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3. Crosstalk between EMP and IFN-γ induced PD-L1

Abstract

EMT and immunoevasion through upregulation of PD-L1 are important drivers of
cancer progression. While EMT has been proposed to facilitate PD-L1-mediated
immunosuppression, the molecular mechanisms of their interaction remain obscure.
Here we provide insight into these mechanisms by proposing a mathematical model
that describes the crosstalk between EMT and IFNγ-induced PD-L1 expression. Our
model shows that via interaction with microRNA-200 (miR-200), the multistability of
the EMT regulatory circuit is mirrored in the PD-L1 levels, which are further amplified
by IFNγ stimulation. This IFNγ-mediated effect is most prominent for cells in a fully
mesenchymal state, and less strong for those in an epithelial or partially mesenchymal
state. Additionally, bi-directional crosstalk between miR-200 and PD-L1 implies that
IFNγ stimulation allows cells to undergo EMT for lower amounts of inducing signal,
and that IFNγ presence accelerates EMT and decelerates mesenchymal-epithelial tran-
sition (MET). Overall, our model agrees with published findings and provides insight
into possible mechanisms behind EMT-mediated immune-evasion; and primary, adap-
tive, or acquired resistance to immunotherapy. Our model can be used as a starting
point to explore additional crosstalk mechanisms, as an improved understanding of
these mechanisms is indispensable for developing better diagnostic and therapeutic
options for cancer patients.

3.1 Introduction

Activating invasion andmetastasis and evading immune destruction arewell-established
hallmarks of cancer, complementary capabilities that enable tumor growth and
metastatic dissemination (Hanahan and Weinberg, 2011). Because metastasis is the
main cause of cancer mortality, a thorough understanding of the interaction between
these hallmarks is essential for developing therapeutic approaches, yet they are of-
ten studied separately (Meirson et al., 2020). Consequently, the interplay between
metastatic dissemination and immune evasion remains poorly understood.

In recent years, epithelial-mesenchymal plasticity (EMP), the ability of cells to
interconvert between intermediate E/M phenotypes along the epithelial-mesenchymal
transition (EMT) spectrum (Yang et al., 2020), has been extensively studied because of
its crucial role in invasion and metastasis (reviewed in Derynck and Weinberg, 2019;
Williams et al., 2019; Lu and Kang, 2019). Moreover, EMP is associatedwith therapeutic
resistance (reviewed in Staalduinen et al., 2018; Williams et al., 2019), including
resistance to immunotherapy (reviewed in Terry et al., 2017b). One of the mechanisms
through which cancer cells acquire immune resistance is by activation of immune
checkpoint pathways, which under physiological conditions are indispensable for
self-tolerance and modulation of the immune response (Pardoll, 2012).

A frequently upregulated checkpoint protein in tumors is programmed death-
ligand 1 (PD-L1) (Okazaki and Honjo, 2006). Its corresponding receptor programmed
death 1 (PD-1) is expressed on the cell membrane of T cells, and PD-1–PD-L1 inter-
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action induces a variety of immunosuppressive effects, such as inhibition of T cell
proliferation, survival, and effector functions (Zitvogel and Kroemer, 2012). Tumor
cells can express PD-L1 by two general mechanisms: adaptive immune resistance,
where PD-L1 expression is upregulated in response to inflammatory factors (such as
interferon gamma (IFNγ)) produced by an anti-tumor immune response, and innate
immune resistance, where PD-L1 expression is upregulated in response to constitutive
oncogenic signaling (Pardoll, 2012). Such constitutive signaling could, for example, be
caused by EMT, and indeed several links between EMT and PD-L1-mediated immu-
noevasion have been reported in the literature (reviewed by Jiang and Zhan (2020),
who conclude that additional mechanistic studies are urgently needed).

Here we study the post-transcriptional regulation of PD-L1 by the microRNA-200
(miR-200)–zinc finger E-box-binding homeobox 1 (ZEB1) axis, which is one of the
proposed mechanisms underlying the interplay between EMT and immune resistance
(Chen et al., 2014; Noman et al., 2017; Martinez-Ciarpaglini et al., 2019). The binding
of miR-200 to the mRNA of PD-L1 inhibits mRNA translation and stimulates miRNA
decay (Baccarini et al., 2011; Kim and Pak, 2020). The miR-200–ZEB1 axis is “a
motor of cellular plasticity” (Brabletz and Brabletz, 2010) and is considered to be
part of the EMT core regulatory network (Nieto et al., 2016). Various mathematical
models of EMT that include the miR-200–ZEB1 axis have been developed, which have
contributed to a better mechanistic understanding of EMT (Jolly et al., 2017; Burger
et al., 2017; Yang et al., 2020). Recently, Sahoo et al. (2021b) presented a mathematical
model interconnecting a minimal EMT network and PD-L1 using shifted Hill functions
to investigate immune-evasive strategies of hybrid E/M states, assuming an indirect
effect of PD-L1 on EMT. Model analysis showed that both the stable hybrid and full
EMT phenotypes resulting from the model were associated with high PD-L1 levels.
However, although EMT scores determined from gene expression levels across a
large panel of cell lines indeed exhibited a pattern of gradually increasing PD-L1
expression with increasing EMT score, there was no clear dichotomy as expected
from the mathematical model. This difference may be explained by the indirect nature
of the feedback of PD-L1 to EMT as implemented in the model of Sahoo et al. (2021b).
Moreover, the impact of adaptive, IFNγ-driven PD-L1 expression, i.e., the primary
reason for PD-L1 upregulation (Mühlbauer et al., 2006; Chen et al., 2019), was not
taken into account in their model.

To describe the full interactions expected between adaptive and innate immune
resistance and to study the impact of direct, mutual feedback between EMT and
PD-L1, we connected a “core” EMT model (the simplified Ternary Chimera Switch
(TCS) model (Jolly et al., 2016)) to a model for IFNγ-induced PD-L1 expression, which
we developed based on an extension of a published JAK–STAT model (Quaiser et al.,
2011). Combining these two models was achieved by adding a mutually inhibitory
feedback loop between miR-200 and PD-L1, which we described using appropriate
miRNA-mRNA dynamics (Lu et al., 2013b). Analysis of our model shows that IFNγ-
induced PD-L1 expression is expected to greatly accelerate EMT and decelerate the
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reverse mesenchymal-epithelial transition (MET) process. Moreover, IFNγ-induced
PD-L1 lowers the required level of EMT-inducing signal, leading to an overall larger
probability of EMT in tumors with a high IFNγ expression compared to tumors with
a low expression. Vice versa, and consistent with Sahoo et al. (2021b), a full EMT
induced via other signals greatly upregulates PD-L1 expression, which IFNγ further
amplifies. However, in our model, the hybrid EMT phenotype only moderately affects
PD-L1 expression, which is due to the mutual feedback between EMT and PD-L1.
Finally, we show that our model findings are broadly consistent with published
experimental results in an extensive comparison to experimental data. Overall, our
analysis illustrates how crosstalk between EMP and IFNγ-induced PD-L1 production
can result in immune evasion and contribute to invasion and metastasis.

3.2 Results

Modeling IFNγ-induced PD-L1 expression and EMT

To study the interplay between IFNγ-induced PD-L1 expression and EMT, we first
need a quantitative description of these major processes. Although IFNγ-induced
PD-L1 expression via the JAK–STAT pathway (Fig. 3.1A) has been extensively studied
(Garcia-Diaz et al., 2017; Ivashkiv, 2018), to the best of our knowledge, nomathematical
model of this entire process exists. Existing models focus on IFNγ-induced JAK–STAT
signaling (reviewed in Gambin et al., 2013) and usually do not take into account direct
targets of signal transducer and activator of transcription (STAT) such as interferon
regulatory factors (IRFs) and interferon-stimulated genes (ISGs). To model IFNγ-
induced PD-L1 expression, we used the simplified JAK–STAT model by Quaiser and
Mönnigmann (2009) (Fig. 3.1B, left box), which is a truncated version of a more
detailed model by Yamada et al. (2003). In this model, STAT1p_2 reaches its maximum
at about 30 minutes after IFNγ exposure (Fig. 3.1C, left), which represents a much
shorter time scale than the time scales at which PD-L1 expression or EMT is expected
to occur. Therefore, we simplified this model further by describing the steady state
of its output, i.e., phosphorylated STAT1 homodimer (STAT1p_2), with a Gompertz
function (Supplementary Methods). We then extended this model with the production
of interferon regulatory factor 1 (IRF1) mediated by STAT1, and production of PD-L1
mediated by IRF1 (Fig. 3.1B, middle box, and Fig. S3.1A). We modeled both of these
processes with shifted Hill functions, which led to realistic dynamics (Rateitschak
et al., 2010) in which PD-L1 becomes expressed on a time scale of hours (Ghosh et al.,
2021) (Fig. 3.1C, middle, and Fig. S3.1B).

For EMT, various mathematical models have already been developed (Jolly et al.,
2017; Burger et al., 2017). We elected to use the TCS model developed by Jolly et al.
(2016) (Fig. 3.1B, right box), which is a simplified model compared to prior work (Lu
et al., 2013a) and readily extensible. Notably, the TCS model exhibits three stable
states, representing an epithelial phenotype (E), an intermediate phenotype (E/M), and
a mesenchymal phenotype (M) (Fig. 3.1D, left, black lines). Consistent with the results
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Figure 3.1: PD-L1 and EMT dynamics occur on distinct time scales. (A) Schematic
diagram of the signaling pathway regulating IFNγ-induced PD-L1 expression. (B)
Schematic diagram of the full model combining IFNγ-induced STAT signaling
(left box), PD-L1 expression (middle box), and the simplified TCS model for EMT
dynamics (right box). (C) Temporal dynamics of separate models (boxes in B)
without connection to the other parts. This includes IFNγ-induced STAT1 signaling
(left) with IFNγ = 0.1 nm, STAT1-induced PD-L1 expression (middle) with STAT1p_2
= 430 nm, and snail family transcriptional repressor 1 (SNAIL1)-induced EMT (right)
with SNAIL1 = 2.3 × 105molecules. (D) Bifurcation diagram illustrating how EMT
phenotype depends on the inducing signal in the TCS model (left, black lines). The
eventual phenotype also depends on the initial state of the system, illustrated by
temporal dynamics after a sudden increase of SNAIL1 from 2.0 × 105molecules to
2.15 × 105molecules given three different initial states (colored lines).
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for the full TCS model (cf. Fig. 6 in Lu et al., 2013a), a full EMT in the simplified TCS
model takes approximately twenty days, with a slowing down of the transitioning to
the mesenchymal phenotype around ZEB1 expression levels for the hybrid phenotype
(Fig. 3.1C, right). Both the initial state of the system and the EMT-inducing signal
determine the phenotype that the system attains in the long run (Fig. 3.1D, colored
lines). Moreover, it is important to note the difference in time scales for the dynamics
of the different model components: whereas STAT signaling and PD-L1 expression
occur on a time scale of minutes and hours, a full EMT transition from E to M occurs
on a time scale of days (Fig. 3.1C ).

IFNγ amplifies the increase in PD-L1 caused by EMT primarily for

mesenchymal cells

Because we aimed to study the impact of IFNγ-mediated PD-L1 on EMT and vice versa,
we connected the separate model parts (Fig. 3.1B, boxes) by adding mutual inhibition
between PD-L1 and miR-200 (Chen et al., 2014; Alsuliman et al., 2015; Noman et al.,
2017) using the theoretical framework for miRNA-transcription factor (TF) dynamics
by Lu et al. (2013b). For this combined model (Fig. 3.1B), we studied how the system
responds to different levels of SNAIL1 (activated via, for example, transforming
growth factor beta (TGFβ)) and IFNγ (Fig. 3.2). In the absence of IFNγ, the previously
reported tristable ZEB1 levels (Lu et al., 2013a) translate to similar tristability in
PD-L1 expression at the cell membrane (blue line in Fig. 3.2A). Here, the highest
PD-L1 expression occurs for mesenchymal cells and the lowest for epithelial cells.
Note that the PD-L1 expression of hybrid cells is only slightly increased compared
to epithelial cells, a prediction that is different from the recent study by Sahoo et al.
(2021b). Notably, the model predicts that exposure of cells to IFNγ greatly amplifies
PD-L1 expression for all phenotypes, thereby also amplifying the differences in
PD-L1 expression between those EMT phenotypes (Fig. 3.2A, orange line; Fig. 3.2B).
Nevertheless, in the presence of IFNγ the hybrid phenotype has a PD-L1 expression
level similar to that of epithelial cells, and only mesenchymal cells are expected to
have substantially higher PD-L1 levels.

IFNγ promotes the occurrence of EMT

We next asked what the impact of IFNγ is on ZEB1, i.e., a central EMT-regulating TF.
Even in the absence of IFNγ, cells in our model can undergo EMT for lower levels
of SNAIL1 compared to the original TCS model (leftward shift of the blue curve in
Fig. 3.2C compared to the gray curve). This is because PD-L1 and miR-200 mutually
influence each other, and the low basal expression of PD-L1 thus leads to a reduced
amount of miR-200, in turn affecting EMT. In the presence of IFNγ, the bifurcation
diagram shifts even further to the left (Fig. 3.2C, orange curve), which implies that
according to our model, IFNγ induces EMT through PD-L1 upregulation. Note that in
the presence of IFNγ, both partial and full EMT more readily occur than in its absence.
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Figure 3.2: Model-predicted mutual influence of IFNγ-driven PD-L1 expression and

EMT. (A)-(C) Bifurcation diagrams illustrating how the steady-state expression of
PD-L1 on the membrane depends on SNAIL1 in the absence (blue) and presence
(orange) of IFNγ (A), how the steady-state expression of PD-L1 on the membrane
depends on IFNγ, considering a fixed SNAIL1 level of 1.9 × 105molecules (B), and
how the steady state of ZEB1 mRNA depends on SNAIL1 in the TCS model (gray),
and in our extended model in the absence (blue) or presence (orange) of IFNγ (C).
Stable equilibria (representing E, E/M, and M phenotypes) are indicated by solid
lines and unstable equilibria by dashed lines. (D) Phase diagram showing how the
presence of stable equilibria (colored regions, indicated in the legend) depends
on IFNγ and SNAIL1. Vertical dashed lines in (A),(C), and (D) show the SNAIL1
concentration used in (B).
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We created a phase diagram to provide an overview of how the stability of EMT
phenotypes depend on IFNγ and SNAIL1 levels (Fig. 3.2D). In this phase diagram, the
IFNγ-induced leftward shift is clearly visible. Additionally, it shows that the total
range of SNAIL1 for which the hybrid E/M phenotype, a particularly aggressive EMT
phenotype (Lüönd et al., 2021, and reviewed in Jolly et al., 2018), can (co-)exist is
unaffected.

To investigate the role of the included JAK–STAT regulation, we created a simpli-
fied crosstalk model where we replaced JAK–STAT signaling with a generic inducing
signal 𝐼 (Fig. S3.2A). The influence of this inducing signal is more gradual than the
influence of IFNγ in the full model, yet the same leftward shift is present (Fig. S3.2B,
cf. Fig. 3.2B), suggesting that IFNγ-induced JAK–STAT signaling makes the response
highly “switch-like”. Additionally, we used a sensitivity analysis on parameters used
in the negative-feedback loop between miR-200 and PD-L1, which showed that both
the predicted leftward shift of SNAIL1 levels and the amplification of PD-L1 by IFNγ
are robust to parameter change (Fig. S3.3). In conclusion, our model predicts that
local presence of IFNγ promotes partial and full EMT by lowering the threshold of
additional EMT-inducing signals.

IFNγ-driven PD-L1 expression accelerates EMT

Besides the steady states for EMT status and PD-L1 expression that the combined
regulatory network can reach in the long run, in practice, it will also matter how long
it takes to reach these states. Therefore, we also investigated our combined regulatory
network’s temporal dynamics and compared them to the temporal dynamics of the
separate models.

To study the impact of PD-L1 expression on the temporal dynamics of an EMT
transition and vice versa, we started with a stable epithelial phenotype (SNAIL1 =
1.7 × 105 molecules) and simulated transition to a fully mesenchymal phenotype by a
sudden increase of SNAIL1 (to 2.3 × 105 molecules). In our combined model of PD-L1
expression and EMT with the double-negative feedback loop between miR-200 and
PD-L1, several changes in the temporal dynamics of EMT can be observed relative
to the simplified TCS model (blue lines in Fig. 3.3, left column): First, the decrease
in miR-200 during EMT affects the PD-L1 mRNA and membrane PD-L1 (which are
not present in the TCS model) at a similar time scale as miR-200. Thus, the effect of
EMT on PD-L1 expression takes place on a much slower timescale than for PD-L1
expression driven by IFNγ (for comparison, see Fig. 3.1C, middle panel). Second,
because of the double-negative feedback loop, the increase in PD-L1 over time speeds
up the miR-200 decrease (compared to the TCS model without the feedback loop).
Because of miR-200’s role as a critical suppressor of several EMT-TFs (Chung et al.,
2016; Bracken et al., 2016), this accelerates the EMT process by about five days, mainly
by reducing the time cells remain in a state close to the hybrid (E/M) phenotype
before converting to a fully mesenchymal phenotype. Induction of PD-L1 by IFNγ
enhances this accelerating effect by PD-L1, decreasing the time required for a full
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Figure 3.3: Temporal dynamics of EMP. EMT (left) and MET (right) for the simplified TCS
model (dashed gray), and our combined model (Fig. 3.1B) with IFNγ = 0 nm (blue)
and IFNγ = 0.1 nm (orange). For EMT, cells in an epithelial state with SNAIL1 =
1.7×105molecules undergo a full EMT by increasing SNAIL1 to 2.3×105molecules;
for MET, SNAIL1 is decreased to the original value of 1.7 × 105molecules again.

EMT by another five days, thus cutting the twenty days needed for a full EMT in the
simplified TCS model in half (orange line in Fig. 3.3, left). Again, the PD-L1 expression
level evolves slowly compared to the rapid increase observed on a time scale of hours
for the model describing just IFNγ signaling (Fig. 3.1C). This difference in time scales
of initial IFNγ-driven PD-L1 increase and of further PD-L1 increase due to EMT
is especially apparent when considering a scenario where cells are simultaneously
exposed to IFNγ and a TGFβ (Fig. S3.4, left column). In summary, the double-negative
feedback loop between miR-200 and PD-L1 accelerates EMT, and IFNγ amplifies this
effect.

IFNγ-driven PD-L1 expression decelerates MET

Finally, we investigatedwhether similar changes occur in the temporal dynamics of the
reverse process in which mesenchymal cells transition to an epithelial phenotype, i.e.,
MET. To this purpose, we started with a stable mesenchymal phenotypewhere SNAIL1
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= 2.3 × 105 molecules, which we instantaneously decreased to 1.7 × 105 molecules. In
the simplified TCS model, this SNAIL1 decrease led to a direct transition from the
mesenchymal into the epithelial phenotype (gray dashed line in Fig. 3.3, right), i.e.,
without a substantial slowing down of the dynamics around a hybrid phenotype.

As anticipated from the observed EMT dynamics showing that the double-negative
feedback loop between PD-L1 and miR-200 favors the mesenchymal phenotype, this
loop also affectsMET, albeit in the opposite direction, i.e., it deceleratesMET. However,
this effect is considerably smaller than the effect in the forward transition (blue lines in
Fig. 3.3, right), which is likely the result of MET not transitioning through the hybrid
state at a slow pace since the PD-L1–miR-200 interaction primarily accelerated EMT by
shortening the time spent there (Fig. 3.3 left). The addition of IFNγ further decelerates
MET, primarily due to the long-lasting suppression of miR-200 (orange lines in
Fig. 3.3, right). Note that simultaneous lowering of SNAIL1 and removal of IFNγ do
lead to an MET occurring at a similar speed as in the original TCS model (Fig. S3.4,
right column), demonstrating the important role of IFNγ in the EMT dynamics. In
conclusion, the PD-L1–miR-200 double-negative feedback loop is expected to slow
down MET considerably, and high IFNγ concentrations strengthen this effect.

3.3 Discussion

Here we have used a mathematical model to describe the crosstalk between IFNγ-
induced PD-L1 expression and EMT. We showed that merely adding the reported
interaction between PD-L1 and miR-200 gives rise to tristability in the PD-L1 levels,
where a mesenchymal state corresponds with high PD-L1 expression and an epithelial
state with low PD-L1 expression. The difference in PD-L1 levels between the stable
EMT states is amplified by adding IFNγ stimulation. Additionally, we showed that
adding this crosstalk reduces the amount of SNAIL1 required to undergo EMT. This
reduction is dependent on the IFNγ concentration but is present even in the absence
of IFNγ (i.e., compared to a model without the PD-L1–miR-200 crosstalk). Finally, we
showed that this crosstalk accelerates the forward EMT process and decelerates the
reverse MET process, and that IFNγ amplifies these effects.

To assess the extent to which the model results agree with recent studies, we have
compiled a summary of published experimental reports on the link between EMT
and PD-L1 and indicate which findings are qualitatively consistent with our results
(Table 3.1). Note that we omitted several papers that propose different mechanisms
underlying EMT/PD-L1 crosstalk and lacked experimental findings that could be
compared to our simulations (Kumar et al., 2017; Bouillez et al., 2017; Suda et al., 2017;
Miao et al., 2017). Overall, the simulated results of our model are in good agreement
with the reported experimental findings.
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Table 3.1: Summary of experimental reports regarding the crosstalk between EMT and PD-L1
and their consistency with our ODE model.

Cancer type Description Match

-
Association between EMT markers and PD-L1 expression in
different cancer types (Jiang and Zhan, 2020).

Yes

Breast cancer

Induction of EMT in human breast cells using TGFβ upregu-
lated PD-L1 expression in a manner that was dependent on
the activation of the PI3K/AKT and MEK/ERK pathways. In
addition, manipulation of PD-L1 modulated the EMT status of
breast cancer cells. Downregulation of PD-L1 using specific
shRNA in mesenchymal-like cells led to partial EMT reversal.
Conversely, overexpression of PD-L1 led to EMT (Alsuliman
et al., 2015).

Yes*

In an EMT-activated and a mesenchymal-like breast cancer
cell line, upregulation of PD-L1 depended on SNAIL and ZEB1.
In another EMT-activated cell line, silencing of ZEB1 (but
not SNAIL) and overexpression of miR-200 family members
strongly decreased PD-L1 expression. However, treatment of
EMT-activated breast cancer cells with TGFβ did not affect
PD-L1 expression, and inhibitors of TGFβ signaling did not
modulate PD-L1 expression (Noman et al., 2017).

Mostly

Colon cancer

ZEB and PD-L1 overexpression and a reduction in miR-200
were identified in budding areas in colon cancer tissues. PD-L1
overexpression led to low levels of miR-200a and miR-200c
and high levels of ZEB1 and ZEB2 (Martinez-Ciarpaglini et al.,
2019).

Yes

Esophageal
squamous cell
carcinoma
(ESCC)

TGFβ induced ZEB1 and PD-L1 expression in epithelial-like
ESCC cell lines. ZEB1 knockdown by RNA interference stim-
ulated E-cadherin and suppressed PD-L1 mRNA and protein
expression in a mesenchymal-like cell line. Because the pro-
moter region of PD-L1 contains a binding site for ZEB1, the
authors speculated that ZEB1 directly regulates PD-L1 expres-
sion, in addition to its indirect regulation through miR-200
(Tsutsumi et al., 2017).

Mostly*

PD-L1 expression promoted the mesenchymal phenotype
in esophageal cancer cells. Ablation of PD-L1 enhanced E-
cadherin and suppressed several mesenchymal markers, and
the opposite was observed upon PD-L1 overexpression (Chen
et al., 2017).

Yes

– continued on next page

39



3. Crosstalk between EMP and IFN-γ induced PD-L1

Table 3.1 – continued from previous page

Cancer type Description Match

TRAIL induced EMT in ESCC by upregulating PD-L1 ex-
pression. Additionally, treatment with anti-PD-L1 antibodies
inhibited TRAIL-mediated metastasis in mice (Zhang et al.,
2021).

Yes

Glioblastoma

In glioblastomamultiforme cells, PD-L1 overexpression down-
regulated E-cadherin and upregulated N-cadherin and Vi-
mentin, as well as the upstream transcription factors SLUG
and β-catenin (but not ZEB1). Mechanistically, PD-L1 acti-
vated the EMT process via Ras binding and activating the
downstream MEK/ERK signaling (Qiu et al., 2018).

Partly*

Hepatocellular
carcinoma

PD-L1 expression promoted EMT in sorafenib-resistant
HepG2 SR and Huh7 SR cell lines via the PI3K/Akt pathway
by activating SREBP-1 expression (Xu et al., 2020).

Yes*

Lung cancer

Tumor cell PD-L1 expression is regulated by the miR-
200/ZEB1 axis in NSCLC. Chen et al. postulate that this is
caused by miR-200 binding sites on the mRNA of PD-L1. In-
duction of EMT using TGFβ upregulated ZEB1 and PD-L1
expression, and constitutive ZEB1 expression enhanced PD-L1
expression on epithelial lung cancer cell lines. Conversely,
PD-L1 was suppressed in mesenchymal cells upon ZEB1
knockdown or miR-200 overexpression (Chen et al., 2014).

Yes

Cytokine-driven EMT signaling reversibly upregulated PD-L1
expression in NSCLC cell line A549. Mechanistically, this
was regulated by DNA methylation and NF-ϰB signaling and
required both TGFβ1 and TNF-α (Asgarova et al., 2018).

Yes*

There is a positive association between PD-L1 and phospho-
rylated Smad2 in NSCLC tumors, and TGFβ1 upregulated
PD-L1 gene transcription in NSCLC in a Smad2-dependent
manner (David et al., 2017).

Yes*

Knockdown of PD-L1 by siRNAs suppressed expression of
mesenchymal markers and upregulated E-cadherin expres-
sion in H460 and H358 cells, and PD-L1 overexpression
showed the opposite effect (Yu et al., 2020).

Yes*

Renal cell car-
cinoma

Downregulation of PD-L1 led to downregulation of the mes-
enchymal marker Vimentin and upregulation of the epithe-
lial marker E-cadherin, while PD-L1 upregulation enhanced
Vimentin and suppressed E-cadherin expression through ac-
tivation of SREBP-1 (Wang et al., 2015).

Yes*

* However, different mechanisms/pathways (also) appear to be involved
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Although findings of our model and experimental data are in good agreement,
some results are partially conflicting: Firstly, Noman et al. (2017) report that while
PD-L1 expression in EMT-activated breast cancer cell lines is regulated via the
SNAIL1/ZEB1/miR-200 axis, treatment of MCF7-2101 cells with TGFβ or inhibition
of TGFβ in MCF sh-WISP2 cells did not modulate PD-L1 expression. However, the
MCF7-2101 cell line already has a mesenchymal phenotype, evident from their Vi-
mentin expression and lack of E-cadherin; hence additional TGFβ is not expected to
further increase PD-L1 expression by triggering EMT. Moreover, although the TGFβ
signaling inhibitors repressed SMAD2 activation in MCF7 sh-WISP2 cells, phosphory-
lated SMAD2/3 is only essential for SNAIL1 activation and not for the persistence of
SNAIL1 expression (Zhang et al., 2018). Thus, the performed experiments cannot rule
out that TGFβ signaling modulates PD-L1 expression in these cell lines. Secondly,
PD-L1 expression in certain cell lines is reportedly affected by silencing of ZEB1 but
not of SNAIL1 (Noman et al., 2017; Tsutsumi et al., 2017). Although SNAIL1 drives
ZEB1 expression in the EMT core regulatory network model we used, this apparently
contradictory finding can be reconciled by appreciating that the EMT transcriptional
response is highly context-specific (Nieto, 2017; Cook and Vanderhyden, 2020). In-
deed, sustained expression of ZEB1 can be achieved by various EMT regulators and
even by ZEB1 itself, resulting in an irreversible switch to the mesenchymal phenotype
(Gregory et al., 2011; Zhang et al., 2014; Jia et al., 2019b). Thus, SNAIL1 silencing may
be insufficient to affect PD-L1 in settings where ZEB1 is maintained via other means.

Even though partially conflicting findings between our model and published data
can be reconciled, it is also likely that additional mechanisms by which PD-L1 and
EMT mutually influence each other play a role depending on the studied cell line or
cancer. For instance, PD-L1 expression can induce EMT by activating the TF SREBP-1c
in hepatocellular and renal cell carcinoma (Wang et al., 2015; Xu et al., 2020), ZEB1
can bind and silence IRF1, a TF of PD-L1 (Yang et al., 2017), and activity of the CMTM
family, which stabilizes PD-L1, correlates with EMT-TFs such as SLUG (Wu et al.,
2020; Li et al., 2021).

In the related mathematical model presented by Sahoo et al. (2021b), an indirect
feedback mechanism of PD-L1-mediated E-cadherin inhibition was included. Results
of their model agree qualitatively with those of our model in terms of the prediction
that hybrid E/M cells are expected to be PD-L1 positive and hence immune-evasive.
However, the predicted PD-L1 expression levels for the different EMT phenotypes
differ substantially: Sahoo et al. predict that the hybrid and mesenchymal phenotypes
have almost equally high PD-L1 expression, whereas we predict that hybrid cells are
closer to epithelial cells with respect to PD-L1 expression. They substantiated that
PD-L1 expression increases with EMT scores by an analysis of gene expression in
pan-cancer datasets and analysis of responses in several cell lines. For some of these
data, intermediate EMT scores (interpreted as hybrid cells) have the tendency to only
moderately increase the PD-L1 expression (e.g., Fig. 1E-F and 5E Sahoo et al., 2021b),
which is more in line with our model predictions. Further research will be required
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3. Crosstalk between EMP and IFN-γ induced PD-L1

to unravel this complicated interplay between factors affecting PD-L1 expression and
EMT. Our model forms a basis to include such factors.

A limitation of our model is its relatively crude description of IFNγ-induced PD-L1
expression. To keep the model simple, we used a steady-state approximation of the
simplified model by Quaiser et al. (2011), which only describes the first 15 minutes
of JAK–STAT signaling before transcriptional feedback occurs. Nevertheless, our
model’s predicted IRF1 temporal dynamics roughly agree with the JAK–STAT model
by Rateitschak et al. (2010, cf. Fig. 4A). Comparison of these results with those of a
highly simplified IFNγ-driven PD-L1 expression model showed that the role of JAK–
STAT signaling primarily creates a “switchlike” response to IFNγ (cf. Figs. S3.2B
and 3.2B).

The predicted decrease of SNAIL1 levels required for EMT (as indicated by the
leftward shift in the bifurcation diagrams in Figs. 3.2C and 3.2D) is noteworthy in
itself; whereas several studies report on the modulation of PD-L1 expression as a
result of EMP, the mechanism by which PD-L1 could modulate EMT remains unclear
(Jiang and Zhan, 2020). Here we show that merely the degradation of the PD-L1–
miR-200 complex could be affecting miR-200 levels sufficiently to affect EMT, without
the need for additional mechanisms.

The results reported heremay have diagnostic and therapeutic implications. PD-L1
has been proposed as a biomarker to predict the efficacy of PD-1/PD-L1 blockade
therapy (Ren et al., 2020), yet the multifactorial mechanisms underlying PD-L1 mem-
brane expression complicate its use as an exclusive biomarker (Patel and Kurzrock,
2015; Bruns and Beltman, 2022). For example, oncogene-driven PD-L1 expression
caused by EMT, is constitutive and diffuse, and distinct from inflammation-driven
PD-L1 expression, which may occur more focally and during a limited time window.
The latter is often associated with the presence of an immune infiltrate, while the
former is associated with a lack thereof (Patel and Kurzrock, 2015), and it has been
proposed that this combination of PD-L1 expression and the presence of immune
infiltrate affects the response to PD-1/PD-L1 blockade therapy (Lai et al., 2018). Our
findings highlight how oncogenic and inflammation-driven PD-L1 expression might
interact and give rise to strongly increased PD-L1 levels. PD-L1 on tumor cells is
an important contributor to immune evasion through inhibition of CD8+ T cell cy-
totoxicity (Juneja et al., 2017). Consistently, in metastatic urothelial cancer, lack of
response to anti-PD-L1 treatment occurred particularly in patients with tumors that
showed exclusion of CD8+ T cells (Mariathasan et al., 2018). Combined treatment with
TGFβ-blocking and anti-PD-L1 antibodies invoked anti-tumor immunity and tumor
regression by facilitating T cell infiltration, which could be due to EMT-independent
TGFβ signaling (Gunderson et al., 2020), but possibly also via the EMT-dependent
path we have presented here. Another opportunity could be the use of therapeutic
siRNA (Hu et al., 2020): In contrast to anti-PD-L1 antibodies, siRNA affects PD-L1
mRNA, which, according to our model, should free up miR-200 for its anti-EMT effect,
a prediction that is supported by (partial) EMT reversal following downregulation of
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PD-L1 using siRNA/shRNA (Alsuliman et al., 2015; Yu et al., 2020).

In conclusion, we developed a mathematical model that describes the crosstalk
between IFNγ-induced PD-L1 and EMT, which is in good agreement with experimen-
tal findings. Additionally, our model sheds light on potential mechanisms behind
EMT-mediated immune evasion; and primary, adaptive, or acquired resistance to
immunotherapy. Our (simplified) model can serve as a starting point to explore addi-
tional EMP and immune crosstalk mechanisms. In particular, we propose embedding
the presented model in a multiscale model to explicitly describe the local effects of the
adaptive immune response and the effects of TGFβ on the tumor microenvironment.
Improved understanding of the interaction between the immune response and EMP
is indispensable for developing better diagnostic and therapeutic options for cancer
patients.

3.4 Materials and Methods

Simplified Ternary Chimera Switch model

The simplified TCS model (Jolly et al., 2016) is built on the theoretical framework for
microRNA-TF chimera toggle-switches defined in Lu et al. (2013b). See Supplementary
Material for the model definition, theoretical framework, and used parameters.

IFNγ–PD-L1 model

The IFNγ–PD-L1 model consists of two parts: (IFNγ–)JAK–STAT signaling, for which
we use a steady-state approximation of an existingmodel, and STAT–PD-L1 regulation
which we developed following the theoretical framework underpinning the simplified
TCS model. We discuss these parts in more detail below.

(IFNγ–)JAK–STAT

For the IFNγ–PD-L1 model, we use the JAK–STAT model by (Quaiser et al., 2011) (see
Supplementary Material). Because the dynamics of STAT–PD-L1 and EMT signaling
in the TCS model take place on a much longer time scale than those of the JAK–STAT
model (see Fig. 3.1C), we simplified our IFNγ–PD-L1 model by assuming the JAK–
STAT model is in quasi-steady state; we fitted its steady-state by a Gompertz function
(see Fig. S3.5) and inserted this approximate relationship between IFNγ and STAT in
our STAT–PD-L1 model.
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𝑛 (# of miRNA binding sites) 0 1 2

𝑙𝑖 [h−1] 1 0.3 0.05
𝛾𝑚𝑖 [h−1] 0 0.2 1
𝛾𝜇𝑖 [h−1] 0 0.05 0.5

Table 3.2: Rates used in the 𝐿(𝜇), 𝑌𝑚 (𝜇), and 𝑌𝜇,𝑚𝑃
(𝜇) functions in the STAT-PD-L1 model

for 𝑛 = 2.

STAT–PD-L1

The STAT–PD-L1 submodel (see also Fig. S3.1A) consists of the following ordinary
differential equations (ODEs):

IRF1 mRNA :
𝑑𝑚𝐹

𝑑𝑡
= 𝑔𝑚𝐹

𝐻𝑆 (STAT , 𝜆STAT ,𝑚𝐹
) − 𝑘𝑚𝐹

𝑚𝐹

IRF1 protein :
𝑑𝐹

𝑑𝑡
= 𝑔𝐹𝑚𝐹 − 𝑘𝐹 𝐹

miR-200∗ :
𝑑𝜇

𝑑𝑡
= 𝑔𝜇𝐻

𝑆 (𝑍, 𝜆𝑍,𝜇)𝐻𝑆 (𝑆, 𝜆𝑆,𝜇) −𝑚𝑍𝑌𝜇,𝑚𝑍
(𝜇) −𝑚𝑃𝑌𝜇,𝑚𝑃

(𝜇) − 𝑘𝜇𝜇

PD-L1 mRNA :
𝑑𝑚𝑃

𝑑𝑡
= 𝑔𝑚𝑃

𝐻𝑆 (𝐹, 𝜆𝐹,𝑚𝑃
) −𝑚𝑃𝑌𝑚 (𝜇) − 𝑘𝑚𝑃

𝑚𝑃

PD-L1 in ER :
𝑑𝑃ER

𝑑𝑡
= 𝑔𝑃ER𝑚𝑃𝐿(𝜇) − 𝑘ER,𝐺𝑃ER

PD-L1 in Golgi :
𝑑𝑃𝐺

𝑑𝑡
= 𝑘ER,𝐺𝑃ER − 𝑘𝐺,𝑀𝑃𝐺

PD-L1 membr. :
𝑑𝑃𝑀

𝑑𝑡
= 𝑘𝐺,𝑀𝑃𝐺 − 𝑘𝑃𝑀𝑃𝑀

This model uses the abundance of STAT (in molecules) as input, and includes IRF1
and PD-L1 using appropriate TF-TF and miR-TF dynamics (𝐻𝑆 , 𝐿, and 𝑌 functions)
from the theoretical framework by Lu et al. (2013b) (see Supplementary Material)
in anticipation of the eventual connection to miR-200 (𝜇) in our combined model
(see below). To accommodate a low number of binding sites for miR-200 on the
mRNA of PD-L1 (Chen et al., 2014), we adapted the parameters for the 𝐿(𝜇), 𝑌𝑚 (𝜇),
and 𝑌𝜇,𝑚𝑃

(𝜇) from Table S3.1 (𝑛 = 6) to the values as shown in Table 3.2 (𝑛 = 2). We
assumed 𝜇0 = 1 × 104 molecules to be the same as in Jolly et al. (2016). Transport
of PD-L1 through various cellular compartments is modeled with a constant rate
from compartment to compartment, with rates assumed to be similar to Lippincott-
Schwartz et al. (2000). Model parameters are provided in Table 3.3; some parameters
were considered to be similar to those of the simplified TCS model.
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Prod. rate 𝑔 Degr. rate 𝑘

IRF1 mRNA 𝑚𝐹 𝑔𝑚𝐹
30 𝑘𝑚𝐹

0.5
IRF1 protein 𝐹 𝑔𝐹 100 𝑘𝐹 0.1
PD-L1 mRNA 𝑚𝑃 𝑔𝑚𝑃

30 𝑘𝑚𝑃
0.5

PD-L1 in ER 𝑃ER 𝑔𝑃ER 100 𝑘ER,𝐺 1.68
PD-L1 in Golgi Complex 𝑃𝐺 𝑘𝐺,𝑀 1.8
PD-L1 on membrane 𝑃𝑀 𝑘𝑃𝑀 0.15

Threshold 𝐵0
𝐴

Hill coefficient 𝑛BA Max. fold change 𝜆BA

Act. 𝑚𝐹 by
STAT

STAT 0
𝑚𝐹

2 × 106 𝑛STAT ,𝑚𝐹
10 𝜆STAT ,𝑚𝐹

10

Act.𝑚𝑃 by 𝐹 𝐹 0𝑚𝑃
1 × 105 𝑛𝐹,𝑚𝑃

3 𝜆𝐹,𝑚𝑃
10

Table 3.3: Variables and parameters used for the STAT–PD-L1 model. The top panel shows
variable names and production and degradation rates; the bottom panel shows
parameters for the shifted Hill functions of the interactions. Degradation rates 𝑘
are in h−1, production rates 𝑔 in molecules h−1, and thresholds 𝐵0

𝐴
in molecules.

Combined model

To create our combined model, we connected the IFNγ-induced JAK–STAT signaling
model and simplified TCS model to the central STAT–PD-L1 model (see Fig. 3.1B).
Since the JAK–STAT model has [STAT1p_2] as output in nm we need to convert to
number of molecules to use STAT1p_2 as input in the STAT–PD-L1 model. As in Jolly
et al. (2016), we use a cell volume of 10 000 µm3, such that 1 nm amounts to roughly
6020molecules (6.02×1023 ·10−9 ·10000×

(
10−5

)3). Note that this cell volume is on the
high side, as typical animal cells are 10–20 µm in diameter (∼500–4000 µm3) (Alberts
et al., 2015, p. 529). However, because of our IFNγ–STAT steady-state approximation, a
decrease in cell volume by a factor 10 can be compensated by multiplying the inducing
IFNγ signal also by a factor 10 to yield the same amount of STAT, and hence, the
same model result. Additionally, to connect the STAT–PD-L1 model to the simplified
TCS using miR-200, equation miR-200* (Section 3.4) is used instead of the equation
for miR-200 in the simplified TCS model to include the interaction with PD-L1, and
𝑌𝜇,𝑚𝑍

(𝜇) in the updated equation corresponds to 𝑌𝜇 (𝜇) in the simplified TCS model
(see Supplementary Material). Table 3.4 shows all model components and their units
in our combined model.

Simulation & Analysis

Formodel simulations, we used COPASI (COmplex PAthway SImulator) (RRID:SCR_014260)
(Hoops et al., 2006), and model files are included in the Supplementary Material.

Analysis in R (R Project for Statistical Computing, RRID:SCR_001905) (R Core
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Regulator Symbol Units

*extra-cellular IFNγ [IFN𝛾] nM
[STAT1p_2] 𝑥10 nM
STAT1p_2 STAT # molecules
IRF1 mRNA 𝑚𝐹 # molecules
IRF1 protein 𝐹 # molecules
PD-L1 mRNA 𝑚𝑃 # molecules
PD-L1 in Endoplasmatic Reticulum 𝑃ER # molecules
PD-L1 in Golgi Complex 𝑃𝐺 # molecules
PD-L1 on cell membrane 𝑃𝑀 # molecules
miR-200 𝜇 # molecules
ZEB1 mRNA 𝑚𝑍 # molecules
ZEB1 protein 𝑍 # molecules
*SNAIL1 protein 𝑆 # molecules

Table 3.4: List of regulators in the combined model. Starred (*) regulators IFNγ and SNAIL1
are the two model inputs.

Team, 2022) was performed with RStudio (RStudio, RRID:SCR_000432) (RStudio Team,
2020) and the tidyverse (Wickham et al., 2019) packages.
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Simplified Ternary Chimera Switch model

The TCS model (Lu et al., 2013a) is built on the theoretical framework for microRNA-
TF chimera toggle-switches defined in Lu et al. (2013b). In this framework, activation
and inhibition of TF B on TF A is defined by a shifted Hill function

𝐻𝑆 (𝐵, 𝜆BA) = 𝜆BA + (1 − 𝜆BA)𝐻− (𝐵, 𝜆BA),

where 𝐻− (𝐵, 𝜆BA) = 1/(1+ (𝐵/𝐵0
𝐴
)𝑛BA ) is an inhibitory Hill function, 𝐵0

𝐴
is the thresh-

old level for 𝐵 at which inhibition is half-maximal, 𝑛BA is the Hill coefficient (usually
associatedwith the number of binding spots on the promoter), and 𝜆BA is themaximum
fold change of 𝐴 caused by 𝐵 (when B is an inhibitor, this implies that 0 ≤ 𝜆BA < 1).
The miRNA-affected translation rate of mRNA is given by

𝐿(𝜇) =
𝑛∑︁
𝑖=0

𝑙𝑖𝐶
𝑖
𝑛𝑀

𝑖
𝑛 (𝜇),

such that the total translation is 𝐿tot = 𝐿(𝜇)𝑚0, where𝑚0 is the total concentration of
mRNA. The miRNA-assisted mRNA degradation rate is given by

𝑌𝑚 (𝜇) =
𝑛∑︁
𝑖=0

𝛾𝑚𝑖𝐶
𝑖
𝑛𝑀

𝑖
𝑛 (𝜇),

and the miRNA-assisted miRNA degradation rate by

𝑌𝜇 (𝜇) =
𝑛∑︁
𝑖=0

𝑖𝛾𝜇𝑖𝐶
𝑖
𝑛𝑀

𝑖
𝑛 (𝜇).

In these equations

𝐶𝑖
𝑛 =

(
𝑛

𝑖

)
=

𝑛!
𝑖!(𝑛 − 𝑖)! and 𝑀𝑖

𝑛 (𝜇) =

(
𝜇

𝜇0

)𝑖(
1 + 𝜇

𝜇0

)𝑛 ,
and

𝜇0 =
𝑟𝜇−

𝑟𝜇+
,

where 𝜇 is the amount of miRNA, 𝑟𝜇+ and 𝑟𝜇− the binding and unbinding rate miRNA
to mRNA, 𝑛 is the number of binding sites, 𝑙𝑖 is the translation rate of an mRNA
when bound to 𝑖 miRNAs, 𝛾𝑚𝑖 is the individual degradation rate of mRNA bound to 𝑖
molecules of miRNA, and 𝛾𝜇𝑖 is the individual degradation rate for a miRNA molecule
(see SI Lu et al., 2013a, for derivation and more details).
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𝑛 (# of miRNA binding sites) 0 1 2 3 4 5 6

𝑙𝑖 [h−1] 1 0.6 0.3 0.1 0.05 0.05 0.05
𝛾𝑚𝑖 [h−1] 0 0.04 0.2 1 1 1 1
𝛾𝜇𝑖 [h−1] 0 0.005 0.05 0.5 0.5 0.5 0.5

Table S3.1: Rates used in the 𝐿(𝜇), 𝑌𝑚 (𝜇), and 𝑌𝜇 (𝜇) functions in the simplified TCS model.
Other parameters are fixed at 𝜇0 = 1 × 104molecules and 𝑛 = 6 (Jolly et al., 2016).

Prod. rate 𝑔 Degr. rate 𝑘

miR-200 𝜇 𝑔𝜇 2100 𝑘𝜇 0.05
mRNA ZEB1 𝑚𝑍 𝑔𝑚𝑍

11 𝑘𝑚𝑍
0.5

ZEB1 𝑍 𝑔𝑍 100 𝑘𝑍 0.1

Threshold 𝐵0
𝐴

Hill coefficient 𝑛BA Max. fold change 𝜆BA

Inh. 𝜇 by 𝑍 𝑍 0
𝜇 2.2 × 105 𝑛𝑍,𝜇 3 𝜆𝑍,𝜇 0.1

Inh. 𝜇 by S 𝑆0𝜇 1.8 × 105 𝑛𝑆,𝜇 2 𝜆𝑆,𝜇 0.1
Act.𝑚𝑍 by 𝑍 𝑍 0

𝑚𝑍
2.5 × 104 𝑛𝑍,𝑚𝑍

2 𝜆𝑍,𝑚𝑍
7.5

Act.𝑚𝑍 by 𝑆 𝑆0𝑚𝑍
1.8 × 105 𝑛𝑆,𝑚𝑍

2 𝜆𝑆,𝑚𝑍
10

Table S3.2: Parameters used for the TCS model. Top panel shows production and degradation
rates, bottom panel shows parameters for the shifted Hill functions of the interac-
tions. Degradation rates 𝑘 and 𝑙 are in h−1, production rates 𝑔 in molecules h−1,
and thresholds 𝐵0

𝐴
in molecules (Jolly et al., 2016).

For the simplified TCS model, with SNAIL as input (Lu et al., 2013a; Jolly et al.,
2016), the parameters used in 𝐿(𝜇), 𝑌𝑚 (𝜇), and𝑌𝜇 (𝜇) functions are shown in Table S3.1.

Using this theoretical framework we can now write the simplified TCS model as

miR-200:
𝑑𝜇

𝑑𝑡
= 𝑔𝜇𝐻

𝑆 (𝑍, 𝜆𝑍,𝜇)𝐻𝑆 (𝑆, 𝜆𝑆,𝜇) −𝑚𝑍𝑌𝜇 (𝜇) − 𝑘𝜇𝜇,

mRNA ZEB1:
𝑑𝑚𝑍

𝑑𝑡
= 𝑔𝑚𝑍

𝐻𝑆 (𝑍, 𝜆𝑍,𝑚𝑍
)𝐻𝑆 (𝑆, 𝜆𝑆,𝑚𝑍

) −𝑚𝑍𝑌𝑚 (𝜇) − 𝑘𝑚𝑍
𝑚𝑍 ,

ZEB1:
𝑑𝑍

𝑑𝑡
= 𝑔𝑍𝑚𝑍𝐿(𝜇) − 𝑘𝑍𝑍 .

Table S3.2 lists the variables and parameters used in the simplified TCS model.

JAK–STAT model

To model JAK–STAT signaling, we use model𝑀0 by Quaiser et al. (2011), which is a
truncated model from Yamada et al. (2003), developed to resolve non-identifiability
in the non-truncated model (Quaiser and Mönnigmann, 2009). The truncated model
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focuses on the first 15 minutes of JAK–STAT signaling, where transcriptional feedback
does not occur yet. The model is given by:

¤𝑥1 = −𝑣1 ¤𝑥2 = −𝑣1
¤𝑥3 = 𝑣1 − 𝑣2 ¤𝑥5 = 𝑣2 − 2𝑣3
¤𝑥6 = 𝑣3 − 𝑣4 + 𝑣10 ¤𝑥7 = 𝑣4 − 𝑣5 + 𝑣6 − 𝑣7 − 𝑣9
¤𝑥8 = 𝑣7 ¤𝑥9 = 𝑣6 − 𝑣7 − 2𝑣8 − 𝑣11 − 𝑣13
¤𝑥10 = 𝑣8 − 𝑣14 ¤𝑥11 = −𝑣5 + 𝑣12 − 𝑣13
¤𝑥12 = 𝑣5 − 𝑣6 ¤𝑥13 = 𝑣11 − 𝑣12
¤𝑥14 = 𝑣13 + 𝑣15 ¤𝑥15 = 𝑣14 − 𝑣15
¤𝑥16 = 𝑣9 − 𝑣10 ¤𝑥17 = −𝑣11 + 𝑣13 − 𝑣14 + 𝑣15
¤𝑥18 = −𝑣9 + 𝑣10

where the 𝑣 parameters are defined as follows:

𝑣1 = kf 1𝑥1𝑥2 − kd1𝑥3 𝑣2 = kf 2𝑥3 [IFN] − kd2𝑥5
𝑣3 = kf 3𝑥5

2 − kd3𝑥6 𝑣4 = kf 4𝑥6
𝑣5 = kf 5𝑥7𝑥11 − kd5𝑥12 𝑣6 = kf 6𝑥12
𝑣7 = kf 7𝑥7𝑥9 − kd7𝑥8 𝑣8 = kf 8𝑥9

2 − kd8𝑥10
𝑣9 = kf 9𝑥7𝑥18 − kd9𝑥16 𝑣10 = kf 10𝑥16
𝑣11 = kf 11𝑥9𝑥17 − kd11𝑥13 𝑣12 = kf 12𝑥13
𝑣13 = kf 13𝑥9𝑥11 − kd13𝑥14 𝑣14 = kf 24𝑥17𝑥10 − kd24𝑥15
𝑣15 = kf 25𝑥15

In this model, 𝑥4 represents the input concentration of IFNγ, and 𝑥10 the output
concentration of STAT1_p2 in nm. Table S3.3 contains the initial conditions and
parameters (Quaiser et al., 2011).

Because this model describes a much shorter time scale (∼15min) than that of
the PD-L1 dynamics (∼1 d), and EMT process (∼20 d), we essentially used the quasi-
steady-state assumption for the JAK–STAT model; to keep the full model relatively
simple, we first obtained the numeric steady-steady of [STAT1p_2] for different values
of IFNγ using COPASI, then we approximated the dependence on this quasi-steady
state by fitting it to a three-parameter Gompertz function (Fig. S3.5), which can be
parameterized as follows:

𝑓 (𝑥) = 𝑑 e−e𝑏 (𝑥−𝑒 ) .
Fitting was done by the G.3 self-starter in the drc R package (Ritz et al., 2015),

yielding parameter values 𝑑 = 414.56394, 𝑏 = −51.52794, and 𝑒 = 0.02833.
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Initial condition nm Parameters s−1

𝑥1 12 kf 1 0.1 kd1 0.5 × 10−1

𝑥2 12 kf 2 0.2 × 10−1 kd2 0.2 × 10−1

𝑥3 0 kf 3 0.4 ×
10−1 nm−1

kd3 0.2

𝑥5 0 kf 4 0.5 × 10−2

𝑥6 0 kf 5 0.8 × 10−2 kd5 0.8
𝑥7 0 kf 6 0.4
𝑥8 0 kf 7 0.5 × 10−2 kd7 0.5
𝑥9 0 kf 8 0.2 ×

10−1 nm−1
kd8 0.1

𝑥10 0 kf 9 0.1 × 10−2 kd9 0.2
𝑥11 1000 kf 10 0.3 × 10−2

𝑥12 0 kf 11 0.1 × 10−2 kd11 0.2
𝑥13 0 kf 12 0.3 × 10−2

𝑥14 0 kf 13 2 × 10−7 kd13 0.2
𝑥15 0 kf 24 0.1 × 10−2 kd24 0.2
𝑥16 0 kf 25 0.3 × 10−2

𝑥17 50
𝑥18 100

Table S3.3: Initial conditions and parameters for the JAK–STAT model. Obtained from Tables
S1 and S2a from Quaiser et al. (2011).
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Figure S3.1: Model for STAT1-induced PD-L1 expression. (A) Schematic diagram that
shows how STAT1 expression drives IRF1 and PD-L1 in the endoplasmatic reti-
cilum (ER), after which PD-L1 is transported to the membrane. (B) Temporal dy-
namics of STAT1-induced PD-L1 expression following induction with STAT1p_2
= 2.5 × 106molecules.
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Figure S3.2: Simplified interaction model. (A) Schematic diagram of our simplified model
driven by a direct inducing signal I and SNAIL1. (B) Phase diagram of our simpli-
fied model that shows the possible coexistence of the different EMT phenotypes.
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Figure S3.3 (prev. page): Sensitivity analysis of PD-L1 at the membrane and ZEB1 pro-

tein for parameters used in the negative-feedback loop between miR-200

and PD-L1. Modifications in the bifurcation diagram are shown for PD-L1 (top)
and ZEB1 (bottom) as dependent on SNAIL1 but for fixed IFNγ = 0.1 nm. Parameters
𝛾𝜇𝑖 (left), 𝛾𝑚𝑖 (middle), and 𝑙𝑖 (right) for the 𝑌𝜇,𝑚𝑃

(𝜇), 𝑌𝑚 (𝜇), and 𝐿(𝜇) functions
(see Table 3.2) were varied from the default model values (black) by +10/20% (red
shades) and -10/20% (blue shades).
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Figure S3.4: Temporal dynamics of EMP after simultaneous IFNγ and EMT induction.

EMT (left) and MET (right) for the simplified TCS model (dashed gray), and
our combined model (Fig. 3.1B). For EMT, cells in epithelial state with SNAIL1
= 1.7 × 105molecules and IFNγ = 0 nm undergo a full EMT by simultaneously
increasing SNAIL1 to 2.3 × 105molecules and IFNγ to 0.1 nm (orange), or by just
increasing SNAIL1 (blue, same as blue in Fig. 3.3 in the main text). For MET,
SNAIL1 and IFNγ are decreased to 1.7 × 105molecules and 0 nm again.
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Figure S3.5: Steady-state approximation of [STATp_2] driven by IFNγ. The black line shows
the simulated values of STAT in steady state, the red line shows the fit by a
three-parameter Gompertz curve.

COPASI model files

The following COPASI model files are included and available at https://doi.org/
10.5281/zenodo.6014907:

• core_emt.cps: The simplified TCS model as published by Jolly et al. (2016).

• jakstat.cps: The JAK–STAT model as published by Quaiser et al. (2011).

• ifn_jak_stat_pdl.cps: Our IFNγ–PD-L1 model including steady-state approx-
imation of the JAK–STAT model.

• full_model.cps: Our full model combining IFNγ-induced PD-L1 production
with the simplified TCS model.

• core_emt_plus_pdl.cps: Our simplified model where we only consider the
simplified TCS model coupled to PD-L1, induced by an external signal 𝐼 .
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