patients with an overall validation rate of
96.7% (379/392) (Supplementary Data 3). Transmission was
successfully assessed for 110 variants where we identified 40 DNMs
with 29 de novo LGD (dnLGD), 11 de novo MIS30 (dnMIS30)
variants, and 70 inherited variants in 73 families (three inherited
MIS30 variants observed in two unrelated families) with maternally
inherited variants in 37 families (30 MIS30 and 7 LGD) and
paternally inherited variants in 36 families (23 MIS30 and 13 LGD).
The majority (50/70) of the inherited variants were missense
mutations. Limited clinical data are available for 28 carrier parents
(Supplementary Data 5). Among the families where the parental
phenotype data is available, one proband also carries a de novo
missense variant (p.Arg1241Gln, CADDv1.3= 15.4) in SHANK2
in addition to the paternally transmitted stop-gain variant
(p.Arg860Ter) in CDK13, although the de novo variant is more
likely to contribute to the proband’s autism. Most of the carrier
parents (24/28) were classified as unaffected with no cognitive
impairment, autism, or other psychiatric problems. The remaining
four carrier parents show some clinical features related to the
variant. One father, for example, who transmitted a MIS30 variant
(p.Ser242Phe) in HNRNPR, had special education needs as he
attended a school for individuals with learning disabilities but
showed no obvious dysmorphic features. Similarly, a mother who
transmitted a MIS30 variant (p.Arg339Gln) in CTCF showed a
similar facial phenotype as the child but did not present with a
clinical diagnosis of ID or ASD and was known to have attended
regular school. A mother who transmitted a severe missense variant
(p.Arg330Leu) in KCNQ3 was diagnosed with epilepsy but no
cognitive impairment (Supplementary Data 5). Finally, one mother
who transmitted a splice acceptor variant (c.1189-2 A >G) in
TCF12 was diagnosed with long QT syndrome and glaucoma (like
the patient) but this shared feature is unlikely related to DD
observed in the child or the variant in question. These findings are
consistent with the idea that such transmitted variants are by
themselves not necessary and sufficient to develop DD but may
rather be predisposing variants with a subset of parents manifesting
more subtle phenotypes23.

In panel hcNDD, we resequenced 62 genes selected from our
previous smMIP panels (Supplementary Data 1) for targeted
sequencing with 3,575 smMIPs in 6,666 newly recruited NDD
cases (3,562 ASD and 3,104 DD/ID) (Supplementary Table 1). All
genes passed QC, but 455 DNA samples (199 ASD and 256 DD/
ID) failed QC based on sequence coverage and were excluded

from downstream analyses (Supplementary Figs. 2, 3). In total, we
identified 72,811 SNV/indel variants for 62 genes in 6,211 patients
after QC, including 213 LGD variants in 242 patients and 345
MIS30 variants in 426 patients. We validated 161 LGD variants in
172 patients and 170 MIS30 variants in 196 patients with a
validation rate of 98.2% (331/337) for variants where Sanger
sequencing was performed (Supplementary Data 3). Inheritance
was assessed for 81 variants identifying 29 DNMs (21 dnLGD and
8 dnMIS30 variants) and 52 inherited (34 maternal and 18
paternal) variants. Ultra-rare severe variants were enriched ~2.5-
fold among the hcNDD genes when compared to NDD1 genes for
LGD (p= 4.82E−24, OR= 2.56 [2.14–3.08, 95% CI]) and MIS30
(p= 8.35E−39, OR= 2.49 [2.17–2.86, 95% CI]) variants (two-
sided Fisher’s exact test), which reconfirms that these high-
confidence genes usually have more severe variants in NDD cases.

Genes with an excess burden of ultra-rare severe variants. Since
the 62 hcNDD genes were also previously sequenced in a subset
(12,000–14,000) of ASID cases3–5, where we retrieved the same
category of 1,120 ultra-rare severe variants with an overall similar
validation rate of 97% (519/535) (Supplementary Data 4). We
combined all of the retrieved data with our current sequencing in
this study. Surveying the 125 genes across 16,000–19,000 NDD
cases, there was a total of 2,113 ultra-rare severe variants (843
LGD and 1,270 MIS30 variants) from 2,621 patients (cases,
Supplementary Data 5). In order to assess mutation burden, we
extracted the same category of mutations corresponding to the
smMIP capture regions for the 125 genes from ExAC (r0.3)
controls24 without psychiatric disorders (n= 45,376) (controls,
Supplementary Data 6). To quantify the population structure
captured by our smMIPs, we conducted a principal component
analysis (PCA) using the ultra-rare variants identified from our
targeted sequencing, and also all the available single-nucleotide
polymorphisms (SNPs) that overlap with our smMIPs from the
1000 Genomes Project (phase III high coverage) samples. We did
not observe population-specific PCA clusters, suggesting that our
ultra-rare variants are not stratified by different world popula-
tions (Methods). We excluded false positive variants and con-
trolled for platform differences by removing variants with
insufficient coverage between smMIP cases and ExAC controls
(Methods). In total, 755 LGD and 1,177 MIS30 variants from
smMIP cases, and 524 LGD and 1,810 MIS30 variants from ExAC
controls were applied in the mutation burden analysis. We
identified 48 genes with a significant excess of LGD and/or MIS30
(qmutBurden < 0.05, corrected ngenes= 125, variant count > 1)
(Table 1, Fig. 2, Supplementary Data 10) in cases. Of these, six
genes (ADNP, CHD8, DYRK1A, GRIN2B, POGZ, and SCN2A)
also reached a more stringent significance threshold that pass
exome-wide Bonferroni correction at the family wise error rate
(FWER) for LGD variants (pmutBurden < 1.25E−06, corrected
ngenes= 20,000, variant count > 1). Among the 48 significant
genes, we identified 25 genes that show evidence of ultra-rare
LGD and/or MIS30 (FDR 5%) burden for the first time in this
large-scale case-control study, although 21 of these have been
shown previously to show enrichment for DNMs (Supplementary
Data 10).

Reevaluation of genes for excess DNMs. As the parent–child
exome sequencing for ASD and DD/ID families has increased
since the original selection of candidate genes, we also reassessed
each of the 125 genes for excess DNM in a larger NDD combined
set. In addition to the 537 dnLGD variants and 420 de novo
missense (dnMIS) variants from previously published 10,927
NDD cases25 (Supplementary Data 8), we identified 99 dnLGD
and 104 dnMIS (including 31 dnMIS30) variants in 6,499 new
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ASD patients from 5,911 complete families (4,761 simplex and
1,150 multiplex families) in our recent analysis of 27,270 SPARK
exomes (unpublished data, https://sparkforautism.org/) (Supple-
mentary Data 9). In total, there are 636 dnLGD and 524 dnMIS
(including 201 dnMIS30) variants in the 125 genes from 17,426
NDD (12,123 ASD and 5,303 DD/ID) cases. We reevaluated the
genes for excess DNM (dnLGD, dnMIS, dnMIS30, or de novo
protein alteration [dnALT] variants that include dnLGD and
dnMIS) using two statistical models (Fig. 1): a modified

chimpanzee–human divergence model (CH model)4 and the
denovolyzeR26 model as previously described25. Correcting for
the total number of genes in each model, 81 genes show excess
DNM in NDD patients according to the CH model (qdnEnrich <
0.05, corrected ngenes= 18,946, DNM count > 1) compared to 74
genes predicted to be enriched by denovolyzeR (qdnEnrich < 0.05,
corrected ngenes= 19,618, DNM count > 1) (Fig. 2, Supplemen-
tary Data 10). The combination of both models identified
90 significant NDD candidate genes (union), and 65 genes were

Table 1 Genes with a significant burden for ultra-rare severe variants.

Gene Samples smMIP (AC≤ 3) Combined (This
study | Published)

ExAC non-psych
(AC≤ 9)

Mutation burden test

LGD MIS30 LGD MIS30 LGD p-value MIS30 p-value FDR Significance FWER Significance

SCN2A 19,847 33 (12|23) 25 (4|23) 1 11 2.09E−16 1.63E−06 LGD MIS30 LGD
GRIN2B 19,847 14 (8|9) 14 (5|10) 0 6 5.82E−08 3.08E−04 LGD MIS30 LGD
ADNP 19,847 28 (13|18) 3 (1|2) 1 3 6.89E−14 2.64E−01 LGD LGD
CHD8 19,847 25 (8|17) 21 (10|11) 5 32 3.03E−09 9.77E−02 LGD LGD
POGZ 19,847 16 (7|9) 13 (3|11) 2 10 4.20E−07 8.24E−03 LGD LGD
DYRK1A 19,847 16 (4|12) 8 (3|5) 2 9 4.20E−07 1.12E−01 LGD LGD
SETD5 19,847 15 (3|12) 19 (8|15) 3 12 5.28E−06 3.68E−04 LGD MIS30
DDX3X 19,847 10 (4|7) 7 (4|3) 1 0 5.41E−05 2.41E−04 LGD MIS30
ANK2 19,538 17 (4|14) 61 (29|46) 11 86 7.61E−04 2.16E−03 LGD MIS30
KMT5B 19,538 7 (1|6) 8 (3|7) 1 2 1.32E−03 1.63E−03 LGD MIS30
CTNNB1 19,847 10 (1|9) 5 (0|5) 0 11 6.80E−06 5.65E−01 LGD
ZBTB18* 16,321 8 (8|-) 3 (3|-) 0 2 2.37E−05 1.19E−01 LGD
KMT2A 19,077 13 (5|9) 29 (9|22) 3 42 2.86E−05 2.82E−02 LGD
ASXL3* 19,077 11 (1|10) 3 (0|3) 2 7 6.32E−05 6.06E−01 LGD
SIN3A 19,538 8 (2|6) 12 (3|10) 0 20 6.73E−05 2.32E−01 LGD
NAA15 19,538 13 (1|12) 6 (3|3) 4 10 1.07E−04 3.43E−01 LGD
HNRNPU* 16,321 8 (8|-) 0 (0|-) 2 0 6.26E−04 1 LGD
DSCAM 19,847 11 (4|8) 43 (21|34) 3 64 2.83E−04 2.01E−02 LGD
TRIO 19,847 11 (6|5) 22 (8|15) 3 35 2.83E−04 1.17E−01 LGD
WAC* 19,847 9 (2|7) 12 (1|12) 2 14 6.49E−04 6.65E−02 LGD
RELN* 19,847 11 (3|8) 45 (23|37) 4 78 7.68E−04 8.43E−02 LGD
PASK* 19,077 41 (17|29) 9 (5|6) 50 12 1.28E−03 1.38E−01 LGD
ZMYM2* 19,077 11 (7|7) 4 (2|2) 5 5 1.38E−03 2.61E−01 LGD
SMARCC2 19,847 7 (0|7) 4 (0|4) 1 7 1.42E−03 4.43E−01 LGD
KAT6A* 16,321 8 (8|-) 7 (7|-) 3 24 1.76E−03 7.49E−01 LGD
CHAMP1* 16,321 6 (6|-) 1 (1|-) 1 1 1.84E−03 4.59E−01 LGD
ASH1L 19,847 10 (5|6) 39 (17|28) 4 65 1.88E−03 7.38E−02 LGD
NFIA 19,847 5 (2|4) 3 (1|2) 0 2 2.61E−03 1.69E−01 LGD
MYT1L* 19,077 7 (0|7) 10 (4|6) 2 17 3.94E−03 2.57E−01 LGD
DLG4 19,538 7 (2|5) 7 (2|5) 2 11 4.38E−03 2.81E−01 LGD
CHD2* 19,847 8 (5|4) 17 (3|16) 3 18 4.73E−03 1.84E−02 LGD
NEXMIF* 16,321 6 (6|-) 3 (3|-) 2 3 5.71E−03 1.93E−01 LGD
BRPF1* 16,321 5 (5|-) 13 (13|-) 2 27 1.65E−02 2.40E−01 LGD
PHF12* 16,321 6 (6|-) 8 (8|-) 2 17 5.71E−03 3.32E−01 LGD
SATB2* 16,321 5 (5|-) 4 (4|-) 1 7 6.02E−03 3.26E−01 LGD
SPEN* 16,321 9 (9|-) 31 (31|-) 6 57 6.25E−03 4.26E−02 LGD
AHNAK* 19,538 26 (11|17) 11 (5|9) 30 10 7.26E−03 2.70E−02 LGD
ZNF292* 19,077 9 (3|6) 0 (0|0) 5 6 7.52E−03 1 LGD
PHIP* 19,847 10 (3|7) 18 (3|15) 6 24 7.96E−03 5.96E−02 LGD
TNRC6B 19,847 10 (2|8) 12 (2|10) 6 16 7.96E−03 1.12E−01 LGD
KMT2E* 19,538 9 (5|5) 10 (3|7) 5 15 8.48E−03 1.92E−01 LGD
TRIP12 19,847 7 (1|6) 16 (8|10) 3 25 1.15E−02 1.52E−01 LGD
TBR1* 19,847 5 (2|3) 3 (2|1) 1 6 1.17E−02 5.49E−01 LGD
SETBP1* 19,847 6 (2|4) 9 (7|5) 2 14 1.22E−02 2.43E−01 LGD
PHF7* 19,538 9 (4|5) 3 (3|0) 6 6 1.56E−02 5.40E−01 LGD
TCF12* 16,321 9 (9|-) 12 (12|-) 8 18 1.79E−02 7.34E−02 LGD
SLC6A1 19,847 1 (0|1) 18 (8|12) 0 9 3.04E−01 1.11E−04 MIS30
BRAF* 16,321 1 (1|-) 11 (11|-) 2 7 6.02E−01 2.03E−03 MIS30

Fisher’s exact test (one-sided) for LGD and MIS30 variants from smMIP sequencing compared to the ExAC (r0.3) non-psych subset identified 48 genes significant at the FDR level, of which, six genes
reach FWER significance. The FDR significance threshold qmutBurden < 0.05 was corrected by the Benjamini–Hochberg method for 125 genes in this study; the FWER significance threshold pmutBurden <
1.25E−06 was corrected by the Bonferroni method for 20,000 genes in human genome and two tests performed (LGD and MIS30 variants). *Indicates 25 genes showing new mutational burden
significance in case-control analysis of ultra-rare LGD and MIS30 variants in this study. See Supplementary Data 10 for underlying data.
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seen by both models (intersection). Applying a more stringent
FWER significance (pdnEnrich < 3.46E−07, corrected ngenes=
19,618 in seven tests, DNM count > 1) identifies 61 union genes
and 39 intersect genes (Fig. 2, Supplementary Data 10). This
includes two genes (UIMC1 and GABRG2) firstly significant at a
5% FDR and seven genes (ANK2, TBR1, PHF12, TCF7L2, SETD2,
CASZ1, and NSD2), which were significant at 5% FDR previously,
that firstly reach FWER significance in this larger NDD cohort
(Table 2, Supplementary Data 10).

Genotype–phenotype correlations. We successfully collected
clinical records for 41 probands that carry ultra-rare severe var-
iants in seven significant genes (CTCF, HNRNPU, KCNQ3,
ZBTB18, TCF12, SPEN, and LEO1) from families that were
available for recontact (Figs. 3 and 4, Supplementary Data 11). We
also obtained clinical information for nine probands with dnMIS
variants (2 in CTCF, 4 in KCNQ3, and 3 in ZBTB18) identified
from the clinical trio exome sequencing at Baylor Genetics, and
one DD patient with a dnLGD variant in CTCF that was identified
from trio exome sequencing by the Antwerp group (Supplemen-
tary Data 11). We integrated the above clinical records with
previously published reports and present a more comprehensive
genotype–phenotype correlation assessment within the context of
each gene (Table 3, Supplementary Data 12–18).

Germline deleterious variants in CTCF have recently been
implicated in autosomal dominant DD/ID syndromic disorder
(OMIM #615502) (Supplementary Data 12) with clustering of

dnMIS30 variants occurring near the zinc-finger DNA binding
domains associated with this protein27. We assessed 13 additional
probands (including six with clustered dnMIS variants) from our
study (Fig. 3). They are characterized by craniofacial dysmorph-
isms (9/10), thin vermillion border and lips (4/7), and feeding
difficulties (6/11), and exhibit neonatal hypotonia (7/10). Along
with these features, patients with CTCF mutations display a
broader spectrum of developmental anomalies, including cardiac
congenital malformations (1/8) and skeletal anomalies of toes/
fingers (2/10). In addition to DD/ID (11/12), 54.5% (6/11) of the
patients have a diagnosis of ASD and/or ADHD. The incidence of
each phenotype in our probands (n= 13) is representative of the
combined dataset, including published reports (n= 56) (Fig. 3).

HNRNPU mutations are now recognized as causative for early
infantile epileptic encephalopathy-54 (EIEE54) syndrome (OMIM
#617391), also referred to as HNRNPU-related disorder28. We
observed seizures (3/3), DD/ID and ASD comorbidities (3/3),
movement disorders such as stereotypies, e.g., hand flapping (1/3),
and severe speech impairment (1/3) among our patients (Supple-
mentary Data 13). We observed high ASD comorbidity (5/9) in
patients carrying KCNQ3 mutations extending the phenotype
which primarily associated with benign familial neonatal epilepsy.
In our study, about half of the patients were diagnosed with benign
familial infantile epilepsy (4/9) or DD (5/9) with or without seizures
and cortical visual impairment (Supplementary Data 14). In
contrast to HNRNPU, all mutations associated with KCNQ3 were
severe missense mutations with no observation of a potential LGD

a
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mutation29. ZBTB18 is responsible for autosomal dominant mental
retardation-22 (MRD22) syndrome (OMIM #612337), which is
characterized by the features also seen in our patients such as
moderate to severe DD/ID (7/7), ASD (2/7), speech delay (2/4),
variable facial dysmorphisms (3/3), growth delay (2/4), and poor
fine-motor skills (2/4) (Supplementary Data 15). TCF12 has been
associated with craniosynostosis-3 syndrome (OMIM #615314).
This phenotypic feature was observed in two of our patients, as
well as other neurobehavioral phenotypes (DD/ID in 3/8 and ASD
in 4/8 patients) (Supplementary Data 16).

We also investigated two additional candidate genes: SPEN and
LEO1. To our knowledge, SPEN is newly identified in this study
with a significant burden only for LGD variants (Table 1), while
LEO1 shows excess DNM at both FDR and FWER levels
(Supplementary Data 10). All patients with deleterious variants in
SPEN show neurobehavioral impairment (Supplementary Data 17)
(e.g., DD/ID in 6/7 and ASD in 5/7 patients in this study). Patients
with a deleterious variant in SPEN show a more complicated clinical
picture with other features, such as mild facial dysmorphism (4/4),
muscular hypotonia, tall stature, poor motor coordination, and
ocular abnormalities (3/4). Paternally inherited deletions of the
LEO1 promoter were recently detected in three individuals with
ASD11. Only two patients with disruptive mutations in LEO1 from
our cohort could be recontacted, one showed some dysmorphic
features and a minor cardiopathy plus global DD, while the other
showed rather non-syndromic neurobehavioral features (Supple-
mentary Data 18).

Discussion
Here, we report the results of large-scale targeted sequencing of
125 genes in over 16,000 pediatric NDD patients, with more than
half the genes being screened in over 19,000 patients. We inves-
tigate these genes under a case-control mutation burden design
and also test for DNM enrichment. Our comparison to ExAC
controls identifies 48 genes as significantly enriched for ultra-rare
severe variants in NDD patients (LGD and/or MIS30 variants,
qmutBurden < 0.05, corrected ngenes= 125, variant count > 1).
Additionally, 90 of the genes are enriched for DNMs in combined
exomes of 17,426 NDD parent–child trios. There are 40 genes
significant in both tests defining a subset of genes particularly
relevant for future diagnosis of disease irrespective of inheritance
patterns or availability of parental data. Overall, 78.4% (98/125) of
the genes show some evidence of mutational burden in patients;
notably, 61 genes remain significant at a more stringent level of
FWER significance (61 with de novo enrichment, six of which
were also detected from the case-control design) (Supplementary
Data 10). In our targeted sequencing, 76% (95/125) of these genes
have ultra-rare LGD variants identified in both patients with a
primary diagnosis of ASD and DD/ID suggesting that these par-
ticular genes should be regarded as NDD genes as opposed to
solely ASD or DD/ID risk genes.

In addition to the 98 genes significant by mutation burden
analysis, or the de novo enrichment analysis, or both, there are
additional candidates that trend toward increased mutational
burden or de novo enrichment among NDD cases. For example,
there are seven additional genes if considering a less stringent
threshold (FDR 10%). One gene, NCKAP1, shows evidence of
increased mutational burden for LGD variants (qmutBurden=
0.07), while six genes show excess DNM, namely SF3B1 (dnMIS
qdnEnrich= 0.068 and dnALT qdnEnrich= 0.074), H2AC6 (dnMIS
qdnEnrich= 0.053), and NFIA (dnALT qdnEnrich= 0.086) in the CH
model and ARID2 (dnLGD qdnEnrich= 0.094), TNRC6B (dnLGD
qdnEnrich= 0.097), and DNM1 (dnLGD qdnEnrich= 0.071) under
the denovolyzeR model. Given the reported function of these
genes and published case reports, it is likely that with increasingT
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sample size these genes may achieve significance in the near
future25. To test this, we expanded the number of parent–child
trio exome sequencing cases with those from the SPARK pilot
study30 and two recent publications from the ASC study8 and
DDD study31 for a total of 48,281 NDD trios (excluding sample
overlap and redundancy). Across those samples, four of the seven
candidate genes reach some level of significance: ARID2 and
DNM1 are significant for excess DNM at FWER significance, and
H2AC6 and SF3B1 show excess DNM (FDR 5%). Overall, in this
expanded de novo enrichment analysis, we estimate that at least

102 of the 125 genes in this study show a significant excess of
DNM after adding the SPARK pilot, ASC, and DDD cohorts.
Importantly, as additional genes become significant, our targeted
sequencing studies will provide an important resource for future
follow-up with clinicians and additional families to further
investigate these genes.

We followed up clinically on seven candidates with the aim to
develop or extend genotype–phenotype correlations. For example,
CTCF, the CCCTC-binding factor, is a highly conserved zinc-
finger protein that forms a multifunctional complex functioning
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in defining topologically associated domains, which are important
for genome regulation and gene expression32. DNMs in CTCF
have been described in patients with ID27. In this study, we
identified three dnMIS30 variants based on smMIP screening
(Supplementary Data 12) and characterized three additional DD
patients with DNM in CTCF from the clinical trio exome
sequencing at Baylor Genetics and the Antwerp group. Pheno-
typic assessments confirm features of the disorder and the
importance of germline mutations in CTCF as causative for an
autosomal dominant DD/ID syndromic disorder. The aggregate
data highlight a striking clustering of deleterious missense
mutations between the 2nd and 5th zinc-finger domain27 (Fig. 3).
These functional domains have been described as the most
important for making contact between the CTCF complex and
DNA molecules and, as such, may represent useful targets for
future therapeutic intervention33.

Other genes, such as KCNQ3, show a preponderance of severe
missense mutations with half of the mutations mapping to the ion
transport domain of the protein (Fig. 4). In our study, 5/9 of our
patients with clinical information and a KCNQ3 variant are diag-
nosed with ASD (Supplementary Data 14), expanding the pheno-
typic spectrum of this gene as well as the main features of DD/ID
and benign familial neonatal epilepsy34. All three of our recontacted
patients with HNRNPU variants present with seizures (Supple-
mentary Data 13), consistent with its association with epileptic
encephalopathy and DD28. All four of our patients with a putative
ZBTB18 (also known as RP58 or ZNF238) LGD variant present
with DD/ID (Supplementary Data 15); this particular KRAB C2H2
zinc-finger protein has been described as a transcriptional repressor

critical during brain development and neuronal differentiation35.
Besides the previously reported large number of patients with
TCF12 mutations36, we identified eight patients with a generally
similar phenotype showing comorbid conditions of ASD and DD/
ID in about half of the cases while craniosynostosis, which was
originally primarily associated with this gene, was observed in only
one-third of affected individuals (Supplementary Data 16).

Some of the newer candidates that have now reached or are
nearing statistical significance for mutational burden still require
much more extensive clinical follow-up and additional cases to
further establish variant pathogenicity and refine the associated
phenotype. Such is the case for RNA polymerase-associated
protein LEO1, recently implicated in ASD11, although there are
relatively few patients reported to date. We identified two addi-
tional individuals with stop-gain variants in LEO1, albeit with
limited clinical information. Both of them are male—one patient
presented with DD and the other with autistic behavior and
ADHD with bilateral cryptorchidism (Supplementary Data 18).
LEO1 is particularly intriguing in light of the recent observation
that LEO1 interacts with the PAF1C complex in Drosophila to
selectively transcribe expanded GGGGCC repeats in C9orf72-
associated frontotemporal degeneration37. In addition, paternally
inherited deletions of the LEO1 promoter11 and dnLGD variants
in LEO1 have been reported in large cohort testing of DD and
ASD patients7,9.

SPEN is another interesting candidate for further investigation.
Haploinsufficiency of SPEN is considered a candidate for the
1p36 deletion syndrome phenotype38 and complete knockout of
the gene in mice results in postnatal growth retardation and

Table 3 Clinical recontact and detailed genotype–phenotype correlations.

Gene CTCF HNRNPU KCNQ3 ZBTB18 TCF12 SPEN LEO1

OMIM gene *604167 *602869 *602232 *608433 *600480 *613484 *610507
OMIM
phenotype

#615502 #617391 #121201 #612337 #615314 NR NR

Inheritance
pattern

AD AD AD AD AD NR NR

# Patients ~70 ~35 ~46 ~31 ~124 ~10 ~8
Clinical
synopsis
(most
frequent
features)

Microcephaly,
thin vermilion
border,
Abnormality of
the dentition;
hypermetropia,
strabismus,
delayed dentition.
Feeding
difficulties.
Congenital
cardiopathies.
Cryptorchidism.
Hypotonia, global
developmental
delay, intellectual
disability. Growth
delay and short
stature.

Microcephaly.
Generalized
hypotonia.
Delayed
myelination,
EEG abnormality,
epileptic
encephalopathy,
global
developmental
delay, intellectual
disability,
ventriculomegaly.

Benign familial
neonatal
epilepsy and
benign familial
infantile
epilepsy, seizure
disorders that
occur in children
who typically
have normal
psychomotor
development.
Developmental
disability with or
without seizures
and/or cortical
visual
impairment.

Moderate to
severe
intellectual
disability,
limited or no
speech, and
variable but
characteristic
facial features
including a
round face,
prominent
forehead, flat
nasal bridge,
hypertelorism,
epicanthal folds,
and low-set
ears. Hypotonia,
poor growth,
microcephaly,
agenesis of the
corpus
callosum, and
seizures.

Variable
craniosynostosis that
may involve,
individually or in
combination, the
coronal and/or the
sagittal skull sutures.
Other congenital
anomalies,
dysmorphisms
(brachydactyly, ptosis,
strabismus) and/or
neurodevelopmental
impairment may be
present.

Mild facial
dysmorphisms,
muscular
hypotonia, tall
stature, poor
motor
coordination,
and ocular
abnormalities

Intellectual
disability
and autistic
behavior

Data were retrieved by analyzing available clinical reports for genes of interest, and a clinical synopsis is presented according to MedGen. Individual patient details can be found in Supplementary
Data 12–18, respectively.
AD autosomal dominant, NR not reported.
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hypoplasia of the brain, especially involving the hippocampus and
cerebral cortex39. We identified seven individuals in our study
with DD and/or ASD with variable degrees of clinical information
(Supplementary Data 17). Families with probands with SPEN
LGD variants have no family history of DD/ID, learning dis-
abilities, or neurological disease. For two patients where clinical
data are more extensive, there is an indication of potential dys-
morphology and skeletal abnormalities similar to previous
reports. While the data, taken together, support the pathogenicity
of SPEN LGD mutations, they also highlight a challenge going
forward for the community. Unlike genes such as CHD8, POGZ,
and ADNP, where large-scale screening has uncovered dozens of
affected individuals for clinical evaluation and proved statistical
significance at every level, the next tier of genes with ultra-rare
and gene-disruptive DNMs will likely require screening of over
100,000 people. If only a handful of individuals with mutations in
such genes are available, either from disparate labs with different
standards of clinical reporting, or with incomplete family data,
the pathogenicity determination may languish for years. Since we
estimate that this next tranche of genes may account for more
than half of the de novo gene burden associated with NDDs6, a
more systematic effort involving targeted resequencing of large
cohorts, database coordination (e.g., GeneMatcher), and dedi-
cated researchers/clinicians willing to adopt such orphan genes
and collate the clinical data are key. To help avoid false asso-
ciations, whole-genome sequencing of such patients, their
families, and controls may be particularly important to eliminate
other genetic causes as contributing to disease and to understand
the penetrance of the mutations under study.

Methods
Candidate genes. We considered two sets of genes: new candidates (NDD1) for
investigation and high-confidence genes (hcNDD) that have been previously
implicated in NDDs. Different criteria were used in selecting these two groups. In
panel NDD1, we ranked and selected candidate genes for which no smMIP
sequencing had been performed previously. We initially ranked all genes based on
the DNMs from published NDD trios cataloged in denovo-db (v1.5), but excluding
the following: genes associated with well-known syndromes based on OMIM, genes
with extremely high-GC content, and genes with high counts of LGD and MIS30
variants in the ExAC non-psych controls. In total, 65 genes were selected for
screening with: (i) 43 genes showing excess DNM25; (ii) 14 genes with evidence of
autism sex bias40; (iii) six genes from a network analysis of high-functioning autism
indicated previously3; (iv) and two genes (H2AC6 and H1-4) that were considered
within a CNV candidate. In panel hcNDD, we continually reselected 62 top can-
didate genes from our previous smMIP panels3, mainly ranked by the reported
number of DNMs from the published NDD trios in denovo-db (v1.5) and number
of ultra-rare severe LGD and MIS30 variants identified in targeted sequencing of
>13,000 NDD cases. We sequenced an additional 6666 newly recruited NDD cases
that had not been previously sequenced using smMIPs. These served as positive
controls of known disease genes in this study allowing for the discovery of addi-
tional cases for phenotypic evaluation. During the selection of these 125 genes, we
evaluated the success rate of all smMIPs for each gene as part of our optimization
experiments. We excluded genes, for example, where >20% of smMIPs failed to
provide sufficient coverage even after 50-fold spike-in. We also balanced the total
number of smMIPs per gene in each panel needed to achieve sufficient sequence
depth. In particular, large genes requiring more than 200 smMIPs were triaged to
allow a greater number of more moderate-sized genes to be considered. Supple-
mentary Data 1 lists the genes with detailed selection criteria.

Study samples. Patient samples were obtained from the ASID network with
informed consent. Only those not previously exome or genome sequenced were
selected for targeted sequencing in this study. ASID is an international consortium3

that has expanded to include 18 centers around the world (Supplementary Fig. 1,
Supplementary Table 1). The majority of samples were recruited from four sites
(Adelaide, ACGC, Troina, and Leuven), as well as three new recruitment centers:
an ASD collection from the University of Iowa (Iowa), an ID cohort from Charles
University of Czech Republic (Charles), and an ASD cohort from the Italian
Autism Network (ITAN). All targeted sequencing, Sanger variant validation,
transmission analysis, and clinical recontact performed on the individuals in this
study were approved by the University of Washington Institutional Review Board
(IRB), in accordance with the ethical standards of the responsible local institutional
and national committees. A PCA was used to quantify the population structure

captured by our smMIPs. Samples in NDD1 generated two clusters; however, each
cluster was composed of samples with mixed ancestries, and 15,659 samples (i.e.,
96.1% of the total) were located under one heterogeneous cluster. In the case of
hcNDD, a total of three clusters are observed; however, one of the clusters contains
a heterogeneous mixture of 6161 samples (99.2% of the total). Overall, these
observations suggest that the ultra-rare variants assayed by our targeted sequencing
do not capture underlying population structure. Indeed, when we used all the
available SNPs that overlap with our smMIPs from the 1000 Genomes Project
(phase III high coverage) samples, we observed one large PCA cluster where 2,484
(99.2%) of the samples were included, once again supporting our previous obser-
vation that the genotypes of our ultra-rare variants are not stratified by different
world populations. Hence, we expect our downstream case-control mutation
burden analyses of the ultra-rare variants to not be confounded by population
structure.

Targeted sequencing. All of the smMIP capture experiments, HiSeq
2500 sequencing, and Sanger validation experiments were performed at the Uni-
versity of Washington (Seattle, WA, USA), except for the ACGC cohort where
experiments were carried out at the Center of Medical Genetics, School of Life
Sciences, Central South University, Changsha, Hunan, China. In NDD1,
2,400 smMIPs were designed using MIPgen41 to cover all annotated RefSeq
protein-coding exons and the splicing portions within 5 bp of flanking intronic
sequence for all 65 genes. Oligos were ordered from Integrated DNA Technologies
(IDT, https://www.idtdna.com/). smMIPs were pooled, rebalanced, and spiked-in
at a relative concentration of 10X or 50X to improve sequence coverage for poorer-
performing smMIPs where possible (Supplementary Data 2). A total of 17,832
NDD cases were sequenced using the balanced NDD1 panel. For hcNDD,
3,575 smMIPs from 62 genes were re-pooled from previous designs3 and tested for
6,666 newly collected NDD cases. smMIP capture libraries were barcoded and
pooled with ~288 (3 × 96) samples and sequenced on a lane using an Illumina
HiSeq 2500.

Variant annotation and validation. HiSeq data were processed according to the
manufacturer’s instructions for base calling; variants were called using FreeBayes
(version 1.0.2-6-g3ce827d) with its simplest operation (freebayes -f ref.fa aln.bam >
var.vcf). Variants were filtered (QUAL > 20 and DP > 8) excluding common var-
iants in dbSNP142 and then annotated using Ensembl’s Variant Effect Predictor42

(VEP, Ensembl GRCh37 release 94 - October 2018) with assembly GRCh37.p13 as
the reference genome. Variants were annotated for all isoforms by VEP and those
with the most severe consequence were selected for follow-up. Sanger validations
were performed with ~300 bp PCR amplicons. CADD (v1.3) is a tool for scoring
the deleteriousness of SNVs as well as indels in the human genome, and MIS30
variants are among the top 0.1% of the ~8.6 billion SNVs of the GRCh37/hg19
reference genome. LGD and MIS30 variants for the 62 genes in hcNDD were
obtained from three previously published smMIP studies with same criteria applied
(QUAL > 20, DP > 8, and MAF < 0.01% (AC ≤ 3)) (Supplementary Data 4). Similar
variants from the targeted regions of 125 genes were obtained from the ExAC non-
psych subset as controls with same filtering, i.e., QUAL > 20, DP > 363,008 (Avg.
DP > 8), and MAF < 0.01% (AC ≤ 9) (Supplementary Data 6). All smMIP variants
(this study and published) were merged with redundancy removed as variants with
AC ≤ 3 retained for all subsequent analyses. dnLGD and dnMIS variants in the de
novo enrichment analysis were extracted from SPARK-27K cases with ASD (n=
6,499) from complete families and the denovo-db (v1.5) NDD subset (n= 10,927).
The published exome DNMs from SPARK pilot and ASC, together with recently
released exome DNMs from DDD, were also included in the extended de novo
enrichment analysis with sample overlap and redundancy removed. For cohorts
like SSC and SPARK, for which the underlying exome data are available, duplicates
were identified by running the KING software43, which uses identical by state (IBS)
to estimate pairwise relatedness between samples. Any samples with a kinship
value > 0.35 were considered to be identical and counted only once. Identical
samples from the same cohort were also checked for reported monozygotic twin
status. We identified one pair of SSC samples and eight pairs of SPARK samples as
having a kinship value > 0.35. Note, samples in SPARK that overlapped with SSC
samples were already removed in the final release by the SPARK Consortium. For
other published cohorts, for which the underlying exome data are unavailable, the
potential sample overlap identification, if applied, was described in each corre-
sponding study. Like in the current DDD study, a total of eight duplicate samples
were identified by collecting genotypes at 47 common exonic SNPs for every
sample with a DNM found in another individual in the joint set; only one indi-
vidual from each duplicate pair was kept with a final set of 31,058 samples ana-
lyzed. We also excluded sample overlaps reported in the literature. We excluded
DD/ID samples in denovo-db (v1.5), which are also included as part of the current
DDD study, and also excluded all 2,384 SSC samples in the ASC paper for potential
redundancy with denovo-db (v1.5). These measures yielded a total of 48,281 NDD
trios in the extended de novo enrichment analysis. To ensure uniformity, the same
version of CADD score and VEP annotation were applied, and the analysis was
restricted to the canonical transcript with the most deleterious annotation.
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Statistical analyses. All statistical tests were performed using the R programming
language (version 3.6.1). Benjamini–Hochberg FDR or Bonferroni FWER was
applied when appropriate for multiple testing correction as described in the rele-
vant sections. For mutation burden analysis, Fisher’s exact test (one-tailed) was
used to compare the number of LGD and MIS30 variants from smMIP sequencing
(cases) with those from the ExAC non-psych subset (controls), false positive var-
iants by Sanger validation and variants with insufficient coverage (<90% samples
with at least 10X coverage) in ExAC were excluded. The FDR significance threshold
was set as qmutBurden < 0.05 where the q-value was corrected by
Benjamini–Hochberg method for the total number of genes in this study (ngenes=
125); the FWER significance threshold was set as pmutBurden < 1.25E−06, which was
calculated by 0.05/(20,000*2) and corrected by Bonferroni method for 20,000 genes
in human genome and two tests performed (LGD and MIS30 variants). For de
novo enrichment analysis, we applied both the CH model2 and denovolyzeR26

methods to assess the enrichment for four classes of DNM: dnLGD, dnMIS,
dnMIS30, and dnALT. We applied denovolyzeR (v0.2.0) using default settings
where dnMIS30 variants are not assessed; a modified CH model4 was applied to
include the evaluation of dnMIS30 variants. Both methods apply their own
underlying mutation rate estimates to generate the prior probabilities for observing
a specific number and class of mutations for a given gene. Briefly, the CH model
estimates the number of expected DNMs by incorporating chimpanzee–human
coding sequence divergence and the length of the gene; denovolyzeR estimates
mutation rates based on trinucleotide context, mutational biases such as CpG
hotspots, and macaque–human gene comparisons. Default parameters were used
for both methods, and the expected mutation rate of 1.8 DNMs per exome was set
to the CH model as an upper bound baseline. The FDR significance threshold was
set as qdnEnrich < 0.05 and corrected by the Benjamini–Hochberg method for the
number of genes in each model (18,946 for CH model and 19,618 for denovoly-
zeR). The FWER significance threshold was set as pdnEnrich < 3.64E−07, which was
calculated by 0.05/(19,618*7) and corrected by the Bonferroni method for 19,618
genes (the larger number of genes in two models) in seven tests performed
(dnLGD, dnMIS, dnMIS30, and dnALT variants in CH model, and dnLGD,
dnMIS, and dnALT variants in denovolyzeR).

Phenotypic assessment. Additional de-identified clinical records were obtained
with informed consent for probands with ultra-rare severe mutations where the
families were available for recontact (Supplementary Data 11). Clinical data were
reviewed in consultation with the corresponding clinicians regarding the patient
phenotypes and by analyzing existing or published clinical reports (Supplementary
Data 12–18). For CTCF, we clustered and translated proband phenotype data into
the corresponding Human Phenotype Ontology (HPO) annotation by using the
Charité Browser; phenotypic enrichment analysis was performed based on the
recurrence of the specific phenotype out of the total available clinical reports
according to the HPO code (Fig. 3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The smMIP sequencing data for this study can be downloaded from the NIMH Data
Archive (NDA) at https://doi.org/10.15154/1517561 and are available to all qualified
researchers upon request after data-use certification. In order to request access to broad-
use and controlled-access shared data in the NIMH Data Archive (NDA), a requester
must first be affiliated with an NIH-recognized research institution registered in the
NIH’s electronic research administration system, eRA Commons. The requester’s
institution must also have an active Federalwide Assurance (FWA). Additionally, the
requester must have a research-related need to access the data and must demonstrate
adherence to any consent-based data-use restrictions in requests to access Controlled
Access Permission Groups. More details about requesting access to shared data in NDA
are available at https://nda.nih.gov/get/access-data.html. The URLs for data presented
herein are as follows: denovo-db, http://denovo-db.gs.washington.edu/denovo-db/;
Exome Aggregation Consortium (ExAC), https://gnomad.broadinstitute.org/; Online
Mendelian Inheritance in Man (OMIM), http://www.omim.org/; Ensembl Variant Effect
Predictor (GRCh37), http://grch37.ensembl.org/Homo_sapiens/Tools/VEP/; Combined
Annotation Dependent Depletion (CADD), https://cadd.gs.washington.edu/; MedGen,
https://www.ncbi.nlm.nih.gov/medgen; HPO Charité Browser, https://hpo.jax.org/app/
tools/hpo-browser.

Code availability
Custom code used in this manuscript is available at https://github.com/tianyunwang/
mip_paper_2020. Tools and software used in this manuscript that include code are as
following: MIPgen, https://github.com/shendurelab/MIPGEN; FreeBayes, https://github.
com/ekg/freebayes; denovolyzeR, https://github.com/jamesware/denovolyzeR.
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